1
|
Hu F, Zhang Y, Yang Y, Peng L, Cui S, Ma Q, Wang F, Wang X. A rapid and ultrasensitive RPA-assisted CRISPR-Cas12a/Cas13a nucleic acid diagnostic platform with a smartphone-based portable device. Biosens Bioelectron 2025; 280:117428. [PMID: 40179699 DOI: 10.1016/j.bios.2025.117428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
The spread of infectious diseases can be controlled by early identification of the source of infection and timely diagnosis to stop transmission. Real-time fluorescence quantitative polymerase chain reaction (PCR) is the current gold standard for pathogen diagnosis, with high detection sensitivity and accuracy. However, due to the need for specialized equipment, laboratories, and personnel, it is difficult to achieve rapid and immediate diagnosis during large-scale infectious disease outbreaks. Herein, an optimized CRISPR-based nucleic acid detection method was developed that reduces the CRISPR detection time to 15 min while maintaining high sensitivity. By using nucleic acid extraction-free and lyophilization techniques, the 'sample-in-result-out' detection of the two target genes of SARS-CoV-2, the human internal reference gene, and the negative quality control sample can be completed in 20 min, with a sensitivity of 0.5 copies/μL. Additionally, to facilitate the application, a smartphone-based reverse transcription-recombinase polymerase amplification (RT-RPA)-assisted CRISPR-rapid, portable nucleic acid detection device was developed, integrating functions such as heating, centrifugation, mixing, optical detection and result output. Process control, output, and uploading of detection results were conducted through smartphones. The device is not dependent on a power supply and can perform on-site rapid virus detection in resource-limited settings. Real-time uploading of results helps to rapidly implement epidemic prevention and control measures, providing an innovative means of detection, control, and prevention of virus-based infectious diseases. This important work provides a new and effective tool to manage potential future outbreaks of infectious diseases.
Collapse
Affiliation(s)
- Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Yunyun Zhang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yue Yang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lixin Peng
- Windermere Preparatory School, Florida, 34786, United States
| | - Shuhui Cui
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Qing Ma
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Fangning Wang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xincheng Wang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
2
|
Zhang T, Wang X, Jiang Y, Zhang Y, Zhao S, Hu J, Hu F, Peng N. A miniaturized RPA-CRISPR/Cas12a-based nucleic acid diagnostic platform for rapid and simple self-testing of SARS-CoV-2. Anal Chim Acta 2025; 1338:343593. [PMID: 39832863 DOI: 10.1016/j.aca.2024.343593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Nucleic acid testing is the most effective detection method currently available for the diagnosis of respiratory infectious diseases. However, the conventional real-time fluorescent quantitative PCR technique, which is regarded as the gold standard method for nucleic acid detection, presents significant challenges for implementation in home self-testing and popularization in underdeveloped regions due to its rigorous experimental standards. It is therefore clear that an easy-to-use, miniaturized nucleic acid testing technology and products for nonprofessionals are of great necessity to define the pathogens and assist in controlling disease transmission. (87) RESULTS: In this study, we propose a strategy for self-testing of respiratory pathogen nucleic acid that is oriented towards the public and user-friendly. The proposed system integrates the processes of extraction-free nucleic acid release, RPA isothermal amplification, and CRISPR fluorescence detection into a compact configuration. A microfluidic testing chip actuated by air pouches and a battery/USB-powered reusable device has been developed to enable simultaneous detection of internal reference genes and viral targets in a fully enclosed condition. The system allows for sample-in, and result-out testing in less than 30 min with a detection limit of 2 copies/μL. Additionally, a straightforward signal-light-based result display method has been developed to make it easy and intuitive for users to access the results. Furthermore, freeze-drying reagent is introduced to guarantee the storage and transportation of testing chips in ambient conditions. (135) SIGNIFICANCE: This work presents a miniaturized, portable, and highly sensitive nucleic acid detection system, where simple operating procedures have been designed for unskilled users. It is our belief that the testing system developed in this work is well suited for home-based self-testing and infection diagnosis in resource-limited areas, due to the above-mentioned advantages. (52).
Collapse
Affiliation(s)
- Tianyi Zhang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaoqin Wang
- Clinical Laboratory, First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710061, China
| | - Yingtao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yunyun Zhang
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jian Hu
- Clinical Laboratory, First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710061, China
| | - Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
3
|
Hosokawa K, Ohmori H. Digital reverse transcription PCR using a simple poly(dimethylsiloxane) microwell array chip for detection of SARS-CoV-2. Biochem Biophys Res Commun 2024; 741:151070. [PMID: 39615207 DOI: 10.1016/j.bbrc.2024.151070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
Digital PCR (dPCR) enables absolute quantitation of nucleic acid without calibration using a standard curve, and is promising for quantitation of SARS-CoV-2 viral load. However, dPCR suffers from the need for complicated and expensive instruments. We previously reported a dPCR system using a poly(dimethylsiloxane) (PDMS) microwell array (MWA) chip and common laboratory tools. This dPCR system had been applied to DNA quantitation. In this paper, application of this dPCR system to RNA quantitation through one-step reverse transcription PCR (RT-PCR) is described. As a model template, SARS-CoV-2 genetic RNA was selected. Artificial standard samples of SARS-CoV-2 N gene were mixed with RT-PCR reagents. The resulting mixture was introduced into the microwells by the power-free pumping technique utilizing degassed PDMS. Thermal cycling and image acquisition were carried out using basic instruments such as a thermal cycler and an inverted fluorescence microscope. The fluorescence images showed distinctive difference between bright (positive) microwells and dark (negative) microwells. The number of the positive microwells was used for estimation of the template concentration in the sample based on the Poisson distribution theory. The estimated template concentrations exhibited excellent agreement with the input template concentrations in the range from 1.0 copy/μL to 10,000 copies/μL. The RT step in the thermal program was confirmed to be indispensable for the accurate quantitation. These results may open up the possibility of facile digital RT-PCR experiments for gene expression analysis and molecular diagnosis without the need for expensive specialized instruments.
Collapse
Affiliation(s)
- Kazuo Hosokawa
- Materials Fabrication Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Hitoshi Ohmori
- Materials Fabrication Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
4
|
Wang J, Pan Z, Tang H, Guo W. Assessment of airborne viral transmission risks in a large-scale building using onsite measurements and CFD method. JOURNAL OF BUILDING ENGINEERING 2024; 95:110222. [DOI: 10.1016/j.jobe.2024.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Zhou C, Cai Z, Jin B, Lin H, Xu L, Jin Z. Saliva-based detection of SARS-CoV-2: a bibliometric analysis of global research. Mol Cell Biochem 2024; 479:761-777. [PMID: 37178376 PMCID: PMC10182745 DOI: 10.1007/s11010-023-04760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Saliva has emerged as a promising noninvasive biofluid for the diagnosis of oral and systemic diseases, including viral infections. During the coronavirus disease 2019 (COVID-19) pandemic, a growing number of studies focused on saliva-based detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Taking advantage of the WoS core collection (WoSCC) and CiteSpace, we retrieved 1021 articles related to saliva-based detection of SARS-CoV-2 and conducted a comprehensive bibliometric analysis. We analyzed countries, institutions, authors, cited authors, and cited journals to summarize their contribution and influence and analyzed keywords to explore research hotspots and trends. From 2020 to 2021, research focused on viral transmission via saliva and verification of saliva as a reliable specimen, whereas from 2021 to the present, the focus of research has switched to saliva-based biosensors for SARS-CoV-2 detection. By far, saliva has been verified as a reliable specimen for SARS-CoV-2 detection, although a standardized procedure for saliva sampling and processing is needed. Studies on saliva-based detection of SARS-CoV-2 will promote the development of saliva-based diagnostics and biosensors for viral detection. Collectively, our findings could provide valuable information to help scientists perceive the basic knowledge landscapes on saliva-based detection of SARS-CoV-2, the past and current research hotspots, and future opportunities.
Collapse
Affiliation(s)
- Chun Zhou
- Jinhua People's Hospital Joint Center for Biomedical Research, Zhejiang Normal University, Jinhua, 321000, Zhejiang, China
- Department of Science and Education, the Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, 321000, Zhejiang, China
| | - Zhaopin Cai
- College of Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321000, Zhejiang, China
| | - Boxing Jin
- College of Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321000, Zhejiang, China
| | - Huisong Lin
- Zhejiang Institute of Medical Device Testing, Hangzhou, Zhejiang, China
| | - Lingling Xu
- College of Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321000, Zhejiang, China
| | - Zhigang Jin
- Jinhua People's Hospital Joint Center for Biomedical Research, Zhejiang Normal University, Jinhua, 321000, Zhejiang, China.
- College of Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321000, Zhejiang, China.
| |
Collapse
|
6
|
Shadmand Foumani Moghadam MR, Vaezi A, Jandari S, Araste A, Rezvani R. Navigating sarcopenia in COVID-19 patients and survivors: Understanding the long-term consequences, transitioning from hospital to community with mechanisms and interventions for future preparedness. Aging Med (Milton) 2024; 7:103-114. [PMID: 38571679 PMCID: PMC10985777 DOI: 10.1002/agm2.12287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 04/05/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused widespread devastation, with millions of confirmed cases and deaths worldwide. Although there were efforts made to develop treatments and vaccines for COVID-19, the coexistence of sarcopenia, a muscle disorder, has been largely overlooked. It is while new variants of this disease (eg, BA.2.86) are challenging the current protocols. Sarcopenia is associated with increased mortality and disability, and shares common mechanisms with COVID-19, such as inflammation, hormonal changes, and malnutrition. This can worsen the effects of both conditions. Furthermore, survived patients with COVID-19 who have elevated risk, as well as aging, which increases the process of sarcopenia. Therefore, addressing sarcopenia in patients with COVID-19 and surviving individuals can be crucial for improving outcomes and preventing long-term disability. During hospital stays, assessing sarcopenia through indicators like muscle wasting and malnutrition is important. Nutritional interventions, such as malnutrition screening and enteral feeding, play a critical role in preventing sarcopenia in hospitals. Mental health and physical activity evaluations and interventions are also necessary. Even after recovering from COVID-19, there is a risk of developing sarcopenia, requiring continued monitoring. Nutrition and physical activity considerations are vital for prevention and management, necessitating tailored training programs and diet therapy. Mental health should not be overlooked, with regular screening, and community-based interventions. Infrastructure should support physical activity, and mental health services must become more accessible. Community engagement through support groups and peer networks can foster resilience and social connection. Efforts are needed to promote healthy diets and ensure access to nutritious foods.
Collapse
Affiliation(s)
| | | | - Sajedeh Jandari
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Asie Araste
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Reza Rezvani
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
7
|
Uzunoglu A, Gunes Altuntas E, Huseyin Ipekci H, Ozoglu O. Two-Dimensional (2D) materials in the detection of SARS-CoV-2. Microchem J 2023; 193:108970. [PMID: 37342763 PMCID: PMC10265934 DOI: 10.1016/j.microc.2023.108970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
The SARS-CoV-2 pandemic has resulted in a devastating effect on human health in the last three years. While tremendous effort has been devoted to the development of effective treatment and vaccines against SARS-CoV-2 and controlling the spread of it, collective health challenges have been encountered along with the concurrent serious economic impacts. Since the beginning of the pandemic, various detection methods like PCR-based methods, isothermal nucleic acid amplification-based (INAA) methods, serological methods or antibody tests, and evaluation of X-ray chest results have been exploited to diagnose SARS-CoV-2. PCR-based detection methods in these are considered gold standards in the current stage despite their drawbacks, including being high-cost and time-consuming procedures. Furthermore, the results obtained from the PCR tests are susceptible to sample collection methods and time. When the sample is not collected properly, obtaining a false result may be likely. The use of specialized lab equipment and the need for trained people for the experiments pose additional challenges in PCR-based testing methods. Also, similar problems are observed in other molecular and serological methods. Therefore, biosensor technologies are becoming advantageous with their quick response, high specificity and precision, and low-cost characteristics for SARS-CoV-2 detection. In this paper, we critically review the advances in the development of sensors for the detection of SARS-CoV-2 using two-dimensional (2D) materials. Since 2D materials including graphene and graphene-related materials, transition metal carbides, carbonitrides, and nitrides (MXenes), and transition metal dichalcogenides (TMDs) play key roles in the development of novel and high-performance electrochemical (bio)sensors, this review pushes the sensor technologies against SARS-CoV-2 detection forward and highlights the current trends. First, the basics of SARS-CoV-2 detection are described. Then the structure and the physicochemical properties of the 2D materials are explained, which is followed by the development of SARS-CoV-2 sensors by exploiting the exceptional properties of the 2D materials. This critical review covers most of the published papers in detail from the beginning of the outbreak.
Collapse
Affiliation(s)
- Aytekin Uzunoglu
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Evrim Gunes Altuntas
- Ankara University, Biotechnology Institute, Gumusdere Campus, 06135, Ankara, Turkey
| | - Hasan Huseyin Ipekci
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Ozum Ozoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey
| |
Collapse
|
8
|
Farva K, Sattar H, Ullah H, Raziq A, Mehmood MD, Tareen AK, Sultan IN, Zohra Q, Khan MW. Phenotypic Analysis, Molecular Characterization, and Antibiogram of Caries-Causing Bacteria Isolated from Dental Patients. Microorganisms 2023; 11:1952. [PMID: 37630520 PMCID: PMC10457851 DOI: 10.3390/microorganisms11081952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Dental caries is a biofilm-mediated, sugar-driven, multifactorial, dynamic disease that results in the phasic demineralization and remineralization of dental hard tissues. Despite scientific advances in cariology, dental caries remains a severe global concern. The aim of this study was to determine the optimization of microbial and molecular techniques for the detection of cariogenic pathogens in dental caries patients, the prevalence of cariogenic bacteria on the basis of socioeconomic, climatological, and hygienic factors, and in vitro evaluation of the antimicrobial activity of selected synthetic antibiotics and herbal extracts. In this study, oral samples were collected from 900 patients for bacterial strain screening on a biochemical and molecular basis. Plant extracts, such as ginger, garlic, neem, tulsi, amla, and aloe vera, were used to check the antimicrobial activity against the isolated strains. Synthetic antimicrobial agents, such as penicillin, amoxicillin, erythromycin, clindamycin, metronidazole, doxycycline, ceftazidime, levofloxacin, and ciprofloxacin, were also used to access the antimicrobial activity. Among 900 patients, 63% were males and 37% were females, patients aged between 36 and 58 (45.7%) years were prone to disease, and the most common symptom was toothache (61%). For oral diseases, 21% used herbs, 36% used antibiotics, and 48% were self-medicated, owing to sweets consumption (60.66%) and fizzy drinks and fast food (51.56%). Staphylococcus mutans (29.11%) and Streptococcus sobrinus (28.11%) were found as the most abundant strains. Seven bacterial strains were successfully screened and predicted to be closely related to genera S. sobrinus, S. mutans, Actinomyces naeslundii, Lactobacillus acidophilus, Eubacterium nodatum, Propionibacterium acidifaciens, and Treponema Pallidum. Among plant extracts, the maximum zone of inhibition was recorded by ginger (22.36 mm) and amla (20.01 mm), while among synthetic antibiotics, ciprofloxacin and levofloxacin were most effective against all microbes. This study concluded that phyto extracts of ginger and amla were considered suitable alternatives to synthetic antibiotics to treat dental diseases.
Collapse
Affiliation(s)
- Khushbu Farva
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Huma Sattar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Hayat Ullah
- Metabolic Engineering Lab, Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Abdur Raziq
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Muhammad Danish Mehmood
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Afrasiab Khan Tareen
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Imrana Niaz Sultan
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Quratulaain Zohra
- Department of Biotechnology, Project of Sahara for Life Trust, The Sahara College Narowal, Punjab 51601, Pakistan
| | - Muhammad Waseem Khan
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| |
Collapse
|
9
|
Kumar S, Ko T, Chae Y, Jang Y, Lee I, Lee A, Shin S, Nam MH, Kim BS, Jun HS, Seo S. Proof-of-Concept: Smartphone- and Cloud-Based Artificial Intelligence Quantitative Analysis System (SCAISY) for SARS-CoV-2-Specific IgG Antibody Lateral Flow Assays. BIOSENSORS 2023; 13:623. [PMID: 37366988 DOI: 10.3390/bios13060623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Smartphone-based point-of-care testing (POCT) is rapidly emerging as an alternative to traditional screening and laboratory testing, particularly in resource-limited settings. In this proof-of-concept study, we present a smartphone- and cloud-based artificial intelligence quantitative analysis system (SCAISY) for relative quantification of SARS-CoV-2-specific IgG antibody lateral flow assays that enables rapid evaluation (<60 s) of test strips. By capturing an image with a smartphone camera, SCAISY quantitatively analyzes antibody levels and provides results to the user. We analyzed changes in antibody levels over time in more than 248 individuals, including vaccine type, number of doses, and infection status, with a standard deviation of less than 10%. We also tracked antibody levels in six participants before and after SARS-CoV-2 infection. Finally, we examined the effects of lighting conditions, camera angle, and smartphone type to ensure consistency and reproducibility. We found that images acquired between 45° and 90° provided accurate results with a small standard deviation and that all illumination conditions provided essentially identical results within the standard deviation. A statistically significant correlation was observed (Spearman correlation coefficient: 0.59, p = 0.008; Pearson correlation coefficient: 0.56, p = 0.012) between the OD450 values of the enzyme-linked immunosorbent assay and the antibody levels obtained by SCAISY. This study suggests that SCAISY is a simple and powerful tool for real-time public health surveillance, enabling the acceleration of quantifying SARS-CoV-2-specific antibodies generated by either vaccination or infection and tracking of personal immunity levels.
Collapse
Affiliation(s)
- Samir Kumar
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Taewoo Ko
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | | | - Yuyeon Jang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Inha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Ahyeon Lee
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Sanghoon Shin
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Byung Soo Kim
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Sungkyu Seo
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
10
|
Simon DS, Yew CW, Kumar VS. Multiplexed Reverse Transcription Loop-Mediated Isothermal Amplification Coupled with a Nucleic Acid-Based Lateral Flow Dipstick as a Rapid Diagnostic Method to Detect SARS-CoV-2. Microorganisms 2023; 11:1233. [PMID: 37317207 PMCID: PMC10223058 DOI: 10.3390/microorganisms11051233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
Due to the high reproduction rate of COVID-19, it is important to identify and isolate infected patients at the early stages of infection. The limitations of current diagnostic methods are speed, cost, and accuracy. Furthermore, new viral variants have emerged with higher rates of infectivity and mortality, many with mutations at various primer binding sites, which may evade detection via conventional PCR kits. Therefore, a rapid method that is sensitive, specific, and cost-effective is needed for a point-of-care molecular test. Accordingly, we developed a rapid molecular SARS-CoV-2 detection kit with high specificity and sensitivity, RT-PCR, taking advantage of the loop-mediated isothermal amplification (LAMP) technique. Four sets of six primers were designed based on conserved regions of the SARS-CoV-2 genome: two outer, two inner and two loop primers. Using the optimized protocol, SARS-CoV-2 genes were detected as quickly as 10 min but were most sensitive at 30 min, detecting as little as 100 copies of template DNA. We then coupled the RT-LAMP with a lateral flow dipstick (LFD) for multiplex detection. The LFD could detect two genic amplifications on a single strip, making it suitable for multiplexed detection. The development of a multiplexed RT-LAMP-LFD reaction on crude VTM samples would be suitable for the point-of-care diagnosis of COVID-19 in diagnostic laboratories as well as in private homes.
Collapse
Affiliation(s)
| | | | - Vijay Subbiah Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (D.S.S.); (C.-W.Y.)
| |
Collapse
|
11
|
Tsang HF, Yu ACS, Yim AKY, Jin N, Wu YO, Cheng HYL, Cheung WL, Leung WMS, Lam KW, Hung TN, Chan L, Chiou J, Pei XM, Lee OYA, Cho WCS, Wong SCC. The clinical characteristics of pediatric patients infected by SARS-CoV-2 Omicron variant and whole viral genome sequencing analysis. PLoS One 2023; 18:e0282389. [PMID: 36897843 PMCID: PMC10004545 DOI: 10.1371/journal.pone.0282389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Pediatric population was generally less affected clinically by SARS-CoV-2 infection. Few pediatric cases of COVID-19 have been reported compared to those reported in infected adults. However, a rapid increase in the hospitalization rate of SARS-CoV-2 infected pediatric patients was observed during Omicron variant dominated COVID-19 outbreak. In this study, we analyzed the B.1.1.529 (Omicron) genome sequences collected from pediatric patients by whole viral genome amplicon sequencing using Illumina next generation sequencing platform, followed by phylogenetic analysis. The demographic, epidemiologic and clinical data of these pediatric patients are also reported in this study. Fever, cough, running nose, sore throat and vomiting were the more commonly reported symptoms in children infected by Omicron variant. A novel frameshift mutation was found in the ORF1b region (NSP12) of the genome of Omicron variant. Seven mutations were identified in the target regions of the WHO listed SARS-CoV-2 primers and probes. On protein level, eighty-three amino acid substitutions and fifteen amino acid deletions were identified. Our results indicate that asymptomatic infection and transmission among children infected by Omicron subvariants BA.2.2 and BA.2.10.1 are not common. Omicron may have different pathogenesis in pediatric population.
Collapse
Affiliation(s)
- Hin Fung Tsang
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | | | | | - Nana Jin
- Codex Genetics Limited, Hong Kong, China
| | - Yu On Wu
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hennie Yuk Lin Cheng
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - WL Cheung
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wai Ming Stanley Leung
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Ka Wai Lam
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Tin Nok Hung
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Loiston Chan
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Jiachi Chiou
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiao Meng Pei
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | | | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
12
|
Santaniello A, Perruolo G, Cristiano S, Agognon AL, Cabaro S, Amato A, Dipineto L, Borrelli L, Formisano P, Fioretti A, Oriente F. SARS-CoV-2 Affects Both Humans and Animals: What Is the Potential Transmission Risk? A Literature Review. Microorganisms 2023; 11:microorganisms11020514. [PMID: 36838479 PMCID: PMC9959838 DOI: 10.3390/microorganisms11020514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In March 2020, the World Health Organization Department declared the coronavirus (COVID-19) outbreak a global pandemic, as a consequence of its rapid spread on all continents. The COVID-19 pandemic has been not only a health emergency but also a serious general problem as fear of contagion and severe restrictions put economic and social activity on hold in many countries. Considering the close link between human and animal health, COVID-19 might infect wild and companion animals, and spawn dangerous viral mutants that could jump back and pose an ulterior threat to us. The purpose of this review is to provide an overview of the pandemic, with a particular focus on the clinical manifestations in humans and animals, the different diagnosis methods, the potential transmission risks, and their potential direct impact on the human-animal relationship.
Collapse
Affiliation(s)
- Antonio Santaniello
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Giuseppe Perruolo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cristiano
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Ayewa Lawoe Agognon
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessia Amato
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Francesco Oriente
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
13
|
Pei XM, Yeung MHY, Wong ANN, Tsang HF, Yu ACS, Yim AKY, Wong SCC. Targeted Sequencing Approach and Its Clinical Applications for the Molecular Diagnosis of Human Diseases. Cells 2023; 12:493. [PMID: 36766834 PMCID: PMC9913990 DOI: 10.3390/cells12030493] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The outbreak of COVID-19 has positively impacted the NGS market recently. Targeted sequencing (TS) has become an important routine technique in both clinical and research settings, with advantages including high confidence and accuracy, a reasonable turnaround time, relatively low cost, and fewer data burdens with the level of bioinformatics or computational demand. Since there are no clear consensus guidelines on the wide range of next-generation sequencing (NGS) platforms and techniques, there is a vital need for researchers and clinicians to develop efficient approaches, especially for the molecular diagnosis of diseases in the emergency of the disease and the global pandemic outbreak of COVID-19. In this review, we aim to summarize different methods of TS, demonstrate parameters for TS assay designs, illustrate different TS panels, discuss their limitations, and present the challenges of TS concerning their clinical application for the molecular diagnosis of human diseases.
Collapse
Affiliation(s)
- Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Allen Chi Shing Yu
- Codex Genetics Limited, Unit 212, 2/F., Building 16W, No. 16 Science Park West Avenue, The Hong Kong Science Park, Hong Kong 852, China
| | - Aldrin Kay Yuen Yim
- Codex Genetics Limited, Unit 212, 2/F., Building 16W, No. 16 Science Park West Avenue, The Hong Kong Science Park, Hong Kong 852, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
14
|
Mostafa M, Barhoum A, Sehit E, Gewaid H, Mostafa E, Omran MM, Abdalla MS, Abdel-Haleem FM, Altintas Z, Forster RJ. Current trends in COVID-19 diagnosis and its new variants in physiological fluids: Surface antigens, antibodies, nucleic acids, and RNA sequencing. Trends Analyt Chem 2022; 157:116750. [PMID: 36060607 PMCID: PMC9425703 DOI: 10.1016/j.trac.2022.116750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 12/15/2022]
Abstract
Rapid, highly sensitive, and accurate virus circulation monitoring techniques are critical to limit the spread of the virus and reduce the social and economic burden. Therefore, point-of-use diagnostic devices have played a critical role in addressing the outbreak of COVID-19 (SARS-CoV-2) viruses. This review provides a comprehensive overview of the current techniques developed for the detection of SARS-CoV-2 in various body fluids (e.g., blood, urine, feces, saliva, tears, and semen) and considers the mutations (i.e., Alpha, Beta, Gamma, Delta, Omicron). We classify and comprehensively discuss the detection methods depending on the biomarker measured (i.e., surface antigen, antibody, and nucleic acid) and the measurement techniques such as lateral flow immunoassay (LFIA), enzyme-linked immunosorbent assay (ELISA), reverse transcriptase-polymerase chain reaction (RT-PCR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), microarray analysis, clustered regularly interspaced short palindromic repeats (CRISPR) and biosensors. Finally, we addressed the challenges of rapidly identifying emerging variants, detecting the virus in the early stages of infection, the detection sensitivity, selectivity, and specificity, and commented on how these challenges can be overcome in the future.
Collapse
Affiliation(s)
- Menna Mostafa
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, 11795, Cairo, Egypt
| | - Ahmed Barhoum
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 V209, Dublin, Ireland
| | - Ekin Sehit
- Institute of Chemistry, Technical University of Berlin, 10623, Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143, Kiel, Germany
| | - Hossam Gewaid
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St, Dublin, D02R590, Ireland
| | - Eslam Mostafa
- Borg Pharmaceutical Industries, Refaat Hassan St, Al Abageyah, El-Khalifa, Cairo Governorate, 16, Egypt
| | - Mohamed M Omran
- Chemistry Department, Faculty of Science, Helwan University, 11795, Cairo, Egypt
| | - Mohga S Abdalla
- Chemistry Department, Faculty of Science, Helwan University, 11795, Cairo, Egypt
| | - Fatehy M Abdel-Haleem
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
- Center for Hazards Mitigation, Environmental Studies and Research (CHMESR), Cairo University, 12613, Giza, Egypt
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, 10623, Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143, Kiel, Germany
| | - Robert J Forster
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 V209, Dublin, Ireland
| |
Collapse
|
15
|
Accuracy of Volatile Organic Compound (VOC) Detection in Exhaled Breath Compared to Reverse-transcriptase Polymerase Chain Reaction (RT-PCR) for Diagnosis of COVID-19: An Evidence-based Case Report. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2022. [DOI: 10.5812/archcid-119263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Coronavirus disease 2019 (COVID-19) is a contagious infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The World Health Organization (WHO) declared this infection a global pandemic in 2020. In addition, various methods have been developed to diagnose COVID-19 rapidly and accurately to reverse transcription-polymerase chain reaction (RT-PCR) as a gold standard method. One of these methods is the detection of volatile organic compounds (VOC) in exhaled breath. Objectives: The aim was to collect and investigate studies on the accuracy of VOC detection as a diagnostic method for COVID-19. Methods: A literature search was performed in five electronic databases, including PubMed, Cochrane Library, ProQuest, EBSCOhost, and Scopus, along with hand searching. The search was conducted in the titles and abstracts of articles using keywords and their equivalent terms, combined with the Boolean operators (OR and AND). The search results were then selected according to the inclusion and exclusion criteria and compatibility with the Population, Intervention, Control, and Outcomes (PICO) framework. Results: Based on the search results, two cross-sectional studies by Wintjens et al. and Ruszkiewicz et al. were selected, which were then critically appraised. Both studies showed good validity. Wintjens et al. reported 86% sensitivity and 54% specificity for their method, with a positive predictive value (PPV) and a negative predictive value (NPV) of 40% and 92%, respectively. Besides, Ruszkiewicz et al., who conducted a study in two different locations, reported 82.4% sensitivity and 75% specificity for their method in Edinburgh (UK), with PPV and NPV of 87.5% and 66.7%, respectively, while they reported 90% sensitivity and 80% specificity in Dortmund (Germany), with PPV and NPV of 45% and 97.8%, respectively. The accuracy of these three methods was 62%, 80%, and 82%, respectively. Conclusions: Detection of VOCs from exhaled breath can be a rapid, cost-effective, and simple method for diagnosing COVID-19. However, the accuracy of this method is still relatively low (62 - 82%) and inconsistent; therefore, it is only recommended for screening.
Collapse
|
16
|
Wang XC, Wu GL, Cai YF, Zhang SJ. The safety and efficacy of melatonin in the treatment of COVID-19: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e30874. [PMID: 36181086 PMCID: PMC9524532 DOI: 10.1097/md.0000000000030874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND As an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the common signs of coronavirus disease 2019 (COVID-19) are respiratory symptoms, fever, cough, shortness of breath, and dyspnea, with multiple organ injuries in severe cases. Therefore, finding drugs to prevent and treat COVID-19 is urgently needed and expected by the public. Several studies suggested beneficial effects of melatonin for the relevant prevention and treatment. To explore the effect and safety of melatonin in the treatment and provide theoretical support and reference for seeking the most suitable drug for COVID-19, the meta-analysis was carried out accordingly. METHODS It included randomized clinical trials of patients with COVID-19 treated with melatonin. Total effective rate was the primary outcome, while C-reactive protein (CRP), arterial oxygen saturation (SaO2), white blood cell count (WBC) were the secondary measures. Random-effect and fixed-effect models were used to evaluate the effect size of some indicators in this meta-analysis. RESULTS Six eligible studies with 338 participants were included. One hundred seventy subjects were treated with melatonin adjuvant therapy and 168 subjects were assigned to the control group, with total excellent effective rate in subjects treated with melatonin [odds ratio = 3.05, 95 % confidence interval (CI) = 1.47, 6.31, P = .003]. Homogeneity was analyzed by fixed effect model (I2 = 0%). There was no significant difference in CRP between the melatonin group and the control group (weighted mean difference [WMD] = -0.36, 95% CI = -3.65, 2.92, P = .83). Significant difference was not existed in SaO2 between the melatonin treatment group and the control group (WMD = 1, 95% CI = -1.21, 3.22, P = .37). In terms of WBC, there was no significant difference between the 2 groups (WMD = -1.07, 95% CI = -2.44, 0.30, P = .13). CONCLUSIONS The meta-analysis showed that melatonin had the beneficial effects for COVID-19 prevention and treatment as an adjunctive agent in combination with basic treatment for the treatment.
Collapse
Affiliation(s)
- Xin-Chen Wang
- School of Food and Pharmaceutical Engineering, Zhaoqing College, Duanzhou District, Zhaoqing City, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Ye-Feng Cai, Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China (e-mail: )
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Lee H, Kang H, Cho Y, Oh J, Lim TH, Ko BS, Lee J. Diagnostic Performance of the Rapid Antigen Test as a Screening Tool for SARS-CoV-2 Infection in the Emergency Department. J Pers Med 2022; 12:jpm12071172. [PMID: 35887669 PMCID: PMC9318820 DOI: 10.3390/jpm12071172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
The rapid antigen test (RAT) has been adopted as a screening tool for SARS-CoV-2 infection in many emergency departments (EDs). We aimed to investigate the diagnostic value of the accuracy of the SARS-CoV-2 RAT as a screening tool in the ED. This retrospective observational study included patients who underwent both RAT and RT−PCR and visited the ED from 1 December 2021 to 15 March 2022. RAT and RT−PCR were performed by appropriately trained physicians. We performed detailed analyses using the E gene cyclic threshold (Ct) values of RT−PCR. Out of a total of 1875 patients, 348 (18.6%) had positive and 1527 (81.4%) had negative RT−PCR results. The overall sensitivity, specificity, positive predictive value, and negative predictive value of the RAT were 67.8%, 99.9%, 99.6%, and 93.2%, respectively. The E gene Ct value was significantly lower in the RAT-positive patients than in the RAT-negative patients (18.5 vs. 25.3, p < 0.001). When the E gene Ct cutoff was 30.0, 25.0, 20.0, and 15.0, the sensitivity of the RAT was 71.9%, 80.3%, 93.0%, and 97.8%, respectively. The sensitivity of the RAT could be considered high in patients with a high viral load, and the RAT could be used as a screening tool in the ED.
Collapse
|
18
|
Dutta D, Naiyer S, Mansuri S, Soni N, Singh V, Bhat KH, Singh N, Arora G, Mansuri MS. COVID-19 Diagnosis: A Comprehensive Review of the RT-qPCR Method for Detection of SARS-CoV-2. Diagnostics (Basel) 2022; 12:diagnostics12061503. [PMID: 35741313 PMCID: PMC9221722 DOI: 10.3390/diagnostics12061503] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
The world is grappling with the coronavirus disease 2019 (COVID-19) pandemic, the causative agent of which is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 symptoms are similar to the common cold, including fever, sore throat, cough, muscle and chest pain, brain fog, dyspnoea, anosmia, ageusia, and headache. The manifestation of the disease can vary from being asymptomatic to severe life-threatening conditions warranting hospitalization and ventilation support. Furthermore, the emergence of mutecated variants of concern (VOCs) is paramount to the devastating effect of the pandemic. This highly contagious virus and its emergent variants challenge the available advanced viral diagnostic methods for high-accuracy testing with faster result yields. This review is to shed light on the natural history, pathology, molecular biology, and efficient diagnostic methods of COVID-19, detecting SARS-CoV-2 in collected samples. We reviewed the gold standard RT-qPCR method for COVID-19 diagnosis to confer a better understanding and application to combat the COVID-19 pandemic. This comprehensive review may further develop awareness about the management of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (D.D.); (M.S.M.)
| | - Sarah Naiyer
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60616, USA;
| | | | - Neeraj Soni
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Vandana Singh
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Khalid Hussain Bhat
- SKUAST Kashmir, Division of Basic Science and Humanities, Faculty of Agriculture, Wadura Sopore 193201, JK, India;
| | - Nishant Singh
- Cell and Gene Therapy Absorption System, Exton, PA 19335, USA;
| | - Gunjan Arora
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - M. Shahid Mansuri
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Correspondence: (D.D.); (M.S.M.)
| |
Collapse
|
19
|
Establishment of primary health information in the COVID-19 outbreak: A cross-sectional study of population awareness of self-testing. INFORMATICS IN MEDICINE UNLOCKED 2022; 31:100981. [PMID: 35673522 PMCID: PMC9156432 DOI: 10.1016/j.imu.2022.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
The global pandemic of the Corona Virus Disease 2019 is a severe threat to human health. This paper aims to investigate the status of mass health self-examination awareness and its influencing factors during the COVID-19 epidemic and establish complete health information to intervene in the prevention and control of the COVID-19 epidemic. The study used a simple random sampling method to survey permanent residents (9761 people) aged 15–70 years in a region of Jiangsu Province, China. The survey collected data using a questionnaire with acceptable reliability and validity. The data were entered into SPSS 26, and the data were analyzed using the chi-square test, ANOVA, and logistic regression. The differences in the status of mass health self-examination during COVID-19 were statistically significant (P < 0.05) in terms of the literacy level of the grassroots population, ease of access to medical care, primary medical and health conditions, the situation of medical examination programs, and the construction of primary health information technology. The establishment of comprehensive and systematic primary health information can effectively assist in raising people's awareness of health self-examination and promoting health behaviors, which is essential for enhancing COVID-19 prevention and intervention.
Collapse
|
20
|
Sun L, Xiu L, Zhang C, Xiao Y, Li Y, Zhang L, Ren L, Peng J. Detection and classification of SARS-CoV-2 using high-resolution melting analysis. Microb Biotechnol 2022; 15:1883-1894. [PMID: 35233932 PMCID: PMC9111094 DOI: 10.1111/1751-7915.14027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID‐19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), has recently posed a significant threat to global public health. The objective of this study was to develop and evaluate a rapid, expandable and sequencing‐free high‐resolution melting (HRM) approach for the direct detection and classification of SARS‐CoV‐2. Thirty‐one common pathogens that can cause respiratory tract infections were used to evaluate the specificity of the method. Synthetic RNA with serial dilutions was utilized to determine the sensitivity of the method. Finally, the clinical performance of the method was assessed using 290 clinical samples. The one‐step multiplex HRM could accurately identify SARS‐CoV‐2 and differentiate mutations in each marker site within approximately 2 h. For each target, the limit of detection was lower than 10 copies/reaction, and no cross‐reactivity was observed among organisms within the specificity testing panel. The method showed good uniformity for SARS‐CoV‐2 detection with a consistency of 100%. Regarding the clade classification performance, the results showed good concordance compared with sequencing, with the rate of agreement being 95.1% (78/82). The one‐step multiplex HRM method is a rapid method for SARS‐CoV‐2 detection and classification.
Collapse
Affiliation(s)
- Liying Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leshan Xiu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xiao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yamei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lulu Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Khan A, Ostaku J, Aras E, Safak Seker UO. Combating Infectious Diseases with Synthetic Biology. ACS Synth Biol 2022; 11:528-537. [PMID: 35077138 PMCID: PMC8895449 DOI: 10.1021/acssynbio.1c00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 11/29/2022]
Abstract
Over the past decades, there have been numerous outbreaks, including parasitic, fungal, bacterial, and viral infections, worldwide. The rate at which infectious diseases are emerging is disproportionate to the rate of development for new strategies that could combat them. Therefore, there is an increasing demand to develop novel, specific, sensitive, and effective methods for infectious disease diagnosis and treatment. Designed synthetic systems and devices are becoming powerful tools to treat human diseases. The advancement in synthetic biology offers efficient, accurate, and cost-effective platforms for detecting and preventing infectious diseases. Herein we focus on the latest state of living theranostics and its implications.
Collapse
Affiliation(s)
- Anooshay Khan
- UNAM
− National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| | - Julian Ostaku
- UNAM
− National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| | - Ebru Aras
- UNAM
− National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| | - Urartu Ozgur Safak Seker
- UNAM
− National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
22
|
Tsang HF, Yu ACS, Wong HT, Leung WMS, Chiou J, Wong YKE, Yim AKY, Tsang DNC, Tsang AK, Wong WT, Wong SCC, Cho WCS. Whole genome amplicon sequencing and phylogenetic analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from lineage B.1.36.27 isolated in Hong Kong. Expert Rev Mol Diagn 2022; 22:119-124. [PMID: 34878349 DOI: 10.1080/14737159.2022.2015330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The import of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.36.27 has sparked the fourth wave of COVID-19 outbreak in Hong Kong. This strain has been circulating in Hong Kong since September 2020 but rarely found in other countries (<1%). RESEARCH DESIGN AND METHODS A total of 14 SARS-CoV-2 genome sequences collected from patients in Hong Kong between July 2020 and March 2021 were determined by whole viral genome sequencing using Illumina next-generation sequencing platform, followed by phylogenetic analysis. RESULTS Of the 14 SARS-CoV-2 genome sequences analyzed, 9 strains belonged to the PANGO lineage B.1.36.27, GISAID clade GH, and Nextclade clade 20A. Compared to the reference genome, 31 nucleotide differences and 11 amino acid differences were identified in the genome of the SARS-CoV-2 from PANGO lineage B.1.36.27. CONCLUSIONS We reported the nucleotides and amino acids mutations identified in the SARS-CoV-2 from PANGO lineage B.1.36.27. Our viral genome sequences enriched the understanding of SARS-CoV-2 mutational landscape and improved the repertoire of known SARS-CoV-2 variants for tracking and tracing. From this study, we found no evidence to show that SARS-CoV-2 from lineage B.1.36.27 can compromise existing vaccines and antibody therapies.
Collapse
Affiliation(s)
- Hin Fung Tsang
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong Special Administrative Region, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | | | - Heong Ting Wong
- Department of Pathology, Kiang Wu Hospital, Macau Special Administrative Region, China
| | - Wai Ming Stanley Leung
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong Special Administrative Region, China
| | - Jiachi Chiou
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | | | - Dominic Ngai Chong Tsang
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Alan Kl Tsang
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Wing Tak Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
23
|
Chu H, Liu C, Liu J, Yang J, Li Y, Zhang X. Recent advances and challenges of biosensing in point-of-care molecular diagnosis. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 348:130708. [PMID: 34511726 PMCID: PMC8424413 DOI: 10.1016/j.snb.2021.130708] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 05/07/2023]
Abstract
Molecular diagnosis, which plays a major role in infectious disease screening with successful understanding of the human genome, has attracted more attention because of the outbreak of COVID-19 recently. Since point-of-care testing (POCT) can expand the application of molecular diagnosis with the benefit of rapid reply, low cost, and working in decentralized environments, many researchers and commercial institutions have dedicated tremendous effort and enthusiasm to POCT-based biosensing for molecular diagnosis. In this review, we firstly summarize the state-of-the-art techniques and the construction of biosensing systems for POC molecular diagnosis. Then, the application scenarios of POCT-based biosensing for molecular diagnosis were also reviewed. Finally, several challenges and perspectives of POC biosensing for molecular diagnosis are discussed. This review is expected to help researchers deepen comprehension and make progresses in POCT-based biosensing field for molecular diagnosis applications.
Collapse
Affiliation(s)
- Hongwei Chu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jinsen Liu
- Shenzhen ENCO Instrument Co., Ltd, Shenzhen 518000, China
| | - Jiao Yang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yingchun Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
24
|
Application of intelligence-based computational techniques for classification and early differential diagnosis of COVID-19 disease. DATA SCIENCE AND MANAGEMENT 2021. [PMCID: PMC8654459 DOI: 10.1016/j.dsm.2021.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical methods are used for diagnosing COVID-19 infected patients, but reports posit that, several people who were initially tested positive of COVID-19, and who had some underlying diseases, turned out having negative results after further tests. Therefore, the performance of clinical methods is not always guaranteed. Moreover, chest X-ray image data of COVID-19 infected patients are mostly used in the computational models for COVID-19 diagnosis, while the use of common symptoms, such as fever, cough, fatigue, muscle aches, headache, etc. in computational models is not yet reported. In this study, we employed seven classification algorithms to empirically test and verify their efficacy when applied to diagnose COVID-19 using the aforementioned symptoms. We experimented with Logistic Regression (LR), Support Vector Machine (SVM), Naïve Byes (NB), Decision Tree (DT), Multilayer Perceptron (MLP), Fuzzy Cognitive Map (FCM) and Deep Neural Network (DNN) algorithms. The techniques were subjected to random undersampling and oversampling. Our results showed that with class imbalance, MLP and DNN outperform others. However, without class imbalance, MLP, FCM and DNN outperform others with the use of random undersampling, but DNN has the best performance by utilizing random oversampling. This study identified MLP, FCM and DNN as better classifiers over LR, NB, DT and SVM, so that healthcare software system developers can adopt them to develop intelligence-based expert systems which both medical personnel and patients can use for differential diagnosis of COVID-19 based on the aforementioned symptoms. However, the test of performance must not be limited to the traditional performance metrics.
Collapse
|
25
|
Rapid antigen test to identify COVID-19 infected patients with and without symptoms admitted to the Emergency Department. Am J Emerg Med 2021; 51:92-97. [PMID: 34717211 PMCID: PMC8530784 DOI: 10.1016/j.ajem.2021.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Purpose Early detection of SARS-CoV-2 patients is essential to contain the pandemic and keep the hospital secure. The rapid antigen test seems to be a quick and easy diagnostic test to identify patients infected with SARS-CoV-2. To assess the possible role of the antigen test in the Emergency Department (ED) assessment of potential SARS-CoV-2 infection in both symptomatic and asymptomatic patients. Methods Between 1 July 2020 and 10 December 2020, all patients consecutively assessed in the ED for suspected COVID-19 symptoms or who required hospitalisation for a condition not associated with COVID-19 were subjected to a rapid antigen test and RT-PCR swab. The diagnostic accuracy of the antigen test was determined in comparison to the SARS-CoV-2 PCR test using contingency tables. The possible clinical benefit of the antigen test was globally evaluated through decision curve analysis (DCA). Results A total of 3899 patients were subjected to antigen tests and PCR swabs. The sensitivity, specificity and accuracy of the antigen test were 82.9%, 99.1% and 97.4% (Cohen's K = 0.854, 95% CI 0.826–0.882, p < 0.001), respectively. In symptomatic patients, sensitivity was found to be 89.8%, while in asymptomatic patients, sensitivity was 63.1%. DCA appears to confirm a net clinical benefit for the preliminary use of antigen tests. Conclusions The antigen test performed in the ED, though not ideal, can improve the overall identification of infected patients. While it appears to perform well in symptomatic patients, in asymptomatic patients, although it improves their management, it seems not to be definitive.
Collapse
|
26
|
Toropov N, Osborne E, Joshi LT, Davidson J, Morgan C, Page J, Pepperell J, Vollmer F. SARS-CoV-2 Tests: Bridging the Gap between Laboratory Sensors and Clinical Applications. ACS Sens 2021; 6:2815-2837. [PMID: 34392681 PMCID: PMC8386036 DOI: 10.1021/acssensors.1c00612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
This review covers emerging biosensors for SARS-CoV-2 detection together with a review of the biochemical and clinical assays that are in use in hospitals and clinical laboratories. We discuss the gap in bridging the current practice of testing laboratories with nucleic acid amplification methods, and the robustness of assays the laboratories seek, and what emerging SARS-CoV-2 sensors have currently addressed in the literature. Together with the established nucleic acid and biochemical tests, we review emerging technology and antibody tests to determine the effectiveness of vaccines on individuals.
Collapse
Affiliation(s)
- Nikita Toropov
- Living
Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Eleanor Osborne
- Living
Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | - James Davidson
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Caitlin Morgan
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Joseph Page
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Justin Pepperell
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Frank Vollmer
- Living
Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
27
|
Martín J, Tena N, Asuero AG. Current state of diagnostic, screening and surveillance testing methods for COVID-19 from an analytical chemistry point of view. Microchem J 2021; 167:106305. [PMID: 33897053 PMCID: PMC8054532 DOI: 10.1016/j.microc.2021.106305] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022]
Abstract
Since December 2019, we have been in the battlefield with a new threat to the humanity known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we describe the four main methods used for diagnosis, screening and/or surveillance of SARS-CoV-2: Real-time reverse transcription polymerase chain reaction (RT-PCR); chest computed tomography (CT); and different complementary alternatives developed in order to obtain rapid results, antigen and antibody detection. All of them compare the highlighting advantages and disadvantages from an analytical point of view. The gold standard method in terms of sensitivity and specificity is the RT-PCR. The different modifications propose to make it more rapid and applicable at point of care (POC) are also presented and discussed. CT images are limited to central hospitals. However, being combined with RT-PCR is the most robust and accurate way to confirm COVID-19 infection. Antibody tests, although unable to provide reliable results on the status of the infection, are suitable for carrying out maximum screening of the population in order to know the immune capacity. More recently, antigen tests, less sensitive than RT-PCR, have been authorized to determine in a quicker way whether the patient is infected at the time of analysis and without the need of specific instruments.
Collapse
Key Words
- 2019-nCoV, 2019 novel coronavirus
- ACE2, Angiotensin-Converting Enzyme 2
- AI, Artificial Intelligence
- ALP, Alkaline Phosphatase
- ASOs, Antisense Oligonucleotides
- Antigen and antibody tests
- AuNIs, Gold Nanoislands
- AuNPs, Gold Nanoparticles
- BSL, Biosecurity Level
- CAP, College of American Pathologists
- CCD, Charge-Coupled Device
- CG, Colloidal Gold
- CGIA, Colloidal Gold Immunochromatographic Assay
- CLIA, Chemiluminescence Enzyme Immunoassay
- CLIA, Clinical Laboratory Improvement Amendments
- COVID-19
- COVID-19, Coronavirus disease-19
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats
- CT, Chest Computed Tomography
- Cas, CRISPR Associate Protein
- China CDC, Chinese Center for Disease Control and Prevention
- Ct, Cycle Threshold
- DETECTR, SARS-CoV-2 DNA Endonuclease-Targeted CRISPR Trans Reporter
- DNA, Dexosyrosyribonucleic Acid
- E, Envelope protein
- ELISA, Enzyme Linked Immunosorbent Assay
- EMA, European Medicines Agency
- EUA, Emergence Use Authorization
- FDA, Food and Drug Administration
- FET, Field-Effect Transistor
- GISAID, Global Initiative on Sharing All Influenza Data
- GeneBank, Genetic sequence data base of the National Institute of Health
- ICTV, International Committee on Taxonomy of Viruses
- IgA, Immunoglobulins A
- IgG, Immunoglobulins G
- IgM, Immunoglobulins M
- IoMT, Internet of Medical Things
- IoT, Internet of Things
- LFIA, Lateral Flow Immunochromatographic Assays
- LOC, Lab-on-a-Chip
- LOD, Limit of detection
- LSPR, Localized Surface Plasmon Resonance
- M, Membrane protein
- MERS-CoV, Middle East Respiratory Syndrome Coronavirus
- MNP, Magnetic Nanoparticle
- MS, Mass spectrometry
- N, Nucleocapsid protein
- NER, Naked Eye Readout
- NGM, Next Generation Molecular
- NGS, Next Generation Sequencing
- NIH, National Institute of Health
- NSPs, Nonstructural Proteins
- Net, Neural Network
- ORF, Open Reading Frame
- OSN, One Step Single-tube Nested
- PDMS, Polydimethylsiloxane
- POC, Point of Care
- PPT, Plasmonic Photothermal
- QD, Quantum Dot
- R0, Basic reproductive number
- RBD, Receptor-binding domain
- RNA, Ribonucleic Acid
- RNaseH, Ribonuclease H
- RT, Reverse Transcriptase
- RT-LAMP, Reverse Transcription Loop-Mediated Isothermal Amplification
- RT-PCR, Real-Time Reverse Transcription Polymerase Chain Reaction
- RT-PCR, chest computerized tomography
- RdRp, RNA-Dependent RNA Polymerase
- S, Spike protein
- SARS-CoV-2
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SERS, Surface Enhanced Raman Spectroscopy
- SHERLOCK, Specific High Sensitivity Enzymatic Reporter UnLOCKing
- STOPCovid, SHERLOCK Testing on One Pot
- SVM, Support Vector Machine
- SiO2@Ag, Complete silver nanoparticle shell coated on silica core
- US CDC, US Centers for Disease Control and Prevention
- VOC, Variant of Concern
- VTM, Viral Transport Medium
- WGS, Whole Genome Sequencing
- WHO, World Health Organization
- aM, Attomolar
- dNTPs, Nucleotides
- dPCR, Digital PCR
- ddPCR, Droplet digital PCR
- fM, Femtomolar
- m-RNA, Messenger Ribonucleic Acid
- nM, Nanomolar
- pM, Picomolar
- pfu, Plaque-forming unit
- rN, Recombinant nucleocapsid protein antigen
- rS, Recombinant Spike protein antigen
- ssRNA, Single-Stranded Positive-Sense RNA
Collapse
Affiliation(s)
- Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, Sevilla E-41011, Spain
| | - Noelia Tena
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, Prof. García González, 2, Sevilla 41012, Spain
| | - Agustin G Asuero
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, Prof. García González, 2, Sevilla 41012, Spain
| |
Collapse
|
28
|
Malik YS, Kumar P, Ansari MI, Hemida MG, El Zowalaty ME, Abdel-Moneim AS, Ganesh B, Salajegheh S, Natesan S, Sircar S, Safdar M, Vinodhkumar OR, Duarte PM, Patel SK, Klein J, Rahimi P, Dhama K. SARS-CoV-2 Spike Protein Extrapolation for COVID Diagnosis and Vaccine Development. Front Mol Biosci 2021; 8:607886. [PMID: 34395515 PMCID: PMC8355592 DOI: 10.3389/fmolb.2021.607886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/09/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to coronavirus disease 2019 (COVID-19) pandemic affecting nearly 71.2 million humans in more than 191 countries, with more than 1.6 million mortalities as of 12 December, 2020. The spike glycoprotein (S-protein), anchored onto the virus envelope, is the trimer of S-protein comprised of S1 and S2 domains which interacts with host cell receptors and facilitates virus-cell membrane fusion. The S1 domain comprises of a receptor binding domain (RBD) possessing an N-terminal domain and two subdomains (SD1 and SD2). Certain regions of S-protein of SARS-CoV-2 such as S2 domain and fragment of the RBD remain conserved despite the high selection pressure. These conserved regions of the S-protein are extrapolated as the potential target for developing molecular diagnostic techniques. Further, the S-protein acts as an antigenic target for different serological assay platforms for the diagnosis of COVID-19. Virus-specific IgM and IgG antibodies can be used to detect viral proteins in ELISA and lateral flow immunoassays. The S-protein of SARS-CoV-2 has very high sequence similarity to SARS-CoV-1, and the monoclonal antibodies (mAbs) against SARS-CoV-1 cross-react with S-protein of SARS-CoV-2 and neutralize its activity. Furthermore, in vitro studies have demonstrated that polyclonal antibodies targeted against the RBD of S-protein of SARS-CoV-1 can neutralize SARS-CoV-2 thus inhibiting its infectivity in permissive cell lines. Research on coronaviral S-proteins paves the way for the development of vaccines that may prevent SARS-CoV-2 infection and alleviate the current global coronavirus pandemic. However, specific neutralizing mAbs against SARS-CoV-2 are in clinical development. Therefore, neutralizing antibodies targeting SARS-CoV-2 S-protein are promising specific antiviral therapeutics for pre-and post-exposure prophylaxis and treatment of SARS-CoV-2 infection. We hereby review the approaches taken by researchers across the world to use spike gene and S-glycoprotein for the development of effective diagnostics, vaccines and therapeutics against SARA-CoV-2 infection the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Mohd Ikram Ansari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
- Department of Biosciences, Integral University, Lucknow, India
| | - Maged G. Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Hofuf, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamed E. El Zowalaty
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ahmed S. Abdel-Moneim
- Microbiology Department, College of Medicine, Taif University, Al-Taif, Saudi Arabia
- Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Balasubramanian Ganesh
- Laboratory Division, Indian Council of Medical Research - National Institute of Epidemiology, Ministry of Health & Family Welfare, Chennai, India
| | - Sina Salajegheh
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur, Pakistan
| | - O. R. Vinodhkumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Phelipe M. Duarte
- Veterinarian, Professor at the Faculty of Biological and Health Sciences, Universidade de Cuiabá, Primavera do Leste, Brazil
| | - Shailesh K. Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Jörn Klein
- Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Parastoo Rahimi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
29
|
Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID‑19 infection (Review). Int J Mol Med 2021; 47:100. [PMID: 33846767 PMCID: PMC8043662 DOI: 10.3892/ijmm.2021.4933] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID‑19) pandemic has forced the scientific community to rapidly develop highly reliable diagnostic methods in order to effectively and accurately diagnose this pathology, thus limiting the spread of infection. Although the structural and molecular characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) were initially unknown, various diagnostic strategies useful for making a correct diagnosis of COVID‑19 have been rapidly developed by private research laboratories and biomedical companies. At present, rapid antigen or antibody tests, immunoenzymatic serological tests and molecular tests based on RT‑PCR are the most widely used and validated techniques worldwide. Apart from these conventional methods, other techniques, including isothermal nucleic acid amplification techniques, clusters of regularly interspaced short palindromic repeats/Cas (CRISPR/Cas)‑based approaches or digital PCR methods are currently used in research contexts or are awaiting approval for diagnostic use by competent authorities. In order to provide guidance for the correct use of COVID‑19 diagnostic tests, the present review describes the diagnostic strategies available which may be used for the diagnosis of COVID‑19 infection in both clinical and research settings. In particular, the technical and instrumental characteristics of the diagnostic methods used are described herein. In addition, updated and detailed information about the type of sample, the modality and the timing of use of specific tests are also discussed.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS 'Fondazione G. Pascale', I-80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
- Research Center for the Prevention, Diagnosis and Treatment of Tumors, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
30
|
Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID‑19 infection (Review). Int J Mol Med 2021. [PMID: 33846767 DOI: 10.3892/ijmm.2021.4933/html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID‑19) pandemic has forced the scientific community to rapidly develop highly reliable diagnostic methods in order to effectively and accurately diagnose this pathology, thus limiting the spread of infection. Although the structural and molecular characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) were initially unknown, various diagnostic strategies useful for making a correct diagnosis of COVID‑19 have been rapidly developed by private research laboratories and biomedical companies. At present, rapid antigen or antibody tests, immunoenzymatic serological tests and molecular tests based on RT‑PCR are the most widely used and validated techniques worldwide. Apart from these conventional methods, other techniques, including isothermal nucleic acid amplification techniques, clusters of regularly interspaced short palindromic repeats/Cas (CRISPR/Cas)‑based approaches or digital PCR methods are currently used in research contexts or are awaiting approval for diagnostic use by competent authorities. In order to provide guidance for the correct use of COVID‑19 diagnostic tests, the present review describes the diagnostic strategies available which may be used for the diagnosis of COVID‑19 infection in both clinical and research settings. In particular, the technical and instrumental characteristics of the diagnostic methods used are described herein. In addition, updated and detailed information about the type of sample, the modality and the timing of use of specific tests are also discussed.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute‑IRCCS 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
31
|
Mardian Y, Kosasih H, Karyana M, Neal A, Lau CY. Review of Current COVID-19 Diagnostics and Opportunities for Further Development. Front Med (Lausanne) 2021; 8:615099. [PMID: 34026773 PMCID: PMC8138031 DOI: 10.3389/fmed.2021.615099] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Diagnostic testing plays a critical role in addressing the coronavirus disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Rapid and accurate diagnostic tests are imperative for identifying and managing infected individuals, contact tracing, epidemiologic characterization, and public health decision making. Laboratory testing may be performed based on symptomatic presentation or for screening of asymptomatic people. Confirmation of SARS-CoV-2 infection is typically by nucleic acid amplification tests (NAAT), which requires specialized equipment and training and may be particularly challenging in resource-limited settings. NAAT may give false-negative results due to timing of sample collection relative to infection, improper sampling of respiratory specimens, inadequate preservation of samples, and technical limitations; false-positives may occur due to technical errors, particularly contamination during the manual real-time polymerase chain reaction (RT-PCR) process. Thus, clinical presentation, contact history and contemporary phyloepidemiology must be considered when interpreting results. Several sample-to-answer platforms, including high-throughput systems and Point of Care (PoC) assays, have been developed to increase testing capacity and decrease technical errors. Alternatives to RT-PCR assay, such as other RNA detection methods and antigen tests may be appropriate for certain situations, such as resource-limited settings. While sequencing is important to monitor on-going evolution of the SARS-CoV-2 genome, antibody assays are useful for epidemiologic purposes. The ever-expanding assortment of tests, with varying clinical utility, performance requirements, and limitations, merits comparative evaluation. We herein provide a comprehensive review of currently available COVID-19 diagnostics, exploring their pros and cons as well as appropriate indications. Strategies to further optimize safety, speed, and ease of SARS-CoV-2 testing without compromising accuracy are suggested. Access to scalable diagnostic tools and continued technologic advances, including machine learning and smartphone integration, will facilitate control of the current pandemic as well as preparedness for the next one.
Collapse
Affiliation(s)
- Yan Mardian
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
| | - Herman Kosasih
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
| | - Muhammad Karyana
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Aaron Neal
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chuen-Yen Lau
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
32
|
Tsang HF, Leung WMS, Chan LWC, Cho WCS, Wong SCC. Performance comparison of the Cobas® Liat® and Cepheid® GeneXpert® systems on SARS-CoV-2 detection in nasopharyngeal swab and posterior oropharyngeal saliva. Expert Rev Mol Diagn 2021; 21:515-518. [PMID: 33906571 PMCID: PMC8095157 DOI: 10.1080/14737159.2021.1919513] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/16/2021] [Indexed: 01/22/2023]
Abstract
Background: Nucleic acid amplification tests (NAATs) based methods such as real-time reverse transcription polymerase-chain reaction (real-time RT-PCR) are the gold standard for diagnosis of current infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The cobas® Liat® and cepheid® GeneXpert® systems are two rapid real-time RT-PCR platforms offering rapid, specimen-to-answer detection of SARS-CoV-2.Research design and methods: In this study, we compared the performance of these two systems on SARS-CoV-2 detection in 9 nasopharyngeal swab (NPS) and 70 posterior oropharyngeal saliva specimens collected from 79 patients suspected of SARS-CoV-2 infection between August 2020 and March 2021.Results: The Positive Percent Agreement (PPA), Negative Percent Agreement (NPA) and overall Percent Agreement (OPA) between cepheid® Xpress SARS-CoV-2 assay and cobas® Liat® SARS-CoV-2 & Influenza A/B assay were found to be 100%. We demonstrated an excellent overall test concordance of the Liat® SARS-CoV-2 & Influenza A/B assay and Xpress SARS-CoV-2 assay. The small sample size of SARS-CoV-2 positive and weak-positive specimens is the inherent limitation of this study.Conclusions: The performance of the cobas® Liat® SARS-CoV-2 & Influenza A/B assay is equivalent to the cepheid® Xpress SARS-CoV-2 assay for SARS-CoV-2 detection using NPS and posterior oropharyngeal saliva.
Collapse
Affiliation(s)
- Hin Fung Tsang
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong Special Administrative Region
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | | | - Lawrence Wing Chi Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| |
Collapse
|
33
|
Kumar M, Iyer SS. ASSURED-SQVM diagnostics for COVID-19: addressing the why, when, where, who, what and how of testing. Expert Rev Mol Diagn 2021; 21:349-362. [PMID: 33706663 PMCID: PMC8006264 DOI: 10.1080/14737159.2021.1902311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022]
Abstract
Introduction: SARS-CoV-2, the new coronavirus that originated in 2019, continues to impact every aspect of society in a profound manner. Testing will remain an important tool to mitigate the effects of this pandemic as early and accurate diagnosis can lead to appropriate countermeasures to reduce mortality and morbidity. However, testing isn't a simple yes/no answer as the target and host are complex, the virus is a moving target, there is a plethora of tests that identify different parts of the virus and have their own limits and range of detection, and when prevalence is low, false positives and negatives can be very high.Areas covered: This article covers all the major questions related to COVID-19 diagnostics, the why, when, where, who, what and how of testing, the different types of tests, interpretation of results and the ideal ASSURED-SQVM diagnostic. A comprehensive literature review using all the publicly available databases and government websites and reports was performed.Expert opinion: Diagnostics that meet the 'ASSURED-SQVM' (Affordable, Selective and Sensitive, User-friendly, Rapid and Robust, Equipment-free, Deliverable to end-users and additionally, allows for Self-testing, Quantifiable, detects if pathogens are Viable and can detect Multiple pathogens) would make a major impact in our fight against the current pandemic. While a significant majority of researchers focus on developing novel diagnostics that are highly selective and sensitive, it is the opinion of these authors that other aspects of the ASSURED-SQVM principles also be considered early in the development process for widespread use.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Biology, 622 Petit Science Center, Atlanta, GA, USA
| | - Suri S. Iyer
- Department of Chemistry, 788 Petit Science Center, Atlanta, GA, USA
| |
Collapse
|
34
|
Deulofeu M, García-Cuesta E, Peña-Méndez EM, Conde JE, Jiménez-Romero O, Verdú E, Serrando MT, Salvadó V, Boadas-Vaello P. Detection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence. Front Med (Lausanne) 2021; 8:661358. [PMID: 33869258 PMCID: PMC8047105 DOI: 10.3389/fmed.2021.661358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
The high infectivity of SARS-CoV-2 makes it essential to develop a rapid and accurate diagnostic test so that carriers can be isolated at an early stage. Viral RNA in nasopharyngeal samples by RT-PCR is currently considered the reference method although it is not recognized as a strong gold standard due to certain drawbacks. Here we develop a methodology combining the analysis of from human nasopharyngeal (NP) samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with the use of machine learning (ML). A total of 236 NP samples collected in two different viral transport media were analyzed with minimal sample preparation and the subsequent mass spectra data was used to build different ML models with two different techniques. The best model showed high performance in terms of accuracy, sensitivity and specificity, in all cases reaching values higher than 90%. Our results suggest that the analysis of NP samples by MALDI-TOF MS and ML is a simple, safe, fast and economic diagnostic test for COVID-19.
Collapse
Affiliation(s)
- Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| | - Esteban García-Cuesta
- Science, Computation, and Technology Department, School of Architecture, Design, and Engineering, European University of Madrid, Madrid, Spain.,Instant Biosensing Technologies, Carson, NV, United States
| | - Eladia María Peña-Méndez
- Analytical Chemistry Division, Department of Chemistry, Faculty of Science, University of La Laguna, La Laguna, Spain
| | - José Elías Conde
- Analytical Chemistry Division, Department of Chemistry, Faculty of Science, University of La Laguna, La Laguna, Spain
| | - Orlando Jiménez-Romero
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - María Teresa Serrando
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| | - Victoria Salvadó
- Department of Chemistry, Faculty of Science, University of Girona, Girona, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.,ICS-IAS Girona Clinical Laboratory, Santa Caterina Hospital, Parc Sanitari Martí i Julià, Salt, Spain
| |
Collapse
|
35
|
El Jaddaoui I, Allali M, Raoui S, Sehli S, Habib N, Chaouni B, Al Idrissi N, Benslima N, Maher W, Benrahma H, Hamamouch N, El Bissati K, El Kasmi S, Hamdi S, Bakri Y, Nejjari C, Amzazi S, Ghazal H. A review on current diagnostic techniques for COVID-19. Expert Rev Mol Diagn 2021; 21:141-160. [PMID: 33593219 DOI: 10.1080/14737159.2021.1886927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION SARS-Cov-2 first appeared in Wuhan, China, in December 2019 and spread all over the world soon after that. Given the infectious nature ofSARS-CoV-2, fast and accurate diagnosis tools are important to detect the virus. In this review, we discuss the different diagnostic tests that are currently being implemented in laboratories and provide a description of various COVID-19 kits. AREAS COVERED We summarize molecular techniques that target the viral load, serological methods used for SARS-CoV-2 specific antibodies detection as well as newly developed faster assays for the detection of SARS-COV 2 in various biological samples. EXPERT OPINION In the light of the widespread pandemic, the massive diagnosis of COVID-19, using various detection techniques, appears to be the most effective strategy for monitoring and containing its propagation.
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Malika Allali
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco.,Environmental Health Laboratory, Department of Research, Institut Pasteur Maroc, Casablanca, Morocco
| | - Sanae Raoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Sofia Sehli
- Department of Fundamental Sciences, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Nihal Habib
- Department of Fundamental Sciences, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Bouchra Chaouni
- , Laboratory of Biotechnology and Plant Physiology, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Najib Al Idrissi
- , Department of Surgery, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Najwa Benslima
- Department of Radiology, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Wissal Maher
- Research Center, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Houda Benrahma
- Department of Fundamental Sciences, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Noureddine Hamamouch
- , Laboratory of Biotechnology and Plant Physiology, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Kamal El Bissati
- Coalition Center for Innovation and Prevention of Epidemies in Morocco (CIPEM), Mohammed VI Polytechnical University (UM6P), Ben Guerir, Morocco
| | - Sahar El Kasmi
- Faculty of Scineces, University Mohammed V, Rabat, Morocco
| | - Salsabil Hamdi
- Environmental Health Laboratory, Department of Research, Institut Pasteur Maroc, Casablanca, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Chakib Nejjari
- Department of Epidemiology and Biostatistics, International School of Public Health, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco.,Department of Epidemiology and Public Health, Faculty of Medicine, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Saaïd Amzazi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Hassan Ghazal
- Department of Fundamental Sciences, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco.,Scientific Department, National Center for Scientific and Technical Research (CNRST),Rabat, Morocco
| |
Collapse
|
36
|
Toward a Quantitative Relationship between Nanoscale Spatial Organization and Hybridization Kinetics of Surface Immobilized Hairpin DNA Probes. ACS Sens 2021; 6:371-379. [PMID: 32945167 DOI: 10.1021/acssensors.0c01278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hybridization of DNA probes immobilized on a solid support is a key process for DNA biosensors and microarrays. Although the surface environment is known to influence the kinetics of DNA hybridization, so far it has not been possible to quantitatively predict how hybridization kinetics is influenced by the complex interactions of the surface environment. Using spatial statistical analysis of probes and hybridized target molecules on a few electrochemical DNA (E-DNA) sensors, functioning through hybridization-induced conformational change of redox-tagged hairpin probes, we developed a phenomenological model that describes how the hybridization rates for single probe molecules are determined by the local environment. The predicted single-molecule rate constants, upon incorporation into numerical simulation, reproduced the overall kinetics of E-DNA sensor surfaces at different probe densities and different degrees of probe clustering. Our study showed that the nanoscale spatial organization is a major factor behind the counterintuitive trends in hybridization kinetics. It also highlights the importance of models that can account for heterogeneity in surface hybridization. The molecular level understanding of hybridization at surfaces and accurate prediction of hybridization kinetics may lead to new opportunities in development of more sensitive and reproducible DNA biosensors and microarrays.
Collapse
|
37
|
Application of Nanoscale Materials and Nanotechnology Against Viral Infection: A Special Focus on Coronaviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1352:173-193. [DOI: 10.1007/978-3-030-85109-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|