1
|
Yeo BS, Lee WX, Mahmud R, Tan GC, Wahid MIA, Cheah YK. MicroRNA-155 as Biomarker and Its Diagnostic Value in Breast Cancer: A Systematic Review. World J Oncol 2025; 16:1-15. [PMID: 39850528 PMCID: PMC11750751 DOI: 10.14740/wjon1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/15/2024] [Indexed: 01/25/2025] Open
Abstract
The investigation of microRNAs (miRNAs) for the purpose of identifying biomarkers and new treatments for breast cancer has been gaining traction from scientists in recent years. Of all the miRNAs, miR-155 has been reportedly involved in breast cancer development as it regulates various cellular processes such as glucose uptake, proliferation, metastasis, and migration. Various efforts have been done towards researching miR-155 as a biomarker in breast cancer; however, the results were varied. The objective of the current systematic review is to compile and summarize information regarding miR-155 as a potential diagnostic biomarker for breast cancer. All eligible studies were found from SCOPUS and PubMed databases. Out of the 376 potential eligible records, only 26 original articles were selected for further assessment according to inclusion and exclusion criteria. The expressions of miR-155 in serum, plasma, biopsy, urine, nipple aspirate fluid, serum exosomes, and peripheral blood mononuclear cells were recorded and analyzed. Besides that, the expression of miR-155 was also correlated to clinicopathological features in breast cancer patients. The area under the curve (AUC) values from receiver operating characteristic (ROC) analysis used to evaluate diagnostic sensitivity and specificity of miR-155 as a diagnostic biomarker were also recorded. The limitations such as the small sampling size, the unemployment of internal controls for quantitative real-time polymerase chain reaction (RT-qPCR), and inconsistency of sensitivity as well as specificity values of miR-155 as a biomarker have been discussed. The present study proposed that miR-155 is a good diagnostic biomarker for breast cancer; however, further clinical research is required to assess the validity of miR-155 as a potential biomarker to translate the research outcomes into clinical practice.
Collapse
Affiliation(s)
- Bann Siang Yeo
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Wen Xuan Lee
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rozi Mahmud
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | | | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Zhang Z, Song W, Chen W, Cui W, Chen W, Zhang Q, Ji W, Wang Y, Wang J, Yu W, Yu M, Hao T, Jiang H. Unveiling hotspots of emerging research in the miRNA-related mechanism underlying cancer through comprehensive bibliometric analysis with implications for precision medicine and non-invasive diagnostics. Front Oncol 2025; 14:1521251. [PMID: 39882450 PMCID: PMC11774920 DOI: 10.3389/fonc.2024.1521251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/06/2024] [Indexed: 01/31/2025] Open
Abstract
Background and objective MicroRNAs (miRNAs) are implicated in cancer by exerting roles in tumor growth, metastasis, and even drug resistance. The general trends of miRNA research in diverse cancers are not fully understood. In this work, miRNA-related research in colorectal cancer, prostate cancer, leukemia, and brain tumors was analyzed in search of key research trends with clinical potential. Methods A bibliometric analysis of articles, spanning from 2014 to 2024, was carried out with the major focus laid on four types of cancers. The Co-citation network analysis, keyword bursts, and the collaborative pattern were done in VOSviewer and CiteSpace, respectively. Results Colorectal cancer had the highest publication volume, with research primarily focusing on gene expression, extracellular vesicles, and non-coding RNAs. Prostate cancer showed a shift toward clinical applications, while leukemia and brain tumor research, though less extensive, highlighted miRNA's potential in early diagnosis and treatment. Co-citation analysis identified emerging research collaborations and key contributors. Conclusion miRNA plays a pivotal role in cancer diagnosis, biomarker development, and therapeutic interventions. With advancements in non-invasive diagnostics and personalized medicine, miRNA offers significant potential for clinical applications. Future research should focus on miRNA's role in drug resistance and combination therapies to accelerate its clinical translation.
Collapse
Affiliation(s)
- Zhirui Zhang
- Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Wenhuan Song
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenyu Chen
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenze Cui
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenyi Chen
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qinheng Zhang
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenwen Ji
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Yinglin Wang
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jiayi Wang
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenhao Yu
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Mingkun Yu
- Binzhou Medical College Affiliated Traditional Chinese Medicine Hospital, Binzhou, Shandong, China
- Shandong University of Traditional Chinese Medicine, University Science Park, Jinan, Shandong, China
| | - Tao Hao
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hong Jiang
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
3
|
Ibrahim FM, Saleh RO, Uinarni H, Bokov DO, Menon SV, Zarifovich KB, Misra N, Al-Hamdani MM, Husseen B, Jawad MA. Exosomal noncoding RNA (ncRNA) in breast cancer pathogenesis and therapy; two sides of the same coin. Exp Cell Res 2025; 444:114359. [PMID: 39608481 DOI: 10.1016/j.yexcr.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Over the past few years, breast cancer has become the most prevalent type of cancer globally, with the primary cause of death from the disease being metastatic cancer. This has led to the development of early detection techniques, mainly using non-invasive biomarkers in a range of body fluids. Exosomes are unique extracellular vesicles (EVs) transmitting cellular signals over great distances via various cargo. They are readily apparent in physiological fluids due to release by breast cancer cells or breast cancer-tumor microenvironment (TME) cells. In light of this, numerous biological and functional facets of human tumours, such as breast cancer, are intimately associated with exosomal noncoding RNAs (ncRNAs), containing miRNAs (microRNAs), lncRNAs (long noncoding RNAs), and circRNAs (circular RNAs). Exosomal ncRNAs serve a critical role in various steps of breast cancer development, enabling the exchange of genetic information between cancer cells and other cells (e.g., immune cells), thus regulating tumour angiogenesis, growth, metastasis, immune responses and drug resistance. They interact with multiple regulatory complexes with dissimilar enzymatic actions, which, in turn, modify the chromatin sceneries, including nucleosome modifications, DNA methylation, and histone modifications. Herein, we look into the exosomes' underlying regulatory mechanisms in breast cancer. Furthermore, we inspect the existing understanding of the functions of exosomal miRNAs, lncRNAs, and circRNAs in breast cancer to authenticate their possible significance in identifying biomarkers, deciphering their role in immune escape and drug resistance, and finally, analyzing treatment practices.
Collapse
Affiliation(s)
- Fatma Magdi Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Dubai, United Arab Emirates; Geriatric Department, Mansoura University, Mansoura, Egypt.
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, the Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia; Radiology Department of Pantai Indah Kapuk Hospital Jakarta, Jakarta, Indonesia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | | | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun 248007, India.
| | | | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | | |
Collapse
|
4
|
Jing Y, Huang X, Wang Y, Wang J, Li Y, Yelihamu D, Guo C. Diagnostic value of 5 miRNAs combined detection for breast cancer. Front Genet 2024; 15:1482927. [PMID: 39655225 PMCID: PMC11625769 DOI: 10.3389/fgene.2024.1482927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Background Breast cancer (BC) is the prevailing malignant tumor, with its prevalence and death rate steadily rising over time. BC often does not show obvious symptoms in its early stages and is difficult to distinguish from benign breast disease. We aimed to find a distinct group of miRNAs utilizing serum as a non-invasive biomarker for early BC diagnosis. Methods Herein, we mainly include the screening stage, testing stage, and verification stage. In the screening stage, 8 miRNAs associated with BC were selected and analyzed via literature reading, and the expression of the above miRNAs in BC was further verified by bioinformatics and included in the research analysis. In the testing phase, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was deployed to select the five miRNAs with the most significant expression differences in 15 BC patients and 15 benign breast controls to proceed to the next stage. In a subsequent validation phase, the five miRNAs obtained from serum samples from an additional 75 BC patients and 50 benign control patients were evaluated using RT-qPCR. The diagnostic capacity, specificity, and sensitivity of candidate miRNAs were estimated with the receiver operating characteristic (ROC) curve and area under the curve (AUC). Finally, the optimal diagnostic combination model with high sensitivity and strong specificity was constructed by using the above 5 miRNAs. Results The BC patients reported a significant decline in mir-10b-5p, mir-133a-3p, mir-195-5p, and mir-155-3p levels in serum levels contrasted with those in benign controls. Additionally, BC patients experienced elevated mir-195-3p levels than in benign controls. We implemented ROC analysis to evaluate its diagnostic capacity for BC. We demonstrated that all five miRNAs had robust diagnostic capability, with an AUC above 0.8. We developed a conclusive diagnostic combination model consisting of these 5 miRNAs in order to enhance the diagnosis accuracy. This model demonstrated a high diagnostic value, as shown by an AUC of 0.948. Conclusion The serum biomarker panels composed of five miRNAs identified in this study (mir-10b-5p, mir-133a-3p, mir-195-5p, mir-195-3p, and mir-155-3p) provide hope for early, non-invasive, and accurate diagnosis of BC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chenming Guo
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Wang F, Wang J, Zhang H, Fu B, Zhang Y, Jia Q, Wang Y. Diagnostic value of circulating miR-155 for breast cancer: a meta-analysis. Front Oncol 2024; 14:1374674. [PMID: 38590648 PMCID: PMC10999615 DOI: 10.3389/fonc.2024.1374674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Backgrounds The value of circulating microRNA (miR)-155 for breast cancer (BC) diagnosis may differ in different studies. Therefore, we conducted this systematic review and meta-analysis to evaluate the potential application of circulating miR-155 in the diagnosis of BC. Methods Articles published before December 2023 and in English were searched in these databases: PubMed, Web of Science, Medline, EMBASE and Google Scholar. A summary of sensitivity, specificity, positive likelihood ratios (PLR), negative likelihood ratios (NLR), and diagnostic odds ratio (DOR) were calculated from the true positive (TP), true negative (TN), false positive (FP) and false negative (FN) of each study. Additionally, the summary receive-operating characteristics (SROC) curve was constructed to summarize the TP and FP rates. Results The pooled parameters calculated were as follows: sensitivity, 0.93 (95% CI: 0.83-0.97); specificity, 0.85 (95% CI: 0.74-0.92); PLR, 6.4 (95% CI: 3.4-11.9); NLR, 0.09 (95% CI: 0.04-0.20); and DOR, 74 (95% CI: 22-247). The analysis showed a significant heterogeneity (sensitivity, I2 = 95.19%, p < 0.001; specificity, I2 = 95.29%, p < 0.001; DOR, I2 = 92.9%, p < 0.001). The SROC curve was with an area under curve (AUC) of 0.95 (95% CI: 0.93-0.97). Conclusion Circulating miR-155 has a potential in the diagnosis of BC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Wang
- Department of Oncology, Anhui University of Technology First Affiliated Hospital Huainan, Huainan, Anhui, China
| |
Collapse
|
6
|
Moar K, Pant A, Saini V, Pandey M, Maurya PK. Potential diagnostic and prognostic biomarkers for breast cancer: A compiled review. Pathol Res Pract 2023; 251:154893. [PMID: 37918101 DOI: 10.1016/j.prp.2023.154893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer is one of the major reason for death of women worldwide. As per the International Agency for Research on Cancer (IARC) statistics, the number of cases of breast cancer is increasing year by year in many parts of the world. As per the recent global cancer burden figures, in 2020, there were 2.26 million incidences of breast cancer cases and it is one of the main causes of mortality due to cancer in women in the world. Biomarkers of breast cancer would prove to be very beneficial to screen women who are at higher risk and for detection of disease recurrence. Here, studies carried out on biomarkers of breast cancer and susceptibility to the disease have been reviewed. Various databases like Google Scholar, ScienceDirect and PubMed have been used for searching and majorly literature from the last 10 years have been considered. Potential biomarkers of breast cancer including blood based angiogenic factors, glycoprotein-based biomarkers, hormone receptor biomarkers and other biomarkers that were identified from various studies have been summarized.
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Vikas Saini
- Department of Vocational Studies & Skill Development, Central University of Haryana, Mahendergarh 123031, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh 123031, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
7
|
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 2023; 8:309. [PMID: 37644009 PMCID: PMC10465587 DOI: 10.1038/s41392-023-01519-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Radiology, Columbia University, New York, NY, 10032, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Wu Y, Hong Q, Lu F, Zhang Z, Li J, Nie Z, He B. The Diagnostic and Prognostic Value of miR-155 in Cancers: An Updated Meta-analysis. Mol Diagn Ther 2023; 27:283-301. [PMID: 36939982 DOI: 10.1007/s40291-023-00641-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND MicroRNA-155 has been discussed as a biomarker in cancer diagnosis and prognosis. Although relevant studies have been published, the role of microRNA-155 remains uncertain because of insufficient data. METHODS We conducted a literature search in PubMed, Embase, and Web of Science databases to obtain relevant articles and extract data to evaluate the role of microRNA-155 in cancer diagnosis and prognosis. RESULTS The pooled results showed that microRNA-155 presented a remarkable diagnostic value in cancers (area under the curve = 0.90, 95% confidence interval (CI 0.87-0.92; sensitivity = 0.83, 95% CI 0.79-0.87; specificity = 0.83, 95% CI 0.80-0.86), which was maintained in the subgroups stratified by ethnicity (Asian and Caucasian), cancer types (breast cancer, lung cancer, hepatocellular carcinoma, leukemia, and pancreatic ductal adenocarcinoma), sample types (plasma, serum, tissue), and sample size (n >100 and n <100). In prognosis, a combined hazard ratio (HR) showed that microRNA-155 was significantly associated with poor overall survival (HR = 1.38, 95% CI 1.25-1.54) and recurrence-free survival (HR = 2.13, 95% CI 1.65-2.76), and was boundary significant with poor progression-free survival (HR = 1.20, 95% CI 1.00-1.44), but not significant with disease-free survival (HR = 1.14, 95% CI 0.70-1.85). Subgroup analyses in overall survival showed that microRNA-155 was associated with poor overall survival in the subgroups stratified by ethnicity and sample size. However, the significant association was maintained in cancer types subgroups of leukemia, lung cancer, and oral squamous cell carcinoma, but not in colorectal cancer, hepatocellular carcinoma, and breast cancer, and was maintained in sample types subgroups of bone marrow and tissue, but not in plasma and serum. CONCLUSIONS Results from this meta-analysis demonstrated that microRNA-155 was a valuable biomarker in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Qiwei Hong
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Fang Lu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Zhongqiu Zhang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Li
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Duque G, Manterola C, Otzen T, Arias C, Palacios D, Mora M, Galindo B, Holguín JP, Albarracín L. Cancer Biomarkers in Liquid Biopsy for Early Detection of Breast
Cancer: A Systematic Review. Clin Med Insights Oncol 2022; 16:11795549221134831. [PMCID: PMC9634213 DOI: 10.1177/11795549221134831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Breast cancer (BC) is the most common neoplasm in women worldwide. Liquid
biopsy (LB) is a non-invasive diagnostic technique that allows the analysis
of biomarkers in different body fluids, particularly in peripheral blood and
also in urine, saliva, nipple discharge, volatile respiratory fluids, nasal
secretions, breast milk, and tears. The objective was to analyze the
available evidence related to the use of biomarkers obtained by LB for the
early diagnosis of BC. Methods: Articles related to the use of biomarkers for the early diagnosis of BC due
to LB, published between 2010 and 2022, from the databases (WoS, EMBASE,
PubMed, and SCOPUS) were included. The MInCir diagnostic scale was applied
in the articles to determine their methodological quality (MQ). Descriptive
statistics were used, as well as determination of weighted averages of each
variable, to analyze the extracted data. Sensitivity, specificity, and area
under the curve values for specific biomarkers (individual or in panels) are
described. Results: In this systematic review (SR), 136 articles met the selection criteria,
representing 17 709 patients with BC. However, 95.6% were case-control
studies. In 96.3% of cases, LB was performed in peripheral blood samples.
Most of the articles were based on microRNA (miRNA) analysis. The mean MQ
score was 25/45 points. Sensitivity, specificity, and area under the curve
values for specific biomarkers (individual or in panels) have been
found. Conclusions: The determination of biomarkers through LB is a useful mechanism for the
diagnosis of BC. The analysis of miRNA in peripheral blood is the most
studied methodology. Our results indicate that LB has a high sensitivity and
specificity for the diagnosis of BC, especially in early stages.
Collapse
Affiliation(s)
- Galo Duque
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador,Galo Duque, Faculty of Medicine,
Universidad del Azuay. Postal address: Av. 24 de Mayo y Hernán Malo, Cuenca,
Ecuador 010107.
| | - Carlos Manterola
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Center of Excellence in Morphological
and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Tamara Otzen
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Center of Excellence in Morphological
and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Cristina Arias
- Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | | | - Miriann Mora
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Bryan Galindo
- Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Juan Pablo Holguín
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Lorena Albarracín
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
10
|
Nguyen THN, Nguyen TTN, Nguyen TTM, Nguyen LHM, Huynh LH, Phan HN, Nguyen HT. Panels of circulating microRNAs as potential diagnostic biomarkers for breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2022; 196:1-15. [DOI: 10.1007/s10549-022-06728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
|
11
|
Liu X, Papukashvili D, Wang Z, Liu Y, Chen X, Li J, Li Z, Hu L, Li Z, Rcheulishvili N, Lu X, Ma J. Potential utility of miRNAs for liquid biopsy in breast cancer. Front Oncol 2022; 12:940314. [PMID: 35992785 PMCID: PMC9386533 DOI: 10.3389/fonc.2022.940314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) remains the most prevalent malignancy due to its incidence rate, recurrence, and metastasis in women. Conventional strategies of cancer detection– mammography and tissue biopsy lack the capacity to detect the complete cancer genomic landscape. Besides, they often give false- positive or negative results. The presence of this and other disadvantages such as invasiveness, high-cost, and side effects necessitates developing new strategies to overcome the BC burden. Liquid biopsy (LB) has been brought to the fore owing to its early detection, screening, prognosis, simplicity of the technique, and efficient monitoring. Remarkably, microRNAs (miRNAs)– gene expression regulators seem to play a major role as biomarkers detected in the samples of LB. Particularly, miR-21 and miR-155 among other possible candidates seem to serve as favorable biomarkers in the diagnosis and prognosis of BC. Hence, this review will assess the potential utility of miRNAs as biomarkers and will highlight certain promising candidates for the LB approach in the diagnosis and management of BC that may optimize the patient outcome.
Collapse
Affiliation(s)
- Xiangrong Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhixiang Wang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yan Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoxia Chen
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jianrong Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhiyuan Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Linjie Hu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zheng Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| | - Jinfeng Ma
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| |
Collapse
|
12
|
Sehovic E, Urru S, Chiorino G, Doebler P. Meta-analysis of diagnostic cell-free circulating microRNAs for breast cancer detection. BMC Cancer 2022; 22:634. [PMID: 35681127 PMCID: PMC9178880 DOI: 10.1186/s12885-022-09698-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023] Open
Abstract
Background Breast cancer (BC) is the most frequently diagnosed cancer among women. Numerous studies explored cell-free circulating microRNAs as diagnostic biomarkers of BC. As inconsistent and rarely intersecting microRNA panels have been reported thus far, we aim to evaluate the overall diagnostic performance as well as the sources of heterogeneity between studies. Methods Based on the search of three online search engines performed up to March 21st 2022, 56 eligible publications that investigated diagnostic circulating microRNAs by utilizing Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) were obtained. Primary studies’ potential for bias was evaluated with the revised tool for the quality assessment of diagnostic accuracy studies (QUADAS-2). A bivariate generalized linear mixed-effects model was applied to obtain pooled sensitivity and specificity. A novel methodology was utilized in which the sample and study models’ characteristics were analysed to determine the potential preference of studies for sensitivity or specificity. Results Pooled sensitivity and specificity of 0.85 [0.81—0.88] and 0.83 [0.79—0.87] were obtained, respectively. Subgroup analysis showed a significantly better performance of multiple (sensitivity: 0.90 [0.86—0.93]; specificity: 0.86 [0.80—0.90]) vs single (sensitivity: 0.82 [0.77—0.86], specificity: 0.83 [0.78—0.87]) microRNA panels and a comparable pooled diagnostic performance between studies using serum (sensitivity: 0.87 [0.81—0.91]; specificity: 0.83 [0.78—0.87]) and plasma (sensitivity: 0.83 [0.77—0.87]; specificity: 0.85 [0.78—0.91]) as specimen type. In addition, based on bivariate and univariate analyses, miRNA(s) based on endogenous normalizers tend to have a higher diagnostic performance than miRNA(s) based on exogenous ones. Moreover, a slight tendency of studies to prefer specificity over sensitivity was observed. Conclusions In this study the diagnostic ability of circulating microRNAs to diagnose BC was reaffirmed. Nonetheless, some subgroup analyses showed between-study heterogeneity. Finally, lack of standardization and of result reproducibility remain the biggest issues regarding the diagnostic application of circulating cell-free microRNAs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09698-8.
Collapse
Affiliation(s)
- Emir Sehovic
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy. .,Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy.
| | - Sara Urru
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy.,Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35121, Padova, Italy
| | - Giovanna Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Philipp Doebler
- Department of Statistics, TU Dortmund University, 44227, Dortmund, Germany
| |
Collapse
|
13
|
Wang Y, Qiao L, Yang J, Li X, Duan Y, Liu J, Chen S, Li H, Liu D, Fang T, Ma J, Li X, Ye F, Wan J, Wei J, Xu Q, Guo E, Jin P, Wu M, Zhang L, Xia Y, Wu Y, Shao J, Feng Y, Zhang Q, Yang Z, Chen G, Zhang Q, Li X, Wang S, Hu J, Wang X, Tan MP, Takabe K, Kong B, Yang Q, Ma D, Gao Q. Serum semaphorin 4C as a diagnostic biomarker in breast cancer: A multicenter retrospective study. Cancer Commun (Lond) 2021; 41:1373-1386. [PMID: 34738326 PMCID: PMC8696225 DOI: 10.1002/cac2.12233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background To date, there is no approved blood‐based biomarker for breast cancer detection. Herein, we aimed to assess semaphorin 4C (SEMA4C), a pivotal protein involved in breast cancer progression, as a serum diagnostic biomarker. Methods We included 6,213 consecutive inpatients from Tongji Hospital, Qilu Hospital, and Hubei Cancer Hospital. Training cohort and two validation cohorts were introduced for diagnostic exploration and validation. A pan‐cancer cohort was used to independently explore the diagnostic potential of SEMA4C among solid tumors. Breast cancer patients who underwent mass excision prior to modified radical mastectomy were also analyzed. We hypothesized that increased pre‐treatment serum SEMA4C levels, measured using optimized in‐house enzyme‐linked immunosorbent assay kits, could detect breast cancer. The endpoints were diagnostic performance, including area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Post‐surgery pathological diagnosis was the reference standard and breast cancer staging followed the TNM classification. There was no restriction on disease stage for eligibilities. Results We included 2667 inpatients with breast lesions, 2378 patients with other solid tumors, and 1168 healthy participants. Specifically, 118 patients with breast cancer were diagnosed with stage 0 (5.71%), 620 with stage I (30.00%), 966 with stage II (46.73%), 217 with stage III (10.50%), and 8 with stage IV (0.39%). Patients with breast cancer had significantly higher serum SEMA4C levels than benign breast tumor patients and normal controls (P < 0.001). Elevated serum SEMA4C levels had AUC of 0.920 (95% confidence interval [CI]: 0.900–0.941) and 0.932 (95%CI: 0.911–0.953) for breast cancer detection in the two validation cohorts. The AUCs for detecting early‐stage breast cancer (n = 366) and ductal carcinoma in situ (n = 85) were 0.931 (95%CI: 0.916–0.946) and 0.879 (95%CI: 0.832–0.925), respectively. Serum SEMA4C levels significantly decreased after surgery, and the reduction was more striking after modified radical mastectomy, compared with mass excision (P < 0.001). The positive rate of enhanced serum SEMA4C levels was 84.77% for breast cancer and below 20.75% for the other 14 solid tumors. Conclusions Serum SEMA4C demonstrated promising potential as a candidate biomarker for breast cancer diagnosis. However, validation in prospective settings and by other study groups is warranted.
Collapse
Affiliation(s)
- Ya Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Long Qiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, P. R. China
| | - Jie Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiong Li
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, P. R. China
| | - Yaqi Duan
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jiahao Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Shaoqi Chen
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Huayi Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Dan Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Tian Fang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jingjing Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiaoting Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, 90001, USA
| | - Juncheng Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Qin Xu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ping Jin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Lin Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yun Xia
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yaqun Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jun Shao
- Department of Breast Surgery, Hubei Cancer Hospital, Wuhan, Hubei, 430079, P. R. China
| | - Yaojun Feng
- Department of Breast Surgery, Hubei Cancer Hospital, Wuhan, Hubei, 430079, P. R. China
| | - Qing Zhang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Zongyuan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Qinghua Zhang
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, P. R. China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Junbo Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiaoyun Wang
- Yidu Cloud (Beijing) Technology Co., Beijing, 100000, P. R. China
| | - Mona P Tan
- MammoCare, The Breast Clinic & Surgery, Singapore, 329563, Singapore
| | - Kazuaki Takabe
- Department of Surgery and the Massey Cancer Centre, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Beihua Kong
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, No.107, Jinan Culture Road, Jinan, Shandong, 250012, P. R. China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| |
Collapse
|
14
|
Li K. MiR-509-3-5p inhibits colon cancer malignancy by suppressing GTSE1. Biochem Biophys Res Commun 2021; 570:175-183. [PMID: 34284144 DOI: 10.1016/j.bbrc.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The overarching goal of this research was to identify the effect of miR-509-3-5p on colon cancer (CC) and its interaction with potential target gene GTSE1 in CC. METHODS The miR-509-3-5p expression was ascertained after performing qRT-PCR analyses, and the ability of GTSE1 to influence this microRNA was detected after carrying out RNA pull-down assay. CCK-8 assay kit was first employed to determine the proliferation of the cells. To examine the migration and invasion level of HCT116 and SW480 cells, cell wound healing and transwell assay were later performed. After constructing luciferase reporter plasmids, luciferase reporter assay was used to confirm the impacts of miR-509-3-5p on GTSE1 in HCT116 and SW480 cells. RESULTS We found that miR-509-3-5p expression reduced in CC, and its overexpression inhibited the proliferation, migration and invasion of CC cells. We later discovered that miR-509-3-5p could target GTSE1 that was then proved to be an oncogene in CC. CONCLUSION Our study uncovered that miR-509-3-5p regulated CC malignancy by suppressing target gene GTSE1.
Collapse
Affiliation(s)
- Ke Li
- Department of General Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
15
|
Hirschfeld M, Rücker G, Weiß D, Berner K, Ritter A, Jäger M, Erbes T. Urinary Exosomal MicroRNAs as Potential Non-invasive Biomarkers in Breast Cancer Detection. Mol Diagn Ther 2021; 24:215-232. [PMID: 32112368 DOI: 10.1007/s40291-020-00453-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most frequent malignant disease in women worldwide and is therefore challenging for the healthcare system. Early BC detection remains a leading factor that improves overall outcome and disease management. Aside from established screening procedures, there is a constant demand for additional BC detection methods. Routine BC screening via non-invasive liquid biopsy biomarkers is one auspicious approach to either complete or even replace the current state-of-the-art diagnostics. The study explores the diagnostic potential of urinary exosomal microRNAs with specific BC biomarker characteristics to initiate the potential prospective application of non-invasive BC screening as routine practice. METHODS Based on a case-control study (69 BC vs. 40 healthy controls), expression level quantification and subsequent biostatistical computation of 13 urine-derived microRNAs were performed to evaluate their diagnostic relevance in BC. RESULTS Multilateral statistical assessment determined and repeatedly confirmed a specific panel of four urinary microRNA types (miR-424, miR-423, miR-660, and let7-i) as a highly specific combinatory biomarker tool discriminating BC patients from healthy controls, with 98.6% sensitivity and 100% specificity. DISCUSSION Urine-based BC diagnosis may be achieved through the analysis of distinct microRNA panels with proven biomarker abilities. Subject to further validation, the implementation of urinary BC detection in routine screening offers a promising non-invasive alternative in women's healthcare.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | - Gerta Rücker
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Liu X, Chang Q, Wang H, Qian H, Jiang Y. Discovery and function exploration of microRNA-155 as a molecular biomarker for early detection of breast cancer. Breast Cancer 2021; 28:806-821. [PMID: 33475963 PMCID: PMC8213678 DOI: 10.1007/s12282-021-01215-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/06/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND MicroRNA-155 (miR-155) may function as a diagnostic biomarker of breast cancer (BC). Nevertheless, the available evidence is controversial. Therefore, we performed this study to summarize the global predicting role of miR-155 for early detection of BC and preliminarily explore the functional roles of miR-155 in BC. METHODS We first collected published studies and applied the bivariate meta-analysis model to generate the pooled diagnostic parameters of miR-155 in diagnosing BC such as sensitivity, specificity and area under curve (AUC). Then, we applied function enrichment and protein-protein interactions (PPI) analyses to explore the potential mechanisms of miR-155. RESULTS A total of 21 studies were finally included. The results indicated that miR-155 allowed for the discrimination between BC patients and healthy controls with a sensitivity of 0.87 (95% CI 0.78-0.93), specificity of 0.82 (0.72-0.89), and AUC of 0.91 (0.88-0.93). In addition, the overall sensitivity, specificity and AUC for circulating miR-155 were 0.88 (0.76-0.95), 0.83 (0.72-0.90), and 0.92 (0.89-0.94), respectively. Function enrichment analysis revealed several vital ontologies terms and pathways associated with BC occurrence and development. Furthermore, in the PPI network, ten hub genes and two significant modules were identified to be involved in some important pathways associated with the pathogenesis of BC. CONCLUSIONS We demonstrated that miR-155 has great potential to facilitate accurate BC detection and may serve as a promising diagnostic biomarker for BC. However, well-designed cohort studies and biological experiments should be implemented to confirm the diagnostic value of miR-155 before it can be applied to routine clinical procedures.
Collapse
Affiliation(s)
- Xuemin Liu
- Department of General Surgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Kang Le Road No. 4, Zhangjiagang, 215600, Jiangsu, China.
| | - Qingyu Chang
- Department of General Surgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Kang Le Road No. 4, Zhangjiagang, 215600, Jiangsu, China
| | - Haiqiang Wang
- Department of General Surgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Kang Le Road No. 4, Zhangjiagang, 215600, Jiangsu, China
| | - Hairong Qian
- Department of General Surgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Kang Le Road No. 4, Zhangjiagang, 215600, Jiangsu, China
| | - Yikun Jiang
- Department of General Surgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Kang Le Road No. 4, Zhangjiagang, 215600, Jiangsu, China
| |
Collapse
|
17
|
Ali Ahmed E, A. Abd El-bast S, A. Mohamed M, Swellam M. Clinical Impact of Oncomirs 221 and 222 on Breast Cancer Diagnosis. ASIA-PACIFIC JOURNAL OF ONCOLOGY 2020:1-9. [DOI: 10.32948/ajo.2020.07.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/07/2020] [Indexed: 09/02/2023]
Abstract
Background Dysregulation of miRNAs, non-coding RNAs of 18-25 ( ̴ 22nt), is a hallmark of malignancies among them is breast cancer. The present study aimed to investigate the expression levels of circulating oncomiRNAs (miRNA-221and miRNA-222) as a minimally non-invasive method for early detection of breast cancer as compared to tumor markers (CEA, CA15.3).
Materials and methods MiRNA-221 and miRNA-222 expression levels were determined using quantitative real-time polymerase chain reaction (qPCR) in serum samples from three groups: primary breast cancer patients (n = 44), benign breast lesion patients (n = 25), and healthy individuals as control group (n = 19). Their diagnostic efficacy and relation with clinicopathological data were analyzed.
Results MiRNA-221 and miRNA-222 expression and tumor markers reported significant increase in their mean levels in breast cancer group as compared to the benign breast lesions or control individuals. Among clinicopathological factors, miRs reported significant relation with pathological types, clinical staging, histological grading and hormonal status, while CEA and CA15.3 did not revealed significance with these factors. The diagnostic efficacy for investigated miRNAs was superior to tumor markers especially for detection of early stages and low grade tumors.
Conclusion MiRNA-221 and miRNA-222 were superior over tumor markers for early detection of breast cancer especially those at high risk as primarybreast cancer patients with early stage or low grade tumors.
Collapse
Affiliation(s)
- Elham Ali Ahmed
- Zoology Department, Faculty of Science (Girls), Al-Azhar University
| | - Sohair A. Abd El-bast
- Biochemistry Division, Chemistry Department, Faculty of Science (Girls), Al-Azhar University
| | | | | |
Collapse
|
18
|
Idrissou M, Sanchez A, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Epi-drugs as triple-negative breast cancer treatment. Epigenomics 2020; 12:725-742. [PMID: 32396394 DOI: 10.2217/epi-2019-0312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) types with poor prognosis are due to the absence of estrogen receptors, progesterone receptors and HEGFR-2. The lack of suitable therapy for TNBC has led the research community to turn toward epigenetic regulation and its protagonists that can modulate certain oncogenes and tumor suppressors. This has opened an important new field of therapy using epi-drugs, in preclinical and clinical trials. The epi-drugs are natural or synthetic molecules capable of inhibiting or modulating the activity of epigenetic proteins such as DNA methyltransferases, modulating the expression of interferon microRNAs, as well as histone methyltransferases, demethylases, acetyltransferases and deacetylases. This review investigated the epi-drugs used in the treatment of TNBC.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Frédérique Penault-Llorca
- INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France.,Department of Biopathology, Centre Jean Perrin, 58 Rue Montalembert, Clermont-Ferrand 63011, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| |
Collapse
|
19
|
Sohel MMH. Circulating microRNAs as biomarkers in cancer diagnosis. Life Sci 2020; 248:117473. [PMID: 32114007 DOI: 10.1016/j.lfs.2020.117473] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of tiny molecules of 18-22 nucleotide long noncoding RNA that regulate the post-transcriptional gene expression through translational inhibition and/or mRNA destabilization. Because of their involvement in important developmental processes, it is highly likely that the altered expression of miRNAs could be associated with abnormal conditions like suboptimal growth or diseases. Thus, the expression of miRNAs can be used as biomarkers in pathophysiological conditions. Recently, a handful of miRNAs are detected in cell-free conditions including biofluids and cell culture media and they exhibit specific expression patterns that are associated with altered physiological conditions. Extracellular miRNAs are not only extremely stable outside cells in a variety of biofluids but also they are easy to acquire. These characteristics led to the idea of using extracellular miRNAs as a potential biomarker for the onset and prognosis of cancer. Although miRNAs have been proposed as a potential diagnostic tool for cancer detection, their application in the routine clinical investigation is yet to come. First, this review will provide an insight into the extracellular miRNAs, particularly, their release mechanisms and characteristics, and the potential of extracellular miRNAs as a biomarker in cancer detection. Finally, it will discuss the potential of using extracellular miRNAs in different cancer diagnoses and challenges associated with the clinical application of extracellular miRNAs as noninvasive biomarkers.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Genome and Stem Cell Centre, Erciyes University, Kayseri 38039, Turkey; Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Turkey.
| |
Collapse
|
20
|
Emergence of Circulating MicroRNAs in Breast Cancer as Diagnostic and Therapeutic Efficacy Biomarkers. Mol Diagn Ther 2020; 24:153-173. [DOI: 10.1007/s40291-020-00447-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Clinical impact of circulating oncogenic MiRNA-221 and MiRNA-222 in glioblastoma multiform. J Neurooncol 2019; 144:545-551. [PMID: 31422498 DOI: 10.1007/s11060-019-03256-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIM Glioblastoma multiform (GBM); most fatal brain cancer, is incurable with molecular diversity hence identification of molecular targets that contribute to GBM tumorgenesis will be suitable for the development of diagnostic and treatment strategies. Micro-RNAs (miR); small RNA molecules, are stable in blood and play a crucial role in molecular processes in GBM. Thus it was aimed to investigate the clinical role of miR-221 and miR-222 among GBM cases as compared to healthy individuals and illustrate their role in patient's survival. MATERIALS AND METHODS Blood samples were withdrawn from 20 GBM cases before and after treatment, a group of 20 healthy individuals were served as control. For all enrolled samples expression of miR-221 and miR-222 were detected using quantitative PCR (QPCR). Sensitivities, specificities of investigated miRs and their relation with GBM clinical characteristics and patient's outcome were analyzed using Kaplan Meir curve. RESULTS Expression of investigated miR- 221 and -222 were significantly increased in GBM cases as compared to healthy individuals (F = 12.9, at P < 0.001, F = 28.78, at P < 0.0001, respectively) and with absolute specificity for both and 90% sensitivity for miR-221 and 85% for miR-222. Among GBM patients (n = 20), mean expression level miR-221 reported significant increase with elder GBM ( > 60 years) at F = 5.7, P = 0.028, while both miR-221 and -222 showed significant difference in performance status (ECGO) at P = 0.036 and 0.007, patients with primary lesion at P = 0.001 and 0.005, surgically treatment strategy at P < 0.001 and 0.004, respectively. Patients were grouped according to their outcomes into response (complete [CR] or partial [PR]), stable disease[SD] and progressive disease [PD], miR-221 and miR-222 showed increase expression with PD and patients with worse PFS and OS were those with high miRs expression. CONCLUSION Detection of circulating miR-221 and miR-222 may be used as circulating molecular marker for diagnosis and prediction of outcome for patients with GBM. Further studies with large cohort of samples are encouraged.
Collapse
|
22
|
Clinical Translatability of "Identified" Circulating miRNAs for Diagnosing Breast Cancer: Overview and Update. Cancers (Basel) 2019; 11:cancers11070901. [PMID: 31252695 PMCID: PMC6678980 DOI: 10.3390/cancers11070901] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
The effective management of patients with breast cancer (BC) depends on the early diagnosis of the disease. Currently, BC diagnosis is based on diagnostic imaging and biopsy, while the use of non-invasive circulating biomarkers for diagnosis remains an unmet need. Among the plethora of proposed non-invasive biomarkers, circulating microRNAs (miRNAs) have been considered promising diagnostic molecules because they are very stable in biological fluids and easily detectable. Although the discovery of miRNAs has opened a new avenue for their clinical application, the clinical translatability of these molecules remains unclear. This review analyses the role of circulating miRNAs as BC diagnostic biomarkers and focuses on two essential requirements to evaluate their clinical validity: i) Specificity and ii) consistent expression between the blood and tissue. These two issues were analyzed in depth using the Human miRNA Disease Database (HMDD v3.0) and the free search engine PubMed. One hundred and sixty three BC-associated miRNAs were selected and analyzed for their specificity among all human pathologies that shared deregulation (291) and consistent expression in the bloodstream and the tissue. In addition, we provide an overview of the current clinical trials examining miRNAs in BC. In conclusion, we highlight pitfalls in the translatability of circulating miRNAs into clinical practice due to the lack of specificity and a consistent expression pattern between the tissue and blood.
Collapse
|
23
|
Guo H, Qi RQ, Sheng J, Liu C, Ma H, Wang HX, Li JH, Gao XH, Wan YS, Chen HD. MiR-155, a potential serum marker of extramammary Paget's disease. BMC Cancer 2018; 18:1078. [PMID: 30458743 PMCID: PMC6247506 DOI: 10.1186/s12885-018-4994-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Extramammary Paget's disease (EMPD), a rare skin malignancy with non-specific manifestations, is often misdiagnosed as eczema of scrotum or tinea cruris. Although the diagnosis of EMPD could be confirmed by biopsy, it can be delayed as patients are reluctant to receive invasive operations. Herein, we investigated the serum miRNA expressions of EMPD patients and compared to that of the eczema of scrotum or tinea cruris patients as well as health volunteers for potential diagnostic markers for EMPD. METHODS Altogether 45 subjects including 16 patients diagnosed with EMPD, 12 patients diagnosed with eczema of scrotum or tinea cruris and 17 healthy volunteers were enrolled in this study. Serum from all of subjects were collected to identify miRNAs (by miRNA array global normalization, RT-PCR validation, and receiver operating characteristic curve analysis) that could be potential diagnostic markers for EMPD. RESULTS The miRNA array analyses revealed that the expressions of 37 miRNAs from the EMPD patients were different (change ≥4-fold) from health volunteers. Among these miRNAs, the expression of miR-155 was significantly increased (p < 0.01) in the EMPD patients as compared with that of the health volunteers and the eczema of scrotum or the tinea cruris patients (no difference between these two control groups). In addition, receiver operating characteristic (ROC) curve analysis showed that diagnostic capacities (defined as the area under curve of ROC) of miR-155 are 0.85 (as compared with health volunteers group) and 0.81 (as compared with the eczema of scrotum or the tinea cruris patients group), respectively. CONCLUSION The serum miRNA expression of gene miR-155 in the EMPD patients was differentiated from that of other subjects warranting further validation of miR-155 as a diagnostic marker of EMPD.
Collapse
Affiliation(s)
- Hao Guo
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Rui-Qun Qi
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Jie Sheng
- Department of Anesthesiology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - He-Xiao Wang
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Jiu-Hong Li
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Xing-Hua Gao
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Yin-Sheng Wan
- Department of Physiology, Providence College, Providence, RI, 02918, USA
| | - Hong-Duo Chen
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China.
| |
Collapse
|