1
|
Li Z, Gong C. NLRP3 inflammasome in Alzheimer's disease: molecular mechanisms and emerging therapies. Front Immunol 2025; 16:1583886. [PMID: 40260242 PMCID: PMC12009708 DOI: 10.3389/fimmu.2025.1583886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and neuroinflammation, with no definitive cure currently available. The NLRP3 inflammasome, a key mediator of neuroinflammation, has emerged as a critical player in AD pathogenesis, contributing to the accumulation of β-amyloid (Aβ) plaques, tau hyperphosphorylation, and neuronal damage. This review explores the mechanisms by which the NLRP3 inflammasome is activated in AD, including its interactions with Aβ, tau, reactive oxygen species (ROS), and pyroptosis. Additionally, it highlights the role of the ubiquitin system, ion channels, autophagy, and gut microbiota in regulating NLRP3 activation. Therapeutic strategies targeting the NLRP3 inflammasome, such as IL-1β inhibitors, natural compounds, and novel small molecules, are discussed as promising approaches to mitigate neuroinflammation and slow AD progression. This review underscores the potential of NLRP3 inflammasome inhibition as a therapeutic avenue for AD.
Collapse
Affiliation(s)
- Zhitao Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunrong Gong
- Department of Rehabilitation Medicine, Linyi People’s Hospital, Linyi, China
| |
Collapse
|
2
|
Wang MT, Hu ZC, Xiang Y, Zeng XQ, Fei ZC, Chen J, Li XP, Zhu YP, Wang J, Wang YJ, Xu ZQ, Liu YH. Fingolimod ameliorates amyloid deposition and neurodegeneration in APP/PS1 mouse model of Alzheimer's disease. J Prev Alzheimers Dis 2025:100131. [PMID: 40158900 DOI: 10.1016/j.tjpad.2025.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION The immune system plays a critical role in regulating amyloid-beta (Aβ) metabolism in Alzheimer's Disease (AD). Both T and B lymphocytes are involved in the pathogenesis of AD. The sphingosine-1-phosphate (S1P) receptor modulator fingolimod used in the treatment of multiple sclerosis, can promote lymphocyte homing, potentially reducing the infiltration of peripheral lymphocytes into the brain. METHODS In this study, 8-month-old APP/PS1 mice were orally administered fingolimod at a dose of 1 mg/kg/day or saline as a control for 2 months. After treatment, the mice were subjected to behavioral tests, pathological examinations, and biochemical analyses to evaluate behavioral deficits and AD-type pathologies. RESULTS Fingolimod inhibits the infiltration of peripheral lymphocytes into the brain and reduces neuroinflammation. Fingolimod enhances cognitive function and alleviates brain Aβ deposition. Additionally, fingolimod treatment mitigates other AD-related pathologies, including Tau hyperphosphorylation, neuroinflammation, and neurodegeneration. Proteomic analysis further confirms the therapeutic effects of fingolimod in AD, reflected by the downregulation of proteins involved in multiple AD-associated pathways. DISCUSSION This study illustrates that fingolimod effectively ameliorates multiple pathological features of AD, highlighting its potential as a promising therapeutic candidate for the disease.
Collapse
Affiliation(s)
- Meng-Ting Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Zi-Cheng Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yang Xiang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiao-Qin Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Zhang-Cheng Fei
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Jia Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Xin-Peng Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Yu-Peng Zhu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China; Key Laboratory of Aging and Brain Disease, Chongqing, PR China
| | - Zhi-Qiang Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China.
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China; Key Laboratory of Aging and Brain Disease, Chongqing, PR China.
| |
Collapse
|
3
|
Righi D, Manco C, Pardini M, Stufano A, Schino V, Pelagotti V, Massa F, Stefano ND, Plantone D. Investigating interleukin-8 in Alzheimer's disease: A comprehensive review. J Alzheimers Dis 2025; 103:38-55. [PMID: 39558604 DOI: 10.1177/13872877241298973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Several studies indicate that the development of Alzheimer's disease (AD) has strong interactions with immune mechanisms within the brain, indicating a close association between inflammation in the central nervous system and the progression of neurodegeneration. Despite considerable progress in understanding the inflammatory aspects of AD, several of them remain unresolved. Pro-inflammatory cytokines and microglia are pivotal components in the inflammatory cascade. Among these, the role of interleukin-8 (IL-8) in neurodegeneration seems complex and multifaceted, involving inflammation, neurotoxicity, blood-brain barrier disruption, and oxidative stress, and is still poorly characterized. We conducted a review to describe the evidence of IL-8 involvement in AD. IL-8 is a cytokine known for its proinflammatory properties and typically produced by macrophages, predominantly functions as a chemotactic signal for attracting neutrophils to inflamed sites in the bloodstream. Interestingly, IL-8 is also present in the brain, where it is primarily released by microglia in response to inflammatory signals. This review aims to provide a comprehensive overview of the structure, function, and regulatory mechanisms of IL-8 relevant to AD pathology.
Collapse
Affiliation(s)
- Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Angela Stufano
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Valentina Schino
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Virginia Pelagotti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Kashif M, Chandrabose K, Pandurangan AK. Plausible Action of N-(3,4-Dimethoxy-Phenyl)-6,7-Dimethoxyquinazoline-4-Amine (TKM01) as an Armor Against Alzheimer's Disease: In Silico and In Vivo Insights. J Biochem Mol Toxicol 2024; 38:e70048. [PMID: 39552492 DOI: 10.1002/jbt.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/24/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
Alzheimer's disease (AD) affects millions of people and has limited treatment options, thus making it a global health concern. Amyloid β (Aβ), a disrupted cholinergic system with high acetylcholinesterase (AChE), oxidative stress (OS), reduced antioxidants, and neuroinflammation are key factors influencing AD progression. Prior research has shown that AChE can interact with Aβ and increase its accumulation and neurotoxicity, so targeting AChEs and Aβ could be a potential therapeutic approach for AD treatment. It has been known that nonsteroidal anti-inflammatory drugs (NSAIDs) can inhibit Aβ accumulation. Previously, TKM01, a derivative of 4-anilinoquinazoline, has demonstrated inhibitory effects against GSK-3β-a regulator in AD progression. The current research included molecular docking studies of NSAIDs and TKM01 with Aβ and AChEs as targets. TKM01 exhibited a higher binding affinity with Aβ among all tested compounds. Molecular dynamic (MD) simulations confirmed the stability of the protein-TKM01 complexes. TKM01 also exhibited favorable drug-likeness properties, and no hepatoxicity was visualized in comparison with other compounds. Further, in vitro assay showed an inhibitory action of TKM01 (50-1200 µg/mL) on AChEs. In the in vivo studies on zebrafish larvae brains, we found that TKM01 (120 and 240 µg/mL) reduced the levels of AChEs and lipid peroxidation (LPO) and increased antioxidant superoxide dismutase (SOD) and catalase (CAT) in AlCl3(80 µM)-induced AD-like model. Additionally, TKM01 treatment was found to decrease pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. The current study demonstrates that TKM01 can be used to treat AD. Nonetheless, experimental validation is needed to reveal the cellular, sub-cellular, and molecular mechanisms and possible implications at a clinical stage.
Collapse
Affiliation(s)
- Mohd Kashif
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Karthikeyan Chandrabose
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
5
|
Chakraborty S, Vishwas S, Harish V, Gupta G, Paudel KR, Dhanasekaran M, Goh BH, Zacconi F, de Jesus Andreoli Pinto T, Kumbhar P, Disouza J, Dua K, Singh SK. Exploring nanoparticular platform in delivery of repurposed drug for Alzheimer's disease: current approaches and future perspectives. Expert Opin Drug Deliv 2024; 21:1771-1792. [PMID: 39397403 DOI: 10.1080/17425247.2024.2414768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) stands as significant challenge in realm of neurodegenerative disorder. It is characterized by gradual decline in cognitive function and memory loss. It has already expanded its prevalence to 55 million people worldwide and is expected to rise significantly. Unfortunately, there exists a limited therapeutic option that would mitigate its progression. Repurposing existing drugs and employing nanoparticle as delivery agent presents a potential solution to address the intricate pathology of AD. AREAS COVERED In this review, we delve into utilization of nanoparticular platforms to enhance the delivery of repurposed drugs for treatment of AD. Firstly, the review begins with the elucidation of intricate pathology underpinning AD, subsequently followed by rationale behind drug repurposing in AD. Covered are explorations of nanoparticle-based repurposing of drugs in AD, highlighting their clinical implication. Further, the associated challenges and probable future perspective are delineated. EXPERT OPINION The article has highlighted that extensive research has been carried out on the delivery of repurposed nanomedicines against AD. However, there is a need for advanced and long-term research including clinical trials required to shed light upon their safety and toxicity profile. Furthermore, their scalability in pharmaceutical set-up should also be validated.
Collapse
Affiliation(s)
- Snigdha Chakraborty
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Overseas R & D Centre, Overseas HealthCare Pvt. Ltd, Phillaur, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, Alabama, USA
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Darul Ehsan, Selangor, Malaysia
| | - Flavia Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Cat´ olica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Cat´olica de Chile, Santiago, Chile
| | | | - Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Kolhapur, Maharashtra, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Kolhapur, Maharashtra, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| |
Collapse
|
6
|
Vieira CP, Lelis CA, Ochioni AC, Rosário DKA, Rosario ILS, Vieira IRS, Carvalho APA, Janeiro JM, da Costa MP, Lima FRS, Mariante RM, Alves LA, Foguel D, Junior CAC. Estimating the therapeutic potential of NSAIDs and linoleic acid-isomers supplementation against neuroinflammation. Biomed Pharmacother 2024; 177:116884. [PMID: 38889635 DOI: 10.1016/j.biopha.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) regulate inflammation, which is associated with their role in preventing neurodegenerative diseases in epidemiological studies. It has sparked interest in their unconventional application for reducing neuroinflammation, opening up new avenues in biomedical research. However, given the pharmacological drawbacks of NSAIDs, the development of formulations with naturally antioxidant/anti-inflammatory dietary fatty acids has been demonstrated to be advantageous for the clinical translation of anti-inflammatory-based therapies. It includes improved blood-brain barrier (BBB) permeability and reduced toxicity. It permits us to speculate about the value of linoleic acid (LA)-isomers in preventing and treating neuroinflammatory diseases compared to NSAIDs. Our research delved into the impact of various factors, such as administration route, dosage, timing of intervention, and BBB permeability, on the efficacy of NSAIDs and LA-isomers in preclinical and clinical settings. We conducted a systematic comparison between NSAIDs and LA-isomers regarding their therapeutic effectiveness, BBB compatibility, and side effects. Additionally, we explored their underlying mechanisms in addressing neuroinflammation. Through our analysis, we've identified challenges and drawn conclusions that could propel advancements in treating neurodegenerative diseases and inform the development of future alternative therapeutic strategies.
Collapse
Affiliation(s)
- Carla Paulo Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Carini A Lelis
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Alan Clavelland Ochioni
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Denes Kaic A Rosário
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Iuri L S Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Italo Rennan S Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Anna Paula A Carvalho
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Marion P da Costa
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil; Graduate Program in Food Science (PGAli), Faculty of Pharmacy, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Flavia R S Lima
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Rafael M Mariante
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Luiz Anastácio Alves
- Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Debora Foguel
- Laboratory of Protein Aggregation and Amyloidosis, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Carlos Adam Conte Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil.
| |
Collapse
|
7
|
Aljohani NB, Qusti SY, Alsiny M, Aljoud F, Aljohani NB, Alsolami ES, Alamry KA, Hussein MA. Carboxymethylcellulose encapsulated fingolimod, siRNA@ZnO hybrid nanocomposite as a new anti-Alzheimer's material. RSC Adv 2024; 14:22044-22055. [PMID: 39006767 PMCID: PMC11240087 DOI: 10.1039/d4ra01965b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurological disorder that causes cognitive and memory function to deteriorate. A critical pathogenic event that speeds up the development of AD is the interaction between dysfunctional microglia and amyloid-β (Aβ). We have developed a hybrid nanocomposite material to treat AD by normalizing the dysfunctional microglia. The material is based on carboxymethylcellulose (CMC) encapsulated fingolimod, siRNA, and zinc oxide (ZnO) with variable loading (CMC-Fi-siRNA@ZnO a-d ). The material was characterized using different techniques including FTIR, XRD, thermal analysis, SEM with EDX, and TEM micrographs. The chemical structure was confirmed by FTIR and XRD analyses, which indicated the successful integration of ZnO nanoparticles (NPs) into the polymer matrix, signifying a well-formed composite structure. The thermal stability order at 10% weight loss was CMC-Fi-siRNA@ZnO c > CMC-Fi-siRNA@ZnO b > CMC-Fi-siRNA@ZnO d > CMC-Fi-siRNA@ZnO a . The CMC-Fi-siRNA@ZnO d dramatically alleviates the priming of microglia by lowering the level of proinflammatory mediators and increasing the secretion of BDNF. This considerably improves the phagocytosis of Aβ. In the cell viability test in immortalized microglia cells (IMG), the hybrid nanocomposite (NP) exhibited no significant effect on cell survival after 48 hours of incubation. The NP also decreased the cytotoxicity caused by Aβ. Therefore, the CMC-hybrid NP has high potential as a drug delivery system in the development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Nuha B Aljohani
- Biochemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 21589 Kingdom of Saudi Arabia
- Biochemistry Department, Faculty of Science, University of Tabuk Tabuk Kingdom of Saudi Arabia
| | - Safaa Y Qusti
- Biochemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 21589 Kingdom of Saudi Arabia
| | - Madeeha Alsiny
- Biochemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 21589 Kingdom of Saudi Arabia
| | - Fadwa Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdul Aziz University Jeddah 21589 Saudi Arabia
| | | | - Eman S Alsolami
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
8
|
Yu Y, Lv J, Ma D, Han Y, Zhang Y, Wang S, Wang Z. Microglial ApoD-induced NLRC4 inflammasome activation promotes Alzheimer's disease progression. Animal Model Exp Med 2024. [PMID: 38520135 DOI: 10.1002/ame2.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective therapies. It is well known that chronic neuroinflammation plays a critical role in the onset and progression of AD. Well-balanced neuronal-microglial interactions are essential for brain functions. However, determining the role of microglia-the primary immune cells in the brain-in neuroinflammation in AD and the associated molecular basis has been challenging. METHODS Inflammatory factors in the sera of AD patients were detected and their association with microglia activation was analyzed. The mechanism for microglial inflammation was investigated. IL6 and TNF-α were found to be significantly increased in the AD stage. RESULTS Our analysis revealed that microglia were extensively activated in AD cerebra, releasing sufficient amounts of cytokines to impair the neural stem cells (NSCs) function. Moreover, the ApoD-induced NLRC4 inflammasome was activated in microglia, which gave rise to the proinflammatory phenotype. Targeting the microglial ApoD promoted NSC self-renewal and inhibited neuron apoptosis. These findings demonstrate the critical role of ApoD in microglial inflammasome activation, and for the first time reveal that microglia-induced inflammation suppresses neuronal proliferation. CONCLUSION Our studies establish the cellular basis for microglia activation in AD progression and shed light on cellular interactions important for AD treatment.
Collapse
Affiliation(s)
- Yaliang Yu
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Jianzhou Lv
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Dan Ma
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Ya Han
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Yaheng Zhang
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Shanlong Wang
- Clinical Lab, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Zhitao Wang
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| |
Collapse
|
9
|
Li Z, Wang H, Yin Y. Peripheral inflammation is a potential etiological factor in Alzheimer's disease. Rev Neurosci 2024; 35:99-120. [PMID: 37602685 DOI: 10.1515/revneuro-2023-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Peripheral inflammation could constitute a risk factor for AD. This review summarizes the research related to peripheral inflammation that appears to have a relationship with Alzheimer's disease. We find there are significant associations between AD and peripheral infection induced by various pathogens, including herpes simplex virus type 1, cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, Porphyromonas gingivalis, Helicobacter pylori, and Toxoplasma gondii. Chronic inflammatory diseases are also reported to contribute to the pathophysiology of AD. The mechanisms by which peripheral inflammation affects the pathophysiology of AD are complex. Pathogen-derived neurotoxic molecule composition, disrupted BBB, and dysfunctional neurogenesis may all play a role in peripheral inflammation, promoting the development of AD. Anti-pathogenic medications and anti-inflammatory treatments are reported to decrease the risk of AD. Studies that could improve understanding the associations between AD and peripheral inflammation are needed. If our assumption is correct, early intervention against inflammation may be a potential method of preventing and treating AD.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| |
Collapse
|
10
|
Hu L, Tao Y, Jiang Y, Qin F. Recent progress of nanomedicine in the treatment of Alzheimer's disease. Front Cell Dev Biol 2023; 11:1228679. [PMID: 37457297 PMCID: PMC10340527 DOI: 10.3389/fcell.2023.1228679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of memory disruption in elderly subjects, with the prevalence continuing to rise mainly because of the aging world population. Unfortunately, no efficient therapy is currently available for the AD treatment, due to low drug potency and several challenges to delivery, including low bioavailability and the impediments of the blood-brain barrier. Recently, nanomedicine has gained considerable attention among researchers all over the world and shown promising developments in AD treatment. A wide range of nano-carriers, such as polymer nanoparticles, liposomes, solid lipid nanoparticles, dendritic nanoparticles, biomimetic nanoparticles, magnetic nanoparticles, etc., have been adapted to develop successful new treatment strategies. This review comprehensively summarizes the recent advances of different nanomedicine for their efficacy in pre-clinical studies. Finally, some insights and future research directions are proposed. This review can provide useful information to guide the future design and evaluation of nanomedicine in AD treatment.
Collapse
Affiliation(s)
- Liqiang Hu
- Mental Health Center and West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Tao
- Mental Health Center and West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjiao Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Sun XY, Yu XL, Zhu J, Li LJ, Zhang L, Huang YR, Liu DQ, Ji M, Sun X, Zhang LX, Zhou WW, Zhang D, Jiao J, Liu RT. Fc effector of anti-Aβ antibody induces synapse loss and cognitive deficits in Alzheimer's disease-like mouse model. Signal Transduct Target Ther 2023; 8:30. [PMID: 36693826 PMCID: PMC9873795 DOI: 10.1038/s41392-022-01273-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 01/26/2023] Open
Abstract
Passive immunotherapy is one of the most promising interventions for Alzheimer's disease (AD). However, almost all immune-modulating strategies fail in clinical trials with unclear causes although they attenuate neuropathology and cognitive deficits in AD animal models. Here, we showed that Aβ-targeting antibodies including their lgG1 and lgG4 subtypes induced microglial engulfment of neuronal synapses by activating CR3 or FcγRIIb via the complex of Aβ, antibody, and complement. Notably, anti-Aβ antibodies without Fc fragment, or with blockage of CR3 or FcγRIIb, did not exert these adverse effects. Consistently, Aβ-targeting antibodies, but not their Fab fragments, significantly induced acute microglial synapse removal and rapidly exacerbated cognitive deficits and neuroinflammation in APP/PS1 mice post-treatment, whereas the memory impairments in mice were gradually rescued thereafter. Since the recovery rate of synapses in humans is much lower than that in mice, our findings may clarify the variances in the preclinical and clinical studies assessing AD immunotherapies. Therefore, Aβ-targeting antibodies lack of Fc fragment, or with reduced Fc effector function, may not induce microglial synaptic pruning, providing a safer and more efficient therapeutic alternative for passive immunotherapy for AD.
Collapse
Affiliation(s)
- Xiao-ying Sun
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Chemistry and Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049 China
| | - Xiao-lin Yu
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.9227.e0000000119573309Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jie Zhu
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Chemistry and Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049 China
| | - Ling-jie Li
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Chemistry and Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049 China
| | - Lun Zhang
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.9227.e0000000119573309Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190 China
| | - Ya-ru Huang
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Chemistry and Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049 China
| | - Dong-qun Liu
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Mei Ji
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xun Sun
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Ling-xiao Zhang
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Wei-wei Zhou
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.9227.e0000000119573309Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190 China
| | - Dongming Zhang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianwei Jiao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Rui-tian Liu
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China ,grid.9227.e0000000119573309Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
12
|
Sun X, Deng Y, Ge P, Peng Q, Soufiany I, Zhu L, Duan R. Diminazene Ameliorates Neuroinflammation by Suppression of Astrocytic miRNA-224-5p/NLRP3 Axis in Alzheimer's Disease Model. J Inflamm Res 2023; 16:1639-1652. [PMID: 37092127 PMCID: PMC10120828 DOI: 10.2147/jir.s401385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose ACE2/Ang(1-7)/Mas Receptor, the momentous component of the renin-angiotensin system, has been shown to be involved in Alzheimer's disease (AD). We had previously found that enhancing brain ACE2 activity ameliorated cognitive impairment and attenuated brain neuroinflammation in SAMP8 mice, an animal model of AD. However, the exact mechanism of action of Diminazene (DIZE) has not been revealed. Methods APP/PS1 mice were injected intraperitoneally with DIZE. Cognitive functions, neuronal and synaptic integrity, and inflammation-related markers were assessed by Morris water maze, Nissl staining, Western blotting and ELISA, respectively. Since astrocytes played a crucial role in AD-related neuroinflammation whilst miRNAs were reported to participate in modulating inflammatory responses, astrocytes of APP/PS1 mice were then isolated for high-throughput miRNAs sequencing to identify the most differentially expressed miRNA following DIZE treatment. Afterward, the downstream pathway of this miRNA in the anti-inflammatory action of DIZE was investigated using primary astrocytes. Results The results showed that DIZE alleviated cognitive impairment and neuronal and synaptic damage in APP/PS1 mice. Simultaneously, DIZE suppressed the secretion of pro-inflammatory cytokines and the expression of NLRP3 inflammasome. Importantly, miR-224-5p was significantly up-regulated in the astrocytes of APP/PS1 mice treated by DIZE, and NLRP3 is one of the targets of miR-224-5p. Upregulation of miR-224-5p inhibited the expression of NLRP3 in Aβ1-42-stimulated cells, whereas miR-224-5p downregulation reversed this effect. Furthermore, the inhibition of miR-224-5p could reverse the inhibitory effect of DIZE on astrocytic NLRP3 inflammasome. Conclusion These findings firstly suggested that DIZE could inhibit astrocyte-regulated neuroinflammation via miRNA-224-5p/NLRP3 pathway. Furthermore, our study reveals the underlying mechanism by which DIZE suppresses neuroinflammatory responses in AD mice and uncovers the potential of DIZE in AD treatment.
Collapse
Affiliation(s)
- XiaoJin Sun
- Faculty of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, Anhui, People’s Republic of China
| | - Yang Deng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - PengXin Ge
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ismatullah Soufiany
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- Correspondence: Lin Zhu; Rui Duan, Email ;
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
13
|
Montaser AB, Kuiri J, Natunen T, Hruška P, Potěšil D, Auriola S, Hiltunen M, Terasaki T, Lehtonen M, Jalkanen A, Huttunen KM. Enhanced drug delivery by a prodrug approach effectively relieves neuroinflammation in mice. Life Sci 2022; 310:121088. [PMID: 36257461 DOI: 10.1016/j.lfs.2022.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
AIMS Neuroinflammation is a prominent hallmark in several neurodegenerative diseases (NDs). Halting neuroinflammation can slow down the progression of NDs. Improving the efficacy of clinically available non-steroidal anti-inflammatory drugs (NSAIDs) is a promising approach that may lead to fast-track and effective disease-modifying therapies for NDs. Here, we aimed to utilize the L-type amino acid transporter 1 (LAT1) to improve the efficacy of salicylic acid as an example of an NSAID prodrug, for which brain uptake and intracellular localization have been reported earlier. MAIN METHODS Firstly, we confirmed the improved LAT1 utilization of the salicylic acid prodrug (SA-AA) in freshly isolated primary mouse microglial cells. Secondly, we performed behavioural rotarod, open field, and four-limb hanging tests in mice, and a whole-brain proteome analysis. KEY FINDINGS The SA-AA prodrug alleviated the lipopolysaccharide (LPS)-induced inflammation in the rotarod and hanging tests. The proteome analysis indicated decreased neuroinflammation at the molecular level. We identified 399 proteins linked to neuroinflammation out of 7416 proteins detected in the mouse brain. Among them, Gps2, Vamp8, Slc6a3, Slc18a2, Slc5a7, Rgs9, Lrrc1, Ppp1r1b, Gnal, and Adcy5/6 were associated with the drug's effects. The SA-AA prodrug attenuated the LPS-induced neuroinflammation through the regulation of critical pathways of neuroinflammation such as the cellular response to stress and transmission across chemical synapses. SIGNIFICANCE The efficacy of NSAIDs can be improved via the utilization of LAT1 and repurposed for the treatment of neuroinflammation. This improved brain delivery and microglia localisation can be applied to other inflammatory modulators to achieve effective and targeted CNS therapies.
Collapse
Affiliation(s)
- Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Janita Kuiri
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Pavel Hruška
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tetsuya Terasaki
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
14
|
Wallace CH, Oliveros G, Serrano PA, Rockwell P, Xie L, Figueiredo-Pereira M. Timapiprant, a prostaglandin D2 receptor antagonist, ameliorates pathology in a rat Alzheimer's model. Life Sci Alliance 2022; 5:e202201555. [PMID: 36167438 PMCID: PMC9515385 DOI: 10.26508/lsa.202201555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated the relevance of the prostaglandin D2 pathway in Alzheimer's disease, because prostaglandin D2 is a major prostaglandin in the brain. Thus, its contribution to Alzheimer's disease merits attention, given the known impact of the prostaglandin E2 pathway in Alzheimer's disease. We used the TgF344-AD transgenic rat model because it exhibits age-dependent and progressive Alzheimer's disease pathology. Prostaglandin D2 levels in hippocampi of TgF344-AD and wild-type littermates were significantly higher than prostaglandin E2. Prostaglandin D2 signals through DP1 and DP2 receptors. Microglial DP1 receptors were more abundant and neuronal DP2 receptors were fewer in TgF344-AD than in wild-type rats. Expression of the major brain prostaglandin D2 synthase (lipocalin-type PGDS) was the highest among 33 genes involved in the prostaglandin D2 and prostaglandin E2 pathways. We treated a subset of rats (wild-type and TgF344-AD males) with timapiprant, a potent highly selective DP2 antagonist in development for allergic inflammation treatment. Timapiprant significantly mitigated Alzheimer's disease pathology and cognitive deficits in TgF344-AD males. Thus, selective DP2 antagonists have potential as therapeutics to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Charles H Wallace
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, NY, USA
| | - Giovanni Oliveros
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, NY, USA
| | | | - Patricia Rockwell
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, NY, USA
- Department of Biological Sciences, Hunter College, New York, NY, USA
| | - Lei Xie
- Department of Computer Science, Hunter College, New York, NY, USA
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Maria Figueiredo-Pereira
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, NY, USA
- Department of Biological Sciences, Hunter College, New York, NY, USA
| |
Collapse
|
15
|
Schwartz M, Cahalon L. The vicious cycle governing the brain–immune system relationship in neurodegenerative diseases. Curr Opin Immunol 2022; 76:102182. [DOI: 10.1016/j.coi.2022.102182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022]
|
16
|
Wiatrak B, Jawień P, Matuszewska A, Szeląg A, Kubis-Kubiak A. Effect of amyloid-β on the redox system activity in SH-SY5Y cells preincubated with lipopolysaccharide or co-cultured with microglia cells. Biomed Pharmacother 2022; 149:112880. [PMID: 35367762 DOI: 10.1016/j.biopha.2022.112880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Amyloid deposits and hyperphosphorylation of the tau protein are still believed to be the two main causes of Alzheimer's disease. However, newer studies show the beneficial (including antiradical and antimicrobial) effects of amyloid at physiological concentrations. Therefore, this study aimed to investigate the impact of three amyloid fragments - 25-35, 1-40, and 1-42 at concentrations close to physiological levels on the oxidative stress induced by the administration of lipopolysaccharide (LPS) or co-culturing with microglia cells. Differentiated SH-SY5Y cells were used, constituting a model of neuronal cells that were preincubated with LPS or supernatant collected from THP-1 cell culture. The cells were treated with amyloid-β fragments at concentrations of 0.001, 0.1, and 1.0 µM, and then biological assays were carried out. The results of the study support the antioxidant properties of Aβ, which may protect neurons from the damaging effects of neuroinflammation. All tested amyloid-β fragments reduced oxidative stress and increased the levels of enzymatic stress parameters - the activity of SOD, GPx and catalase. In addition, the administration of amyloid-β at low physiological concentrations also increased reduced glutathione (GSH) levels and the ratio between reduced and oxidized glutathione (GSH/GSSG), which is considered a good indicator of maintaining cellular redox balance. Furthermore, a stronger antioxidant effect of 1-40 fragment was observed, occurring in a wider range of concentrations, compared to the other tested fragments 25-35 and 1-42.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
17
|
Liang T, Zhang Y, Wu S, Chen Q, Wang L. The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Front Pharmacol 2022; 13:845185. [PMID: 35250595 PMCID: PMC8889079 DOI: 10.3389/fphar.2022.845185] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. The typical pathological characteristics of AD are extracellular senile plaques composed of amyloid ß (Aβ) protein, intracellular neurofibrillary tangles formed by the hyperphosphorylation of the microtubule-associated protein tau, and neuron loss. In the past hundred years, although human beings have invested a lot of manpower, material and financial resources, there is no widely recognized drug for the effective prevention and clinical cure of AD in the world so far. Therefore, evaluating and exploring new drug targets for AD treatment is an important topic. At present, researchers have not stopped exploring the pathogenesis of AD, and the views on the pathogenic factors of AD are constantly changing. Multiple evidence have confirmed that chronic neuroinflammation plays a crucial role in the pathogenesis of AD. In the field of neuroinflammation, the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key molecular link in the AD neuroinflammatory pathway. Under the stimulation of Aβ oligomers and tau aggregates, it can lead to the assembly and activation of NLRP3 inflammasome in microglia and astrocytes in the brain, thereby causing caspase-1 activation and the secretion of IL-1β and IL-18, which ultimately triggers the pathophysiological changes and cognitive decline of AD. In this review, we summarize current literatures on the activation of NLRP3 inflammasome and activation-related regulation mechanisms, and discuss its possible roles in the pathogenesis of AD. Moreover, focusing on the NLRP3 inflammasome and combining with the upstream and downstream signaling pathway-related molecules of NLRP3 inflammasome as targets, we review the pharmacologically related targets and various methods to alleviate neuroinflammation by regulating the activation of NLRP3 inflammasome, which provides new ideas for the treatment of AD.
Collapse
Affiliation(s)
- Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suyuan Wu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lin Wang,
| |
Collapse
|
18
|
Abdel-Aal RA, Hussein OA, Elsaady RG, Abdelzaher LA. Naproxen as a potential candidate for promoting rivastigmine anti-Alzheimer activity against aluminum chloride-prompted Alzheimer's-like disease in rats; neurogenesis and apoptosis modulation as a possible underlying mechanism. Eur J Pharmacol 2022; 915:174695. [PMID: 34914971 DOI: 10.1016/j.ejphar.2021.174695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD) is one of the leading causes of dependence and disability among the elderly worldwide. The traditional anti-Alzheimer medication, rivastigmine, one of the cholinesterase inhibitors (ChEIs), fails to achieve a definitive cure. We tested the hypothesis that naproxen administration to the rivastigmine-treated aluminum chloride (AlCl3) Alzheimer's rat model could provide an additive neuroprotective effect compared to rivastigmine alone. MATERIALS AND METHODS The studied groups were control (Cont), AlCl3 treated (Al), rivastigmine treated (RIVA), naproxen treated (Napro), and combined rivastigmine and naproxen treated (RIVA + Napro). Rats' memory, spatial learning, and cognitive behavior were assessed followed by evaluation of hippocampal acetylcholinesterase (AChE) activity. Hippocampal and cerebellar histopathology were thoroughly examined. Activated caspase-3 and the neuroepithelial stem cells marker; nestin expressions were immunohistochemically assayed. RESULTS AD rats displayed significantly impaired memory and cognitive function, augmented hippocampal AChE activity; massive neurodegeneration associated with enhanced astrogliosis, apoptosis, and impaired neurogenesis. Except for the enhancement of neurogenesis and suppression of apoptosis, the combination therapy had no additional neuroprotective benefit over rivastigmine-only therapy. CONCLUSION Naproxen's efficacy was established by its ability to function at the cellular level, improved neurogenesis, and decreased, apoptosis without having an additional mitigating impact on cognitive impairment in rivastigmine-treated AD rats.
Collapse
Affiliation(s)
- Raafat A Abdel-Aal
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ola A Hussein
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Reham G Elsaady
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
19
|
Ahmad MA, Kareem O, Khushtar M, Akbar M, Haque MR, Iqubal A, Haider MF, Pottoo FH, Abdulla FS, Al-Haidar MB, Alhajri N. Neuroinflammation: A Potential Risk for Dementia. Int J Mol Sci 2022; 23:ijms23020616. [PMID: 35054805 PMCID: PMC8775769 DOI: 10.3390/ijms23020616] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Dementia is a neurodegenerative condition that is considered a major factor contributing to cognitive decline that reduces independent function. Pathophysiological pathways are not well defined for neurodegenerative diseases such as dementia; however, published evidence has shown the role of numerous inflammatory processes in the brain contributing toward their pathology. Microglia of the central nervous system (CNS) are the principal components of the brain’s immune defence system and can detect harmful or external pathogens. When stimulated, the cells trigger neuroinflammatory responses by releasing proinflammatory chemokines, cytokines, reactive oxygen species, and nitrogen species in order to preserve the cell’s microenvironment. These proinflammatory markers include cytokines such as IL-1, IL-6, and TNFα chemokines such as CCR3 and CCL2 and CCR5. Microglial cells may produce a prolonged inflammatory response that, in some circumstances, is indicated in the promotion of neurodegenerative diseases. The present review is focused on the involvement of microglial cell activation throughout neurodegenerative conditions and the link between neuroinflammatory processes and dementia.
Collapse
Affiliation(s)
- Md Afroz Ahmad
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow 226021, India; (M.A.A.); (M.K.); (M.F.H.)
| | - Ozaifa Kareem
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India;
| | - Mohammad Khushtar
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow 226021, India; (M.A.A.); (M.K.); (M.F.H.)
| | - Md Akbar
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.); (A.I.)
| | - Md Rafiul Haque
- Department of Pharmacognosy, School of Pharmacy, Al-Karim University, Katihar 854106, India;
| | - Ashif Iqubal
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.); (A.I.)
| | - Md Faheem Haider
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow 226021, India; (M.A.A.); (M.K.); (M.F.H.)
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Fatima S. Abdulla
- College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (F.S.A.); (M.B.A.-H.)
| | - Mahia B. Al-Haidar
- College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (F.S.A.); (M.B.A.-H.)
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
20
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review. Ageing Res Rev 2021; 72:101496. [PMID: 34687956 DOI: 10.1016/j.arr.2021.101496] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in ageing, affecting around 46 million people worldwide but few treatments are currently available. The etiology of AD is still puzzling, and new drugs development and clinical trials have high failure rates. Urgent outline of an integral (multi-target) and effective treatment of AD is needed. Accumulation of amyloid-β (Aβ) peptides is considered one of the fundamental neuropathological pillars of the disease, and its dyshomeostasis has shown a crucial role in AD onset. Therefore, many amyloid-targeted therapies have been investigated. Here, we will systematically review recent (from 2014) investigational, follow-up and review studies focused on anti-amyloid strategies to summarize and analyze their current clinical potential. Combination of anti-Aβ therapies with new developing early detection biomarkers and other therapeutic agents acting on early functional AD changes will be highlighted in this review. Near-term approval seems likely for several drugs acting against Aβ, with recent FDA approval of a monoclonal anti-Aβ oligomers antibody -aducanumab- raising hopes and controversies. We conclude that, development of oligomer-epitope specific Aβ treatment and implementation of multiple improved biomarkers and risk prediction methods allowing early detection, together with therapies acting on other factors such as hyperexcitability in early AD, could be the key to slowing this global pandemic.
Collapse
|
21
|
Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer's disease. Inflammopharmacology 2021; 29:1669-1681. [PMID: 34813026 PMCID: PMC8608577 DOI: 10.1007/s10787-021-00889-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/31/2021] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a major contributor of dementia leading to the degeneration of neurons in the brain with major symptoms like loss of memory and learning. Many evidences suggest the involvement of neuroinflammation in the pathology of AD. Cytokines including TNF-α and IL-6 are also found increasing the BACE1 activity and expression of NFκB resulting in generation of Aβ in AD brain. Following the interaction of Aβ with microglia and astrocytes, other inflammatory molecules also get translocated to the site of inflammation by chemotaxis and exaggerate neuroinflammation. Various pathways like NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide and COX trigger microglia to release inflammatory cytokines. PPARγ agonists like pioglitazone increases the phagocytosis of Aβ and reduces inflammatory cytokine IL-1β. Celecoxib and roficoxib like selective COX-2 inhibitors also ameliorate neuroinflammation. Non-selective COX inhibitor indomethacin is also potent inhibitor of inflammatory mediators released from microglia. Mitophagy process is considered quite helpful in reducing inflammation due to microglia as it promotes the phagocytosis of over activated microglial cells and other inflammatory cells. Mitophagy induction is also beneficial in the removal of damaged mitochondria and reduction of infiltration of inflammatory molecules at the site of accumulation of the damaged mitochondria. Targeting these pathways and eventually ameliorating the activation of microglia can mitigate neuroinflammation and come out as a better therapeutic option for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Rishika Dhapola
- Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | | | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College & Hospital, Chandigarh, 160 032, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | | |
Collapse
|
22
|
Wang C, Wang Y, Xie H, Zhan C, He X, Liu R, Hu R, Shen J, Jia Y. Establishment and validation of an SIL-IS LC-MS/MS method for the determination of ibuprofen in human plasma and its pharmacokinetic study. Biomed Chromatogr 2021; 36:e5287. [PMID: 34837248 DOI: 10.1002/bmc.5287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/09/2021] [Accepted: 11/10/2021] [Indexed: 11/05/2022]
Abstract
In this work, we developed and validated a highly sensitive, rapid and stable LC-MS/MS method for the determination of ibuprofen in human plasma with ibuprofen-d3 as a stable isotopically labeled internal standard (SIL-IS). Human plasma samples were prepared by one-step protein precipitation. The chromatographic separation was achieved on a Poroshell 120 EC-C18 (2.1 × 50 mm, 2.7 μm). Aqueous solution (containing 0.05% acetic acid and 5 mm NH4 Ac) and methanol were selected as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in negative ion mode. Multiple reaction monitoring mode was used for quantification using target fragment ions m/z 205.0 → 161.1 for ibuprofen and m/z 208.0 → 164.0 for SIL-IS, respectively. This method exhibited a linear range of 0.05-36 μg/ml for ibuprofen with correlation coefficient >0.99. Mean recoveries of ibuprofen in human plasma ranged from 78.4 to 80.9%. The RSD of intra- and inter-day precision were both < 5%. The accuracy was between 88.2 and 103.67%. The matrix effect was negligible in human plasma, including lipidemia and hemolytic plasma. A simple, efficient and accurate LC-MS/MS method was successfully established and applied to a pharmacokinetic study in healthy Chinese volunteers after a single oral administration of ibuprofen granules.
Collapse
Affiliation(s)
- Changmao Wang
- Pharmacy School of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yaqin Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Haitang Xie
- Pharmacy School of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Cuijiao Zhan
- Pharmacy School of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Xuejun He
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Ran Liu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Rongfeng Hu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province, Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Anhui "115" Xin'an Medicine Research & Development Innovation Team, Hefei, Anhui, People's Republic of China
| | - Jie Shen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yuanwei Jia
- Pharmacy School of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| |
Collapse
|
23
|
Chen F, Yang D, Cheng XY, Yang H, Yang XH, Liu HT, Wang R, Zheng P, Yao Y, Li J. Astragaloside IV Ameliorates Cognitive Impairment and Neuroinflammation in an Oligomeric Aβ Induced Alzheimer's Disease Mouse Model via Inhibition of Microglial Activation and NADPH Oxidase Expression. Biol Pharm Bull 2021; 44:1688-1696. [PMID: 34433707 DOI: 10.1248/bpb.b21-00381] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microglial activation and neuroinflammation induced by amyloid β (Aβ) play pivotal roles in Alzheimer's disease (AD) pathogenesis. Astragaloside IV (AS-IV) is one of the major active compounds of the traditional Chinese medicine Astmgali Radix. It has been reported that AS-IV could protect against Aβ-induced neuroinflammation and cognitive impairment, but the underlying mechanisms need to be further clarified. In this study, the therapeutic effects of AS-IV were investigated in an oligomeric Aβ (oAβ) induced AD mice model. The effects of AS-IV on microglial activation, neuronal damage and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression were further studied. Different doses of AS-IV were administered intragastrically once a day after intracerebroventricularly oAβ injection. Results of behavioral experiments including novel object recognition (NOR) test and Morris water maze (MWM) test revealed that AS-IV administration could significantly ameliorate oAβ-induced cognitive impairment in a dose dependent manner. Enzyme linked immunosorbent assay (ELISA) results showed that increased levels of reactive oxygen species (ROS), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and IL-6 in hippocampal tissues induced by oAβ injection were remarkably inhibited after AS-IV treatment. OAβ induced microglial activation and neuronal damage was significantly suppressed in AS-IV-treated mice brain, observed in immunohistochemistry results. Furthermore, oAβ upregulated protein expression of NADPH oxidase subunits gp91phox, p47phox, p22phox and p67phox were remarkably reduced by AS-IV in Western blotting assay. These results revealed that AS-IV could ameliorate oAβ-induced cognitive impairment, neuroinflammation and neuronal damage, which were possibly mediated by inhibition of microglial activation and down-regulation of NADPH oxidase protein expression. Our findings provide new insights of AS-IV for the treatment of neuroinflammation related diseases such as AD.
Collapse
Affiliation(s)
- Fei Chen
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| | - Dan Yang
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| | - Xiao-Yu Cheng
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital, Soochow University
| | - Hui Yang
- Research Center of Medical Science and Technology, Ningxia Medical University
| | - Xin-He Yang
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| | - He-Tao Liu
- School of Basic Medical Sciences, Ningxia Medical University
| | - Rui Wang
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| | - Ping Zheng
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University
| | - Juan Li
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| |
Collapse
|
24
|
Mahdiabadi S, Momtazmanesh S, Perry G, Rezaei N. Immune modulations and immunotherapies for Alzheimer's disease: a comprehensive review. Rev Neurosci 2021; 33:365-381. [PMID: 34506700 DOI: 10.1515/revneuro-2021-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is characterized by progressive cognitive and memory impairment ensued from neuronal dysfunction and eventual death. Intraneuronal deposition of tau proteins and extracellular senile amyloid-β plaques have ruled as the supreme postulations of AD for a relatively long time, and accordingly, a wide range of therapeutics, especially immunotherapies have been implemented. However, none of them resulted in significant positive cognitive outcomes. Especially, the repetitive failure of anti-amyloid therapies proves the inefficiency of the amyloid cascade hypothesis, suggesting that it is time to reconsider this hypothesis. Thus, for the time being, the focus is being shifted to neuroinflammation as a third core pathology in AD. Neuroinflammation was previously considered a result of the two aforementioned phenomena, but new studies suggest that it might play a causal role in the pathogenesis of AD. Neuroinflammation can act as a double-edged sword in the pathogenesis of AD, and the activation of glial cells is indispensable for mediating such attenuating or detrimental effects. The association of immune-related genes polymorphisms with the clinical phenotype of AD as well as the protective effect of anti-inflammatory drugs like nonsteroidal anti-inflammatory drugs supports the possible causal role of neuroinflammation in AD. Here, we comprehensively review immune-based therapeutic approaches toward AD, including monoclonal antibodies and vaccines. We also discuss their efficacy and underlying reasons for shortcomings. Lastly, we highlight the capacity of modulating the neuroimmune interactions and targeting neuroinflammation as a promising opportunity for finding optimal treatments for AD.
Collapse
Affiliation(s)
- Sara Mahdiabadi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| |
Collapse
|
25
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
26
|
Flurbiprofen sodium microparticles and soft pellets for nose-to-brain delivery: Serum and brain levels in rats after nasal insufflation. Int J Pharm 2021; 605:120827. [PMID: 34171428 DOI: 10.1016/j.ijpharm.2021.120827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/27/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022]
Abstract
Neuroinflammation in Alzheimer's disease (AD) revamped the role of a preventive therapeutic action of non steroidal anti-inflammatory drugs; flurbiprofen could delay AD onset, provided its access to brain is enhanced and systemic exposure limited. Nasal administration could enable direct drug access to central nervous system (CNS) via nose-to-brain transport. Here, we investigated the insufflation, deposition, dissolution, transmucosal permeation, and in vivo transport to rat brain of flurbiprofen from nasal powders combined in an active device. Flurbiprofen sodium spray-dried microparticles as such, or soft pellets obtained by agglomeration of drug microparticles with excipients, were intranasally administered to rats by the pre-metered insufflator device. Blood and brain were collected to measure flurbiprofen levels. Excipient presence in soft pellets lowered the metered drug dose to insufflate. Nevertheless, efficiency of powder delivery by the device, measured as emitted fraction, was superior with soft pellets than microparticles, due to their coarse size. Both nasal powders resulted into rapid flurbiprofen absorption. Absolute bioavailability was 33% and 58% for microparticles and pellets, respectively. Compared to intravenous flurbiprofen, the microparticles were more efficient than soft pellets at enhancing direct drug transport to CNS. Direct Transport Percentage index evidenced that more than 60% of the intranasal dose reached the brain via direct nose-to-brain transport for both powders. Moreover, remarkable drug concentrations were measured in the olfactory bulb after microparticle delivery. Bulb connection with the entorhinal cortex, from where AD initiates, makes flurbiprofen sodium administration as nasal powder worth of further investigation in an animal model of neuroinflammation.
Collapse
|
27
|
Borowiec K, Michalak A. Flavonoids from edible fruits as therapeutic agents in neuroinflammation - a comprehensive review and update. Crit Rev Food Sci Nutr 2021; 62:6742-6760. [PMID: 33783286 DOI: 10.1080/10408398.2021.1905604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is a key process in the pathogenesis of many neurological disorders, i.e. Alzheimer's disease and Parkinson's disease. However, there are no anti-inflammatory medical interventions recommended so far in the treatment of neuroinflammation-related brain disorders. Therefore, the burden of searching for effective and safe antineuroinflammatory agents is well founded, especially in the aging society. Compounds of plant origin, mainly (poly)phenols, have attracted considerable attention in recent years. Notably, the role of flavonoids in ameliorating neuroinflammation is in the limelight. Thus, we used comprehensive literature retrieval to summarize the effects and active components of edible fruits and their phenolic compounds. As a result, this review presents a valuable summary of results of in vitro, ex vivo, and in vivo studies on the antineuroinflammatory effects of edible fruits and their (poly)phenolic extracts as well as dietary flavonoids and other selected (poly)phenols based on the detailed description of foregoing studies. Additionally, problems resulting from the limited bioavailability of (poly)phenols were discussed.
Collapse
Affiliation(s)
- Kamila Borowiec
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
28
|
Voigt RM, Raeisi S, Yang J, Leurgans S, Forsyth CB, Buchman AS, Bennett DA, Keshavarzian A. Systemic brain derived neurotrophic factor but not intestinal barrier integrity is associated with cognitive decline and incident Alzheimer's disease. PLoS One 2021; 16:e0240342. [PMID: 33661922 PMCID: PMC7932071 DOI: 10.1371/journal.pone.0240342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
The inflammatory hypothesis posits that sustained neuroinflammation is sufficient to induce neurodegeneration and the development of Alzheimer's disease (AD) and Alzheimer's dementia. One potential source of inflammation is the intestine which harbors pro-inflammatory microorganisms capable of promoting neuroinflammation. Systemic inflammation is robustly associated with neuroinflammation as well as low levels of brain derived neurotrophic factor (BDNF) in the systemic circulation and brain. Thus, in this pilot study, we tested the hypothesis that intestinal barrier dysfunction precedes risk of death, incident AD dementia and MCI, cognitive impairment and neuropathology. Serum BDNF was associated with changes in global cognition, working memory, and perceptual speed but not risk of death, incident AD dementia, incident MCI, or neuropathology. Neither of the markers of intestinal barrier integrity examined, including lipopolysaccharide binding protein (LBP) nor intestinal fatty acid binding protein (IFABP), were associated with risk of death, incident AD dementia, incident mild cognitive impairment (MCI), change in cognition (global or domains), or neuropathology. Taken together, the data in this pilot study suggest that intestinal barrier dysfunction does not precede diagnosis of AD or MCI, changes in cognition, or brain pathology. However, since MCI and AD are related to global cognition, the findings with BDNF and the contiguous cognitive measures suggest low power with the trichotomous cognitive status measures. Future studies with larger sample sizes are necessary to further investigate the results from this pilot study.
Collapse
Affiliation(s)
- Robin M. Voigt
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| | - Shohreh Raeisi
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sue Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Christopher B. Forsyth
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
29
|
Yu J, Cho E, Kwon H, Jeon J, Seong Sin J, Kwon Park J, Kim JS, Woong Choi J, Jin Park S, Jun M, Choon Lee Y, Hoon Ryu J, Lee J, Moon M, Lee S, Hyun Cho J, Hyun Kim D. Akt and calcium-permeable AMPA receptor are involved in the effect of pinoresinol on amyloid β-induced synaptic plasticity and memory deficits. Biochem Pharmacol 2021; 184:114366. [PMID: 33310049 DOI: 10.1016/j.bcp.2020.114366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders characterized by memory deficits. Although no drug has given promising results, synaptic dysfunction-modulating agents might be considered potential candidates for alleviating this disorder. Pinoresinol, a lignan found in Forsythia suspensa, is a memory-enhancing agent with excitatory synaptic activation. In the present study, we tested whether pinoresinol reduces learning and memory and excitatory synaptic deficits in an amyloid β (Aβ)-induced AD-like mouse model. Pinoresinol enhanced hippocampal long-term potentiation (LTP) through calcium-permeable AMPA receptor, which was mediated by Akt activation. Moreover, pinoresinol ameliorated LTP deficits in amyloid β (Aβ)-treated hippocampal slices via Akt signaling. Oral administration of pinoresinol ameliorated Aβ-induced memory deficits without sensory dysfunction. Moreover, AD-like pathology, including neuroinflammation and synaptic deficit, were ameliorated by pinoresinol administration. Collectively, pinoresinol may be a good candidate for AD therapy by modulating synaptic functions.
Collapse
Affiliation(s)
- Jimin Yu
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Eunbi Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Huiyoung Kwon
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jieun Jeon
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jae Seong Sin
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jun Kwon Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongup-si, Jeollabuk-do 56216, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Mira Jun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Young Choon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeongwon Lee
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Seungheon Lee
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea.
| | - Jong Hyun Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Laboratory of Anti-viral Drug Discovery, Dong-A University, Busan, Republic of Korea.
| | - Dong Hyun Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Laboratory of Anti-viral Drug Discovery, Dong-A University, Busan, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
30
|
Soheili M, Karimian M, Hamidi G, Salami M. Alzheimer's disease treatment: The share of herbal medicines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:123-135. [PMID: 33953850 PMCID: PMC8061323 DOI: 10.22038/ijbms.2020.50536.11512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/07/2020] [Indexed: 11/25/2022]
Abstract
One of the most frequent forms of dementia in neurological disorders is Alzheimer's disease (AD). It is a chronic neurodegenerative disease characterized by impaired learning and memory. Pathological symptoms as extracellular amyloid-beta (Aβ) plaques and intracellular accumulation of neurofibrillary tangles occur in AD. Due to the aging of the population and increased prevalence of AD, discovery of new therapeutic agents with the highest effectiveness and fewer side effect seems to be necessary. Numerous synthetic medicines such as tacrine, donepezil, galantamine, rivastigmine, memantine, glutathione, ascorbic acid, ubiquinone, ibuprofen, and ladostigil are routinely used for reduction of the symptoms and prevention of disease progression. Nowadays, herbal medicines have attracted popular attention for numerous beneficial effects with little side effects. Lavandula angustifolia, Ginkgo biloba, Melissa officinalis, Crocus sativus, Ginseng, Salvia miltiorrhiza, and Magnolia officinalis have been widely used for relief of symptoms of some neurological disorders. This paper reviews the therapeutic effects of phytomedicines with prominent effects against various factors implicated in the emergence and progression of AD.
Collapse
Affiliation(s)
- Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Gholamali Hamidi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
31
|
Yamamoto S, Kayama T, Noguchi-Shinohara M, Hamaguchi T, Yamada M, Abe K, Kobayashi S. Rosmarinic acid suppresses tau phosphorylation and cognitive decline by downregulating the JNK signaling pathway. NPJ Sci Food 2021; 5:1. [PMID: 33514742 PMCID: PMC7846760 DOI: 10.1038/s41538-021-00084-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022] Open
Abstract
Rosmarinic acid (RA), a polyphenol found in Lamiaceae herbs, is a candidate of preventive ingredients against Alzheimer's disease (AD) as it potently suppresses the aggregation of amyloid β (Aβ); however, the effect of RA on tau phosphorylation and cognitive dysfunction remains unclear. The present study revealed that RA intake inhibited the pathological hallmarks of AD, including Aβ and phosphorylated tau accumulation, and improved cognitive function in the 3 × Tg-AD mouse model. Additionally, RA intake suppressed hippocampal inflammation and led to the downregulation of the JNK signaling pathway that induces tau phosphorylation. Feeding with RA exerted an anti-inflammatory effect not only in the central nervous system but also in the periphery. Downregulation of the JNK signaling pathway in hippocampus may be a potential mechanism underlying the inhibition of progression of pathology and cognitive deficit by RA feeding.
Collapse
Affiliation(s)
- So Yamamoto
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Kayama
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan.,Group of Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science Environment Research Center, Tonomachi, Kawasaki, Kanagawa, Japan
| | - Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
32
|
Granger KT, Barnett JH. Postoperative cognitive dysfunction: an acute approach for the development of novel treatments for neuroinflammation. Drug Discov Today 2021; 26:1111-1114. [PMID: 33497828 DOI: 10.1016/j.drudis.2021.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Inflammation within the central nervous system (CNS; neuroinflammation) is a major contributor to lasting symptoms of traumatic brain injury and stroke, and likely has a casual role Alzheimer's disease (AD) and other neurodegenerative conditions. Therapeutic modulation of the immune processes that initiate and maintain neuroinflammation is of growing scientific interest but neuroinflammatory drug development is hampered by limited reliability and availability of neuroimaging or other biomarkers in humans. Better means of establishing drug efficacy on human neuroinflammation would have great value in accelerating the development of neuroinflammatory compounds for many clinical indications. Here, we discuss the use of postoperative cognitive decline (POCD), which is hypothesised to have a neuroinflammatory basis, as an acute indication to demonstrate the efficacy of novel neuroinflammatory drugs.
Collapse
Affiliation(s)
- Kiri T Granger
- Monument Therapeutics, Cambridge, UK; Cambridge Cognition, Cambridge, UK; School of Psychology, University of Nottingham, Nottingham, UK.
| | - Jennifer H Barnett
- Monument Therapeutics, Cambridge, UK; Cambridge Cognition, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Rocha NKR, Themoteo R, Brentani H, Forlenza OV, De Paula VDJR. Neuronal-Glial Interaction in a Triple-Transgenic Mouse Model of Alzheimer's Disease: Gene Ontology and Lithium Pathways. Front Neurosci 2020; 14:579984. [PMID: 33335468 PMCID: PMC7737403 DOI: 10.3389/fnins.2020.579984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Neuronal-glial interactions are critical for brain homeostasis, and disruption of this process may lead to excessive glial activation and inadequate pro-inflammatory responses. Abnormalities in neuronal-glial interactions have been reported in the pathophysiology of Alzheimer’s disease (AD), where lithium has been shown to exert neuroprotective effects, including the up-regulation of cytoprotective proteins. In the present study, we characterize by Gene Ontology (GO) the signaling pathways related to neuronal-glial interactions in response to lithium in a triple-transgenic mouse model of AD (3×-TgAD). Mice were treated for 8 months with lithium carbonate (Li) supplemented to chow, using two dose ranges to yield subtherapeutic working concentrations (Li1, 1.0 g/kg; and Li2, 2.0 g/kg of chow), or with standard chow (Li0). The hippocampi were removed and analyzed by proteomics. A neuronal-glial interaction network was created by a systematic literature search, and the selected genes were submitted to STRING, a functional network to analyze protein interactions. Proteomics data and neuronal-glial interactomes were compared by GO using ClueGo (Cytoscape plugin) with p ≤ 0.05. The proportional effects of neuron-glia interactions were determined on three GO domains: (i) biological process; (ii) cellular component; and (iii) molecular function. The gene ontology of this enriched network of genes was further stratified according to lithium treatments, with statistically significant effects observed in the Li2 group (as compared to controls) for the GO domains biological process and cellular component. In the former, there was an even distribution of the interactions occurring at the following functions: “positive regulation of protein localization to membrane,” “regulation of protein localization to cell periphery,” “oligodendrocyte differentiation,” and “regulation of protein localization to plasma membrane.” In cellular component, interactions were also balanced for “myelin sheath” and “rough endoplasmic reticulum.” We conclude that neuronal-glial interactions are implicated in the neuroprotective response mediated by lithium in the hippocampus of AD-transgenic mice. The effect of lithium on homeostatic pathways mediated by the interaction between neurons and glial cells are implicated in membrane permeability, protein synthesis and DNA repair, which may be relevant for the survival of nerve cells amidst AD pathology.
Collapse
Affiliation(s)
- Nicole Kemberly R Rocha
- Laboratório de Psicobiologia (LIM23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Themoteo
- Laboratorio de Neurociencias (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Helena Brentani
- Laboratório de Psicobiologia (LIM23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Orestes V Forlenza
- Laboratorio de Neurociencias (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vanessa De Jesus Rodrigues De Paula
- Laboratório de Psicobiologia (LIM23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Laboratorio de Neurociencias (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Melamed S, Avraham R, Rothbard DE, Erez N, Israely T, Klausner Z, Futerman AH, Paran N, Vitner EB. Innate immune response in neuronopathic forms of Gaucher disease confers resistance against viral-induced encephalitis. Acta Neuropathol Commun 2020; 8:144. [PMID: 32831144 PMCID: PMC7443817 DOI: 10.1186/s40478-020-01020-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Both monogenic diseases and viral infections can manifest in a broad spectrum of clinical phenotypes that range from asymptomatic to lethal, suggesting that other factors modulate disease severity. Here, we examine the interplay between the genetic neuronopathic Gaucher’s disease (nGD), and neuroinvasive Sindbis virus (SVNI) infection. Infection of nGD mice with SVNI had no influence on nGD severity. However, nGD mice were more resistant to SVNI infection. Significantly different inflammatory responses were seen in nGD brains when compared with SVNI brains: the inflammatory response in the nGD brains consisted of reactive astrocytes and microglia with no infiltrating macrophages, but the inflammatory response in the brains of SVNI-infected mice was characterized by infiltration of macrophages and altered activation of microglia and astrocytes. We suggest that the innate immune response activated in nGD confers resistance against viral infection of the CNS.
Collapse
|
35
|
Husna Ibrahim N, Yahaya MF, Mohamed W, Teoh SL, Hui CK, Kumar J. Pharmacotherapy of Alzheimer's Disease: Seeking Clarity in a Time of Uncertainty. Front Pharmacol 2020; 11:261. [PMID: 32265696 PMCID: PMC7105678 DOI: 10.3389/fphar.2020.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is recognized as a major health hazard that mostly affects people older than 60 years. AD is one of the biggest medical, economic, and social concerns to patients and their caregivers. AD was ranked as the 5th leading cause of global deaths in 2016 by the World Health Organization (WHO). Many drugs targeting the production, aggregation, and clearance of Aβ plaques failed to give any conclusive clinical outcomes. This mainly stems from the fact that AD is not a disease attributed to a single-gene mutation. Two hallmarks of AD, Aβ plaques and neurofibrillary tangles (NFTs), can simultaneously induce other AD etiologies where every pathway is a loop of consequential events. Therefore, the focus of recent AD research has shifted to exploring other etiologies, such as neuroinflammation and central hyperexcitability. Neuroinflammation results from the hyperactivation of microglia and astrocytes that release pro-inflammatory cytokines due to the neurological insults caused by Aβ plaques and NFTs, eventually leading to synaptic dysfunction and neuronal death. This review will report the failures and side effects of many anti-Aβ drugs. In addition, emerging treatments targeting neuroinflammation in AD, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and receptor-interacting serine/threonine protein kinase 1 (RIPK1), that restore calcium dyshomeostasis and microglia physiological function in clearing Aβ plaques, respectively, will be deliberately discussed. Other novel pharmacotherapy strategies in treating AD, including disease-modifying agents (DMTs), repurposing of medications used to treat non-AD illnesses, and multi target-directed ligands (MTDLs) are also reviewed. These approaches open new doors to the development of AD therapy, especially combination therapy that can cater for several targets simultaneously, hence effectively slowing or stopping AD.
Collapse
Affiliation(s)
- Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- Glycofood Sdn Bhd, Selangor, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
O'Bryant SE, Zhang F, Johnson LA, Hall J, Edwards M, Grammas P, Oh E, Lyketsos CG, Rissman RA. A Precision Medicine Model for Targeted NSAID Therapy in Alzheimer's Disease. J Alzheimers Dis 2019; 66:97-104. [PMID: 30198872 DOI: 10.3233/jad-180619] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND To date, the therapeutic paradigm for Alzheimer's disease (AD) has focused on a single intervention for all patients. However, a large literature in oncology supports the therapeutic benefits of a precision medicine approach to therapy. Here we test a precision-medicine approach to AD therapy. OBJECTIVE To determine if a baseline, blood-based proteomic companion diagnostic predicts response to NSAID therapy. METHODS Proteomic assays of plasma from a multicenter, randomized, double-blind, placebo-controlled, parallel group trial, with 1-year exposure to rofecoxib (25 mg once daily), naproxen (220 mg twice-daily) or placebo. RESULTS 474 participants with mild-to-moderate AD were screened with 351 enrolled into the trial. Using support vector machine (SVM) analyses, 89% of the subjects randomized to either NSAID treatment arms were correctly classified using a general NSAID companion diagnostic. Drug-specific companion diagnostics yielded 98% theragnostic accuracy in the rofecoxib arm and 97% accuracy in the naproxen arm. CONCLUSION Inflammatory-based companion diagnostics have significant potential to identify select patients with AD who have a high likelihood of responding to NSAID therapy. This work provides empirical support for a precision medicine model approach to treating AD.
Collapse
Affiliation(s)
- Sid E O'Bryant
- Department of Pharmacology & Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Fan Zhang
- Vermont Genetics Network, University of Vermont, VT, USA
| | - Leigh A Johnson
- Department of Pharmacology & Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - James Hall
- Department of Pharmacology & Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, RI, USA
| | - Esther Oh
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | | | - Robert A Rissman
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
37
|
Hong F, Pan S, Guo Y, Xu P, Zhai Y. PPARs as Nuclear Receptors for Nutrient and Energy Metabolism. Molecules 2019; 24:molecules24142545. [PMID: 31336903 PMCID: PMC6680900 DOI: 10.3390/molecules24142545] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
It has been more than 36 years since peroxisome proliferator-activated receptors (PPARs) were first recognized as enhancers of peroxisome proliferation. Consequently, many studies in different fields have illustrated that PPARs are nuclear receptors that participate in nutrient and energy metabolism and regulate cellular and whole-body energy homeostasis during lipid and carbohydrate metabolism, cell growth, cancer development, and so on. With increasing challenges to human health, PPARs have attracted much attention for their ability to ameliorate metabolic syndromes. In our previous studies, we found that the complex functions of PPARs may be used as future targets in obesity and atherosclerosis treatments. Here, we review three types of PPARs that play overlapping but distinct roles in nutrient and energy metabolism during different metabolic states and in different organs. Furthermore, research has emerged showing that PPARs also play many other roles in inflammation, central nervous system-related diseases, and cancer. Increasingly, drug development has been based on the use of several selective PPARs as modulators to diminish the adverse effects of the PPAR agonists previously used in clinical practice. In conclusion, the complex roles of PPARs in metabolic networks keep these factors in the forefront of research because it is hoped that they will have potential therapeutic effects in future applications.
Collapse
Affiliation(s)
- Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
38
|
Hede V, Devillé C. Treating psychiatric symptoms and disorders with non-psychotropic medications. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 31636493 PMCID: PMC6787535 DOI: 10.31887/dcns.2019.21.2/vhede] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A few drugs prescribed in internal medicine, ie, non-psychotropic drugs, can be used
to treat certain neuropsychiatric disorders. For most of these situations, the level
of evidence remains low. But when sufficient data becomes available, these molecules
are then included in official guidelines for the treatment of neuropsychiatric
disorders. In this article we review interesting drugs which may be relevant from an
evidence-based medicine point of view, and could become part of psychiatric practice
in the future.
Collapse
Affiliation(s)
- Vincent Hede
- Author affiliations: Liaison Psychiatry Unit (Vincent Hede); Young Adult Psychiatry Unit (Cédric Devillé); Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland. Address for correspondence: Dr Vincent Hede, Hôpitaux Universitaires de Genève, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland. (e-mail: )
| | - Cédric Devillé
- Author affiliations: Liaison Psychiatry Unit (Vincent Hede); Young Adult Psychiatry Unit (Cédric Devillé); Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland. Address for correspondence: Dr Vincent Hede, Hôpitaux Universitaires de Genève, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland. (e-mail: )
| |
Collapse
|
39
|
Ali MM, Ghouri RG, Ans AH, Akbar A, Toheed A. Recommendations for Anti-inflammatory Treatments in Alzheimer's Disease: A Comprehensive Review of the Literature. Cureus 2019; 11:e4620. [PMID: 31312547 PMCID: PMC6615583 DOI: 10.7759/cureus.4620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in elderly patients, affecting individuals older than 60 years. It is a complex degenerative brain disease characterized by progressive cognitive impairment. AD constitutes a major global health concern. A central role for inflammation has been implicated in the pathogenesis of AD. Despite the understanding of multiple molecular pathways in the pathophysiology of AD, novel treatment agents with a possible role in modifying the disease activity are still lacking. Our article provides a comprehensive review of various observational studies and randomized trials encompassing the use of anti-inflammatory agents in the management of AD patients and utilizes the conclusions derived therefrom to give recommendations in this regard.
Collapse
Affiliation(s)
- Muhammad Mohsin Ali
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Raza G Ghouri
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Armghan H Ans
- Cardiology, University of Pennsylvania, Philadelphia, USA
| | - Arshia Akbar
- Internal Medicine, Rawalpindi Medical College, Rawalpindi, PAK
| | - Ahmed Toheed
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| |
Collapse
|
40
|
Yanuck SF. Microglial Phagocytosis of Neurons: Diminishing Neuronal Loss in Traumatic, Infectious, Inflammatory, and Autoimmune CNS Disorders. Front Psychiatry 2019; 10:712. [PMID: 31632307 PMCID: PMC6786049 DOI: 10.3389/fpsyt.2019.00712] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023] Open
Abstract
Errors in neuron-microglial interaction are known to lead to microglial phagocytosis of live neurons and excessive neuronal loss, potentially yielding poorer clinical outcomes. Factors that affect neuron-microglial interaction have the potential to influence the error rate. Clinical comorbidities that unfavorably impact neuron-microglial interaction may promote a higher rate of neuronal loss, to the detriment of patient outcome. This paper proposes that many common, clinically modifiable comorbidities have a common thread, in that they all influence neuron-microglial interactions. Comorbidities like traumatic brain injury, infection, stress, neuroinflammation, loss of neuronal metabolic integrity, poor growth factor status, and other factors, all have the potential to alter communication between neurons and microglia. When this occurs, microglial phagocytosis of live neurons can increase. In addition, microglia can shift into a morphological form in which they express major histocompatibility complex II (MHC-II), allowing them to function as antigen presenting cells that present neuronal debris as antigen to invading T cells. This can increase risk for the development of CNS autoimmunity, or can exacerbate existing CNS autoimmunity. The detrimental influence of these comorbidities has the potential to contribute to the mosaic of factors that determine patient outcome in some CNS pathologies that have neuropsychiatric involvement, including TBI and CNS disorders with autoimmune components, where excessive neuronal loss can yield poorer clinical outcomes. Recognition of the impact of these comorbidities may contribute to an understanding of the common clinical observation that many seemingly disparate factors contribute to the overall picture of case management and clinical outcome in these complex disorders. In a clinical setting, knowing how these comorbidities can influence neuron-microglial interaction can help focus surveillance and care on a broader group of potential therapeutic targets. Accordingly, an interest in the mechanisms underlying the influence of these factors on neuron-microglial interactions is appropriate. Neuron-microglial interaction is reviewed, and the various mechanisms by which these potential comorbidities influence neuro-microglial interaction are described.
Collapse
Affiliation(s)
- Samuel F Yanuck
- Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
41
|
Pluta R, Ułamek-Kozioł M. Lymphocytes, Platelets, Erythrocytes, and Exosomes as Possible Biomarkers for Alzheimer’s Disease Clinical Diagnosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:71-82. [DOI: 10.1007/978-3-030-05542-4_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Kelly ÁM. Exercise-Induced Modulation of Neuroinflammation in Models of Alzheimer's Disease. Brain Plast 2018; 4:81-94. [PMID: 30564548 PMCID: PMC6296260 DOI: 10.3233/bpl-180074] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), a progressive, neurodegenerative condition characterised by accumulation of toxic βeta-amyloid (Aβ) plaques, is one of the leading causes of dementia globally. The cognitive impairment that is a hallmark of AD may be caused by inflammation in the brain triggered and maintained by the presence of Aβ protein, ultimately leading to neuronal dysfunction and loss. Since there is a significant inflammatory component to AD, it is postulated that anti-inflammatory strategies may be of prophylactic or therapeutic benefit in AD. One such strategy is that of regular physical activity, which has been shown in epidemiological studies to be protective against various forms of dementia including AD. Exercise induces an anti-inflammatory environment in peripheral organs and also increases expression of anti-inflammatory molecules within the brain. Here we review the evidence, mainly from animal models of AD, supporting the hypothesis that exercise can reduce or slow the cellular and cognitive impairments associated with AD by modulating neuroinflammation.
Collapse
Affiliation(s)
- Áine M. Kelly
- Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
43
|
Thygesen C, Ilkjær L, Kempf SJ, Hemdrup AL, von Linstow CU, Babcock AA, Darvesh S, Larsen MR, Finsen B. Diverse Protein Profiles in CNS Myeloid Cells and CNS Tissue From Lipopolysaccharide- and Vehicle-Injected APP SWE/PS1 ΔE9 Transgenic Mice Implicate Cathepsin Z in Alzheimer's Disease. Front Cell Neurosci 2018; 12:397. [PMID: 30459560 PMCID: PMC6232379 DOI: 10.3389/fncel.2018.00397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation, characterized by chronic activation of the myeloid-derived microglia, is a hallmark of Alzheimer’s disease (AD). Systemic inflammation, typically resulting from infection, has been linked to the progression of AD due to exacerbation of the chronic microglial reaction. However, the mechanism and the consequences of this exacerbation are largely unknown. Here, we mimicked systemic inflammation in AD with weekly intraperitoneal (i.p.) injections of APPSWE/PS1ΔE9 transgenic mice with E. coli lipopolysaccharide (LPS) from 9 to 12 months of age, corresponding to the period with the steepest increase in amyloid pathology. We found that the repeated LPS injections ameliorated amyloid pathology in the neocortex while increasing the neuroinflammatory reaction. To elucidate mechanisms, we analyzed the proteome of the hippocampus from the same mice as well as in unique samples of CNS myeloid cells. The repeated LPS injections stimulated protein pathways of the complement system, retinoid receptor activation and oxidative stress. CNS myeloid cells from transgenic mice showed enrichment in pathways of amyloid-beta clearance and elevated levels of the lysosomal protease cathepsin Z, as well as amyloid precursor protein, apolipoprotein E and clusterin. These proteins were found elevated in the proteome of both LPS and vehicle injected transgenics, and co-localized to CD11b+ microglia in transgenic mice and in primary murine microglia. Additionally, cathepsin Z, amyloid precursor protein, and apolipoprotein E appeared associated with amyloid plaques in neocortex of AD cases. Interestingly, cathepsin Z was expressed in microglial-like cells and co-localized to CD68+ microglial lysosomes in AD cases, and it was expressed in perivascular cells in AD and control cases. Taken together, our results implicate systemic LPS administration in ameliorating amyloid pathology in early-to-mid stage disease in the APPSWE/PS1ΔE9 mouse and attract attention to the potential disease involvement of cathepsin Z expressed in CNS myeloid cells in AD.
Collapse
Affiliation(s)
- Camilla Thygesen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Laura Ilkjær
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stefan J Kempf
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anne Louise Hemdrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Alicia A Babcock
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sultan Darvesh
- Department of Medicine (Neurology and Geriatric Medicine) - Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, Canada
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
44
|
Gu QF, Yu JZ, Wu H, Li YH, Liu CY, Feng L, Zhang GX, Xiao BG, Ma CG. Therapeutic effect of Rho kinase inhibitor FSD-C10 in a mouse model of Alzheimer's disease. Exp Ther Med 2018; 16:3929-3938. [PMID: 30344671 PMCID: PMC6176147 DOI: 10.3892/etm.2018.6701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022] Open
Abstract
Fasudil, a Rho kinase (ROCK) inhibitor, effectively inhibits disease severity in a mouse model of Alzheimer's disease (AD). However, given its significant limitations, including a relatively narrow safety window and poor oral bioavailability, Fasudil is not suitable for long-term use. Thus, screening for ROCK inhibitor(s) that are more efficient, safer, can be used orally and suitable for long-term use in the treatment of neurodegenerative disorders is required. The main purpose of the present study is to explore whether FSD-C10, a novel ROCK inhibitor, has therapeutic potential in amyloid precursor protein/presenilin-1 transgenic (APP/PS1 Tg) mice, and to determine possible mechanisms of its action. The results showed that FSD-C10 effectively improved learning and memory impairment, accompanied by reduced expression of amyloid-β 1-42 (Aβ1-42), Tau protein phosphorylation (P-tau) and β-site APP-cleaving enzyme in the hippocampus and cortex area of brain. In addition, FSD-C10 administration boosted the expression of synapse-associated proteins, such as postynaptic density protein 95, synaptophsin, α-amino 3-hydroxy-5-methyl-4-isoxa-zolep-propionate receptor and neurotrophic factors, e,g., brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Taken together, our results demonstrate that FSD-C10 has therapeutic potential in the AD mouse model, possibly through inhibiting the formation of Aβ1-42 and P-tau, and promoting the generation of synapse-associated proteins and neurotrophic factors.
Collapse
Affiliation(s)
- Qing-Fang Gu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Jie-Zhong Yu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Hao Wu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Yan-Hua Li
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Chun-Yun Liu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Ling Feng
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200025, P.R. China
| | - Cun-Gen Ma
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China.,2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
45
|
Catani MV, Gasperi V, Bisogno T, Maccarrone M. Essential Dietary Bioactive Lipids in Neuroinflammatory Diseases. Antioxid Redox Signal 2018; 29:37-60. [PMID: 28637354 PMCID: PMC5984567 DOI: 10.1089/ars.2016.6958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Under physiological conditions, neurons and glia are in a healthy, redox-balanced environment; when injury perturbs this equilibrium, a neuroinflammatory state is established by activated microglia that triggers pro-inflammatory responses and alters the oxidant/antioxidant balance, thus leading to neuronal loss and neurodegeneration. In neurodegenerative diseases (such as Alzheimer's disease, Parkinson's disease, amyothrophic lateral sclerosis, and multiple sclerosis), the brain is in a constitutively self-sustaining cycle of inflammation and oxidative stress that prompts and amplifies brain damage. Recent Advances: Recently, an increasing amount of scientific data highlight the ability of specific nutrients to cross the blood-brain barrier, and to modulate inflammatory and oxidative pathways. Therefore, nutritional approaches may contribute to restore the lost equilibrium among factors accounting for neurodegeneration. CRITICAL ISSUES Herein, we critically examine how essential lipids (including fatty acids, liposoluble vitamins and phytosterols) might contribute to accelerate or prevent the onset and progression of such pathologies. In particular, we highlight that experimental and clinical findings, although promising, are still inadequate to draw definitive conclusions. FUTURE DIRECTIONS More research is warranted in order to establish the real impact of lipid intake on brain health, especially when redox balance and inflammatory responses have been already compromised. In the future, it would be hoped to gain a detailed knowledge of chemical modifications and dynamic properties of such nutrients, before planning to exploit them as potential therapeutics. Antioxid. Redox Signal. 29, 37-60.
Collapse
Affiliation(s)
- Maria Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
46
|
Feng J, Wang JX, Du YH, Liu Y, Zhang W, Chen JF, Liu YJ, Zheng M, Wang KJ, He GQ. Dihydromyricetin inhibits microglial activation and neuroinflammation by suppressing NLRP3 inflammasome activation in APP/PS1 transgenic mice. CNS Neurosci Ther 2018; 24:1207-1218. [PMID: 29869390 PMCID: PMC6282966 DOI: 10.1111/cns.12983] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/28/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Activated microglia-mediated inflammation plays a key role in the pathogenesis of Alzheimer's disease (AD). In addition, chronic activation of NLRP3 inflammasomes triggered by amyloid β peptide (Aβ) in microglia contributes to persistent neuroinflammation. Here, the primary goal was to assess whether Dihydromyricetin (DHM), a plant flavonoid compound, is effective therapies for AD; it is crucial to know whether DHM will affect microglial activation and neuroinflammation in APP/PS1 transgenic mice. METHODS After DHM was intraperitoneally injected in APP/PS1 double-transgenic mice, we assessed the effect of DHM on microglial activation, the expression of NLRP3 inflammasome components, and the production of inflammatory cytokine IL-1β by immunofluorescence and Western blot. To determine whether DHM play roles in the Aβ production and deposition, amyloid β protein precursor (APP) and β-site APP cleaving enzyme1 (BACE1), as well as neprilysin (NEP), were detected by Western blot. Finally, behavior was tested by Morris Water Maze to illustrate whether DHM treatment has a significantly positive effect on ameliorating the memory and cognition deficits in AD. RESULTS Dihydromyricetin treatment significantly ameliorated memory and cognition deficits and decreased the number of activated microglia in the hippocampus and cortex of APP/PS1 mice. In addition, APP/PS1 mice show reduced activation of NLRP3 inflammasomes and reduced expression of NLRP3 inflammasome components. Furthermore, DHM could promote clearance of Aβ, a trigger for NLRP3 inflammasome activation, by increasing levels of NEP and shift microglial conversion to the M2-specific agrinase-1-positive cell phenotype, which enhances microglial clearance of Aβ and its aggregates but not production of Aβ. CONCLUSION Taken together, our findings suggest that DHM prevents progression of AD-like pathology through inhibition of NLRP3 inflammasome-based microglia-mediated neuroinflammation and may be a promising therapeutic drug for treating AD.
Collapse
Affiliation(s)
- Jie Feng
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jing-Xue Wang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ye-Hong Du
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ying Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jing-Fei Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yuan-Jie Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Min Zheng
- School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Ke-Jian Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Gui-Qiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Anatomy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
47
|
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that presents as a late sequela from traumatic brain injury (TBI). TBI is a growing and under-recognized public health concern with a high degree of morbidity and large associated global costs. While the immune response to TBI is complex, its contribution to the development of CTE remains largely unknown. In this review, we summarize the current understanding of the link between CTE and the resident innate immune system of the brain-microglia. We discuss the neuropathology underlying CTE including the creation and aggregation of phosphorylated tau protein into neurofibrillary tangles and the formation of amyloid beta deposits. We also present how microglia, the resident innate immune cells of the brain, drive the continuous low-level inflammation associated with the insidious onset of CTE. In this review, we conclude that the latency period between the index brain injury and the long-term development of CTE presents an opportunity for therapeutic intervention. Encouraging advances with microtubule stabilizers, cis p-tau antibodies, and the ability to therapeutically alter the inflammatory state of microglia have shown positive results in both animal and human trials. Looking forward, recent advancements in next-generation sequencing technology for the study of genomic, transcriptomic, and epigenetic information will provide an opportunity for significant advancement in our understanding of prorepair and pro-injury gene signatures allowing for targeted intervention in this highly morbid injury process.
Collapse
|
48
|
Zanandrea R, Abreu MS, Piato A, Barcellos LJ, Giacomini AC. Lithium prevents scopolamine-induced memory impairment in zebrafish. Neurosci Lett 2018; 664:34-37. [DOI: 10.1016/j.neulet.2017.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 11/27/2022]
|
49
|
Doig AJ. Positive Feedback Loops in Alzheimer's Disease: The Alzheimer's Feedback Hypothesis. J Alzheimers Dis 2018; 66:25-36. [PMID: 30282364 PMCID: PMC6484277 DOI: 10.3233/jad-180583] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
The dominant model for Alzheimer's disease (AD) is the amyloid cascade hypothesis, in which the accumulation of excess amyloid-β (Aβ) leads to inflammation, excess glutamate and intracellular calcium, oxidative stress, tau hyperphosphorylation and tangle formation, neuronal loss, and ultimately dementia. In a cascade, AD proceeds in a unidirectional fashion, with events only affecting downstream processes. Compelling evidence now exists for the presence of positive feedback loops in AD, however, involving oxidative stress, inflammation, glutamate, calcium, and tau. The pathological state of AD is thus a system of positive feedback loops, leading to amplification of the initial perturbation, rather than a linear cascade. Drugs may therefore be effective by targeting numerous points within the loops, rather than concentrating on upstream processes. Anti-inflammatories and anti-oxidants may be especially valuable, since these processes are involved in many loops and hence would affect numerous processes in AD.
Collapse
Affiliation(s)
- Andrew J. Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, Oxford Road, University of Manchester, UK
| |
Collapse
|
50
|
Lai KSP, Liu CS, Rau A, Lanctôt KL, Köhler CA, Pakosh M, Carvalho AF, Herrmann N. Peripheral inflammatory markers in Alzheimer's disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry 2017; 88:876-882. [PMID: 28794151 DOI: 10.1136/jnnp-2017-316201] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/23/2017] [Accepted: 07/17/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Increasing evidence suggests that inflammation is involved in Alzheimer's disease (AD) pathology. This study quantitatively summarised the data on peripheral inflammatory markers in patients with AD compared with healthy controls (HC). METHODS Original reports containing measurements of peripheral inflammatory markers in AD patients and HC were included for meta-analysis. Standardised mean differences were calculated using a random effects model. Meta-regression and exploration of heterogeneity was performed using publication year, age, gender, Mini-Mental State Examination (MMSE) scores, plasma versus serum measurements and immunoassay type. RESULTS A total of 175 studies were combined to review 51 analytes in 13 344 AD and 12 912 HC patients. Elevated peripheral interleukin (IL)-1β, IL-2, IL-6, IL-18, interferon-γ, homocysteine, high-sensitivity C reactive protein, C-X-C motif chemokine-10, epidermal growth factor, vascular cell adhesion molecule-1, tumour necrosis factor (TNF)-α converting enzyme, soluble TNF receptors 1 and 2, α1-antichymotrypsin and decreased IL-1 receptor antagonist and leptin were found in patients with AD compared with HC. IL-6 levels were inversely correlated with mean MMSE scores. CONCLUSIONS These findings suggest that AD is accompanied by a peripheral inflammatory response and that IL-6 may be a useful biological marker to correlate with the severity of cognitive impairment. Further studies are needed to determine the clinical utility of these markers.
Collapse
Affiliation(s)
- Ka Sing P Lai
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Celina S Liu
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Allison Rau
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Departments of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Cristiano A Köhler
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Maureen Pakosh
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Departments of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|