1
|
Yoon KW, Chu KB, Eom GD, Mao J, Heo SI, Quan FS. Dose sparing enabled by immunization with influenza vaccine using orally dissolving film. Int J Pharm 2024; 667:124945. [PMID: 39550013 DOI: 10.1016/j.ijpharm.2024.124945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Influenza vaccine delivered by orally dissolving film vaccine (ODFV) is a promising approach. In this study, we generated three ODFVs each comprising pulluan and trehalose with different doses of inactivated A/Puerto Rico/8/34, H1N1 virus (ODFV I, II, III) to evaluate their dose-sparing effect in mice. The ODFVs were placed on the tongues of mice to elicit immunization and after 3 immunizations at 4-week intervals, mice were challenged with a lethal dose of A/PR/8/34 to assess vaccine-induced protection. The 3 ODFVs containing 50, 250, or 750 μg of inactivated viruses elicited virus-specific antibody responses and virus neutralization in a dose-dependent manner. Dose-dependent antibody responses were also observed from the mucosal tissue samples, and also from antibody-secreting cells of the lungs and spleens. ODFV-induced cellular immunity, particularly germinal center B cells and T cells were also dose-dependent. Importantly, all 3 ODFVs evaluated in this study provided complete protection by strongly suppressing the pro-inflammatory cytokine production and lung virus titers. None of the immunized mice underwent noticeable weight loss nor succumbed to death, a phenomenon that was only observed in the infection challenge controls. These results indicated that the protection conferred by a low dose influenza vaccine formulated in ODF is comparable to that of a high-dose vaccine, thereby enabling vaccine dose sparing effect.
Collapse
Affiliation(s)
- Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan 47392, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su In Heo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Jha SK, Imran M, Jha LA, Hasan N, Panthi VK, Paudel KR, Almalki WH, Mohammed Y, Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. ENVIRONMENTAL RESEARCH 2023; 236:116823. [PMID: 37543130 DOI: 10.1016/j.envres.2023.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The lack of knowledge about the absorption, distribution, metabolism, and excretion (ADME) of vaccines makes former biopharmaceutical optimization difficult. This was shown during the COVID-19 immunization campaign, where gradual booster doses were introduced.. Thus, understanding vaccine ADME and its effects on immunization effectiveness could result in a more logical vaccine design in terms of formulation, method of administration, and dosing regimens. Herein, we will cover the information available on vaccine pharmacokinetics, impacts of delivery routes and carriers on ADME, utilization and efficiency of nanoparticulate delivery vehicles, impact of dose level and dosing schedule on the therapeutic efficacy of vaccines, intracellular and endosomal trafficking and in vivo fate, perspective on DNA and mRNA vaccines, new generation sequencing and mathematical models to improve cancer vaccination and pharmacology, and the reported toxicological study of COVID-19 vaccines. Altogether, this review will enhance the reader's understanding of the pharmacokinetics of vaccines and methods that can be implied in delivery vehicle design to improve the absorption and distribution of immunizing agents and estimate the appropriate dose to achieve better immunogenic responses and prevent toxicities.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea; Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney, 2007, Australia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
3
|
Chia MY, Lin CY, Chen PL, Lai CC, Weng TC, Sung WC, Hu AYC, Lee MS. Characterization and Immunogenicity of Influenza H7N9 Vaccine Antigens Produced Using a Serum-Free Suspension MDCK Cell-Based Platform. Viruses 2022; 14:v14091937. [PMID: 36146744 PMCID: PMC9502495 DOI: 10.3390/v14091937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Human infections with avian-origin H7N9 influenza A viruses were first reported in China, and an approximately 38% human mortality rate was described across six waves from February 2013 to September 2018. Vaccination is one of the most cost-effective ways to reduce morbidity and mortality during influenza epidemics and pandemics. Egg-based platforms for the production of influenza vaccines are labor-intensive and unable to meet the surging demand during pandemics. Therefore, cell culture-based technology is becoming the alternative strategy for producing influenza vaccines. The current influenza H7N9 vaccine virus (NIBRG-268), a reassortant virus from A/Anhui/1/2013 (H7N9) and egg-adapted A/PR/8/34 (H1N1) viruses, could grow efficiently in embryonated eggs but not mammalian cells. Moreover, a freezing-dry formulation of influenza H7N9 vaccines with long-term stability will be desirable for pandemic preparedness, as the occurrence of influenza H7N9 pandemics is not predictable. In this study, we adapted a serum-free anchorage-independent suspension Madin-Darby Canine Kidney (MDCK) cell line for producing influenza H7N9 vaccines and compared the biochemical characteristics and immunogenicity of three influenza H7N9 vaccine antigens produced using the suspension MDCK cell-based platform without freeze-drying (S-WO-H7N9), the suspension MDCK cell-based platform with freeze-drying (S-W-H7N9) or the egg-based platform with freeze-drying (E-W-H7N9). We demonstrated these three vaccine antigens have comparable biochemical characteristics. In addition, these three vaccine antigens induced robust and comparable neutralizing antibody (NT; geometric mean between 1016 and 4064) and hemagglutinin-inhibition antibody (HI; geometric mean between 640 and 1613) titers in mice. In conclusion, the serum-free suspension MDCK cell-derived freeze-dried influenza H7N9 vaccine is highly immunogenic in mice, and clinical development is warranted.
Collapse
Affiliation(s)
- Min-Yuan Chia
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chun-Yang Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Po-Ling Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Tsai-Chuan Weng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: ; Tel.: +886-(37)-246-166 (ext. 35520); Fax: +886-(37)-583-009
| |
Collapse
|
4
|
Lee J, Kim D, Byun J, Wu Y, Park J, Oh YK. In vivo fate and intracellular trafficking of vaccine delivery systems. Adv Drug Deliv Rev 2022; 186:114325. [PMID: 35550392 PMCID: PMC9085465 DOI: 10.1016/j.addr.2022.114325] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 01/12/2023]
Abstract
With the pandemic of severe acute respiratory syndrome coronavirus 2, vaccine delivery systems emerged as a core technology for global public health. Given that antigen processing takes place inside the cell, the intracellular delivery and trafficking of a vaccine antigen will contribute to vaccine efficiency. Investigations focusing on the in vivo behavior and intracellular transport of vaccines have improved our understanding of the mechanisms relevant to vaccine delivery systems and facilitated the design of novel potent vaccine platforms. In this review, we cover the intracellular trafficking and in vivo fate of vaccines administered via various routes and delivery systems. To improve immune responses, researchers have used various strategies to modulate vaccine platforms and intracellular trafficking. In addition to progress in vaccine trafficking studies, the challenges and future perspectives for designing next-generation vaccines are discussed.
Collapse
Affiliation(s)
- Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Zhang W, Song X, Zhai L, Guo J, Zheng X, Zhang L, Lv M, Hu L, Zhou D, Xiong X, Yang W. Complete Protection Against Yersinia pestis in BALB/c Mouse Model Elicited by Immunization With Inhalable Formulations of rF1-V10 Fusion Protein via Aerosolized Intratracheal Inoculation. Front Immunol 2022; 13:793382. [PMID: 35154110 PMCID: PMC8825376 DOI: 10.3389/fimmu.2022.793382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Pneumonic plague, caused by Yersinia pestis, is an infectious disease with high mortality rates unless treated early with antibiotics. Currently, no FDA-approved vaccine against plague is available for human use. The capsular antigen F1, the low-calcium-response V antigen (LcrV), and the recombinant fusion protein (rF1-LcrV) of Y. pestis are leading subunit vaccine candidates under intense investigation; however, the inability of recombinant antigens to provide complete protection against pneumonic plague in animal models remains a significant concern. In this study, we compared immunoprotection against pneumonic plague provided by rF1, rV10 (a truncation of LcrV), and rF1-V10, and vaccinations delivered via aerosolized intratracheal (i.t.) inoculation or subcutaneous (s.c.) injection. We further considered three vaccine formulations: conventional liquid, dry powder produced by spray freeze drying, or dry powder reconstituted in PBS. The main findings are: (i) rF1-V10 immunization with any formulation via i.t. or s.c. routes conferred 100% protection against Y. pestis i.t. infection; (ii) rF1 or rV10 immunization using i.t. delivery provided significantly stronger protection than rF1 or rV10 immunization via s.c. delivery; and (iii) powder formulations of subunit vaccines induced immune responses and provided protection equivalent to those elicited by unprocessed liquid formulations of vaccines. Our data indicate that immunization with a powder formulation of rF1-V10 vaccines via an i.t. route may be a promising vaccination strategy for providing protective immunity against pneumonic plague.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lina Zhai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianshu Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xinying Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lili Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Meng Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
6
|
Rossi I, Spagnoli G, Buttini F, Sonvico F, Stellari F, Cavazzini D, Chen Q, Müller M, Bolchi A, Ottonello S, Bettini R. A respirable HPV-L2 dry-powder vaccine with GLA as amphiphilic lubricant and immune-adjuvant. J Control Release 2021; 340:209-220. [PMID: 34740725 DOI: 10.1016/j.jconrel.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
Vaccines not requiring cold-chain storage/distribution and suitable for needle-free delivery are urgently needed. Pulmonary administration is one of the most promising non-parenteral routes for vaccine delivery. Through a multi-component excipient and spray-drying approach, we engineered highly respirable dry-powder vaccine particles containing a three-fold repeated peptide epitope derived from human papillomavirus (HPV16) minor capsid protein L2 displayed on Pyrococcus furious thioredoxin as antigen. A key feature of our engineering approach was the use of the amphiphilic endotoxin derivative glucopyranosyl lipid A (GLA) as both a coating agent enhancing particle de-aggregation and respirability as well as a built-in immune-adjuvant. Following an extensive characterization of the in vitro aerodynamic performance, lung deposition was verified in vivo by intratracheal administration in mice of a vaccine powder containing a fluorescently labeled derivative of the antigen. This was followed by a short-term immunization study that highlighted the ability of the GLA-adjuvanted vaccine powder to induce an anti-L2 systemic immune response comparable to (or even better than) that of the subcutaneously administered liquid-form vaccine. Despite the very short-term immunization conditions employed for this preliminary vaccination experiment, the intratracheally administered dry-powder, but not the subcutaneously injected liquid-state, vaccine induced consistent HPV neutralizing responses. Overall, the present data provide proof-of-concept validation of a new formulation design to produce a dry-powder vaccine that may be easily transferred to other antigens.
Collapse
Affiliation(s)
- Irene Rossi
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Francesca Buttini
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Fabio Stellari
- Chiesi Farmaceutici SpA, Largo Belloli 11a, Parma, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Quigxin Chen
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Martin Müller
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy.
| | - Ruggero Bettini
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy.
| |
Collapse
|
7
|
Heida R, Hinrichs WL, Frijlink HW. Inhaled vaccine delivery in the combat against respiratory viruses: a 2021 overview of recent developments and implications for COVID-19. Expert Rev Vaccines 2021; 21:957-974. [PMID: 33749491 DOI: 10.1080/14760584.2021.1903878] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION As underlined by the late 2019 outbreak of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), vaccination remains the cornerstone of global health-care. Although vaccines for SARS-CoV-2 are being developed at a record-breaking pace, the majority of those that are licensed or currently registered in clinical trials are formulated as an injectable product, requiring a tightly regulated cold-chain infrastructure, and primarily inducing systemic immune responses. AREAS COVERED Here, we shed light on the status of inhaled vaccines against viral pathogens, providing background to the role of the mucosal immune system and elucidating what factors determine an inhalable vaccine's efficacy. We also discuss whether the development of an inhalable powder vaccine formulation against SARS-CoV-2 could be feasible. The review was conducted using relevant studies from PubMed, Web of Science and Google Scholar. EXPERT OPINION We believe that the scope of vaccine research should be broadened toward inhalable dry powder formulations since dry vaccines bear several advantages. Firstly, their dry state can tremendously increase vaccine stability and shelf-life. Secondly, they can be inhaled using disposable inhalers, omitting the need for trained health-care personnel and, therefore, facilitating mass-vaccination campaigns. Thirdly, inhalable vaccines may provide improved protection since they can induce an IgA-mediated mucosal immune response.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter Lj Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Abstract
The current situation, heavily influenced by the ongoing pandemic, puts vaccines back into the spotlight. However, the conventional and traditional vaccines present disadvantages, particularly related to immunogenicity, stability, and storage of the final product. Often, such products require the maintenance of a “cold chain,” impacting the costs, the availability, and the distribution of vaccines. Here, after a recall of the mode of action of vaccines and the types of vaccines currently available, we analyze the past, present, and future of vaccine formulation. The past focuses on conventional formulations, the present discusses the use of nanoparticles for vaccine delivery and as adjuvants, while the future presents microneedle patches as alternative formulation and administration route. Finally, we compare the advantages and disadvantages of injectable solutions, nanovaccines, and microneedles in terms of efficacy, stability, and patient-friendly design. Different approaches to vaccine formulation development, the conventional vaccine formulations from the past, the current development of lipid nanoparticles as vaccines, and the near future microneedles formulations are discussed in this review. ![]()
Collapse
|
9
|
Fabrication of microneedle patches with lyophilized influenza vaccine suspended in organic solvent. Drug Deliv Transl Res 2021; 11:692-701. [PMID: 33590465 DOI: 10.1007/s13346-021-00927-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/18/2022]
Abstract
Skin vaccination by microneedle (MN) patch simplifies the immunization process to increase access to vaccines for global health. Lyophilization has been widely used to stabilize vaccines and other biologics during storage, but is generally not compatible with the MN patch manufacturing processes. In this study, our goal was to develop a method to incorporate lyophilized inactivated H1N1 influenza vaccine into MN patches during manufacturing by suspending freeze-dried vaccine in anhydrous organic solvent during the casting process. Using a casting formulation containing chloroform and polyvinylpyrrolidone, lyophilized influenza vaccine maintained activity during manufacturing and subsequent storage for 3 months at 40 °C. Influenza vaccination using these MN patches generated strong immune responses in a murine model. This manufacturing process may enable vaccines and other biologics to be stabilized by lyophilization and administered via a MN patch.
Collapse
|
10
|
Torikai Y, Sasaki Y, Sasaki K, Kyuno A, Haruta S, Tanimoto A. Evaluation of Systemic and Mucosal Immune Responses Induced by a Nasal Powder Delivery System in Conjunction with an OVA Antigen in Cynomolgus Monkeys. J Pharm Sci 2020; 110:2038-2046. [PMID: 33278410 PMCID: PMC7836740 DOI: 10.1016/j.xphs.2020.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
An immune response for a nasal ovalbumin (OVA) powder formulation with an applied nasal delivery platform technology, consisting of a powdery nasal carrier and a device, was evaluated in monkeys with similar upper respiratory tracts and immune systems to those of humans, in order to assess the applicability to a vaccine antigen. Nasal distribution and retention studies using a 3D nasal cavity model and manganese-enhanced MRI were conducted by administering nasal dye and manganese powder formulations with the applied technology. Systemic and mucosal immune responses for the nasal OVA powder formulation were evaluated by determining serum IgG and nasal wash IgA antibody titers. The nasal dye and manganese powder formulations showed wider distribution and longer retention time than did a nasal liquid formulation. The nasal OVA powder formulation also showed comparable and higher antigen-specific IgG antibody titer to an injection and nasal liquid formulation, respectively. Furthermore, antigen-specific IgA antibody response was detected only for the nasal OVA powder formulation. The present study suggests that the technology, originally designed for drug absorption, is promising for nasal vaccines, enabling both a mucosal immunity response as the first line of defense and systemic immunity response as a second line of defense against infection.
Collapse
Affiliation(s)
- Yusuke Torikai
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 850-8544, Japan; R&D Department, TR Company, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan.
| | - Yuji Sasaki
- Department of Pathology, Drug and Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Keita Sasaki
- R&D Department, TR Company, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Akifumi Kyuno
- R&D Department, TR Company, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Shunji Haruta
- R&D Department, TR Company, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Akihide Tanimoto
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 850-8544, Japan
| |
Collapse
|
11
|
Lemoine C, Thakur A, Krajišnik D, Guyon R, Longet S, Razim A, Górska S, Pantelić I, Ilić T, Nikolić I, Lavelle EC, Gamian A, Savić S, Milicic A. Technological Approaches for Improving Vaccination Compliance and Coverage. Vaccines (Basel) 2020; 8:E304. [PMID: 32560088 PMCID: PMC7350210 DOI: 10.3390/vaccines8020304] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
Vaccination has been well recognised as a critically important tool in preventing infectious disease, yet incomplete immunisation coverage remains a major obstacle to achieving disease control and eradication. As medical products for global access, vaccines need to be safe, effective and inexpensive. In line with these goals, continuous improvements of vaccine delivery strategies are necessary to achieve the full potential of immunisation. Novel technologies related to vaccine delivery and route of administration, use of advanced adjuvants and controlled antigen release (single-dose immunisation) approaches are expected to contribute to improved coverage and patient compliance. This review discusses the application of micro- and nano-technologies in the alternative routes of vaccine administration (mucosal and cutaneous vaccination), oral vaccine delivery as well as vaccine encapsulation with the aim of controlled antigen release for single-dose vaccination.
Collapse
Affiliation(s)
- Céline Lemoine
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland;
- Vaccine Formulation Institute, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark;
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Romain Guyon
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Stephanie Longet
- Virology & Pathogenesis Group, Public Health England, Manor Farm Road, Porton Down, Salisbury SP4 0JG, UK;
| | - Agnieszka Razim
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (S.G.)
| | - Sabina Górska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (S.G.)
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Tanja Ilić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Ed C. Lavelle
- The Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, DO2R590 Dublin, Ireland;
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wroclaw, Poland;
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.K.); (I.P.); (T.I.); (I.N.); (S.S.)
| | - Anita Milicic
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| |
Collapse
|
12
|
Moreno-Fierros L, García-Silva I, Rosales-Mendoza S. Development of SARS-CoV-2 vaccines: should we focus on mucosal immunity? Expert Opin Biol Ther 2020; 20:831-836. [PMID: 32380868 DOI: 10.1080/14712598.2020.1767062] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Leticia Moreno-Fierros
- Faculty of Higher Studies Iztacala, National Autonomous University of Mexico , Tlalnepantla, Estado De México, México
| | - Ileana García-Silva
- Faculty of Chemical Sciences and Center for Health Sciences, Autonomous University of San Luis Potosí , San Luis Potosi, México
| | - Sergio Rosales-Mendoza
- Faculty of Chemical Sciences and Center for Health Sciences, Autonomous University of San Luis Potosí , San Luis Potosi, México
| |
Collapse
|
13
|
Tomar J, Tonnis WF, Patil HP, de boer AH, Hagedoorn P, Vanbever R, Frijlink HW, Hinrichs WL. Pulmonary immunization: deposition site is of minor relevance for influenza vaccination but deep lung deposition is crucial for hepatitis B vaccination. Acta Pharm Sin B 2019; 9:1231-1240. [PMID: 31867168 PMCID: PMC6900555 DOI: 10.1016/j.apsb.2019.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/31/2022] Open
Abstract
Vaccination via the pulmonary route could be an attractive alternative to parenteral administration. Research towards the best site of antigen deposition within the lungs to induce optimal immune responses has conflicting results which might be dependent on the type of vaccine and/or its physical state. Therefore, in this study, we explored whether deep lung deposition is crucial for two different vaccines, i.e., influenza and hepatitis B vaccine. In view of this, influenza subunit vaccine and hepatitis B surface antigen were labeled with a fluorescent dye and then spray-dried. Imaging data showed that after pulmonary administration to mice the powders were deposited in the trachea/central airways when a commercially available insufflator was used while deep lung deposition was achieved when an in-house built aerosol generator was used. Immunogenicity studies revealed that comparable immune responses were induced upon trachea/central airways or deep lung targeting of dry influenza vaccine formulations. However, for hepatitis B vaccine, no immune responses were induced by trachea/central airways deposition whereas they were considerable after deep lung deposition. Thus, we conclude that deep lung targeting is not a critical parameter for the efficacy of pulmonary administered influenza vaccine whereas for hepatitis B vaccine it is.
Collapse
Affiliation(s)
- Jasmine Tomar
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Wouter F. Tonnis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Harshad P. Patil
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels 1200, Belgium
| | - Anne H. de boer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Rita Vanbever
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels 1200, Belgium
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Wouter L.J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen 9713 AV, the Netherlands
- Corresponding author. Tel.: +31 050 363 2398.
| |
Collapse
|
14
|
Krajišnik D, Ilić T, Nikolić I, Savić S. Established and advanced adjuvants in vaccines' formulation: Mineral adsorbents, nanoparticulate carriers and microneedle delivery systems. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
15
|
Tomar J, Patil HP, Bracho G, Tonnis WF, Frijlink HW, Petrovsky N, Vanbever R, Huckriede A, Hinrichs WLJ. Advax augments B and T cell responses upon influenza vaccination via the respiratory tract and enables complete protection of mice against lethal influenza virus challenge. J Control Release 2018; 288:199-211. [PMID: 30218687 PMCID: PMC7111335 DOI: 10.1016/j.jconrel.2018.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Abstract
Administration of influenza vaccines via the respiratory tract has potential benefits over conventional parenteral administration, inducing immunity directly at the site of influenza exposure as well as being needle free. In this study, we investigated the suitability of Advax™, a stable particulate polymorph of inulin, also referred to as delta inulin, as a mucosal adjuvant for whole inactivated influenza vaccine (WIV) administered either as a liquid or dry powder formulation. Spray freeze-drying produced Advax-adjuvanted WIV powder particles in a size range (1-5 μm) suitable for inhalation. The physical and biological characteristics of both WIV and Advax remained unaltered both by admixing WIV with Advax and by spray freeze drying. Upon intranasal or pulmonary immunization, both liquid and dry powder formulations containing Advax induced significantly higher systemic, mucosal and cellular immune responses than non-adjuvanted WIV formulations. Furthermore, pulmonary immunization with Advax-adjuvanted WIV led to robust memory B cell responses along with an increase of lung localization factors i.e. CXCR3, CD69, and CD103. A less pronounced but still positive effect of Advax was seen on memory T cell responses. In contrast to animals immunized with WIV alone, all animals pulmonary immunized with a single dose of Advax-adjuvanted WIV were fully protected with no visible clinical symptoms against a lethal dose of influenza virus. These data confirm that Advax is a potent mucosal adjuvant that boosts vaccine-induced humoral and cellular immune responses both in the lung and systemically with major positive effects on B-cell memory and complete protection against live virus. Hence, respiratory tract immunization, particularly via the lungs, with Advax-adjuvanted WIV formulation as a liquid or dry powder is a promising alternative to parenteral influenza vaccination.
Collapse
Affiliation(s)
- Jasmine Tomar
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Harshad P Patil
- Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels 1200, Belgium
| | - Gustavo Bracho
- Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia
| | - Wouter F Tonnis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia; Department of Diabetes and Endocrinology, Flinders University, Adelaide 5042, Australia
| | - Rita Vanbever
- Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels 1200, Belgium
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
16
|
Passive inhalation of dry powder influenza vaccine formulations completely protects chickens against H5N1 lethal viral challenge. Eur J Pharm Biopharm 2018; 133:85-95. [PMID: 30312742 PMCID: PMC7126314 DOI: 10.1016/j.ejpb.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Bird to human transmission of high pathogenicity avian influenza virus (HPAIV) poses a significant risk of triggering a flu pandemic in the human population. Therefore, vaccination of susceptible poultry during an HPAIV outbreak might be the best remedy to prevent such transmissions. To this end, suitable formulations and an effective mass vaccination method that can be translated to field settings needs to be developed. Our previous study in chickens has shown that inhalation of a non-adjuvanted dry powder influenza vaccine formulation during normal breathing results in partial protection against lethal influenza challenge. The aim of the present study was to improve the effectiveness of pulmonary vaccination by increasing the vaccine dose deposited in the lungs and by the use of suitable adjuvants. Two adjuvants, namely, Bacterium-like Particles (BLP) and Advax, were spray freeze dried with influenza vaccine into dry powder formulations. Delivery of dry formulations directly at the syrinx revealed that BLP and Advax had the potential to boost either systemic or mucosal immune responses or both. Upon passive inhalation of dry influenza vaccine formulations in an optimized set-up, BLP and Advax/BLP adjuvanted formulations induced significantly higher systemic immune responses than the non-adjuvanted formulation. Remarkably, all vaccinated animals not only survived a lethal influenza challenge, but also did not show any shedding of challenge virus except for two out of six animals in the Advax group. Overall, our results indicate that passive inhalation is feasible, effective and suitable for mass vaccination of chickens if it can be adapted to field settings.
Collapse
|
17
|
Bhide Y, Tomar J, Dong W, de Vries-Idema J, Frijlink HW, Huckriede A, Hinrichs WLJ. Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus. Drug Deliv 2018; 25:533-545. [PMID: 29451040 PMCID: PMC6058687 DOI: 10.1080/10717544.2018.1435748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Administration of influenza vaccines to the lungs could be an attractive alternative to conventional parenteral administration. In this study, we investigated the deposition site of pulmonary delivered liquid and powder influenza vaccine formulations and its relation to their immunogenicity and protective efficacy. In vivo deposition studies in cotton rats revealed that, the powder formulation was mainly deposited in the trachea ( ∼ 65%) whereas the liquid was homogenously distributed throughout the lungs ( ∼ 96%). In addition, only 60% of the antigen in the powder formulation was deposited in the respiratory tract with respect to the liquid formulation. Immunogenicity studies showed that pulmonary delivered liquid and powder influenza formulations induced robust systemic and mucosal immune responses (significantly higher by liquids than by powders). When challenged with a clinical isolate of homologous H1N1pdm virus, all animals pulmonary administered with placebo had detectable virus in their lungs one day post challenge. In contrast, none of the vaccinated animals had detectable lung virus titers, except for two out of eight animals from the powder immunized group. Also, pulmonary vaccinated animals showed no or little signs of infection like increase in breathing frequency or weight loss upon challenge as compared to animals from the negative control group. In conclusion, immune responses induced by liquid formulation were significantly higher than responses induced by powder formulation, but the overall protective efficacy of both formulations was comparable. Thus, pulmonary immunization is capable of inducing protective immunity and the site of antigen deposition seems to be of minor relevance in inducing protection.
Collapse
Affiliation(s)
- Yoshita Bhide
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Jasmine Tomar
- b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - Wei Dong
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Jacqueline de Vries-Idema
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Henderik W Frijlink
- b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - Anke Huckriede
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Wouter L J Hinrichs
- b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| |
Collapse
|
18
|
Busignies V, Simon G, Mollereau G, Bourry O, Mazel V, Rosa-Calatrava M, Tchoreloff P. Development and pre-clinical evaluation in the swine model of a mucosal vaccine tablet for human influenza viruses: A proof-of-concept study. Int J Pharm 2018; 538:87-96. [DOI: 10.1016/j.ijpharm.2018.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023]
|
19
|
Chen Z, Lv Y, Qi J, Zhu Q, Lu Y, Wu W. Overcoming or circumventing the stratum corneum barrier for efficient transcutaneous immunization. Drug Discov Today 2018; 23:181-186. [DOI: 10.1016/j.drudis.2017.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
|