1
|
Mathieu S, Couderc M, Beauger M, Malochet-Guinamand S, Pickering ME, Soubrier M, Tournadre A. Efficacy and safety of capsaicin 8% patches: The experience of a rheumatology department. SAGE Open Med 2025; 13:20503121251330335. [PMID: 40291151 PMCID: PMC12033592 DOI: 10.1177/20503121251330335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/27/2025] [Indexed: 04/30/2025] Open
Abstract
Background Capsaicin 8% patches are recommended for the treatment of localized neuropathic pain, which is a frequent reason for rheumatology consultations. Objectives This study aimed to evaluate the efficacy and safety of capsaicin 8% used in our Rheumatology Department. Design Single-center retrospective study. Methods Patients treated by capsaicin 8% between October 03, 2019 and December 31, 2023 were included. Their age, sex, pain duration, DN4 score, pain intensity, and the cause of the neuropathic pain were collected. Patch safety was assessed on the day of application and after 15 days. The patient was asked about improvement, pain intensity, and the occurrence of burning sensations. Results One hundred twelve patients (mean age 62, 70% female) were included. The causes of neuropathic pain were especially scar (n = 31), digital osteoarthritis (n = 26), or radiculalgia (n = 22). Sixty patients reported improvement (54%) at day 15, with a mean percentage of improvement of 59%. Mean pain intensity decreased from 6.4 ± 1.9 to 4.5 ± 2.7 (p < 0.001). This improvement in pain was significant regardless of etiology. There was no difference in age, sex, and pain duration between improved and unimproved patients. Fifty-eight patients (58/106: 54.7%) experienced burning sensations after patching, mainly of moderate to high intensity (32/52: 61.5%), with an average duration of 2 days. Of the eight unimproved after the first patch, six reported a 50% improvement after the second patch. Conclusion Capsaicin 8% appeared to be an effective treatment in localized neuropathic pain, whatever the cause. It seemed beneficial to repeat the application after the 1st one had failed. Burning sensations after placement were fairly frequent, usually moderate to high, but lasting only a short time.
Collapse
Affiliation(s)
- Sylvain Mathieu
- Rheumatology Department, Gabriel Montpied Teachin Hospital, Clermont-Ferrand, France
- Inserm U-1107, NeuroDol, Clermont-Ferrand, France
| | - Marion Couderc
- Rheumatology Department, Gabriel Montpied Teachin Hospital, Clermont-Ferrand, France
| | - Marine Beauger
- Rheumatology Department, Gabriel Montpied Teachin Hospital, Clermont-Ferrand, France
| | | | - Marie-Eva Pickering
- Rheumatology Department, Gabriel Montpied Teachin Hospital, Clermont-Ferrand, France
| | - Martin Soubrier
- Rheumatology Department, Gabriel Montpied Teachin Hospital, Clermont-Ferrand, France
| | - Anne Tournadre
- Rheumatology Department, Gabriel Montpied Teachin Hospital, Clermont-Ferrand, France
| |
Collapse
|
2
|
Chuang YC, Jiang BY, Chen CC. Effect of Advillin Knockout on Diabetic Neuropathy Induced by Multiple Low Doses of Streptozotocin. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025; 68:11-21. [PMID: 39670415 DOI: 10.4103/ejpi.ejpi-d-24-00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
ABSTRACT Advillin is an actin-binding protein involved in regulating the organization of actin filaments and the dynamics of axonal growth cones. In mice, advillin is exclusively expressed in somatosensory neurons, ubiquitously expressed in all neuron subtypes during neonatal ages and particularly enriched in isolectin B4-positive (IB4 + ) non-peptidergic neurons in adulthood. We previously showed that advillin plays a key role in axon regeneration of somatosensory neurons during peripheral neuropathy. Mice lacking advillin lost the ability to recover from neuropathic pain induced by oxaliplatin, chronic compression of the sciatic nerve, and experimental autoimmune encephalitis. However, the role of advillin in painful diabetic neuropathy remains unknown. Diabetic neuropathy, a prevalent complication of types 1 and 2 diabetes mellitus, poses significant treatment challenges because of the limited efficacy and adverse side effects of current analgesics. Here we probed the effect of advillin knockout on neuropathic pain in a diabetic mouse model induced by multiple low doses of streptozotocin (STZ). STZ-induced cold allodynia was resolved in 8 weeks in wild-type ( Avil +/+ ) mice but could last more than 30 weeks in advillin-knockout ( Avil -/- ) mice. Additionally, Avi -/- but not Avil +/+ mice showed STZ-induced mechanical hypersensitivity of muscle. Consistent with the prolonged and/or worsened STZ-induced neuropathic pain, second-line coping responses to pain stimuli were greater in Avil -/- than Avil +/+ mice. On analyzing intraepidermal nerve density, STZ induced large axon degeneration in the hind paws but with distinct patterns between Avil +/+ and Avil -/- mice. We next probed whether advillin knockout could disturb capsaicin-induced axon regeneration ex vivo because capsaicin is clinically used to treat painful diabetic neuropathy by promoting axon regeneration. In a primary culture of dorsal root ganglion cells, 10-min capsaicin treatment selectively promoted neurite outgrowth of IB4 + neurons in Avil +/+ but not Avil -/- groups, which suggests that capsaicin could reprogram the intrinsic axonal regeneration by modulating the advillin-mediated actin dynamics. In conclusion, advillin knockout prolonged STZ-induced neuropathic pain in mice, which may be associated with the impaired intrinsic capacity of advillin-dependent IB4 + axon regeneration.
Collapse
Affiliation(s)
- Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bo-Yang Jiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Biomedical Translational Research Center, Taiwan Mouse Clinic, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Elbeddini A, Tanvir A, Yilmaz O, Rahman Y, Mongon R. Assessing the efficacy of topical formulations in diabetic neuropathy: a narrative review. J Diabetes Metab Disord 2024; 23:1613-1620. [PMID: 39610558 PMCID: PMC11599498 DOI: 10.1007/s40200-024-01459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 11/30/2024]
Abstract
Background We conducted a review of topical medications available for alleviation of diabetic neuropathic pain (DNP) and compared their efficacy with oral medications for pain relief. We also explored the feasibility of compounding topical medications. Methods Searches on PubMed, Medline Ovid, and Embase databases were conducted and findings were presented as a narrative review. Results and discussion 8% Capsaicin patches and 5% Lidocaine patches had the most evidence. The literature also showed evidence for topical clonidine, gabapentin, and amitriptyline. Conclusion Topical formulations are a potential substitute to oral medications in patients suffering from DNP. Potential options include 8% Capsaicin patch, 5% Lidocaine patch, Clonidine gel, Topical gabapentin, and an amitriptyline and ketamine combination. A promising area of research that requires further study is the effect of a combination of topicals in alleviated DNP.
Collapse
Affiliation(s)
- Ali Elbeddini
- Family Medicine Department, University of Ottawa, School of Medicine, 600 Peter Morand Crescent Suite 201, Ottawa, ON K1G 5Z3 Canada
| | - Azasma Tanvir
- College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5 Canada
| | - Orhan Yilmaz
- College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5 Canada
| | - Yusra Rahman
- Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8 Canada
| | - Renata Mongon
- Anesthesiology Department, State University of Campinas, Campinas, Brazil
| |
Collapse
|
4
|
Maharjan A, Vasamsetti BMK, Park JH. A comprehensive review of capsaicin: Biosynthesis, industrial productions, processing to applications, and clinical uses. Heliyon 2024; 10:e39721. [PMID: 39524861 PMCID: PMC11543913 DOI: 10.1016/j.heliyon.2024.e39721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Capsaicin, the main bioactive compound in chili peppers, is widely known for its diverse pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects. Despite its therapeutic potential, the low yield of natural capsaicin and the challenges in producing it on a large-scale limit broader industrial and clinical applications. This review provides a comprehensive analysis of capsaicin's biosynthesis in plants, chemical and enzymatic synthesis methods, and recent advancements in green production technologies. In addition, innovative applications such as drug delivery systems using nanoencapsulation and micelles are being developed to improve the bioavailability and therapeutic efficacy of capsaicin. Key findings highlight the use of capsaicin in food preservation, packaging, and pharmaceutical formulations. Future research should prioritize the refinement of synthetic routes, innovative delivery technologies, and the development of sustainable industrial processes to fully exploit the therapeutic and commercial potential of capsaicin.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Bala Murali Krishna Vasamsetti
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, 55365, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Zhang EX, Yazdi C, Islam RK, Anwar AI, Alvares-Amado A, Townsend H, Allen KE, Plakotaris E, Hirsch JD, Rieger RG, Allampalli V, Hasoon J, Islam KN, Shekoohi S, Kaye AD, Robinson CL. Diabetic Neuropathy: A Guide to Pain Management. Curr Pain Headache Rep 2024; 28:1067-1072. [PMID: 38967712 DOI: 10.1007/s11916-024-01293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE OF REVIEW Diabetic neuropathy is a common complication of diabetes mellitus (DM) and can affect up to 50% of DM patients during their lifetime. Patients typically present with numbness, tingling, pain, and loss of sensation in the extremities. Since there is no treatment targeting the underlying mechanism of neuropathy, strategies focus on preventative care and pain management. RECENT FINDINGS Up to 69% of patients with diabetic neuropathy receive pharmacological treatment for neuropathic pain. The United States Food and Drug Administration (FDA) confirmed four drugs for painful diabetic neuropathy (PDN): pregabalin, duloxetine, tapentadol, and the 8% capsaicin patch. Nonpharmacological treatments such as spinal cord stimulation (SCS) and transcutaneous electrical nerve stimulation (TENS) both show promise in reducing pain in DM patients. Despite the high burden associated with PDN, effective management remains challenging. This update covers the background and management of diabetic neuropathy, including its epidemiology, pathogenesis, preventative care, and current therapeutic strategies.
Collapse
Affiliation(s)
- Emily X Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Cyrus Yazdi
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rahib K Islam
- LSU Health Sciences Center New Orleans School of Medicine, 1901 Gravier Street, New Orleans, LA, 70112, USA
| | - Ahmed I Anwar
- Department of Psychology, Quinnipiac University, 275 Mt Carmel Ave, Hamden, CT, 06518, USA
| | - Alana Alvares-Amado
- American University of the Caribbean School of Medicine, 1 University Drive at, Jordan Dr, Cupecoy, Sint Maarten
| | - Horace Townsend
- American University of the Caribbean School of Medicine, 1 University Drive at, Jordan Dr, Cupecoy, Sint Maarten
| | - Kaitlyn E Allen
- LSU Health Sciences Center New Orleans School of Medicine, 1901 Gravier Street, New Orleans, LA, 70112, USA
| | - Elena Plakotaris
- LSU Health Sciences Center New Orleans School of Medicine, 1901 Gravier Street, New Orleans, LA, 70112, USA
| | - Jon D Hirsch
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Ross G Rieger
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Varsha Allampalli
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Jamal Hasoon
- Department of Anesthesia and Pain Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Kazi N Islam
- Agricultural Research Development Program, Central State University, 1400 Brush Row Road, Wilberforce, OH, 45384, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA.
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Christopher L Robinson
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
6
|
Gao N, Li M, Wang W, Liu Z, Guo Y. The dual role of TRPV1 in peripheral neuropathic pain: pain switches caused by its sensitization or desensitization. Front Mol Neurosci 2024; 17:1400118. [PMID: 39315294 PMCID: PMC11417043 DOI: 10.3389/fnmol.2024.1400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel plays a dual role in peripheral neuropathic pain (NeuP) by acting as a "pain switch" through its sensitization and desensitization. Hyperalgesia, commonly resulting from tissue injury or inflammation, involves the sensitization of TRPV1 channels, which modulates sensory transmission from primary afferent nociceptors to spinal dorsal horn neurons. In chemotherapy-induced peripheral neuropathy (CIPN), TRPV1 is implicated in neuropathic pain mechanisms due to its interaction with ion channels, neurotransmitter signaling, and oxidative stress. Sensitization of TRPV1 in dorsal root ganglion neurons contributes to CIPN development, and inhibition of TRPV1 channels can reduce chemotherapy-induced mechanical hypersensitivity. In diabetic peripheral neuropathy (DPN), TRPV1 is involved in pain modulation through pathways including reactive oxygen species and cytokine production. TRPV1's interaction with TRPA1 channels further influences chronic pain onset and progression. Therapeutically, capsaicin, a TRPV1 agonist, can induce analgesia through receptor desensitization, while TRPV1 antagonists and siRNA targeting TRPV1 show promise in preclinical studies. Cannabinoid modulation of TRPV1 provides another potential pathway for alleviating neuropathic pain. This review summarizes recent preclinical research on TRPV1 in association with peripheral NeuP.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Li
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liu
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Huang HY, Lin YP, Wei H, Fu Y, Zhou YH, Fang ZH, Qiu XT, Wang M, Li QB, Li SS, Wang SD, Dai F, Liu ZJ, Zhao L, Wen JX, Wu LY, Zeng HY, Zhang JM, Lu QY, He L, Song W, Sun L, Luo LL, He JL, Xie WW, Liang QS, Huang Y, Zhu SL, Long JE, Gao ZJ, Wen ZH, Li CJ, Ouyang WW, Li G, Wu MH, Li AX, Huang JZ, Paul SK, Tang XY, Fan GJ. Effect and Safety of Herbal Medicine Foot Baths in Patients with Diabetic Peripheral Neuropathy: A Multicenter Double-Blind Randomized Controlled Trial. Chin J Integr Med 2024; 30:195-202. [PMID: 38374490 DOI: 10.1007/s11655-024-3900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVE To evaluate the effect and safety of foot baths with Tangbi Waixi Decoction (TW) in treating patients with diabetic peripheral neuropathy (DPN). METHODS It is a multicenter double-blinded randomized controlled trial. Participants with DPN were recruited between November 18, 2016 and May 30, 2018 from 8 hospitals in China. All patients received basic treatments for glycemic management. Patients received foot baths with TW herbal granules either 66.9 g (intervention group) or 6.69 g (control group) for 30 min once a day for 2 weeks and followed by a 2-week rest, as a therapeutic course. If the Toronto Clinical Scoring System total score (TCSS-TS) ⩾6 points, the patients received a total of 3 therapeutic courses (for 12 weeks) and were followed up for 12 weeks. The primary outcome was change in TCSS-TS score at 12 and 24 weeks. Secondary outcomes included changes in bilateral motor nerve conduction velocity (MNCV) and sensory nerve conduction velocity (SNCV) of the median and common peroneal nerve. Safety was also assessed. RESULTS Totally 632 patients were enrolled, and 317 and 315 were randomized to the intervention and control groups, respectively. After the 12-week intervention, patients in both groups showed significant declines in TCSSTS scores, and significant increases in MNCV and SNCV of the median and common peroneal nerves compared with pre-treatment (P<0.05). The reduction of TCSS-TS score at 12 weeks and the increase of SNCV of median nerve at 24 weeks in the control group were greater than those in the intervention group (P<0.05). The number of adverse events did not differ significantly between groups (P>0.05), and no serious adverse event was related with treatment. CONCLUSION Treatment of TW foot baths was safe and significantly benefitted patients with DPN. A low dose of TW appeared to be more effective than a high dose. (Registry No. ChiCTR-IOR-16009331).
Collapse
Affiliation(s)
- Hao-Yue Huang
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yu-Ping Lin
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Hua Wei
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yu Fu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yue-Hong Zhou
- Department of Endocrinology, Liuyang Hospital of Chinese Medicine, Changsha, 410000, China
| | - Zhao-Hui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230000, China
| | - Xiao-Tang Qiu
- Department of Endocrinology, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, 570100, China
| | - Mei Wang
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Qing-Bo Li
- Department of Geriatric, Luoyang No.1 Hospital of Traditional Chinese Medicine, Luoyang, Henan Province, 471000, China
| | - Shan-Shan Li
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Shi-Dong Wang
- Department of Endocrinology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, 100000, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Zhen-Jie Liu
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Ling Zhao
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Jian-Xuan Wen
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Li-Yan Wu
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Hui-Yan Zeng
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Jin-Ming Zhang
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Qi-Yun Lu
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Liu He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Wei Song
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Lu Sun
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Lu-Lu Luo
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Jia-Li He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Wen-Wen Xie
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Qing-Shun Liang
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yuan Huang
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Sheng-Ling Zhu
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Jie-Er Long
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Zhi-Juan Gao
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Ze-Huai Wen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Chun-Ji Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Wen-Wei Ouyang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Geng Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Ming-Hui Wu
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - An-Xiang Li
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Jin-Zhu Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Sanjoy K Paul
- Melbourne EpiCentre, The University of Melbourne and Melbourne Health, Melbourne, 3013, Australia
| | - Xian-Yu Tang
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| | - Guan-Jie Fan
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| |
Collapse
|
8
|
Ahmadzadeh AM, Pourali G, Mirheidari SB, Shirazinia M, Hamedi M, Mehri A, Amirbeik H, Saghebdoust S, Tayarani-Najaran Z, Sathyapalan T, Forouzanfar F, Sahebkar A. Medicinal Plants for the Treatment of Neuropathic Pain: A Review of Randomized Controlled Trials. Curr Pharm Biotechnol 2024; 25:534-562. [PMID: 37455451 DOI: 10.2174/1389201024666230714143538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Neuropathic pain is a disabling condition caused by various diseases and can profoundly impact the quality of life. Unfortunately, current treatments often do not produce complete amelioration and can be associated with potential side effects. Recently, herbal drugs have garnered more attention as an alternative or a complementary treatment. In this article, we summarized the results of randomized clinical trials to evaluate the effects of various phytomedicines on neuropathic pain. In addition, we discussed their main bioactive components and potential mechanisms of action to provide a better view of the application of herbal drugs for treating neuropathic pain.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Matin Shirazinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Hamedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Amirbeik
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Allam Diabetes Centre Hull Royal Infirmary Anlaby Road HU3 2JZ, Hull, UK.m
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Zhu K, Wang L, Liao T, Li W, Zhou J, You Y, Shi J. Progress in the development of TRPV1 small-molecule antagonists: Novel Strategies for pain management. Eur J Med Chem 2023; 261:115806. [PMID: 37713804 DOI: 10.1016/j.ejmech.2023.115806] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels are widely distributed in sensory nerve endings, the central nervous system, and other tissues, functioning as ion channel proteins responsive to thermal pain and chemical stimuli. In recent years, the TRPV1 receptor has garnered significant interest as a potential therapeutic approach for various pain-related disorders, particularly TRPV1 antagonists. The present review offers a comprehensive, systematic exploration of both first- and second-generation TRPV1 antagonists in the context of pain management. Antagonists are categorized and explicated according to their structural characteristics. Detailed examination of binding modes, structural features, and pharmacological activities, alongside a critical appraisal of the advantages and limitations inherent to typical compounds within each structural category, are undertaken. Detailed discussions of the binding modes, structural features, pharmacological activities, advantages, and limitations of typical compounds within each structural category offer valuable insights and guidance for the future research and development of safer, more effective, and more targeted TRPV1 antagonists.
Collapse
Affiliation(s)
- Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lin Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - TingTing Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Gai Y, Bai C, Zhang W, Xiao H, Xu J, Hou J, Ge X. Nootkatone attenuates airway inflammation in asthmatic mice through repressing ROS-induced NLRP3 inflammasome activation. Biochem Cell Biol 2023; 101:513-522. [PMID: 37466343 DOI: 10.1139/bcb-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Nootkatone (NKT) exhibits potential pharmacological activities including anti-oxidation and anti-inflammation. Nevertheless, little is known about the roles of NKT in asthmatic airway inflammation. In the study, mice were sensitized and challenged with ovalbumin (OVA) to establish experimental allergic asthma model. After treatment with NKT, lung tissues, peripheral blood, and bronchoalveolar lavage fluid (BALF) were collected to assess inflammatory cytokines, oxidative stress, and pathological alternations. The effects of NKT on regulating reactive oxygen species (ROS)-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation was assessed in IL-13-treated BEAS-2B cell model. We found that NKT treatment decreased the production of Th2 inflammatory cytokines (IL-4, IL-5, and IL-13) in BALF and IgE levels in serum, and alleviated inflammatory cell penetration, goblet cell proliferation, collagen accumulation, and mucus hypersecretion in lung tissues. NKT treatment mitigated oxidative stress and NLRP3 inflammasome activation in asthmatic mice. IL-13 treatment induced oxidative stress and NLRP3-mediated pyroptosis in BEAS-2B bronchial epithelial cells, whereas these effects were blocked by NKT. NKT protected against airway remodeling, as indicated by decreased epithelial-mesenchymal transition. Taken together, these results demonstrate that NKT mitigates asthmatic airway inflammation by inhibiting ROS-triggered NLRP3 activation and may be a potential agent for treating asthma.
Collapse
Affiliation(s)
- Yun Gai
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Datong Road, Shanghai 200137, People's Republic of China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University, Changhai Road, Shanghai 200433, People's Republic of China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shu Guang Hospital of Shanghai University of TCM, Shanghai 201203, People's Republic of China
| | - Hua Xiao
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Datong Road, Shanghai 200137, People's Republic of China
| | - Jing Xu
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Datong Road, Shanghai 200137, People's Republic of China
| | - Jia Hou
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, People's Republic of China
| | - Xiahui Ge
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Datong Road, Shanghai 200137, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Jang HN, Oh TJ. Pharmacological and Nonpharmacological Treatments for Painful Diabetic Peripheral Neuropathy. Diabetes Metab J 2023; 47:743-756. [PMID: 37670573 PMCID: PMC10695723 DOI: 10.4093/dmj.2023.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/28/2023] [Indexed: 09/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most prevalent chronic complications of diabetes. The lifetime prevalence of DPN is thought to be >50%, and 15%-25% of patients with diabetes experience neuropathic pain, referred to as "painful DPN." Appropriate treatment of painful DPN is important because this pain contributes to a poor quality of life by causing sleep disturbance, anxiety, and depression. The basic principle for the management of painful DPN is to control hyperglycemia and other modifiable risk factors, but these may be insufficient for preventing or improving DPN. Because there is no promising diseasemodifying medication for DPN, the pain itself needs to be managed when treating painful DPN. Drugs for neuropathic pain, such as gabapentinoids, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants, alpha-lipoic acid, sodium channel blockers, and topical capsaicin, are used for the management of painful DPN. The U.S. Food and Drug Administration (FDA) has approved pregabalin, duloxetine, tapentadol, and the 8% capsaicin patch as drugs for the treatment of painful DPN. Recently, spinal cord stimulation using electrical stimulation is approved by the FDA for the treatment for painful DPN. This review describes the currently available pharmacological and nonpharmacological treatments for painful DPN.
Collapse
Affiliation(s)
- Han Na Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Basem JI, Bah FN, Mehta ND. A Brief Review on the Novel Therapies for Painful Diabetic Neuropathy. Curr Pain Headache Rep 2023; 27:299-305. [PMID: 37392335 DOI: 10.1007/s11916-023-01126-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE OF REVIEW Almost half of people diagnosed with diabetes mellitus will develop painful diabetic neuropathy (PDN), a condition greatly impacting quality of life with complicated pathology. While there are different FDA approved forms of treatment, many of the existing options are difficult to manage with comorbities and are associated with unwanted side effects. Here, we summarize the current and novel treatments for PDN. RECENT FINDINGS Current research is exploring alternative pain management treatments from the first line options of pregabalin, gabapentin, duloxetine, and amitriptyline which often have side effects. The use of FDA approved capsaicin and spinal cord stimulators (SCS) has been incredibly beneficial in addressing this. In addition, new treatments looking at different targets, such as NMDA receptor and the endocannabinoid system, show promising results. There are several treatment options that have been shown to be successful in helping treat PDN, but often require adjunct treatment or alterations due to side effects. While there is ample research for standard medications, treatments such as palmitoylethanolamide and endocannabinoid targets have extremely limited clinical trials. We also found that many studies did not evaluate additional variables other than pain relief, such as functional changes nor were there consistent measurement methods. Future research should continue trials comparing treatment efficacies along with more quality of life measures.
Collapse
Affiliation(s)
- Jade I Basem
- Pain Medicine, Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| | - Fatoumata N Bah
- Pain Medicine, Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Neel D Mehta
- Pain Medicine, Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Erin N, Szallasi A. Carcinogenesis and Metastasis: Focus on TRPV1-Positive Neurons and Immune Cells. Biomolecules 2023; 13:983. [PMID: 37371563 DOI: 10.3390/biom13060983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Both sensory neurons and immune cells, albeit at markedly different levels, express the vanilloid (capsaicin) receptor, Transient Receptor Potential, Vanilloid-1 (TRPV1). Activation of TRPV1 channels in sensory afferent nerve fibers induces local effector functions by releasing neuropeptides (most notably, substance P) which, in turn, trigger neurogenic inflammation. There is good evidence that chronic activation or inactivation of this inflammatory pathway can modify tumor growth and metastasis. TRPV1 expression was also demonstrated in a variety of mammalian immune cells, including lymphocytes, dendritic cells, macrophages and neutrophils. Therefore, the effects of TRPV1 agonists and antagonists may vary depending on the prominent cell type(s) activated and/or inhibited. Therefore, a comprehensive understanding of TRPV1 activity on immune cells and nerve endings in distinct locations is necessary to predict the outcome of therapies targeting TRPV1 channels. Here, we review the neuro-immune modulation of cancer growth and metastasis, with focus on the consequences of TRPV1 activation in nerve fibers and immune cells. Lastly, the potential use of TRPV1 modulators in cancer therapy is discussed.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, Antalya 07070, Turkey
- Immuno-Pharmacology and Immuno-Oncology Unit, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
14
|
Lathrop JR, Rosen SN, Heitkemper MM, Buchanan DT. Cyclic Vomiting Syndrome and Cannabis Hyperemesis Syndrome: The State of the Science. Gastroenterol Nurs 2023; 46:208-224. [PMID: 37074964 DOI: 10.1097/sga.0000000000000730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/10/2022] [Indexed: 04/20/2023] Open
Abstract
This article provides a narrative review of the state of the science for both cyclic vomiting syndrome and cannabis hyperemesis syndrome along with a discussion of the relationship between these 2 conditions. The scope of this review includes the historical context of these conditions as well as the prevalence, diagnostic criteria, pathogenesis, and treatment strategies for both conditions. A synopsis of the endocannabinoid system provides a basis for the hypothesis that a lack of cannabidiol in modern high-potency Δ 9 -tetrahydrocannabinol cannabis may be contributory to cannabis hyperemesis syndrome and possibly other cannabis use disorders. In concluding assessment, though the publications addressing both adult cyclic vomiting syndrome and cannabis hyperemesis syndrome are steadily increasing overall, the state of the science supporting the treatments, prognosis, etiology, and confounding factors (including cannabis use) is of moderate quality. Much of the literature portrays these conditions separately and as such sometimes fails to account for the confounding of adult cyclic vomiting syndrome with cannabis hyperemesis syndrome. The diagnostic and therapeutic approaches are, at present, based generally on case series publications and expert opinion, with a very limited number of randomized controlled trials and a complete absence of Level 1 evidence within the cyclic vomiting literature overall as well as for cannabis hyperemesis syndrome specifically.
Collapse
Affiliation(s)
- James R Lathrop
- James R. Lathrop, DNP, FNP, ARNP, is a PhD student under the Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
- Sheldon N. Rosen, MD, is Clinical Associate Professor, Division of Gastroenterology, School of Medicine, University of Washington, Seattle
- Margaret M. Heitkemper, PhD, RN, FAAN, is Professor and Elizabeth Sterling Soule Endowed Chair in Nursing, Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
- Diana Taibi Buchanan, PhD, RN, is Associate Professor and Mary S. Tschudin Endowed Professor of Nursing Education, Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
| | - Sheldon N Rosen
- James R. Lathrop, DNP, FNP, ARNP, is a PhD student under the Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
- Sheldon N. Rosen, MD, is Clinical Associate Professor, Division of Gastroenterology, School of Medicine, University of Washington, Seattle
- Margaret M. Heitkemper, PhD, RN, FAAN, is Professor and Elizabeth Sterling Soule Endowed Chair in Nursing, Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
- Diana Taibi Buchanan, PhD, RN, is Associate Professor and Mary S. Tschudin Endowed Professor of Nursing Education, Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
| | - Margaret M Heitkemper
- James R. Lathrop, DNP, FNP, ARNP, is a PhD student under the Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
- Sheldon N. Rosen, MD, is Clinical Associate Professor, Division of Gastroenterology, School of Medicine, University of Washington, Seattle
- Margaret M. Heitkemper, PhD, RN, FAAN, is Professor and Elizabeth Sterling Soule Endowed Chair in Nursing, Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
- Diana Taibi Buchanan, PhD, RN, is Associate Professor and Mary S. Tschudin Endowed Professor of Nursing Education, Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
| | - Diana Taibi Buchanan
- James R. Lathrop, DNP, FNP, ARNP, is a PhD student under the Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
- Sheldon N. Rosen, MD, is Clinical Associate Professor, Division of Gastroenterology, School of Medicine, University of Washington, Seattle
- Margaret M. Heitkemper, PhD, RN, FAAN, is Professor and Elizabeth Sterling Soule Endowed Chair in Nursing, Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
- Diana Taibi Buchanan, PhD, RN, is Associate Professor and Mary S. Tschudin Endowed Professor of Nursing Education, Department of Biobehavioral Nursing & Health Informatics, School of Nursing, University of Washington, Seattle
| |
Collapse
|
15
|
Exploring Novel Therapeutic Targets in the Common Pathogenic Factors in Migraine and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24044114. [PMID: 36835524 PMCID: PMC9959352 DOI: 10.3390/ijms24044114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Migraine and neuropathic pain (NP) are both painful, disabling, chronic conditions which exhibit some symptom similarities and are thus considered to share a common etiology. The calcitonin gene-related peptide (CGRP) has gained credit as a target for migraine management; nevertheless, the efficacy and the applicability of CGRP modifiers warrant the search for more effective therapeutic targets for pain management. This scoping review focuses on human studies of common pathogenic factors in migraine and NP, with reference to available preclinical evidence to explore potential novel therapeutic targets. CGRP inhibitors and monoclonal antibodies alleviate inflammation in the meninges; targeting transient receptor potential (TRP) ion channels may help prevent the release of nociceptive substances, and modifying the endocannabinoid system may open a path toward discovery of novel analgesics. There may exist a potential target in the tryptophan-kynurenine (KYN) metabolic system, which is closely linked to glutamate-induced hyperexcitability; alleviating neuroinflammation may complement a pain-relieving armamentarium, and modifying microglial excitation, which is observed in both conditions, may be a possible approach. Those are several potential analgesic targets which deserve to be explored in search of novel analgesics; however, much evidence remains missing. This review highlights the need for more studies on CGRP modifiers for subtypes, the discovery of TRP and endocannabinoid modulators, knowledge of the status of KYN metabolites, the consensus on cytokines and sampling, and biomarkers for microglial function, in search of innovative pain management methods for migraine and NP.
Collapse
|
16
|
Bielewicz J, Kamieniak M, Szymoniuk M, Litak J, Czyżewski W, Kamieniak P. Diagnosis and Management of Neuropathic Pain in Spine Diseases. J Clin Med 2023; 12:jcm12041380. [PMID: 36835916 PMCID: PMC9961043 DOI: 10.3390/jcm12041380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Neuropathic pain is generally defined as a non-physiological pain experience caused by damage to the nervous system. It can occur spontaneously, as a reaction to a given stimulus, or independently of its action, leading to unusual pain sensations usually referred to as firing, burning or throbbing. In the course of spine disorders, pain symptoms commonly occur. According to available epidemiological studies, a neuropathic component of pain is often present in patients with spinal diseases, with a frequency ranging from 36% to 55% of patients. Distinguishing between chronic nociceptive pain and neuropathic pain very often remains a challenge. Consequently, neuropathic pain is often underdiagnosed in patients with spinal diseases. In reference to current guidelines for the treatment of neuropathic pain, gabapentin, serotonin and norepinephrine reuptake inhibitors and tricyclic antidepressants constitute first-line therapeutic agents. However, long-term pharmacologic treatment often leads to developing tolerance and resistance to used medications. Therefore, in recent years, a plethora of therapeutic methods for neuropathic pain have been developed and investigated to improve clinical outcomes. In this review, we briefly summarized current knowledge about the pathophysiology and diagnosis of neuropathic pain. Moreover, we described the most effective treatment approaches for neuropathic pain and discussed their relevance in the treatment of spinal pain.
Collapse
Affiliation(s)
- Joanna Bielewicz
- Department of Neurology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Maciej Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Michał Szymoniuk
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Correspondence:
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
17
|
Hans GH, Almeshal D, Vanlommel L, Roelant E, Verhaegen I, Smits E, Van Boxem K, Fontaine R, Investigators Team TPELICAN. Considerations on the Obstacles That Lead to Slow Recruitment in a Pain Management Clinical Trial: Experiences from the Belgian PELICAN (PrEgabalin Lidocaine Capsaicin Neuropathic Pain) Pragmatic Study. Pain Res Manag 2023; 2023:7708982. [PMID: 37089721 PMCID: PMC10121349 DOI: 10.1155/2023/7708982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/05/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023]
Abstract
Background A qualitative evaluation study of the prematurely terminated PrEgabalin Lidocaine Capsaicin Neuropathic Pain (PELICAN) study was performed. The PELICAN study aimed to examine pain management for localized neuropathic pain (LNP), as epidemiological figures have shown a high percentage of LNP patients in Belgium. The study compared systemic and topical medications according to pain relief, adverse effects, and several measures of quality of life. Objective Achieving better study patient recruitment through qualitative research. To investigate and determine the causes of the observed recruitment problems in the PELICAN study, pain centers involved in the study as well as nonrecruiting pain centers were included. Furthermore, it aimed to highlight the positive and negative lessons learned from the conducted study and the number of obstacles the team had to overcome. Methods A qualitative study, using a mixed methods approach, was performed. Multiple pain centers in Belgium completed an online survey, after which a structured interview was conducted to elaborate the responses in more detail. The broad topics of these meetings were feedback about the study, reviewing survey answers, and actions undertaken to enhance recruitment. Results Different factors contributed to the low recruitment rate in the PELICAN study, such as limited and late referral from the general practitioners to the Belgian pain centers, insufficient internal referrals from nonpain specialists, lack of specific expertise on LNP in some centers, scarcity of staff, limited reimbursement to administer complex analgesic schemes, overestimation of the patient population, and the reluctance of patients to participate in pain research. Additionally, shortcomings in the implemented study design and the need for more logistical investments were identified. Conclusion The findings of the qualitative study demonstrate the need for further, more varied LNP research in Belgium, not limited to pharmacological studies. It also sheds important light on the recruitment obstacles that may be faced during these studies. Future studies could support this research by offering better proposals for feasibility and recruitment, for instance, by designing and conducting a compelling pilot study or applying social media during the recruitment phase. Clinical Trials. This trial is registered with NCT03348735. EUDRACT number 2018-003617-17.
Collapse
Affiliation(s)
- Guy H. Hans
- Multidisciplinary Pain Center, Antwerp University Hospital (UZA), Edegem, Belgium
- ASTARC, University of Antwerp (UA), Antwerp, Belgium
| | - Dima Almeshal
- Clinical Trial Center (CTC), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Lotte Vanlommel
- Clinical Trial Center (CTC), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Ella Roelant
- Clinical Trial Center (CTC), Antwerp University Hospital (UZA), Edegem, Belgium
- StatUa, Center for Statistics, University of Antwerp (UA), Antwerp, Belgium
| | - Iris Verhaegen
- Clinical Trial Center (CTC), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Elke Smits
- Clinical Trial Center (CTC), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Koen Van Boxem
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Hospital Oost-Limburg, Genk, Belgium
| | | | | |
Collapse
|
18
|
Drug repurposing – A search for novel therapy for the treatment of diabetic neuropathy. Biomed Pharmacother 2022; 156:113846. [DOI: 10.1016/j.biopha.2022.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
|
19
|
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12:4011-4039. [PMID: 36386472 PMCID: PMC9643300 DOI: 10.1016/j.apsb.2022.08.022] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Natural products, and especially the active ingredients found in traditional Chinese medicine (TCM), have a thousand-year-long history of clinical use and a strong theoretical basis in TCM. As such, traditional remedies provide shortcuts for the development of original new drugs in China, and increasing numbers of natural products are showing great therapeutic potential in various diseases. This paper reviews the molecular mechanisms of action of natural products from different sources used in the treatment of inflammatory diseases and cancer, introduces the methods and newly emerging technologies used to identify and validate the targets of natural active ingredients, enumerates the expansive list of TCM used to treat inflammatory diseases and cancer, and summarizes the patterns of action of emerging technologies such as single-cell multiomics, network pharmacology, and artificial intelligence in the pharmacological studies of natural products to provide insights for the development of innovative natural product-based drugs. Our hope is that we can make use of advances in target identification and single-cell multiomics to obtain a deeper understanding of actions of mechanisms of natural products that will allow innovation and revitalization of TCM and its swift industrialization and internationalization.
Collapse
Affiliation(s)
- Yuyu Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Jiaojiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
20
|
László S, Bátai IZ, Berkó S, Csányi E, Dombi Á, Pozsgai G, Bölcskei K, Botz L, Wagner Ö, Pintér E. Development of Capsaicin-Containing Analgesic Silicone-Based Transdermal Patches. Pharmaceuticals (Basel) 2022; 15:1279. [PMID: 36297391 PMCID: PMC9611826 DOI: 10.3390/ph15101279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Transdermal therapeutic systems (TTSs) enable convenient dosing in drug therapy. Modified silicone-polymer-based patches are well-controlled and cost-effective matrix diffusion systems. In the present study, we investigated the substance release properties, skin penetration, and analgesic effect of this type of TTS loaded with low-dose capsaicin. Release properties were measured in Franz diffusion cell and continuous flow-through cell approaches. Capsaicin was detected with HPLC-UV and UV spectrophotometry. Raman spectroscopy was conducted on human skin samples exposed to the TTS. A surgical incision or carrageenan injection was performed on one hind paw of male Wistar rats. TTSs were applied to the epilated dorsal skin. Patches were kept on the animals for 6 h. The thermal hyperalgesia and mechanical pain threshold of the hind paws were detected. Patches exhibited controlled, zero-order kinetic capsaicin release. According to the Raman mapping, capsaicin penetrated into the epidermis and dermis of human skin, where the target receptors are expressed. The thermal pain threshold drop of the operated rat paws was reversed by capsaicin treatment compared to that of animals treated with control patches. It was concluded that our modified silicone-polymer-based capsaicin-containing TTS is suitable for the relief of traumatic and inflammatory pain.
Collapse
Affiliation(s)
- Szabolcs László
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
| | - István Z. Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, H-7624 Pécs, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Ágnes Dombi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, H-7624 Pécs, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, H-7624 Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, H-7624 Pécs, Hungary
| | - Lajos Botz
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, Honvéd u. 3., H-7624 Pécs, Hungary
| | - Ödön Wagner
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, H-7624 Pécs, Hungary
| |
Collapse
|
21
|
Lidocaine Ameliorates Diabetic Peripheral Neuropathy in Streptozotocin-Induced Diabetic Rats through Modulating the c-Jun Signaling Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1888153. [PMID: 36072636 PMCID: PMC9402326 DOI: 10.1155/2022/1888153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
As one of the common complications of diabetes mellitus (DM), Diabetic Peripheral Neuropathy (DPN) threatens human lives seriously. Emerging evidences have confirmed the protective effects of lidocaine on DPN. However, the possible role and underlying mechanisms of lidocaine in DPN have not been clarified. In this study, the potential role of lidocaine in DPN is explored, and the possible mechanisms are investigated. The rat DPN model is constructed through administration of streptozotocin (STZ, 60 mg/kg). All rats are randomly divided into four groups, including the control group, DPN group, lidocaine (3.78 mg/time) group, and lidocaine combined with the SP600125 (15 mg/kg) group. Mechanical threshold, thermal latency, and blood glucose of rats before and after treatment are detected, and Nerve Conduction Velocity (NCV) is assessed. Moreover, qRT-PCR and western blot assays are carried out to determine the expressions of the c-Jun signaling pathway. The experimental results demonstrate that lidocaine remarkably downregulates the mRNA and protein expressions of the c-Jun signaling pathway in serum and DRGs induced with DPN. Besides, lidocaine combined with SP600125 can obtain better effects than lidocaine alone. It is clearly evident that lidocaine has a certain therapeutic effect on DPN.
Collapse
|
22
|
Strand N, Wie C, Peck J, Maita M, Singh N, Dumbroff J, Tieppo Francio V, Murphy M, Chang K, Dickerson DM, Maloney J. Small Fiber Neuropathy. Curr Pain Headache Rep 2022; 26:429-438. [PMID: 35384587 DOI: 10.1007/s11916-022-01044-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This narrative review aims to summarize advances in the field of small fiber neuropathy made over the last decade, with emphasis on novel research highlighting the distinctive features of SFN. RECENT FINDINGS While the management of SFNs is ideally aimed at treating the underlying cause, most patients will require pain control via multiple, concurrent therapies. Herein, we highlight the most up-to-date information for diagnosis, medication management, interventional management, and novel therapies on the horizon. Despite the prevalence of small fiber neuropathies, there is no clear consensus on guidelines specific for the treatment of SFN. Despite the lack of specific guidelines for SFN treatment, the most recent general neuropathic pain guidelines are based on Cochrane studies and randomized controlled trials (RCTs) which have individually examined therapies used for the more commonly studied SFNs, such as painful diabetic neuropathy and HIV neuropathy. The recommendations from current guidelines are based on variables such as number needed to treat (NNT), safety, ease of use, and effect on quality of life.
Collapse
Affiliation(s)
- N Strand
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA.
| | - C Wie
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - J Peck
- Performing Arts Medicine Department, Shenandoah University, Winchester, USA
| | - M Maita
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - N Singh
- OrthoAlabama Spine and Sports, Birmingham, AL, USA
| | - J Dumbroff
- Mount Sinai Morningside and West Department of Anesthesiology, New York, NY, USA
| | - V Tieppo Francio
- Department of Rehabilitation on Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - M Murphy
- Department of Rehabilitation on Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - K Chang
- Department of Anesthesiology and Critical Care, Emory University, Atlanta, GA, USA
| | - D M Dickerson
- NorthShore University HealthSystem, Evanston, IL, USA
- University of Chicago Medicine, Chicago,, IL, USA
| | - J Maloney
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA
| |
Collapse
|
23
|
Knoell J, Chillappagari S, Knudsen L, Korfei M, Dartsch R, Jonigk D, Kuehnel MP, Hoetzenecker K, Guenther A, Mahavadi P. PACS2-TRPV1 axis is required for ER-mitochondrial tethering during ER stress and lung fibrosis. Cell Mol Life Sci 2022; 79:151. [PMID: 35212819 PMCID: PMC8881280 DOI: 10.1007/s00018-022-04189-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/16/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria (mito) play a vital role in alveolar type II cell (AEC2) homeostasis and are both stressed in patients with idiopathic pulmonary fibrosis (IPF). Up to now, no data are available with regard to ER–mito cross talk and tethering under conditions of IPF. We here demonstrate that ER–mitochondrial tethering is reduced upon experimental ER stress in vitro and in the IPF AECII ex vivo, and this is—at least in part—due to decreased phosphofurin acidic cluster sorting protein 2 (PACS-2, also called PACS2) protein levels. PACS2 levels are influenced by its interaction with the transient receptor potential cation channel subfamily V member 1 (TRPV1) and can be experimentally modified by the TRPV1-modulating drug capsaicin (CPS). Employing alveolar epithelial cells with overexpression of the terminal ER stress signaling factor Chop or the IPF-associated surfactant protein C mutation (SPCΔexon4) in vitro, we observed a restoration of PACS2 levels upon treatment with CPS. Similarly, treatment of precision cut lung slices from IPF patients with CPS ex vivo forwarded similar effects. Importantly, in all models such kind of intervention also greatly reduced the extent of alveolar epithelial apoptosis. We therefore conclude that therapeutic targeting of the PACS2–TRPV1 axis represents an interesting novel, epithelial-protective approach in IPF.
Collapse
Affiliation(s)
- Jessica Knoell
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Shashi Chillappagari
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.,Department of Biochemistry, Faculty of Medicine, JLU, Giessen, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Martina Korfei
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Ruth Dartsch
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Mark P Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Vienna General Hospital, Vienna, Austria.,European IPF/ILD Registry and Biobank, Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.,European IPF/ILD Registry and Biobank, Giessen, Germany.,Member of the Cardio-Pulmonary Institute (CPI), JLU, Giessen, Germany.,Lung Clinic, Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany. .,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
24
|
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a nonselective cation channel that is intensively expressed in the peripheral nerve system and involved in a variety of physiological and pathophysiological processes in mammals. Its activity is of great significance in transmitting pain or itch signals from peripheral sensory neurons to the central nervous system. The alteration or hypersensitivity of TRPV1 channel is well evidenced under various pathological conditions. Moreover, accumulative studies have revealed that TRPV1-expressing (TRPV1+) sensory neurons mediate the neuroimmune crosstalk by releasing neuropeptides to innervated tissues as well as immune cells. In the central projection, TRPV1+ terminals synapse with the secondary neurons for the transmission of pain and itch signalling. The intense involvement of TRPV1 and TRPV1+ neurons in pain and itch makes it a potential pharmaceutical target. Over decades, the basis of TRPV1 channel structure, the nature of its activity, and its modulation in pathological processes have been broadly studied and well documented. Herein, we highlight the role of TRPV1 and its associated neurons in sensing pain and itch. The fundamental understandings of TRPV1-involved nociception, pruriception, neurogenic inflammation, and cell-specific modulation will help bring out more effective strategies of TRPV1 modulation in treating pain- and itch-related diseases.
Collapse
|
25
|
Qureshi Z, Ali MN, Khalid M. An Insight into Potential Pharmacotherapeutic Agents for Painful Diabetic Neuropathy. J Diabetes Res 2022; 2022:9989272. [PMID: 35127954 PMCID: PMC8813291 DOI: 10.1155/2022/9989272] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes is the 4th most common disease affecting the world's population. It is accompanied by many complications that deteriorate the quality of life. Painful diabetic neuropathy (PDN) is one of the debilitating consequences of diabetes that effects one-third of diabetic patients. Unfortunately, there is no internationally recommended drug that directly hinders the pathological mechanisms that result in painful diabetic neuropathy. Clinical studies have shown that anticonvulsant and antidepressant therapies have proven fruitful in management of pain associated with PDN. Currently, the FDA approved medications for painful diabetic neuropathies include duloxetine, pregabalin, tapentadol extended release, and capsaicin (for foot PDN only). The FDA has also approved the use of spinal cord stimulation system for the treatment of diabetic neuropathy pain. The drugs recommended by other regulatory bodies include gabapentin, amitriptyline, dextromethorphan, tramadol, venlafaxine, sodium valproate, and 5 % lidocaine patch. These drugs are only partially effective and have adverse effects associated with their use. Treating painful symptoms in diabetic patient can be frustrating not only for the patients but also for health care workers, so additional clinical trials for novel and conventional treatments are required to devise more effective treatment for PDN with minimal side effects. This review gives an insight on the pathways involved in the pathogenesis of PDN and the potential pharmacotherapeutic agents. This will be followed by an overview on the FDA-approved drugs for PDN and commercially available topical analgesic and their effects on painful diabetic neuropathies.
Collapse
Affiliation(s)
- Zunaira Qureshi
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Minahil Khalid
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| |
Collapse
|
26
|
Liang W, Lan Y, Chen C, Song M, Xiao J, Huang Q, Cao Y, Ho CT, Lu M. Modulating effects of capsaicin on glucose homeostasis and the underlying mechanism. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34657531 DOI: 10.1080/10408398.2021.1991883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abnormal glucose homeostasis is linked to a variety of metabolic syndromes, such as insulin resistance, obesity, type-2 diabetes mellitus, hypertension and cardiovascular diseases. Maintenance of normal glucose homeostasis is important for the body to keep normal biological functions. As the major bioactive ingredient in chili peppers responsible for the pungent flavor, capsaicin has been reported to effectively improve glucose homeostasis with low cytotoxicity. In this review, the modulating effects of capsaicin on glucose homeostasis in cell models, animal models and human trials are summarized through both TRPV1 dependent and TRPV1 independent pathways. The relevant molecular mechanisms underlying its regulatory effects are also evaluated. Understanding the effects and mechanisms of capsaicin on glucose metabolism could provide theoretical evidence for its application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Wanxia Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chengyu Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Abstract
Diabetic neuropathy is a neurodegenerative disorder that may alter both the somatic and autonomic peripheral nervous systems in the context of diabetes mellitus (DM). It is a prevalent and burdensome chronic complication of DM, that requires timely management. Optimized glycemic control (mainly for type 1 DM), multifactorial intervention (mainly for type 2 DM), with lifestyle intervention/physical exercise, and weight loss represent the basis of management for diabetic distal symmetrical polyneuropathy, and should be implemented early in the disease course. Despite better understanding of the pathogenetic mechanisms of diabetic peripheral neuropathy, there is still a stringent need for more pathogenetic-based agents that would significantly modify the natural history of the disease. The paper reviews the available drugs and current recommendations for the management of distal symmetrical polyneuropathy, including pain management, and for diabetic autonomic neuropathy. Evaluation of drug combinations that would perhaps be more efficient in slowing the progression of the disease or even reversing it, and that would provide a better pain management is still needed.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3/Internal Medicine I, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania; Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania.
| | - Itamar Raz
- Diabetes Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
28
|
Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Rep 2021; 6:e922. [PMID: 34585035 PMCID: PMC8462592 DOI: 10.1097/pr9.0000000000000922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodal nociceptor that monitors noxious thermal sensations. Few studies have addressed the role of TRPV1 in mechanical allodynia in small-fiber neuropathy (SFN) caused by sensory nerve damage. Accordingly, this article reviews the putative mechanisms of TRPV1 depletion that mediates mechanical allodynia in SFN. The intraepidermal nerve fibers (IENFs) degeneration and sensory neuronal injury are the primary characteristics of SFN. Intraepidermal nerve fibers are mainly C-polymodal nociceptors and Aδ-fibers, which mediated allodynic pain after neuronal sensitization. TRPV1 depletion by highly potent neurotoxins induces the upregulation of activating transcription factor 3 and IENFs degeneration which mimics SFN. TRPV1 is predominately expressed by the peptidergic than nonpeptidergic nociceptors, and these neurochemical discrepancies provided the basis of the distinct pathways of thermal analgesia and mechanical allodynia. The depletion of peptidergic nociceptors and their IENFs cause thermal analgesia and sensitized nonpeptidergic nociceptors respond to mechanical allodynia. These distinct pathways of noxious stimuli suggested determined by the neurochemical-dependent neurotrophin cognate receptors such as TrkA and Ret receptors. The neurogenic inflammation after TRPV1 depletion also sensitized Ret receptors which results in mechanical allodynia. The activation of spinal TRPV1(+) neurons may contribute to mechanical allodynia. Also, an imbalance in adenosinergic analgesic signaling in sensory neurons such as the downregulation of prostatic acid phosphatase and adenosine A1 receptors, which colocalized with TRPV1 as a membrane microdomain also correlated with the development of mechanical allodynia. Collectively, TRPV1 depletion-induced mechanical allodynia involves a complicated cascade of cellular signaling alterations.
Collapse
Affiliation(s)
- Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|