1
|
Campuzano A, Pentakota KD, Liao YR, Zhang H, Wiederhold NP, Ostroff GR, Hung CY. A Recombinant Multivalent Vaccine (rCpa1) Induces Protection for C57BL/6 and HLA Transgenic Mice against Pulmonary Infection with Both Species of Coccidioides. Vaccines (Basel) 2024; 12:67. [PMID: 38250880 PMCID: PMC10819930 DOI: 10.3390/vaccines12010067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Coccidioidomycosis is caused by Coccidioides posadasii (Cp) and Coccidioides immitis (Ci), which have a 4-5% difference in their genomic sequences. There is an urgent need to develop a human vaccine against both species. A previously created recombinant antigen (rCpa1) that contains multiple peptides derived from Cp isolate C735 is protective against the autologous isolate. The focus of this study is to evaluate cross-protective efficacy and immune correlates by the rCpa1-based vaccine against both species of Coccidioides. DNA sequence analyses of the homologous genes for the rCpa1 antigen were conducted for 39 and 17 clinical isolates of Cp and Ci, respectively. Protective efficacy and vaccine-induced immunity were evaluated for both C57BL/6 and human HLA-DR4 transgenic mice against five highly virulent isolates of Cp and Ci. There are total of seven amino acid substitutions in the rCpa1 antigen between Cp and Ci. Both C57BL/6 and HLA-DR4 mice that were vaccinated with an rCpa1 vaccine had a significant reduction of fungal burden and increased numbers of IFN-γ- and IL-17-producing CD4+ T cells in the first 2 weeks post challenge. These data suggest that rCpa1 has cross-protection activity against Cp and Ci pulmonary infection through activation of early Th1 and Th17 responses.
Collapse
Affiliation(s)
- Althea Campuzano
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Komali Devi Pentakota
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Yu-Rou Liao
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Nathan P. Wiederhold
- Department of Pathology, Graduate School of Biomedical Sciences, UT Health, San Antonio, TX 78229, USA;
| | - Gary R. Ostroff
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01655, USA;
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| |
Collapse
|
2
|
Peçanha-Pietrobom PM, Tirado-Sánchez A, Gonçalves SS, Bonifaz A, Colombo AL. Diagnosis and Treatment of Pulmonary Coccidioidomycosis and Paracoccidioidomycosis. J Fungi (Basel) 2023; 9:218. [PMID: 36836333 PMCID: PMC9959547 DOI: 10.3390/jof9020218] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Coccidioidomycosis (CM) and paracoccidioidomycosis (PCM) are systemic mycoses that are highly endemic in Latin America and have recently been included on the World Health Organization (WHO) Fungal Priority Pathogens List. Coccidioides immitis and Coccidioides posadasii are recognized as etiological agents of CM, with peculiarities in their geographic distribution. The genus Paracoccidioides now includes Paracoccidioides lutzii and the Paracoccidioides brasiliensis complex, which encompasses four phylogenetic species. In both diseases, pulmonary signs and symptoms are the main reasons for patients to seek medical assistance, and they are frequently misdiagnosed as tuberculosis. In this paper, we present a critical view of the strategies for diagnosis and clinical management of CM and PCM. Over the past few decades, there has been an increase in the number of reports of endemic fungal infections in areas previously thought to be "non-endemic" due to climate change and increased travel, among other factors. Learning to recognize their main epidemiological aspects and clinical manifestations is crucial so that clinicians can include them in the differential diagnosis of lung disease and avoid late diagnosis.
Collapse
Affiliation(s)
| | - Andrés Tirado-Sánchez
- Dermatology Service & Mycology Department, Hospital General de México, “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico
- Internal Medicine Department, Hospital General de Zona 29, Instituto Mexicano del Seguro Social, Mexico City 07950, Mexico
| | - Sarah Santos Gonçalves
- Department of Pathology, Infectious Diseases Postgraduate Program, Federal University of Espírito Santo (UFES), Vitoria 29043900, Brazil
| | - Alexandro Bonifaz
- Internal Medicine Department, Hospital General de Zona 29, Instituto Mexicano del Seguro Social, Mexico City 07950, Mexico
| | - Arnaldo Lopes Colombo
- Department of Medicine, Division of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04039032, Brazil
| |
Collapse
|
3
|
Advances in Fungal Peptide Vaccines. J Fungi (Basel) 2020; 6:jof6030119. [PMID: 32722452 PMCID: PMC7558412 DOI: 10.3390/jof6030119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Vaccination is one of the greatest public health achievements in the past century, protecting and improving the quality of life of the population worldwide. However, a safe and effective vaccine for therapeutic or prophylactic treatment of fungal infections is not yet available. The lack of a vaccine for fungi is a problem of increasing importance as the incidence of diverse species, including Paracoccidioides, Aspergillus, Candida, Sporothrix, and Coccidioides, has increased in recent decades and new drug-resistant pathogenic fungi are emerging. In fact, our antifungal armamentarium too frequently fails to effectively control or cure mycoses, leading to high rates of mortality and morbidity. With this in mind, many groups are working towards identifying effective and safe vaccines for fungal pathogens, with a particular focus of generating vaccines that will work in individuals with compromised immunity who bear the major burden of infections from these microbes. In this review, we detail advances in the development of vaccines for pathogenic fungi, and highlight new methodologies using immunoproteomic techniques and bioinformatic tools that have led to new vaccine formulations, like peptide-based vaccines.
Collapse
|
4
|
Van Dyke MCC, Thompson GR, Galgiani JN, Barker BM. The Rise of Coccidioides: Forces Against the Dust Devil Unleashed. Front Immunol 2019; 10:2188. [PMID: 31572393 PMCID: PMC6749157 DOI: 10.3389/fimmu.2019.02188] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Coccidioidomycosis (Valley fever) is a fungal disease caused by the inhalation of Coccidioides posadasii or C. immitis. This neglected disease occurs in the desert areas of the western United States, most notably in California and Arizona, where infections continue to rise. Clinically, coccidioidomycosis ranges from asymptomatic to severe pulmonary disease and can disseminate to the brain, skin, bones, and elsewhere. New estimates suggest as many as 350,000 new cases of coccidioidomycosis occur in the United States each year. Thus, there is an urgent need for the development of a vaccine and new therapeutic drugs against Coccidioides infection. In this review, we discuss the battle against Coccidioides including the development of potential vaccines, the quest for new therapeutic drugs, and our current understanding of the protective host immune response to Coccidioides infection.
Collapse
Affiliation(s)
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States.,Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States
| | - John N Galgiani
- Valley Fever Center for Excellence, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, United States
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
5
|
Hung CY, Hsu AP, Holland SM, Fierer J. A review of innate and adaptive immunity to coccidioidomycosis. Med Mycol 2019; 57:S85-S92. [PMID: 30690602 DOI: 10.1093/mmy/myy146] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Coccidioidomycosis is a human fungal disease cause by inhalation of aerosol spores produced by Coccidioides posadasii or Coccidioides immitis. This disease is a common cause of community-acquired pneumonia in the endemic areas of the Southwestern United States. It also can present as a life-threatening disease as the fungal cells disseminate to skin, bone, and central nervous system. The outcome of coccidioidomycosis is largely determined by the nature of host immune response to the infection. Escalation of symptomatic infections and increased cost of long-term antifungal treatment warrant a concerted effort to better understand the innate and adaptive immune responses and the genetics associated with coccidioidomycosis susceptibility. This knowledge can be harnessed for development of a human vaccine against Coccidioides and advance clinic management of this disease. This review discusses recently reported studies on innate and adaptive immunity to Coccidioides infection, Mendelian susceptibility to disseminated disease and progress toward a human vaccine against this formidable disease.
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua Fierer
- Infectious Diseases Section, VA Healthcare San Diego, California, USA.,Department of Medicine, Division of Infectious Diseases, University of California San Diego School of Medicine, San Diego, California, USA
| |
Collapse
|
6
|
Glucan-Chitin Particles Enhance Th17 Response and Improve Protective Efficacy of a Multivalent Antigen (rCpa1) against Pulmonary Coccidioides posadasii Infection. Infect Immun 2018; 86:IAI.00070-18. [PMID: 30104216 DOI: 10.1128/iai.00070-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Developing an effective and safe recombinant vaccine requires microbe-specific antigens combined with an adjuvant/delivery system to strengthen protective immunity. In this study, we designed and expressed a multivalent recombinant Coccidioides polypeptide antigen (rCpa1) that consists of three previously identified antigens (i.e., Ag2/Pra, Cs-Ag, and Pmp1) and five pathogen-derived peptides with high affinity for human major histocompatibility complex class II (MHC-II) molecules. The purified rCpa1 was encapsulated into four types of yeast cell wall particles containing β-glucan, mannan, and chitin in various proportions or was mixed with an oligonucleotide (ODN) containing two methylated dinucleotide CpG motifs. This multivalent antigen encapsulated into glucan-chitin particles (GCP-rCpa1) showed significantly greater reduction of fungal burden for human HLA-DR4 transgenic mice than the other adjuvant-rCpa1 formulations tested. Among the adjuvants tested, both GCPs and β-glucan particles (GPs) were capable of stimulating a mixed Th1 and Th17 response. Mice vaccinated with GCP-rCpa1 showed higher levels of interleukin 17 (IL-17) production in T-cell recall assays and earlier lung infiltration by activated Th1 and Th17 cells than GP-rCpa1-vaccinated mice. Both C57BL/6 and HLA-DR4 transgenic mice that were vaccinated with the GCP-rCpa1 vaccine showed higher survival rates than mice that received GCPs alone. Concurrently, the GCP-rCpa1 vaccine stimulated greater infiltration of the injection sites by macrophages, which engulf and process the vaccine for antigen presentation, than the GP-rCpa1 vaccine. This is the first attempt to systematically characterize the presentation of a multivalent coccidioidomycosis vaccine encapsulated with selected adjuvants that enhance the protective cellular immune response to infection.
Collapse
|
7
|
Immune Response to Coccidioidomycosis and the Development of a Vaccine. Microorganisms 2017; 5:microorganisms5010013. [PMID: 28300772 PMCID: PMC5374390 DOI: 10.3390/microorganisms5010013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Coccidioidomycosis is a fungal infection caused by Coccidioides posadasii and Coccidioides immitis. It is estimated that 150,000 new infections occur in the United States each year. The incidence of this infection continues to rise in endemic regions. There is an urgent need for the development of better therapeutic drugs and a vaccine against coccidioidomycosis. This review discusses the features of host innate and adaptive immune responses to Coccidioides infection. The focus is on the recent advances in the immune response and host-pathogen interactions, including the recognition of spherules by the host and defining the signal pathways that guide the development of the adaptive T-cell response to Coccidioides infection. Also discussed is an update on progress in developing a vaccine against these fungal pathogens.
Collapse
|
8
|
Abstract
Coccidioidomycosis is a potentially life-threatening mycosis endemic to the Southwestern USA and some arid regions of Central and South America. A vaccine against Coccidioides infection would benefit over 30-million people who reside in or visit the endemic regions. Vaccine candidates against systemic fungal infections come in many forms. Live attenuated vaccines are derived from disease-causing pathogens and generally stimulate excellent protective immunity. Since attenuated vaccines contain living microbes, there is a degree of unpredictability raising concerns regarding safety and stability. Generation of a subunit vaccine has initiated efforts to design a safe reagent suitable for administration to humans at risk of coccidioidomycosis. Epitope-based vaccines allow for eliciting specific protective immune responses and removal of potentially detrimental sequences to improve safety. This chapter describes methods for the identification of T cell epitopes derived from Coccidioides antigens, design, and production of a recombinant vaccine containing multiple T cell epitopes, and evaluation of its protective efficacy and vaccine immunity against pulmonary Coccidioides infection using a strain of transgenic mice that express a human MHC II molecule.
Collapse
|
9
|
Narra HP, Shubitz LF, Mandel MA, Trinh HT, Griffin K, Buntzman AS, Frelinger JA, Galgiani JN, Orbach MJ. A Coccidioides posadasii CPS1 Deletion Mutant Is Avirulent and Protects Mice from Lethal Infection. Infect Immun 2016; 84:3007-16. [PMID: 27481239 PMCID: PMC5038059 DOI: 10.1128/iai.00633-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
Abstract
The CPS1 gene was identified as a virulence factor in the maize pathogen Cochliobolus heterostrophus Hypothesizing that the homologous gene in Coccidioides posadasii could be important for virulence, we created a Δcps1 deletion mutant which was unable to cause disease in three strains of mice (C57BL/6, BALB/c, or the severely immunodeficient NOD-scid,γc(null) [NSG]). Only a single colony was recovered from 1 of 60 C57BL/6 mice following intranasal infections of up to 4,400 spores. Following administration of very high doses (10,000 to 2.5 × 10(7) spores) to NSG and BALB/c mice, spherules were observed in lung sections at time points from day 3 to day 10 postinfection, but nearly all appeared degraded with infrequent endosporulation. Although the role of CPS1 in virulence is not understood, phenotypic alterations and transcription differences of at least 33 genes in the Δcps1 strain versus C. posadasii is consistent with both metabolic and regulatory functions for the gene. The in vitro phenotype of the Δcps1 strain showed slower growth of mycelia with delayed and lower spore production than C. posadasii, and in vitro spherules were smaller. Vaccination of C57BL/6 or BALB/c mice with live Δcps1 spores either intranasally, intraperitoneally, or subcutaneously resulted in over 95% survival with mean residual lung fungal burdens of <1,000 CFU from an otherwise lethal C. posadasii intranasal infection. Considering its apparently complete attenuation of virulence and the high degree of resistance to C. posadasii infection when used as a vaccine, the Δcps1 strain is a promising vaccine candidate for preventing coccidioidomycosis in humans or other animals.
Collapse
Affiliation(s)
- Hema P Narra
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Lisa F Shubitz
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA
| | - M Alejandra Mandel
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, USA The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA
| | - Hien T Trinh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA
| | - Kurt Griffin
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA
| | - Adam S Buntzman
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA
| | - Jeffrey A Frelinger
- The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA
| | - John N Galgiani
- The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA Department of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Marc J Orbach
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, USA The Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Hurtgen BJ, Castro-Lopez N, Jiménez-Alzate MDP, Cole GT, Hung CY. Preclinical identification of vaccine induced protective correlates in human leukocyte antigen expressing transgenic mice infected with Coccidioides posadasii. Vaccine 2016; 34:5336-5343. [PMID: 27622300 DOI: 10.1016/j.vaccine.2016.08.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/19/2016] [Accepted: 08/29/2016] [Indexed: 01/19/2023]
Abstract
There is an emerging interest to develop human vaccines against medically-important fungal pathogens and a need for a preclinical animal model to assess vaccine efficacies and protective correlates. HLA-DR4 (DRB1∗0401 allele) transgenic mice express a human major histocompatibility complex class II (MHC II) receptor in such a way that CD4+ T-cell response is solely restricted by this human molecule. In this study HLA-DR4 transgenic mice were immunized with a live-attenuated vaccine (ΔT) and challenged by the intranasal route with 50-70 Coccidioides posadasii spores, a potentially lethal dose. The same vaccination regimen offers 100% survival for C57BL/6 mice. Conversely, ΔT-vaccinated HLA-DR4 mice displayed 3 distinct manifestations of Coccidioides infection including 40% fatal acute (FAD), 30% disseminated (DD) and 30% pulmonary disease (PD). The latter 2 groups of mice had reduced loss of body weight and survived to at least 50days postchallenge (dpc). These results suggest that ΔT vaccinated HLA-DR4 mice activated heterogeneous immunity against pulmonary Coccidioides infection. Vaccinated HLA-DR4 mice displayed early expansion of Th1 and Th17 cells and recruitment of inflammatory innate cells into Coccidioides-infected lungs during the first 9dpc. While contraction rates of Th cells and the inflammatory response during 14-35dpc significantly differed among the 3 groups of vaccinated HLA-DR4 mice. The FAD group displayed a sharply reduced Th1 and Th17 response, while overwhelmingly recruiting neutrophils into lungs during 9-14days. The FAD group approached moribund by 14dpc. In contrast, vaccinated HLA-DR4 survivors gradually contracted Th cells and inflammatory response with the greatest rate in the PD group. While vaccinated HLA-DR4 mice are susceptible to Coccidioides infection, they are useful for evaluation of vaccine efficacy and identification of immunological correlates against this mycosis.
Collapse
Affiliation(s)
- Brady J Hurtgen
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Natalia Castro-Lopez
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA
| | - Maria Del Pilar Jiménez-Alzate
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Grupo de Micología Médica, Department of Microbiology and Parasitology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Garry T Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Immune Defense Core, University of Texas, San Antonio, TX, USA.
| |
Collapse
|
11
|
MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase. PLoS Pathog 2016; 12:e1005787. [PMID: 27542117 PMCID: PMC4991787 DOI: 10.1371/journal.ppat.1005787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/05/2016] [Indexed: 12/01/2022] Open
Abstract
Soaring rates of systemic fungal infections worldwide underscore the need for vaccine prevention. An understanding of the elements that promote vaccine immunity is essential. We previously reported that Th17 cells are required for vaccine immunity to the systemic dimorphic fungi of North America, and that Card9 and MyD88 signaling are required for the development of protective Th17 cells. Herein, we investigated where, when and how MyD88 regulates T cell development. We uncovered a novel mechanism in which MyD88 extrinsically regulates the survival of activated T cells during the contraction phase and in the absence of inflammation, but is dispensable for the expansion and differentiation of the cells. The poor survival of activated T cells in Myd88-/- mice is linked to increased caspase3-mediated apoptosis, but not to Fas- or Bim-dependent apoptotic pathways, nor to reduced expression of the anti-apoptotic molecules Bcl-2 or Bcl-xL. Moreover, TLR3, 7, and/or 9, but not TLR2 or 4, also were required extrinsically for MyD88-dependent Th17 cell responses and vaccine immunity. Similar MyD88 requirements governed the survival of virus primed T cells. Our data identify unappreciated new requirements for eliciting adaptive immunity and have implications for designing vaccines. Despite several million new systemic fungal infections annually worldwide, there are no commercial vaccines available. The development of effective vaccines requires a fundamental understanding of how protective immune responses are induced. Using experimental vaccine strains, we previously demonstrated that populations of T helper cells producing interleukin 17 (Th17 cells) and interferon gamma (Th1 cells) mediate vaccine resistance to systemic dimorphic fungi of North America. Here, we report how the immune system recognizes the fungal vaccines and induces the development of protective T cells. We delineate the role of pathogen recognition receptors (PRRs) and their common signaling pathway in host immune cells that recognize the fungal vaccine. While the signaling pathway studied is essential for the development of vaccine-induced T cells, the mechanism of action is novel and included T cell death after activation. The findings could be extended to virus-specific T cells suggesting that the mechanism is conserved among the microbial kingdom. Our work sheds new light on how protective T cells are induced and can be harnessed by vaccine strategies tailored against fungal and other microbial infections.
Collapse
|
12
|
Hung CY, Castro-Lopez N, Cole GT. Card9- and MyD88-Mediated Gamma Interferon and Nitric Oxide Production Is Essential for Resistance to Subcutaneous Coccidioides posadasii Infection. Infect Immun 2016; 84:1166-75. [PMID: 26857574 PMCID: PMC4807486 DOI: 10.1128/iai.01066-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/02/2016] [Indexed: 02/06/2023] Open
Abstract
Coccidioidomycosis is a potentially life-threatening respiratory disease which is endemic to the southwestern United States and arid regions of Central and South America. It is responsible for approximately 150,000 infections annually in the United States alone. Almost every human organ has been reported to harbor parasitic cells of Coccidioides spp. in collective cases of the disseminated form of this mycosis. Current understanding of the mechanisms of protective immunity against lung infection has been largely derived from murine models of pulmonary coccidioidomycosis. However, little is known about the nature of the host response to Coccidioides in extrapulmonary tissue. Primary subcutaneous coccidioidal infection is rare but has been reported to result in disseminated disease. Here, we show that activation of MyD88 and Card9 signal pathways are required for resistance to Coccidioides infection following subcutaneous challenge of C57BL/6 mice, which correlates with earlier findings of the protective response to pulmonary infection. MyD88(-/-) andCard9(-/-) mice recruited reduced numbers of T cells, B cells, and neutrophils to the Coccidioides-infected hypodermis com pared to wild-type mice; however, neutrophils were dispensable for resistance to skin infection. Further studies have shown that gamma interferon (IFN-γ) production and activation of Th1 cells characterize resistance to subcutaneous infection. Furthermore, activation of a phagosomal enzyme, inducible nitric oxide synthase, which is necessary for NO production, is a requisite for fungal clearance in the hypodermis. Collectively, our data demonstrate that MyD88- and Card9-mediated IFN-γ and nitric oxide production is essential for protection against subcutaneous Coccidioides infection.
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| | - Natalia Castro-Lopez
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| | - Garry T Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| |
Collapse
|
13
|
Hung CY, Wozniak KL, Cole GT. Flow Cytometric Analysis of Protective T-Cell Response Against Pulmonary Coccidioides Infection. Methods Mol Biol 2016; 1403:551-66. [PMID: 27076153 PMCID: PMC11521025 DOI: 10.1007/978-1-4939-3387-7_31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The incidence of systemic fungal infections has increased throughout the world, spurring much interest in developing effective vaccines. Coccidioidomycosis, also known as San Joaquin Valley fever, is a potentially life-threatening respiratory mycosis. A vaccine against Coccidioides infection would contribute significantly to the well-being of the approx. 30 million residents in the Southwestern USA as well as the multitude of travelers who annually visit the endemic regions. We have applied a live, attenuated vaccine (∆T) to explore the nature of vaccine immunity in mice after intranasal challenge with a potentially lethal dose of Coccidioides spores. Coccidioides spores are airborne and highly infectious for mammalian hosts and classified as a biosafety level 3 agent. T cells are critical in the development of protective immunity against a variety of microorganisms as well as the development of autoimmune disease and allergic responses. Profiles of cytokines detected in lung homogenates of ∆T-vaccinated mice were indicative of a mixed Th1, Th2, and Th17 immune response. We have developed an intracellular cytokine staining and flow cytometric (ICS) technique to measure activated CD4(+) and CD8(+) T cells and IFN-γ-, IL-4-, IL-5-, and IL-17A-producing T cells in the lungs of mice that are challenged with a potentially lethal dose of Coccidioides spores. The numbers of pulmonary Th1 and Th17 cells during the first 2 weeks post-challenge showed a progressive increase in vaccinated mice and corresponded with reduction of fungal burden. In this protocol, we describe the methodology for culture and isolation of the live, attenuated ΔT spores of Coccidioides used to vaccinate mice, preparation of pulmonary cells, and staining protocol for cell surface markers and intracellular cytokines. This is the most reliable and robust procedure to measure frequencies and numbers of each selected T-cell subsets in lungs of vaccinated versus control mice and can be readily applied to evaluate T-cell response against other microbial infections.
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
- Biology Department, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0662, USA.
| | - Karen L Wozniak
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Garry T Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| |
Collapse
|
14
|
Clemons KV, Antonysamy MA, Danielson ME, Michel KS, Martinez M, Chen V, Stevens DA. Whole glucan particles as a vaccine against systemic coccidioidomycosis. J Med Microbiol 2015; 64:1237-1243. [PMID: 26297127 DOI: 10.1099/jmm.0.000138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We reported previously that yeast-derived whole glucan particles (WGPs), with or without conjugation to BSA, used as a vaccine protected against systemic aspergillosis in mice. Here, we examined their utility as a potential vaccine against coccidioidomycosis. WGPs were prepared from Saccharomyces cerevisiae; conjugation with BSA (WGP-BSA) was done using 1-cyano-4-dimethylaminopyridinium tetrafluoroborate-mediated conjugation. Heat-killed S. cerevisiae (HKY) was used as a positive-control vaccine. CD-1 mice were vaccinated with WGPs or WGP-BSA, HKY or PBS once weekly, beginning 21 days prior to infection. Mice were infected intravenously with arthroconidia of Coccidioides posadasii. In the low-mortality study, 50 % of PBS-treated controls died. Only WGP-BSA at 0.6 mg per dose induced significant protection compared with PBS treatment. All surviving mice were infected in all three organs examined. Those given WGP-BSA at 0.6 mg per dose had fewer c.f.u. in liver and lungs (P = 0.04), and those given WGPs at 6 mg per dose had fewer in lungs (P < 0.02), compared with PBS. In the high-mortality study, 90 % of PBS mice died. Vaccination with HKY, and WGPs or WGP-BSA at 6 or 12 mg per dose significantly prolonged survival (P ≤ 0.05). No surviving mice were free of infection. HKY and WGP-BSA at 12 mg per dose reduced c.f.u. in the liver and lungs (P < 0.05) and WGP-BSA at 6 mg per dose reduced c.f.u. in the lungs (P < 0.05); unconjugated WGPs did not reduce infection. WGPs or WGP-BSA acted as a vaccine that protected against mortality caused by coccidioidomycosis. Thus, WGP protection against coccidioidomycosis and aspergillosis provides the basis for development of a pan-fungal vaccine.
Collapse
Affiliation(s)
- Karl V Clemons
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| | | | | | | | - Marife Martinez
- California Institute for Medical Research, San Jose, CA, USA
| | - Vicky Chen
- California Institute for Medical Research, San Jose, CA, USA
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Call for a California Coccidioidomycosis Consortium to Face the Top Ten Challenges Posed by a Recalcitrant Regional Disease. Mycopathologia 2014; 179:1-9. [DOI: 10.1007/s11046-014-9816-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
|
16
|
Hung CY, Jiménez-Alzate MDP, Gonzalez A, Wüthrich M, Klein BS, Cole GT. Interleukin-1 receptor but not Toll-like receptor 2 is essential for MyD88-dependent Th17 immunity to Coccidioides infection. Infect Immun 2014; 82:2106-14. [PMID: 24614655 PMCID: PMC3993447 DOI: 10.1128/iai.01579-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/01/2014] [Indexed: 12/13/2022] Open
Abstract
Interleukin-17A (IL-17A)-producing CD4(+) T helper (Th17) cells have been shown to be essential for defense against pulmonary infection with Coccidioides species. However, we have just begun to identify the required pattern recognition receptors and understand the signal pathways that lead to Th17 cell activation after fungal infection. We previously reported that Card9(-/-) mice vaccinated with formalin-killed spherules failed to acquire resistance to Coccidioides infection. Here, we report that both MyD88(-/-) and Card9(-/-) mice immunized with a live, attenuated vaccine also fail to acquire protective immunity to this respiratory disease. Like Card9(-/-) mice, vaccinated MyD88(-/-) mice revealed a significant reduction in numbers of both Th17 and Th1 cells in their lungs after Coccidioides infection. Both Toll-like receptor 2 (TLR2) and IL-1 receptor type 1 (IL-1r1) upstream of MyD88 have been implicated in Th17 cell differentiation. Surprisingly, vaccinated TLR2(-/-) and wild-type (WT) mice showed similar outcomes after pulmonary infection with Coccidioides, while vaccinated IL-1r1(-/-) mice revealed a significant reduction in the number of Th17 cells in their infected lungs compared to WT mice. Thus, activation of both IL-1r1/MyD88- and Card9-mediated Th17 immunity is essential for protection against Coccidioides infection. Our data also reveal that the numbers of Th17 cells were reduced in IL-1r1(-/-) mice to a lesser extent than in MyD88(-/-) mice, raising the possibility that other TLRs are involved in MyD88-dependent Th17 immunity to coccidioidomycosis. An antimicrobial action of Th17 cells is to promote early recruitment of neutrophils to infection sites. Our data revealed that neutrophils are required for vaccine immunity to this respiratory disease.
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| | - María del Pilar Jiménez-Alzate
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| | - Angel Gonzalez
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Bruce S. Klein
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Internal Medicine, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, USA
| | - Garry T. Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| |
Collapse
|
17
|
Recent advances in our understanding of the environmental, epidemiological, immunological, and clinical dimensions of coccidioidomycosis. Clin Microbiol Rev 2014; 26:505-25. [PMID: 23824371 DOI: 10.1128/cmr.00005-13] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Coccidioidomycosis is the endemic mycosis caused by the fungal pathogens Coccidioides immitis and C. posadasii. This review is a summary of the recent advances that have been made in the understanding of this pathogen, including its mycology, genetics, and niche in the environment. Updates on the epidemiology of the organism emphasize that it is a continuing, significant problem in areas of endemicity. For a variety of reasons, the number of reported coccidioidal infections has increased dramatically over the past decade. While continual improvements in the fields of organ transplantation and management of autoimmune disorders and patients with HIV have led to dilemmas with concurrent infection with coccidioidomycosis, they have also led to advances in the understanding of the human immune response to infection. There have been some advances in therapeutics with the increased use of newer azoles. Lastly, there is an overview of the ongoing search for a preventative vaccine.
Collapse
|
18
|
Abstract
Endemic mycoses remain a significant cause of morbidity and mortality among immunocompromised patients. As the number of immunosuppressed individuals increases worldwide, the incidence of endemic mycoses is also expected to rise. In immunocompromised patients, endemic mycoses can present in atypical fashion, cause more severe and/or disseminated disease, and result in higher mortality. Despite several noteworthy advances over the past decade, significant challenges remain with regard to the prevention, diagnosis, and therapy of endemic mycoses in immunocompromised hosts. This review highlights important developments related to the epidemiology, diagnosis, treatment, and prevention of commonly encountered endemic mycoses. We also discuss emerging topics, knowledge gaps, and areas of future research.
Collapse
|
19
|
Cole GT, Hurtgen BJ, Hung CY. Progress Toward a Human Vaccine Against Coccidioidomycosis. CURRENT FUNGAL INFECTION REPORTS 2012; 6:235-244. [PMID: 23585916 DOI: 10.1007/s12281-012-0105-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Coccidioidomycosis (San Joaquin Valley fever) is a human respiratory disease caused by a soil-borne mold, and is recognized as an intransigent microbial infection by physicians who treat patients with the potentially life-threatening, disseminated form of this mycosis. Epidemiological studies based on surveys of skin-test reactivity of people who reside in the endemic regions of the Southwestern US have shown that at least 150,000 new infections occur annually. The clinical spectrum of coccidioidomycosis ranges from an asymptomatic insult to a severe pulmonary disease in which the pathogen may spread from the lungs to the skin, bones, brain and other body organs. Escalation of symptomatic infections and increased cost of long-term antifungal treatment warrant a concerted effort to develop a vaccine against coccidioidomycosis. This review examines recently reported strategies used to generate such a vaccine and summarizes current understanding of the nature of protective immunity to this formidable disease.
Collapse
Affiliation(s)
- Garry T Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases (STCEID), University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
20
|
Casadevall A, Pirofski LA. Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases. Cell Host Microbe 2012; 11:447-56. [PMID: 22607798 DOI: 10.1016/j.chom.2012.04.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Only two decades ago antibodies to fungi were thought to have little or no role in protection against fungal diseases. However, subsequent research has provided convincing evidence that certain antibodies can modify the course of fungal infection to the benefit or detriment of the host. Hybridoma technology was the breakthrough that enabled the characterization of antibodies to fungi, illuminating some of the requirements for antibody efficacy. As discussed in this review, fungal-specific antibodies mediate protection through direct actions on fungal cells and through classical mechanisms such as phagocytosis and complement activation. Although mechanisms of antibody-mediated protection are often species-specific, numerous fungal antigens can be targeted to generate vaccines and therapeutic immunoglobulins. Furthermore, the study of antibody function against medically important fungi has provided fresh immunological insights into the complexity of humoral immunity that are likely to apply to other pathogens.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
21
|
Hung CY, Hurtgen BJ, Bellecourt M, Sanderson SD, Morgan EL, Cole GT. An agonist of human complement fragment C5a enhances vaccine immunity against Coccidioides infection. Vaccine 2012; 30:4681-90. [PMID: 22575167 DOI: 10.1016/j.vaccine.2012.04.084] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 11/19/2022]
Abstract
Coccidioides is a fungal pathogen and causative agent of a human respiratory disease against which no clinical vaccine exists. In this study we evaluated a novel vaccine adjuvant referred to as EP67, which is a peptide agonist of the biologically active C-terminal region of human complement component C5a. The EP67 peptide was conjugated to live spores of an attenuated vaccine strain (ΔT) of Coccidioides posadasii. The non-conjugated ΔT vaccine provided partial protection to BALB/c mice against coccidioidomycosis. In this report we compared the protective efficacy of the ΔT-EP67 conjugate to the ΔT vaccine in BALB/c mice. Animals immunized subcutaneously with the ΔT-EP67 vaccine showed significant increase in survival and decrease in fungal burden over 75 days postchallenge. Increased pulmonary infiltration of dendritic cells and macrophages was observed on day 7 postchallenge but marked decrease in neutrophil numbers had occurred by 11 days. The reduced influx of neutrophils may have contributed to the observed reduction of inflammatory pathology. Mice immunized with the ΔT-EP67 vaccine also revealed enhanced expression of MHC II molecules on the surface of antigen presenting cells, and in vitro recall assays of immune splenocytes showed elevated Th1- and Th17-type cytokine production. The latter correlated with a marked increase in lung infiltration of IFN-γ- and IL-17-producing CD4(+) T cells. Elevated expression of T-bet and RORc transcription factors in ΔT-EP67-vaccinated mice indicated the promotion of Th1 and Th17 cell differentiation. Higher titers of Coccidioides antigen-specific IgG1 and IgG2a were detected in mice immunized with the EP67-conjugated versus the non-conjugated vaccine. These combined results suggest that the EP67 adjuvant enhances protective efficacy of the live vaccine by augmentation of T-cell immunity, especially through Th1- and Th17-mediated responses to Coccidioides infection.
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
22
|
Li J, Yu L, Tian Y, Zhang KQ. Molecular evolution of the deuterolysin (M35) family genes in Coccidioides. PLoS One 2012; 7:e31536. [PMID: 22363666 PMCID: PMC3282736 DOI: 10.1371/journal.pone.0031536] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022] Open
Abstract
Coccidioides is a primary fungal pathogen of humans, causing life-threatening respiratory disease known as coccidioidomycosis (Valley fever) in immunocompromised individuals. Recently, Sharpton et al (2009) found that the deuterolysin (M35) family genes were significantly expanded in both the Coccidioides genus and in U. reesii, and that Coccidioides has acquired three more M35 family genes than U. reesii. In the present work, phylogenetic analyses based on a total of 28 M35 family genes using different alignments and tree-building methods consistently revealed five clades with high nodal supports. Interestingly, likelihood ratio tests suggested significant differences in selective pressure on the ancestral lineage of three additional duplicated M35 family genes from Coccidioides species compared to the other lineages in the phylogeny, which may be associated with novel functional adaptations of M35 family genes in the Coccidioides species, e.g., recent pathogenesis acquisition. Our study adds to the expanding view of M35 family gene evolution and functions as well as establishes a theoretical foundation for future experimental investigations.
Collapse
Affiliation(s)
- Juan Li
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
| | - Li Yu
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
| | - Yanmei Tian
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
- * E-mail:
| |
Collapse
|
23
|
Wang SJ. Candida vaccines development from point view of US patent application. HUMAN VACCINES 2011; 7:1165-71. [PMID: 22048114 DOI: 10.4161/hv.7.11.17821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Candidiasis is the fourth most common bloodstream infection in hospitalized patients in the United States. Moreover, the mortality rate from Candida infections remains high, even after treatment with antifungal therapy. Vaccination would be a promising strategy for prevention of invasive fungal infections. In order to examine the main trends in anticandidal vaccine patenting activity, we conducted an analysis for anticandidal vaccine patents. We find 190 issued patent and 940 patent application documents containing the keywords Candida and vaccine within claims in the USA. Candida vaccines development, as evidenced by the numbers of issued patents, has decreased since the year 2002. Furthermore, the number of patent applications in Candida vaccines may indicate the strength of engaged resources were also in the status of stagnation during 2005-2007 and even a decline in 2008. Academic and nonprofit research institutions not only account for a large share of Candida vaccines patents but also apply for patents continually. Based on this analysis, the strength of Candida vaccines resources seems to remain stagnant in recent years due to patent prosecution or technical barrier in the filed of Candida vaccines. Therefore, we consider that Candida vaccines technology to still be under development and the researchers are still looking for scientific breakthrough in the filed.
Collapse
Affiliation(s)
- Shyh-Jen Wang
- Taipei Veterans General Hospital, Division of Experimental Surgery, Institute of Hospital and Health Care Administration National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
24
|
Absence of phagocyte NADPH oxidase 2 leads to severe inflammatory response in lungs of mice infected with Coccidioides. Microb Pathog 2011; 51:432-41. [PMID: 21896326 DOI: 10.1016/j.micpath.2011.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/19/2011] [Accepted: 08/19/2011] [Indexed: 12/31/2022]
Abstract
Production of reactive oxygen species (ROS) resulting from phagocytic NADPH oxidase (NOX2) activity has been reported to contribute to host defense against numerous microbial pathogens. In this study we explored the role of NOX2 production in experimental coccidioidomycosis, a human respiratory disease caused by a soil-borne fungal pathogen. Activated and non-activated macrophages isolated from either NOX2(-/-) knock-out or wild type (WT) mice showed comparable ROS production and killing efficiency in vitro when infected with parasitic cells of Coccidioides. Both mouse strains also revealed similar fungal burden in their lungs and spleen at 7 and 11 days after intranasal challenge with Coccidioides spores, although the NOX2(-/-) mice died earlier than the WT strain. Immunization of the NOX2(-/-) and WT mice with a live, attenuated vaccine strain of Coccidioides also resulted in comparable reduction of the fungal burden in both lungs and spleen. These combined results initially suggested that NOX2 activity and ROS production are not essential for protection against Coccidioides infection. However, the reduced survival of non-vaccinated NOX2(-/-) mice correlated with high, sustained numbers of lung-infiltrated neutrophils on days 7 and 11 postchallenge, an expansion of the regulatory T cell population in infected lungs in the knock-out mice, and elevated concentrations of pro-inflammatory cytokines and chemokines in lung homogenates compared to infected WT mice. Although NOX2-derived ROS appeared to be dispensable for both innate and acquired immunity to pulmonary Coccidioides infection, evidence is presented that NOX2 production plays a role in limiting pathogenic inflammation in this murine model of coccidioidomycosis.
Collapse
|
25
|
Vaccine immunity to coccidioidomycosis occurs by early activation of three signal pathways of T helper cell response (Th1, Th2, and Th17). Infect Immun 2011; 79:4511-22. [PMID: 21859851 DOI: 10.1128/iai.05726-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that C57BL/6 mice vaccinated with a live, attenuated mutant of Coccidioides posadasii, referred to as the ΔT vaccine, are fully protected against pulmonary coccidioidomycosis. This model was used here to explore the nature of vaccine immunity during the initial 2-week period after intranasal challenge. Elevated neutrophil and eosinophil infiltration into the lungs of nonvaccinated mice contrasted with markedly reduced recruitment of these cells in vaccinated animals. The numbers of lung-infiltrated macrophages and dendritic cells showed a progressive increase in vaccinated mice and corresponded with reduction of the lung infection. Concentrations of selected inflammatory cytokines and chemokines were initially higher in lung homogenates of vaccinated mice but then generally decreased at 14 days postchallenge in correlation with containment of the organism and apparent dampening of the inflammation of host tissue. Profiles of cytokines detected in lung homogenates of ΔT-vaccinated mice were indicative of a mixed T helper 1 (Th1)-, Th2-, and Th17-type immune response, a conclusion which was supported by detection of lung infiltration of activated T cells with the respective CD4(+) gamma interferon (IFN-γ)(+), CD4(+) interleukin-5 (IL-5)(+), and CD4(+) IL-17A(+) phenotypes. While Th1 and Th2 immunity was separately dispensed of by genetic manipulation without loss of ΔT vaccine-mediated protection, loss of functional Th17 cells resulted in increased susceptibility to infection in immunized mice. Characterization of the early events of protective immunity to Coccidioides infection in vaccinated mice contributes to the identification of surrogates of immune defense and provides potential insights into the design of immunotherapeutic protocols for treatment of coccidioidomycosis.
Collapse
|
26
|
Gonzalez A, Hung CY, Cole GT. Nitric oxide synthase activity has limited influence on the control of Coccidioides infection in mice. Microb Pathog 2011; 51:161-8. [PMID: 21513788 DOI: 10.1016/j.micpath.2011.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
Abstract
The functions of inducible nitric oxide synthase (iNOS) activity in protection against microbial insults are still controversial. In this study, we explored the role of iNOS in protection against Coccidioides infection in mice. We observed that wild type (WT) and iNOS(-/-) mice showed similar percent survival and fungal burden in their lungs at days 7 and 11 after intranasal challenge with Coccidioides. Vaccinated WT and iNOS(-/-) mice revealed comparable fungal burden in their lungs and spleen at 7 and 11 days postchallenge. However, at 11 days the non-vaccinated, iNOS-deficient mice had significantly higher fungal burden in their spleen compared to WT mice. Additionally, higher numbers of lung-infiltrated neutrophils, macrophages and dendritic cells were observed in WT mice at day 11 postchallenge compared to iNOS(-/-) mice. Moreover, no difference in numbers of T, B, NK or regulatory T cells, or concentrations of selected cytokines and chemokines were detected in lungs of both mouse strains at 7 and 11 days postchallenge. Although iNOS-derived NO production appears to influence the inflammatory response and dissemination of the fungal pathogen, our results suggest that iNOS activity does not play a significant role in the control of coccidioidal infection in mice and that other, still undefined mechanisms of host protection are involved.
Collapse
Affiliation(s)
- Angel Gonzalez
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | | |
Collapse
|
27
|
Hector RF, Rutherford GW, Tsang CA, Erhart LM, McCotter O, Anderson SM, Komatsu K, Tabnak F, Vugia DJ, Yang Y, Galgiani JN. The public health impact of coccidioidomycosis in Arizona and California. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:1150-73. [PMID: 21695034 PMCID: PMC3118883 DOI: 10.3390/ijerph8041150] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 01/01/2023]
Abstract
The numbers of reported cases of coccidioidomycosis in Arizona and California have risen dramatically over the past decade, with a 97.8% and 91.1% increase in incidence rates from 2001 to 2006 in the two states, respectively. Of those cases with reported race/ethnicity information, Black/African Americans in Arizona and Hispanics and African/Americans in California experienced a disproportionately higher frequency of disease compared to other racial/ethnic groups. Lack of early diagnosis continues to be a problem, particularly in suspect community-acquired pneumonia, underscoring the need for more rapid and sensitive tests. Similarly, the inability of currently available therapeutics to reduce the duration and morbidity of this disease underscores the need for improved therapeutics and a preventive vaccine.
Collapse
Affiliation(s)
- Richard F Hector
- Global Health Sciences, University of California, San Francisco,1200 Beale St, #1200, San Francisco, CA 94105, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu M, Clemons KV, Bigos M, Medovarska I, Brummer E, Stevens DA. Immune responses induced by heat killed Saccharomyces cerevisiae: a vaccine against fungal infection. Vaccine 2011; 29:1745-53. [PMID: 21219976 DOI: 10.1016/j.vaccine.2010.12.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/04/2010] [Accepted: 12/23/2010] [Indexed: 01/30/2023]
Abstract
Heat-killed Saccharomyces cerevisiae (HKY) used as a vaccine protects mice against systemic aspergillosis and coccidioidomycosis. Little is known about the immune response induced by HKY vaccination, consequently our goal was to do an analysis of HKY-induced immune responses involved in protection. BALB/c mice were vaccinated subcutaneously 3 times with HKY, a protective reagent, and bronchoalveolar lavage fluid, spleen, lymph nodes, and serum collected 2-5 weeks later. Cultured spleen or lymph node cells were stimulated with HKY. Proliferation of HKY-stimulated spleen or lymph node cells was tested by Alamar Blue reduction and flow cytometry. Cytokines from lymphocyte supernatants and antibody to glycans in serum collected from HKY-vaccinated mice were measured by ELISA. The results show that HKY promoted spleen cell and lymph node cell proliferation from HKY-vaccinated mice but not from PBS-vaccinated control mice (all P<0.05). Cytokine measurement showed HKY significantly promoted IFNγ, IL-6 and IL-17A production by spleen cells and lymph node cells (all P<0.05 and P<0.01, respectively). Cytokine production by HKY-stimulated cells from PBS-vaccinated mice was lower than those from HKY-vaccinated (P<0.05). Cytokines in BAL from HKY-vaccinated were higher, 1.7-fold for IFNγ and 2.1-fold for TNFα, than in BAL from PBS-vaccinated. Flow cytometry of lymphocytes from HKY-vaccinated showed 52% of CD3(+) or 56% of CD8(+) cells exhibited cell division after stimulation with HKY, compared to non-stimulated controls (26 or 23%, respectively) or HKY-stimulated cells from PBS-vaccinated (31 or 34%). HKY also induced antibody against Saccharomyces glucan and mannan with titers 4- or 2-fold, respectively, above that in unvaccinated. Taken together, the results suggested that HKY vaccination induces significant and specific Th1 type cellular immune responses and antibodies to glucan and mannan.
Collapse
Affiliation(s)
- Min Liu
- California Institute for Medical Research, San Jose, CA, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wüthrich M, Gern B, Hung CY, Ersland K, Rocco N, Pick-Jacobs J, Galles K, Filutowicz H, Warner T, Evans M, Cole G, Klein B. Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J Clin Invest 2011; 121:554-68. [PMID: 21206087 DOI: 10.1172/jci43984] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 11/03/2010] [Indexed: 01/07/2023] Open
Abstract
Worldwide rates of systemic fungal infections, including three of the major pathogens responsible for such infections in North America (Coccidioides posadasii, Histoplasma capsulatum, and Blastomyces dermatitidis), have soared recently, spurring interest in developing vaccines. The development of Th1 cells is believed to be crucial for protective immunity against pathogenic fungi, whereas the role of Th17 cells is vigorously debated. In models of primary fungal infection, some studies have shown that Th17 cells mediate resistance, while others have shown that they promote disease pathology. Here, we have shown that Th1 immunity is dispensable and that fungus-specific Th17 cells are sufficient for vaccine-induced protection against lethal pulmonary infection with B. dermatitidis in mice. Further, vaccine-induced Th17 cells were necessary and sufficient to protect against the three major systemic mycoses in North America. Mechanistically, Th17 cells engendered protection by recruiting and activating neutrophils and macrophages to the alveolar space, while the induction of Th17 cells and acquisition of vaccine immunity unexpectedly required the adapter molecule Myd88 but not the fungal pathogen recognition receptor Dectin-1. These data suggest that human vaccines against systemic fungal infections should be designed to induce Th17 cells if they are to be effective.
Collapse
Affiliation(s)
- Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Johnson CH, Ayyadevara S, McEwen JE, Shmookler Reis RJ. Histoplasma capsulatum and Caenorhabditis elegans: a simple nematode model for an innate immune response to fungal infection. Med Mycol 2010; 47:808-13. [PMID: 20028234 DOI: 10.3109/13693780802660532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histoplasma capsulatum is a primary fungal pathogen of mammals responsible for histoplasmosis. During pathogenesis H. capsulatum yeast proliferate in phagosomes of macrophages. This extensive host/pathogen interaction involves a complex cascade of responses in both organisms. In the mammalian host, infection results in complex branched immunity that is initiated with an innate response and later induces an adaptive response but each response is difficult to resolve during fungal infection. Therefore, in an effort to identify less complex systems and to gain understanding of the host innate response to H. capsulatum, we constructed a mini-host survival assay. With this assay, we found ingestion of virulent Histoplasma capsulatum NAm 1 strain yeasts to be lethal to a Bristol-N2 Caenorhabditis elegans host. The virulent H. capsulatum NAm1 strain shows differential lethality under live/heat-killed infective conditions. Specifically, after ingestion of live yeast lethality is > or = 90% within 48 to 72 h, whereas worms ingesting heat-killed yeast reach equivalent mortality only after 10-14 days. On the other hand, ingestion of live H. capsulatum yeast of the nonvirulent NAm 1 (ura(-)) strain is no more lethal to the nematode than heat-killed yeast. Therefore, C. elegans provides an attractive model for further investigations of the ancient innate immune response during early host/pathogen (H. capsulatum/worm) interaction and pathogenesis.
Collapse
Affiliation(s)
- Clayton H Johnson
- Central Arkansas Veterans Healthcare System, GRECC and Medical Research, VAMC 151/LR, Little Rock, Arkansas 72205, USA.
| | | | | | | |
Collapse
|
31
|
An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010; 9:719-27. [PMID: 20725094 DOI: 10.1038/nrd3074] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Invasive fungal infections are increasing in incidence and are associated with substantial mortality. Improved diagnostics and the availability of new antifungals have revolutionized the field of medical mycology in the past decades. This Review focuses on recent developments in the antifungal pipeline, concentrating on promising candidates such as new azoles, polyenes and echinocandins, as well as agents such as nikkomycin Z and the sordarins. Developments in vaccines and antibody-based immunotherapy are also discussed. Few therapeutic products are currently in active development, and progression of therapeutic agents with fungus-specific mechanisms of action is of key importance.
Collapse
|
32
|
Polyfunctional T lymphocytes are in the peripheral blood of donors naturally immune to coccidioidomycosis and are not induced by dendritic cells. Infect Immun 2009; 78:309-15. [PMID: 19901066 DOI: 10.1128/iai.00953-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Coccidioidomycosis is a fungal infection endemic in the southwestern United States that is increasing in incidence. While cellular immunity correlates with protection from clinical illness, the precise elements of that response are undefined. Using the coccidioidal antigen preparation T27K and multiparametric flow cytometry, the in vitro frequency of polyfunctional T lymphocytes in the peripheral blood of naturally immune healthy donors and those who were nonimmune was determined. Polyfunctional CD4 lymphocytes, defined as producing intracellular interleukin 2 (IL-2), gamma interferon (IFN-gamma), and tumor necrosis factor alpha simultaneously, had a frequency of 137 per 400,000 events among peripheral blood mononuclear cells (PBMC) of immune donors compared to 11 per 400,000 PBMC from nonimmune donors (P = 0.03). When monocyte-derived mature dendritic cells pulsed with T27K (mDC(T27K)) were used for antigen presentation, the frequency of polyfunctional CD4 T lymphocytes did not significantly increase for either group, although mDC(T27K) did significantly increase the concentrations of IL-2 and IFN-gamma released by PBMC from nonimmune donors (P = 0.02). After in vitro stimulation with T27K, polyfunctional CD4 and CD8 lymphocytes of PBMC from immune donors had a mixture of low- and high-expression CCR7 cells, suggesting both effector and central memory, compared with predominantly high-expression CCR7 cells when PBMC were incubated with the mitogen phytohemagglutinin (P = 0.03). These data demonstrate the presence of polyfunctional T lymphocytes in the peripheral blood of individuals with coccidioidal immunity and suggest a model for the in vitro testing of vaccine candidates for coccidioidomycosis.
Collapse
|
33
|
A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis. Infect Immun 2009; 77:3196-208. [PMID: 19487479 DOI: 10.1128/iai.00459-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1- and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.
Collapse
|
34
|
|
35
|
Capilla J, Clemons KV, Liu M, Levine HB, Stevens DA. Saccharomyces cerevisiae as a vaccine against coccidioidomycosis. Vaccine 2009; 27:3662-8. [PMID: 19464548 DOI: 10.1016/j.vaccine.2009.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/02/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
Disseminated coccidioidomycosis is a life-threatening infection. In these studies, we examined protection against systemic murine coccidioidomycosis by vaccination with heat-killed Saccharomyces cerevisiae (HKY). CD-1 mice received HKY subcutaneously or by oral gavage with or without adjuvants once weekly beginning 3 or 4 weeks prior to infection; oral live Saccharomyces was also studied. All HKY sc regimens were equivalent, prolonging survival (P<or=0.005) and reducing fungal burden versus controls. Oral live Saccharomyces, but not HKY, prolonged survival (P=0.03), but did not reduce fungal burden. Survival of mice given HKY was equivalent to vaccination with formalin-killed spherules, but inferior in reduction of fungal burden. HKY was superior to a successful recombinant vaccine, PRA plus adjuvant. This novel heterologous protection afforded by HKY vaccination offers a new approach to a vaccine against coccidioidomycosis.
Collapse
Affiliation(s)
- Javier Capilla
- California Inst. for Med. Res., San Jose, CA, United States
| | | | | | | | | |
Collapse
|
36
|
Galgiani JN. Vaccines to prevent systemic mycoses: holy grails meet translational realities. J Infect Dis 2008; 197:938-40. [PMID: 18419469 DOI: 10.1086/529205] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- John N Galgiani
- Valley Fever Center for Excellence, University of Arizona College of Medicine, Tucson, Arizona 85724, USA.
| |
Collapse
|
37
|
Lopes BGB, Santos ALSD, Bezerra CDCF, Wanke B, dos Santos Lazéra M, Nishikawa MM, Mazotto AM, Kussumi VM, Haido RMT, Vermelho AB. A 25-kDa Serine Peptidase with Keratinolytic Activity Secreted by Coccidioides immitis. Mycopathologia 2008; 166:35-40. [DOI: 10.1007/s11046-008-9116-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 03/19/2008] [Indexed: 11/30/2022]
|
38
|
Taborda CP, da Silva MB, Nosanchuk JD, Travassos LR. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview. Mycopathologia 2008; 165:331-9. [PMID: 18777637 PMCID: PMC2586806 DOI: 10.1007/s11046-007-9061-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanin pigments are substances produced by a broad variety of pathogenic microorganisms, including bacteria, fungi, and helminths. Microbes predominantly produce melanin pigment via tyrosinases, laccases, catecholases, and the polyketide synthase pathway. In fungi, melanin is deposited in the cell wall and cytoplasm, and melanin particles ("ghosts") can be isolated from these fungi that have the same size and shape of the original cells. Melanin has been reported in several human pathogenic dimorphic fungi including Paracoccidioides brasiliensis, Sporothrix schenckii, Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides posadasii. Melanization appears to contribute to virulence by reducing the susceptibility of melanized fungi to host defense mechanisms and antifungal drugs.
Collapse
Affiliation(s)
- Carlos P Taborda
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, Ave. Prof. Lineu Prestes, 1374, 2 andar, São Paulo, SP 05508-900, Brazil.
| | | | | | | |
Collapse
|
39
|
Flaherman VJ, Hector R, Rutherford GW. Estimating severe coccidioidomycosis in California. Emerg Infect Dis 2008; 13:1087-90. [PMID: 18214188 PMCID: PMC2878228 DOI: 10.3201/eid1307.061480] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We used hospital discharge data to estimate incidence and distribution of coccidioidomycosis-associated hospitalizations in California. For 1997–2002, the average annual rate of hospitalization was 3.67 per 100,000 population. County of residence, older age, black race, male sex, HIV infection, and pregnancy were strongly associated with increased risk for hospitalization.
Collapse
Affiliation(s)
- Valerie J Flaherman
- Department of Pediatrics, University of California, San Francisco, California 94143-0503, USA.
| | | | | |
Collapse
|
40
|
Fungal vaccines: real progress from real challenges. THE LANCET. INFECTIOUS DISEASES 2008; 8:114-24. [DOI: 10.1016/s1473-3099(08)70016-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Capilla J, Clemons KV, Stevens DA. Animal models: an important tool in mycology. Med Mycol 2007; 45:657-84. [PMID: 18027253 PMCID: PMC7107685 DOI: 10.1080/13693780701644140] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 08/22/2007] [Indexed: 10/29/2022] Open
Abstract
Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.
Collapse
Affiliation(s)
- Javier Capilla
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
42
|
Herr RA, Hung CY, Cole GT. Evaluation of two homologous proline-rich proteins of Coccidioides posadasii as candidate vaccines against coccidioidomycosis. Infect Immun 2007; 75:5777-87. [PMID: 17875631 PMCID: PMC2168353 DOI: 10.1128/iai.00807-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evaluation of the protective efficacy of recombinant T-cell-reactive proteins of Coccidioides posadasii in a murine model of coccidioidomycosis has led to the discovery of potential vaccines against this respiratory disease. A recombinant proline-rich antigen (rAg2/Pra) has been reported to be a leading vaccine candidate. However, contradictory results exist on the protection afforded by this antigen. Subcutaneous vaccination of either C57BL/6 or BALB/c mice with rAg2/Pra plus adjuvant followed by intraperitoneal challenge with C. posadasii resulted in a significant reduction of the fungal burden at 12 to 14 days postchallenge compared to that in nonvaccinated animals. Use of the same vaccination protocol followed by intranasal (i.n.) challenge of C57BL/6 mice with an equal number of organisms culminated in chronic pulmonary infection or death over a 90-day period. Early studies of Ag2/Pra suggested that it is a component of an immunogenic complex. We reveal in this study that C. posadasii produces a homolog of the reported proline-rich antigen, designated Prp2, which shows 69% protein sequence identity and 86% similarity to Ag2/Pra. Protection against i.n. challenge of C57BL/6 mice was evaluated by vaccination with the single bacterially expressed homolog, rAg2/Pra, or rPrp2 in combination with rAg2/Pra, each in the presence of the same adjuvant. The combined vaccine provided significantly better protection than either of the single recombinant protein vaccines. Results of enzyme-linked immunospot assays of the immunized mice revealed that the two proline-rich homologs contain unique T-cell epitopes. In combination, the recombinant proteins stimulate a more heterogeneous and protective T-cell repertoire than the monovalent vaccines.
Collapse
Affiliation(s)
- Roger A Herr
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, Ohio 43614, USA
| | | | | |
Collapse
|
43
|
Abstract
Coccidioides causes coccidioidomycosis in the southwestern United States. Its clinical manifestations range from the primary asymptomatic to progressive pulmonary and extrapulmonary disease. Because of endemicity, frequent relapse, and virulent nature of Coccidioides, there is an urgent need for the development of effective therapy or vaccine. It has been recognized from studies in human patients and in murine models that the divergence in their susceptibility to Coccidioides infection is related to differences in T cell response. Dendritic cells (DCs) are most potent antigen-presenting cells that play a critical role in activating naïve T cells. On account of their unique immunostimulatory capacity, DCs have been used for the development of immunotherapy and vaccines against cancer and infectious diseases. We recently investigated the immunostimulatory potential of a DC-based vaccine in a murine model against Coccidioides posadasii (C. posadasii). Our results suggest that DCs act as a potent adjuvant and activate protective responses in mice against C. posadasii.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| |
Collapse
|
44
|
Abstract
Experimental models of coccidioidomycosis performed using various laboratory animals have been, and remain, a critical component of elucidation and understanding of the pathogenesis and host resistance to infection with Coccidioides spp., as well as to development of more efficacious antifungal therapies. The general availability of genetically defined strains, immunological reagents, ease of handling, and costs all contribute to the use of mice as the primary laboratory animal species for models of this disease. Five types of murine models are studied and include primary pulmonary disease, intraperitoneal with dissemination, intravenous infection emulating systemic disease, and intracranial or intrathecal infection emulating meningeal disease. Each of these models has been used to examine various aspects of host resistance, pathogenesis, or antifungal therapy. Other rodent species, such as rat, have been used much less frequently. A rabbit model of meningeal disease, established by intracisternal infection, has proven to model human meningitis well. This model is useful in studies of host response, as well as in therapy studies. A variety of other animal species including dogs, primates, and guinea pigs have been used to study host response and vaccine efficacy. However, cost and increased needs of animal care and husbandry are limitations that influence the use of the larger animal species.
Collapse
Affiliation(s)
- Karl V Clemons
- Division of Infectious Diseases, Santa Clara Valley Medical Center, 751 South Bascom Ave., San Jose, CA 95128-2699, USA.
| | | | | |
Collapse
|
45
|
Hector R, Rutherford GW. The public health need and present status of a vaccine for the prevention of coccidioidomycosis. Ann N Y Acad Sci 2007; 1111:259-68. [PMID: 17344529 DOI: 10.1196/annals.1406.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although the epidemiology of coccidioidomycosis has been well described, there is a paucity of recent data on the public health burden associated with this disease. Accordingly, California's Inpatient Hospital Discharge Data Set from 1997 to 2002 was used to calculate the incidence of hospitalization for coccidioidomycosis by county, year, age, race, ethnicity, and gender. The overall finding that coccidioidomycosis has a significant impact in endemic areas supports the conclusion that the need for a preventive vaccine is great. Investigators of the Valley Fever Vaccine Project (VFVP) have successfully identified a number of recombinant coccidioidal protein antigens and two attenuated mutant strains that have been evaluated as vaccines, demonstrating protective responses in murine models. Efforts to select and develop a vaccine for human clinical trials are in progress.
Collapse
Affiliation(s)
- Richard Hector
- Institute for Global Health, University of California, San Francisco, 50 Beale St., Suite 1200, San Francisco, CA 94105, USA.
| | | |
Collapse
|
46
|
Lunetta JM, Simmons KA, Johnson SM, Pappagianis D. Molecular Cloning and Expression of a cDNA Encoding a Coccidioides posadasii Cu,Zn Superoxide Dismutase Identified by Proteomic Analysis of the Coccidioidal T27K Vaccine. Ann N Y Acad Sci 2007; 1111:181-97. [PMID: 17344523 DOI: 10.1196/annals.1406.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous studies have demonstrated that the coccidioidal T27K vaccine preparation is protective in mice against respiratory challenge using Coccidioides posadasii (C. posadasii) arthroconidia. Proteomic methods have been employed to define the molecular components within the vaccine. This method has led to the identification of novel and previously uncharacterized coccidioidal proteins including a Cu,Zn superoxide dismutase. A two-dimensional gel of the T27K vaccine was run and spots were excised for mass spectrometric analysis. One peptide was obtained from the T27K gel that matched a TIGR C. posadasii 2.0 gene index tentative consensus sequence, TC1072, which is similar to fungal Cu,Zn superoxide dismutase. Activity assays performed with native PAGE gels of the T27K vaccine showed that the vaccine contains superoxide dismutase. The cDNA encoding the enzyme has been cloned and sequenced and expressed as a recombinant protein.
Collapse
Affiliation(s)
- Jennine M Lunetta
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
47
|
Cutler JE, Deepe GS, Klein BS. Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol 2007; 5:13-28. [PMID: 17160002 PMCID: PMC2214303 DOI: 10.1038/nrmicro1537] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dramatic increase in fungal diseases in recent years can be attributed to the increased aggressiveness of medical therapy and other human activities. Immunosuppressed patients are at risk of contracting fungal diseases in healthcare settings and from natural environments. Increased prescribing of antifungals has led to the emergence of resistant fungi, resulting in treatment challenges. These concerns, together with the elucidation of the mechanisms of protective immunity against fungal diseases, have renewed interest in the development of vaccines against the mycoses. Most research has used murine models of human disease and, as we review in this article, the knowledge gained from these studies has advanced to the point where the development of vaccines targeting human fungal pathogens is now a realistic and achievable goal.
Collapse
Affiliation(s)
- Jim E. Cutler
- Departments of Pediatrics and Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences, and Research Institute for Children at Children’s Hospital, New Orleans, Louisiana, 70118 USA
| | - George S. Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267–0560 USA
| | - Bruce S. Klein
- Departments of Pediatrics, Internal Medicine, and Medical Microbiology and Immunology and the University of Wisconsin Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792 USA
| |
Collapse
|
48
|
DiCaudo DJ. Coccidioidomycosis: a review and update. J Am Acad Dermatol 2006; 55:929-42; quiz 943-5. [PMID: 17110216 DOI: 10.1016/j.jaad.2006.04.039] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 04/05/2006] [Accepted: 04/11/2006] [Indexed: 11/25/2022]
Abstract
Coccidioidomycosis occurs in arid and semi-arid regions of the New World from the western United States to Argentina. Highly endemic areas are present in the southwest United States. Coccidioides species live in the soil and produce pulmonary infection via airborne arthroconidia. The skin may be involved by dissemination of the infection, or by reactive eruptions, such as a generalized exanthem or erythema nodosum. Interstitial granulomatous dermatitis and Sweet's syndrome have recently been recognized as additional reactive signs of the infection. Coccidioidomycosis is a "great imitator" with protean manifestations. Cutaneous findings may be helpful clues in the diagnosis of this increasingly important disease.
Collapse
Affiliation(s)
- David J DiCaudo
- Department of Dermatology and Pathology, Mayo Clinic, Scottsdale, Arizona 85259, USA.
| |
Collapse
|
49
|
Hwang JM, Pian D. Iritis presumed as secondary to disseminated coccidioidomycosis. OPTOMETRY (ST. LOUIS, MO.) 2006; 77:547-53. [PMID: 17145566 DOI: 10.1016/j.optm.2006.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/29/2006] [Indexed: 05/12/2023]
Abstract
BACKGROUND Coccidioidomycosis is a systemic disease caused by a fungus found in soil and transmitted through inhalation. It is prevalent in western and southwestern United States, Mexico, and South and Central America. Results of skin testing, serologic testing, and tissue cultures confirm the diagnosis. Coccidioidomycosis can manifest in various ways: the infected individual may present asymptomatically, with an acute respiratory infection, or, in more severe or chronic cases, with a multiorgan presentation. Ocular involvement may include anterior segment, posterior segment, or extraorbital involvement. CASE REPORT A case concerning a patient with iritis presumed as secondary to disseminated coccidioidomycosis is discussed. The patient initially presented to our clinic with signs and symptoms of acute, unilateral iritis and a recent history of iritis in the contralateral eye. The active inflammation was treated topically with Pred Forte and cyclopentolate and resolved without sequelae. Because the presentation was bilateral with an asymmetric timecourse, laboratory tests were ordered to rule out systemic association. Because all tests yielded negative results, the known history of disseminated coccidioidomycosis was presumed to be the etiology of this iritis. CONCLUSION Although eye findings are rare, disseminated coccidioidomycosis is an important differential to consider when a patient presents with uveitis. For this reason, awareness and recognition of ocular signs and symptoms of this disease is significant in proper patient care and management.
Collapse
Affiliation(s)
- Julie M Hwang
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | | |
Collapse
|
50
|
Tarcha EJ, Basrur V, Hung CY, Gardner MJ, Cole GT. Multivalent recombinant protein vaccine against coccidioidomycosis. Infect Immun 2006; 74:5802-13. [PMID: 16988258 PMCID: PMC1594896 DOI: 10.1128/iai.00961-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/01/2006] [Accepted: 07/15/2006] [Indexed: 11/20/2022] Open
Abstract
Coccidioidomycosis is a human respiratory disease that is endemic to the southwestern United States and is caused by inhalation of the spores of a desert soilborne fungus. Efforts to develop a vaccine against this disease have focused on identification of T-cell-reactive antigens derived from the parasitic cell wall which can stimulate protective immunity against Coccidioides posadasii infection in mice. We previously described a productive immunoproteomic/bioinformatic approach to the discovery of vaccine candidates which makes use of the translated genome of C. posadasii and a computer-based method of scanning deduced sequences of seroreactive proteins for epitopes that are predicted to bind to human major histocompatibility (MHC) class II-restricted molecules. In this study we identified a set of putative cell wall proteins predicted to contain multiple, promiscuous MHC II binding epitopes. Three of these were expressed by Escherichia coli, combined in a vaccine, and tested for protective efficacy in C57BL/6 mice. Approximately 90% of the mice survived beyond 90 days after intranasal challenge, and the majority cleared the pathogen. We suggest that the multicomponent vaccine stimulates a broader range of T-cell clones than the single recombinant protein vaccines and thereby may be capable of inducing protection in an immunologically heterogeneous human population.
Collapse
Affiliation(s)
- Eric J Tarcha
- Department of Medical Microbiology and Immunology, Medical University of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|