1
|
Dhawale P, Shah S, Sharma K, Sikriwal D, Kumar V, Bhagawati A, Dhar S, Shetty P, Ahmed S. Streptococcus pneumoniae serotype distribution in low- and middle-income countries of South Asia: Do we need to revisit the pneumococcal vaccine strategy? Hum Vaccin Immunother 2025; 21:2461844. [PMID: 39999432 PMCID: PMC11864319 DOI: 10.1080/21645515.2025.2461844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
S. pneumoniae serotypes responsible for pneumococcal disease differ with respect to disease severity, invasiveness, antimicrobial susceptibility, geographies, immunization history, age groups, and with time. Although PCVs have blunted the pneumococcal disease burden, they are plagued with numerous challenges, especially the emergence of NVTs. In this review, we show that there are diverse serotypes, especially NVTs, responsible for causing pneumococcal diseases in LMICs of South Asia across different studies conducted between 2012 and 2024. We propose that pharmaceutical/biotech companies should tailor/customize the PCVs as per the region-specific serotype prevalence based on surveillance data. Furthermore, protein-based vaccines, or WCVs, have been explored and can serve as viable alternatives to address the limitations associated with PCVs. However, robust studies are warranted in different geographies to demonstrate its efficacy and safety in clinical trials as well as the real-world effectiveness of these promising candidates.
Collapse
Affiliation(s)
- Priya Dhawale
- Global Business Development, Techinvention Lifecare Private Limited, Mumbai, India
| | - Sanket Shah
- Strategic Medical Affairs, Techinvention Lifecare Private Limited, Mumbai, India
| | - Kaushal Sharma
- Strategic Projects, Techinvention Lifecare Private Limited, Mumbai, India
| | - Deepa Sikriwal
- Research and Development, Techinvention Lifecare Private Limited, Mumbai, India
| | - Varnik Kumar
- Research and Development, Techinvention Lifecare Private Limited, Mumbai, India
| | | | - Sakshi Dhar
- Research and Development, Techinvention Lifecare Private Limited, Mumbai, India
| | - Pratiksha Shetty
- Regulatory Affairs, Techinvention Lifecare Private Limited, Mumbai, India
| | - Syed Ahmed
- Business Development and Strategy, Techinvention Lifecare Private Limited, Mumbai, India
| |
Collapse
|
2
|
Thindwa D, Shapiro ED, Weinberger DM. The Complex Landscape of Updated Pneumococcal Conjugate Vaccines. Open Forum Infect Dis 2025; 12:ofaf050. [PMID: 39968305 PMCID: PMC11834978 DOI: 10.1093/ofid/ofaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025] Open
Abstract
Pneumococcus is a major cause of serious infections, especially among vulnerable populations. While pneumococcal conjugate vaccines (PCVs) provide effective protection against disease caused by the included serotypes, a substantial burden of disease remains. Several new PCVs are under development or were recently recommended for use to counteract the remaining disease burden. This had led to complicated policy deliberations on their optimal use in different populations. We discuss how key factors should be considered in any policy decision: serotype coverage of a new PCV, prevalence of the untargeted remaining serotypes, strength of the immune response to the serotypes in a new PCV, potential for PCV evasion, PCV costs, and optimal simultaneous use of PCVs in children and adults. We also suggest the need for robust analyses of available surveillance data and continual monitoring of changes in the pneumococcal serotypes that are responsible for disease and colonization to help decision makers make optimal recommendations.
Collapse
Affiliation(s)
- Deus Thindwa
- Department of Epidemiology of Microbial Diseases and the Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Eugene D Shapiro
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases and the Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Vestjens SMT, van Mens SP, Meek B, Lalmahomed TA, de Jong B, Goswami D, Vlaminckx BJM, Ahmed D, de Jongh BM, Endtz HP, Brooks WA, Rijkers GT. Streptococcus pneumoniae serotype distribution in Bangladeshi under-fives with community-acquired pneumonia pre-10-valent pneumococcal conjugate vaccination. Pneumonia (Nathan) 2024; 16:29. [PMID: 39497193 PMCID: PMC11536696 DOI: 10.1186/s41479-024-00152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/31/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Streptococcus pneumoniae is the most frequent causative pathogen of bacterial pneumonia in children worldwide. Bangladesh introduced the 10-valent pneumococcal conjugate vaccine (PCV10) in their national immunization program for infants in 2015. We assessed its potential coverage in under-fives with community-acquired pneumonia (CAP) in the years before PCV10 was introduced. METHODS A total of 1502 childhood pneumonia cases (< 5 year olds living in the urban section Kamalapur, Dhaka) were enrolled between 2011 and 2013. Acute phase and late (convalescent) serum samples were collected from 1380 cases. Serotype-specific pneumococcal antibody concentrations were measured using a 25-plex immunoassay panel. Pneumococcal CAP was diagnosed based on a serotype-specific pneumococcal antibody response. RESULTS S. pneumoniae was serologically identified as causative pathogen in 406/1380 (29%) cases. The five most prevalent serotypes were (in descending order) 11A, 22F, 3, 2 and 19F. Based on the percentage of pneumonia cases associated with PCV10 vaccine types, the potential PCV10 coverage was 29% (116/406). CONCLUSIONS In almost a third of the studied cases S. pneumoniae was identified as a causative pathogen. Because of the characteristics of the immunoassay, this might well be a gross underestimation. Nevertheless, the potential PCV10-coverage was low. Given the high serotype diversity, the region might benefit greatly from a higher-coverage PCV or recombinant protein vaccine.
Collapse
Affiliation(s)
- Stefan M T Vestjens
- Department of Medical Microbiology & Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands.
- Department of Medical Microbiology & Immunology, Diakonessenhuis, Utrecht, The Netherlands.
| | - Suzan P van Mens
- Department of Medical Microbiology & Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Bob Meek
- Department of Medical Microbiology & Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Tariq A Lalmahomed
- Science Department, University College Roosevelt, Middelburg, Nieuwegein, The Netherlands
| | - Ben de Jong
- Department of Medical Microbiology & Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Doli Goswami
- International Center for Diarrhoeal Disease Research (icddr,b), Dhaka and Matlab, Bangladesh
| | - Bart J M Vlaminckx
- Department of Medical Microbiology & Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Dilruba Ahmed
- International Center for Diarrhoeal Disease Research (icddr,b), Dhaka and Matlab, Bangladesh
| | - Bartelt M de Jongh
- Department of Medical Microbiology & Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Hubert P Endtz
- International Center for Diarrhoeal Disease Research (icddr,b), Dhaka and Matlab, Bangladesh
- Department of Medical Microbiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - W Abdullah Brooks
- International Center for Diarrhoeal Disease Research (icddr,b), Dhaka and Matlab, Bangladesh
- Department of International Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ger T Rijkers
- Department of Medical Microbiology & Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
- Science Department, University College Roosevelt, Middelburg, Nieuwegein, The Netherlands
| |
Collapse
|
4
|
Kaur R, Schulz S, Sherman A, Andrejko K, Kobayashi M, Pichichero M. Anticipated Effects of Higher-valency Pneumococcal Conjugate Vaccines on Colonization and Acute Otitis Media. Pediatr Infect Dis J 2024; 43:1004-1010. [PMID: 38838209 PMCID: PMC11408086 DOI: 10.1097/inf.0000000000004413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Bacterial etiologies of acute otitis media (AOM) have shifted from the introduction of pneumococcal conjugate vaccines (PCVs), antibiotic selection and competition among species. We characterized Streptococcus pneumoniae ( Spn ), Haemophilus influenzae ( Hflu ) and Moraxella catarrhalis ( Mcat ) in the nasopharynx during well-child healthy visits and at the onset of AOM, and in middle ear fluid (MEF) of children with AOM to assess anticipated effects of higher-valency PCVs (PCV15 and PCV20). METHODS From September 2021 to September 2023, we conducted a prospective longitudinal cohort study of PCV13 immunized children 6-36 months old. MEF was collected via tympanocentesis. Serotyping and antibiotic susceptibility testing were performed on Spn , Hflu and Mcat isolates. RESULTS We obtained 825 nasopharyngeal and 216 MEF samples from 301 children. The order of frequency of nasopharyngeal colonization was Mcat , Spn and Hflu ; Hflu was the predominant otopathogen in MEF. Among Spn isolates, non-PCV15, non-PCV20 serotypes predominated in the nasopharynx and in MEF; the most frequent serotype was 35B. Among MEF samples, 30% of Spn isolates were amoxicillin nonsusceptible; 23% of Hflu isolates and 100% of Mcat isolates were β-lactamase-producing. CONCLUSION The majority of Spn isolates among young children were non-PCV15, non-PCV20 serotypes, especially serotype 35B; therefore, the impact of higher-valency PCVs in reducing pneumococcal colonization or AOM is expected to be limited. Hflu continues to be the most frequent AOM pathogen. Antibiotic susceptibility data suggest a high dose of amoxicillin/clavulanate or alternative drugs that are effective against contemporary mix of otopathogens could be considered for optimal empiric selection to provide the best efficacy.
Collapse
Affiliation(s)
- Ravinder Kaur
- From the Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York
| | - Steven Schulz
- From the Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York
| | - Andrew Sherman
- From the Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York
| | - Kristin Andrejko
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Miwako Kobayashi
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Michael Pichichero
- From the Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York
| |
Collapse
|
5
|
Wang Y, Shi G, Wang X, Xie Z, Gou J, Huang L, Huang H, You W, Wang R, Yang Y, Wang F, Zhu T, Zhao D. Preliminary Evaluation of the Safety and Immunogenicity of a Novel Protein-Based Pneumococcal Vaccine in Healthy Adults Aged 18-49: A Phase Ia Randomized, Double Blind, Placebo-Controlled Clinical Study. Vaccines (Basel) 2024; 12:827. [PMID: 39203953 PMCID: PMC11358999 DOI: 10.3390/vaccines12080827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/03/2024] Open
Abstract
Background: Protein-based pneumococcal vaccines (PBPVs) may offer expanded protection against Streptococcus pneumoniae and tackle the antimicrobial resistance crisis in pneumococcal infections. This study examined the safety and immunogenicity in healthy adults vaccinated with three doses of a protein-based pneumococcal vaccine containing pneumococcal surface protein A (PspA) (PRX1, P3296 and P5668) and in combination with a recombinant detoxified pneumolysin protein (PlyLD). Methods: This phase Ia randomized, double blind, placebo-controlled clinical study enrolled healthy adults aged 18-49 years. The participants were randomized into experimental (low-dose, medium-dose, high-dose) and placebo groups in a ratio of 3:1. Three doses of investigational vaccine were given to the participants with an interval of two months. Safety endpoints included the occurrence of total adverse reactions, solicited local and systemic adverse reactions, unsolicited adverse reactions, serious adverse events (SAEs), and several laboratory parameters. Immunogenicity endpoints included geometric mean titers (GMT) of anti-PspA (PRX1, P3296 and P5668) and anti-PlyLD antibodies level as determined by ELISA, seropositivity rates of PspA and PlyLD antibodies (>4-fold increase) and neutralization activity of anti-Ply antibody in serum. Results: A total of 118 participants completed the study of three doses. The candidate PBPV was safe and well-tolerated in all experimental groups. No vaccine-related SAEs were observed in this study. Most solicited adverse reactions were mild and transient. The most frequently reported solicited adverse reactions in the medium- and high-dose groups was pain at the injection site, while in the low-dose group it was elevated blood pressure. The immunogenicity data showed a sharp increase in the GMT level of anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies in serum. The results also showed that the elicited antibodies were dosage-dependent. The high-dose group showed a higher immune response against PspA-RX1, PspA-3296, PspA-5668, and PlyLD antigens. However, repeat vaccination did not increase the level of anti-PspA antibodies but the level of anti-PlyLD antibody. High seropositivity rates were also observed for anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies. In addition, a significant difference in the GMT levels of anti-Ply antibody between the high-, medium-, and low-dose groups post each vaccination were indicated by neutralization activity tests. Conclusions: The PBPV showed a safe and immunogenic profile in this clinical trial. Taking into consideration both safety and immunogenicity data, we propose a single dose of 50 µg (medium dose) of PBPV as the optimum approach in providing expanded protection against Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Yanxia Wang
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Gang Shi
- National Institutes for Food and Drug Control, Beijing 100050, China;
| | - Xue Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Zhiqiang Xie
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Jinbo Gou
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Lili Huang
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Haitao Huang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Wangyang You
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Ruijie Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Yongli Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Feiyu Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Tao Zhu
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Dongyang Zhao
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| |
Collapse
|
6
|
Johnson CN, Wilde S, Tuomanen E, Rosch JW. Convergent impact of vaccination and antibiotic pressures on pneumococcal populations. Cell Chem Biol 2024; 31:195-206. [PMID: 38052216 PMCID: PMC10938186 DOI: 10.1016/j.chembiol.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/08/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Streptococcus pneumoniae is a remarkably adaptable and successful human pathogen, playing dual roles of both asymptomatic carriage in the nasopharynx and invasive disease including pneumonia, bacteremia, and meningitis. Efficacious vaccines and effective antibiotic therapies are critical to mitigating morbidity and mortality. However, clinical interventions can be rapidly circumvented by the pneumococcus by its inherent proclivity for genetic exchange. This leads to an underappreciated interplay between vaccine and antibiotic pressures on pneumococcal populations. Circulating populations have undergone dramatic shifts due to the introduction of capsule-based vaccines of increasing valency imparting strong selective pressures. These alterations in population structure have concurrent consequences on the frequency of antibiotic resistance profiles in the population. This review will discuss the interactions of these two selective forces. Understanding and forecasting the drivers of antibiotic resistance and capsule switching are of critical importance for public health, particularly for such a genetically promiscuous pathogen as S. pneumoniae.
Collapse
Affiliation(s)
- Cydney N Johnson
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shyra Wilde
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elaine Tuomanen
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Jason W Rosch
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
7
|
Fusco F, Pires MC, Lopes APY, Alves VDS, Gonçalves VM. Influence of the mRNA initial region on protein production: a case study using recombinant detoxified pneumolysin as a model. Front Bioeng Biotechnol 2024; 11:1304965. [PMID: 38260740 PMCID: PMC10800503 DOI: 10.3389/fbioe.2023.1304965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Recombinant proteins are of great importance in modern society, mostly as biopharmaceutical products. However, challenging and complex processes with low production yield are major drawbacks. Normally, the optimization to overcome these obstacles is focused on bioreactor and purification processes, and the biomolecular aspects are neglected, seen as less important. In this work, we present how the 5' mRNA secondary structure region can be relevant for translation and, therefore, protein production. For this, Escherichia coli BL21(DE3) clones, producing recombinant detoxified pneumolysin (PdT) with and without the N-terminal His-tag, were cultivated in 10-L bioreactors. Another version of the pdt gene (version 2) with synonymous changes in the 5'-end nucleotide sequence was also obtained. Protein production, plasmid stability, carbon sources, and acetic acid were quantified during the cultures. Furthermore, in silico mRNA analyses were performed using TIsigner and RNAfold. The results showed that the His-tag presence at the N-terminus generated a minimum 1.5-fold increase in target protein synthesis, which was explained by the in silico mRNA analyses that returned an mRNA secondary structure easier to translate and, therefore, higher protein production than without the His-tag. The pdt gene version 2 showed lower 5' mRNA opening energy than version 1, allowing higher PdT production even without a tag. This work reveals that simple mRNA analyses during heterologous gene design and production steps can help reach high-recombinant protein titers in a shorter time than using only traditional bioprocess optimization strategies.
Collapse
Affiliation(s)
- Filipe Fusco
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil
- Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | - Manuella Cazelato Pires
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil
- Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Vítor dos Santos Alves
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil
- Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
8
|
Hill H, Mitsi E, Nikolaou E, Blizard A, Pojar S, Howard A, Hyder-Wright A, Devin J, Reiné J, Robinson R, Solórzano C, Jochems SP, Kenny-Nyazika T, Ramos-Sevillano E, Weight CM, Myerscough C, McLenaghan D, Morton B, Gibbons E, Farrar M, Randles V, Burhan H, Chen T, Shandling AD, Campo JJ, Heyderman RS, Gordon SB, Brown JS, Collins AM, Ferreira DM. A Randomized Controlled Clinical Trial of Nasal Immunization with Live Virulence Attenuated Streptococcus pneumoniae Strains Using Human Infection Challenge. Am J Respir Crit Care Med 2023; 208:868-878. [PMID: 37556679 DOI: 10.1164/rccm.202302-0222oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
Rationale: Pneumococcal pneumonia remains a global health problem. Pneumococcal colonization increases local and systemic protective immunity, suggesting that nasal administration of live attenuated Streptococcus pneumoniae (Spn) strains could help prevent infections. Objectives: We used a controlled human infection model to investigate whether nasopharyngeal colonization with attenuated S. pneumoniae strains protected against recolonization with wild-type (WT) Spn (SpnWT). Methods: Healthy adults aged 18-50 years were randomized (1:1:1:1) for nasal administration twice (at a 2-wk interval) with saline solution, WT Spn6B (BHN418), or one of two genetically modified Spn6B strains, SpnA1 (Δfhs/piaA) or SpnA3 (ΔproABC/piaA) (Stage I). After 6 months, participants were challenged with SpnWT to assess protection against the homologous serotype (Stage II). Measurements and Main Results: 125 participants completed both study stages per intention to treat. No serious adverse events were reported. In Stage I, colonization rates were similar among groups: SpnWT, 58.1% (18 of 31); SpnA1, 60% (18 of 30); and SpnA3, 59.4% (19 of 32). Anti-Spn nasal IgG levels after colonization were similar in all groups, whereas serum IgG responses were higher in the SpnWT and SpnA1 groups than in the SpnA3 group. In colonized individuals, increases in IgG responses were identified against 197 Spn protein antigens and serotype 6 capsular polysaccharide using a pangenome array. Participants given SpnWT or SpnA1 in Stage I were partially protected against homologous challenge with SpnWT (29% and 30% recolonization rates, respectively) at stage II, whereas those exposed to SpnA3 achieved a recolonization rate similar to that in the control group (50% vs. 47%, respectively). Conclusions: Nasal colonization with genetically modified live attenuated Spn was safe and induced protection against recolonization, suggesting that nasal administration of live attenuated Spn could be an effective strategy for preventing pneumococcal infections. Clinical trial registered with the ISRCTN registry (ISRCTN22467293).
Collapse
Affiliation(s)
- Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Annie Blizard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angela Hyder-Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Jack Devin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesus Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Ryan Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tinashe Kenny-Nyazika
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elisa Ramos-Sevillano
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Caroline M Weight
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Chris Myerscough
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniella McLenaghan
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ben Morton
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily Gibbons
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Madlen Farrar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Victoria Randles
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Hassan Burhan
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Joe J Campo
- Antigen Discovery Inc, Irvine, California; and
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi Liverpool Wellcome-Trust Programme, Blantyre, Malawi
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Lister AJJ, Dombay E, Cleary DW, Sulaiman LH, Clarke SC. A brief history of and future prospects for pneumococcal vaccination in Malaysia. Pneumonia (Nathan) 2023; 15:12. [PMID: 37620925 PMCID: PMC10463521 DOI: 10.1186/s41479-023-00114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Pneumococcal pneumonia remains a significant global public health issue. Malaysia has recently added the 10 valent pneumococcal conjugate vaccine to its national immunisation programme. Data on pneumococcal serotype epidemiology is vital for informing national vaccination policy. However, there remains a lack of representative population-based pneumococcal surveillance in Malaysia to help both the assessment of vaccine effectiveness in the country and to shape future vaccine policy. This review explores the history of pneumococcal vaccination, the burden of pneumococcal disease in Malaysia, and offers an insight into the prospects for reducing pneumococcal disease in Malaysia.
Collapse
Affiliation(s)
- Alex J J Lister
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Evelin Dombay
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - David W Cleary
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, Birmingham, UK
| | - Lokman H Sulaiman
- Centre for Environment and Population Health, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur, Malaysia
- Department of Community Medicine, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Stuart C Clarke
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Trust, Southampton, UK.
- Global Health Research Institute, University of Southampton, Southampton, UK.
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia.
- Centre for Translational Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Zhang Y, Gao S, Yao S, Weng D, Wang Y, Huang Q, Zhang X, Wang H, Xu W. IL-27 mediates immune response of pneumococcal vaccine SPY1 through Th17 and memory CD4 +T cells. iScience 2023; 26:107464. [PMID: 37588169 PMCID: PMC10425906 DOI: 10.1016/j.isci.2023.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
Vaccination is an effective means of preventing pneumococcal disease and SPY1 is a live attenuated pneumococcal vaccine we obtained earlier. We found IL-27 and its specific receptor (WSX-1) were increased in SPY1 vaccinated mice. Bacterial clearance and survival rates were decreased in SPY1 vaccinated IL-27Rα-/- mice. The vaccine-induced Th17 cell response and IgA secretion were also suppressed in IL-27Rα-/- mice. STAT3 and NF-κB signaling and expression of the Th17 cell polarization-related cytokines were also decreased in IL-27Rα-/- bone-marrow-derived dendritic cells(BMDC) stimulated with inactivated SPY1. The numbers of memory CD4+T cells were also decreased in SPY1 vaccinated IL-27Rα-/- mice. These results suggested that IL-27 plays a protective role in SPY1 vaccine by promoting Th17 polarization through STAT3 and NF-κB signaling pathways and memory CD4+T cells production in the SPY1 vaccine. In addition, we found that the immune protection of SPY1 vaccine was independent of aerobic glycolysis.
Collapse
Affiliation(s)
- Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Song Gao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Aceil J, Venkat A, Pan E, Kannan N, Avci FY. Prevalence and Homology of the Pneumococcal Serine-Rich Repeat Protein at the Global Scale. Microbiol Spectr 2023; 11:e0325222. [PMID: 36995217 PMCID: PMC10269691 DOI: 10.1128/spectrum.03252-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Pneumococcal pneumonia remains a WHO high-priority disease despite multivalent conjugate vaccines administered in clinical practice worldwide. A protein-based, serotype-independent vaccine has long-promised comprehensive coverage of most clinical isolates of the pneumococcus. Along with numerous pneumococcal surface protein immunogens, the pneumococcal serine-rich repeat protein (PsrP) has been investigated as a potential vaccine target due to its surface exposure and functions toward bacterial virulence and lung infection. Three critical criteria for its vaccine potential - the clinical prevalence, serotype distribution, and sequence homology of PsrP - have yet to be well characterized. Here, we used genomes of 13,454 clinically isolated pneumococci from the Global Pneumococcal Sequencing project to investigate PsrP presence among isolates, distribution among serotypes, and interrogate its homology as a protein across species. These isolates represent all age groups, countries worldwide, and types of pneumococcal infection. We found PsrP present in at least 50% of all isolates across all determined serotypes and nontypeable (NT) clinical isolates. Using a combination of peptide matching and HMM profiles built on full-length and individual PsrP domains, we identified novel variants that expand PsrP diversity and prevalence. We also observed sequence variability in its basic region (BR) between isolates and serotypes. PsrP has a strong vaccine potential due to its breadth of coverage, especially in nonvaccine serotypes (NVTs) when exploiting its regions of conservation in vaccine design. IMPORTANCE An updated outlook on PsrP prevalence and serotype distribution sheds new light on the comprehensiveness of a PsrP-based protein vaccine. The protein is present in all vaccine serotypes and highly present in the next wave of potentially disease-causing serotypes not included in the current multivalent conjugate vaccines. Furthermore, PsrP is strongly correlated with clinical isolates harboring pneumococcal disease as opposed to pneumococcal carriage. PsrP is also highly present in strains and serotypes from Africa, where the need for a protein-based vaccine is the greatest, giving new reasoning to pursue PsrP as a protein vaccine.
Collapse
Affiliation(s)
- Javid Aceil
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Eric Pan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Fikri Y. Avci
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Micoli F, Romano MR, Carboni F, Adamo R, Berti F. Strengths and weaknesses of pneumococcal conjugate vaccines. Glycoconj J 2023; 40:135-148. [PMID: 36652051 PMCID: PMC10027807 DOI: 10.1007/s10719-023-10100-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Multivalent vaccines addressing an increasing number of Streptococcus pneumoniae types (7-, 10-, 13-, 15-, 20-valent) have been licensed over the last 22 years. The use of polysaccharide-protein conjugate vaccines has been pivotal in reducing the incidence of invasive pneumococcal disease despite the emergence of non-vaccine serotypes. Notwithstanding its undoubtable success, some weaknesses have called for continuous improvement of pneumococcal vaccination. For instance, despite their inclusion in pneumococcal conjugate vaccines, there are challenges associated with some serotypes. In particular, Streptococcus pneumoniae type 3 remains a major cause of invasive pneumococcal disease in several countries.Here a deep revision of the strengths and weaknesses of the licensed pneumococcal conjugate vaccines and other vaccine candidates currently in clinical development is reported.
Collapse
|
13
|
Zane L, Kraschowetz S, Trentini MM, Alves VDS, Araujo SC, Goulart C, Leite LCDC, Gonçalves VM. Peptide linker increased the stability of pneumococcal fusion protein vaccine candidate. Front Bioeng Biotechnol 2023; 11:1108300. [PMID: 36777254 PMCID: PMC9909212 DOI: 10.3389/fbioe.2023.1108300] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pneumoniae is a bacterial pathogen exclusive to humans, responsible for respiratory and systemic diseases. Pneumococcal protein vaccines have been proposed as serotype-independent alternatives to currently used conjugated polysaccharide vaccines, which have presented limitations regarding their coverage. Previously in our group, pneumococcal surface protein A (PspA) and detoxified pneumolysin (PdT) were genetically fused and the hybrid protein protected mice against pneumococcal challenge, offered higher cross-protection against different strains and showed greater opsonophagocytosis rate than co-administered proteins. As juxtaposed fusion was unstable to upscale production of the protein, flexible (PspA-FL-PdT) and rigid (PspA-RL-PdT) molecular linkers were inserted between the antigens to increase stability. This work aimed to produce recombinant fusion proteins, evaluate their stability after linker insertion, both in silico and experimentally, and enable the production of two antigens in a single process. The two constructs with linkers were cloned into Escherichia coli and hybrid proteins were purified using chromatography; purity was evaluated by SDS-PAGE and stability by Western blot and high performance size exclusion chromatography. PspA-FL-PdT showed higher stability at -20°C and 4°C, without additional preservatives. In silico analyses also showed differences regarding stability of the fusion proteins, with molecule without linker presenting disallowed amino acid positions in Ramachandran plot and PspA-FL-PdT showing the best scores, in agreement with experimental results. Mice were immunized with three doses and different amounts of each protein. Both fusion proteins protected all groups of mice against intranasal lethal challenge. The results show the importance of hybrid protein structure on the stability of the products, which is essential for a successful bioprocess development.
Collapse
Affiliation(s)
- Luciano Zane
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | - Stefanie Kraschowetz
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Vitor dos Santos Alves
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Carneiro Araujo
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | - Cibelly Goulart
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Viviane Maimoni Gonçalves
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,*Correspondence: Viviane Maimoni Gonçalves,
| |
Collapse
|
14
|
Campling J, Vyse A, Liu HH, Wright H, Slack M, Reinert RR, Drayson M, Richter A, Singh D, Barlow G, Kassianos G, Ellsbury G. A review of evidence for pneumococcal vaccination in adults at increased risk of pneumococcal disease: risk group definitions and optimization of vaccination coverage in the United Kingdom. Expert Rev Vaccines 2023; 22:785-800. [PMID: 37694398 DOI: 10.1080/14760584.2023.2256394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Pneumococcal disease (PD) significantly contributes to morbidity and mortality, carrying substantial economic and public health burden. This article is a targeted review of evidence for pneumococcal vaccination in the UK, the definitions of groups at particular risk of PD and vaccine effectiveness. AREAS COVERED Relevant evidence focusing on UK data from surveillance systems, randomized controlled trials, observational studies and publicly available government documents is collated and reviewed. Selected global data are included where appropriate. EXPERT OPINION National vaccination programs have reduced the incidence of vaccine-type PD, despite the rising prominence of non-vaccine serotypes in the UK. The introduction of higher-valency conjugate vaccines provides an opportunity to improve protection against PD for adults in risk groups. Several incentives are in place to encourage general practitioners to vaccinate risk groups, but uptake is low-suboptimal particularly among at-risk individuals. Wider awareness and understanding among the public and healthcare professionals may increase vaccination uptake and coverage. National strategies targeting organizational factors are urgently needed to achieve optimal access to vaccines. Finally, identifying new risk factors and approaches to risk assessment for PD are crucial to ensure those at risk of PD can benefit from pneumococcal vaccination.
Collapse
Affiliation(s)
| | - Andrew Vyse
- Medical Affairs, Pfizer Ltd, Walton Oaks, UK
| | | | | | - Mary Slack
- School of Medicine & Dentistry, Griffith University, Southport, Queensland, Australia
| | | | - Mark Drayson
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Gavin Barlow
- Hull York Medical School, University of York, York, UK
| | - George Kassianos
- Royal College of General Practitioners, London, UK
- British Global & Travel Health Association, Bath, UK
| | | |
Collapse
|
15
|
Biselli R, Nisini R, Lista F, Autore A, Lastilla M, De Lorenzo G, Peragallo MS, Stroffolini T, D’Amelio R. A Historical Review of Military Medical Strategies for Fighting Infectious Diseases: From Battlefields to Global Health. Biomedicines 2022; 10:2050. [PMID: 36009598 PMCID: PMC9405556 DOI: 10.3390/biomedicines10082050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
The environmental conditions generated by war and characterized by poverty, undernutrition, stress, difficult access to safe water and food as well as lack of environmental and personal hygiene favor the spread of many infectious diseases. Epidemic typhus, plague, malaria, cholera, typhoid fever, hepatitis, tetanus, and smallpox have nearly constantly accompanied wars, frequently deeply conditioning the outcome of battles/wars more than weapons and military strategy. At the end of the nineteenth century, with the birth of bacteriology, military medical researchers in Germany, the United Kingdom, and France were active in discovering the etiological agents of some diseases and in developing preventive vaccines. Emil von Behring, Ronald Ross and Charles Laveran, who were or served as military physicians, won the first, the second, and the seventh Nobel Prize for Physiology or Medicine for discovering passive anti-diphtheria/tetanus immunotherapy and for identifying mosquito Anopheline as a malaria vector and plasmodium as its etiological agent, respectively. Meanwhile, Major Walter Reed in the United States of America discovered the mosquito vector of yellow fever, thus paving the way for its prevention by vector control. In this work, the military relevance of some vaccine-preventable and non-vaccine-preventable infectious diseases, as well as of biological weapons, and the military contributions to their control will be described. Currently, the civil-military medical collaboration is getting closer and becoming interdependent, from research and development for the prevention of infectious diseases to disasters and emergencies management, as recently demonstrated in Ebola and Zika outbreaks and the COVID-19 pandemic, even with the high biocontainment aeromedical evacuation, in a sort of global health diplomacy.
Collapse
Affiliation(s)
- Roberto Biselli
- Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Florigio Lista
- Dipartimento Scientifico, Policlinico Militare, Comando Logistico dell’Esercito, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Alberto Autore
- Osservatorio Epidemiologico della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Marco Lastilla
- Istituto di Medicina Aerospaziale, Comando Logistico dell’Aeronautica Militare, Viale Piero Gobetti 2, 00185 Roma, Italy
| | - Giuseppe De Lorenzo
- Comando Generale dell’Arma dei Carabinieri, Dipartimento per l’Organizzazione Sanitaria e Veterinaria, Viale Romania 45, 00197 Roma, Italy
| | - Mario Stefano Peragallo
- Centro Studi e Ricerche di Sanità e Veterinaria, Comando Logistico dell’Esercito, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Tommaso Stroffolini
- Dipartimento di Malattie Infettive e Tropicali, Policlinico Umberto I, 00161 Roma, Italy
| | - Raffaele D’Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Roma, Italy
| |
Collapse
|
16
|
Bilgin GM, Lokuge K, Glass K. Modelling the impact of maternal pneumococcal vaccination on infant pneumococcal disease in low-income settings. Vaccine 2022; 40:4128-4134. [PMID: 35667913 DOI: 10.1016/j.vaccine.2022.05.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022]
Abstract
Pneumococcal disease is a leading cause of mortality in young children. The largest burden of pneumococcal disease is in the first six months of life before protection from a complete schedule of direct immunisation is possible. Maternal pneumococcal vaccination has been proposed as a strategy for protection in this period of early childhood; however, limited clinical trial data exists. In this study, we developed an age-structured compartmental mathematical model to estimate the impact of maternal pneumococcal vaccination. Our model demonstrates how maternal pneumococcal vaccination could prevent 73% (range 49-88%) of cases in those aged <1 month and 55% (range 36-66%) in those 1-2 months old. This translates to an estimated 17% reduction in deaths due to invasive pneumococcal disease in children under five. Overall, this study demonstrates the potential for maternal pneumococcal vaccination to meaningfully reduce the burden of infant pneumococcal disease, supporting the case for appropriate field-based clinical studies.
Collapse
Affiliation(s)
- Gizem M Bilgin
- National Centre for Epidemiology and Population Health, The Australian National University, Acton, ACT 2601, Australia.
| | - Kamalini Lokuge
- National Centre for Epidemiology and Population Health, The Australian National University, Acton, ACT 2601, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
17
|
Kremer PHC, Ferwerda B, Bootsma HJ, Rots NY, Wijmenga-Monsuur AJ, Sanders EAM, Trzciński K, Wyllie AL, Turner P, van der Ende A, Brouwer MC, Bentley SD, van de Beek D, Lees JA. Pneumococcal genetic variability in age-dependent bacterial carriage. eLife 2022; 11:e69244. [PMID: 35881438 PMCID: PMC9395192 DOI: 10.7554/elife.69244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
The characteristics of pneumococcal carriage vary between infants and adults. Host immune factors have been shown to contribute to these age-specific differences, but the role of pathogen sequence variation is currently less well-known. Identification of age-associated pathogen genetic factors could leadto improved vaccine formulations. We therefore performed genome sequencing in a large carriage cohort of children and adults and combined this with data from an existing age-stratified carriage study. We compiled a dictionary of pathogen genetic variation, including serotype, strain, sequence elements, single-nucleotide polymorphisms (SNPs), and clusters of orthologous genes (COGs) for each cohort - all of which were used in a genome-wide association with host age. Age-dependent colonization showed weak evidence of being heritable in the first cohort (h2 = 0.10, 95% CI 0.00-0.69) and stronger evidence in the second cohort (h2 = 0.56, 95% CI 0.23-0.87). We found that serotypes and genetic background (strain) explained a proportion of the heritability in the first cohort (h2serotype = 0.07, 95% CI 0.04-0.14 and h2GPSC = 0.06, 95% CI 0.03-0.13) and the second cohort (h2serotype = 0.11, 95% CI 0.05-0.21 and h2GPSC = 0.20, 95% CI 0.12-0.31). In a meta-analysis of these cohorts, we found one candidate association (p=1.2 × 10-9) upstream of an accessory Sec-dependent serine-rich glycoprotein adhesin. Overall, while we did find a small effect of pathogen genome variation on pneumococcal carriage between child and adult hosts, this was variable between populations and does not appear to be caused by strong effects of individual genes. This supports proposals for adaptive future vaccination strategies that are primarily targeted at dominant circulating serotypes and tailored to the composition of the pathogen populations.
Collapse
Affiliation(s)
- Philip HC Kremer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Bart Ferwerda
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, University of AmsterdamAmsterdamNetherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Nienke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Elisabeth AM Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Anne L Wyllie
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
- Epidemiology of Microbial Diseases, Yale School of Public HealthNew HavenUnited States
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMCAmsterdamNetherlands
- The Netherlands Reference Laboratory for Bacterial MeningitisAmsterdamNetherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - John A Lees
- European Molecular Biology Laboratory–European Bioinformatics InstituteCambridgeUnited Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
18
|
Basset A, Wall E, Mitsi E, Deshusses C, Daly R, Pojar S, Reiné J, Guerra-Assuncao JA, Denis B, Jochems SP, Heyderman R, Brown J, Lu YJ, Ferreira DM, Malley R. Targeted Transcriptomic Screen of Pneumococcal Genes Expressed during Murine and Human Infection. Infect Immun 2022; 90:e0017522. [PMID: 35674445 PMCID: PMC9302103 DOI: 10.1128/iai.00175-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
The advent of pneumococcal conjugate vaccines led to the near disappearance of most of the included serotypes in high-income settings but also the rise of nonvaccine-type colonization and disease. Alternative strategies, using genetically conserved proteins as antigens, have been evaluated preclinically and clinically for years, so far unsuccessfully. One possible explanation for the failure of these efforts is that the choice of antigens may not have been sufficiently guided by an understanding of the gene expression pattern in the context of infection. Here, we present a targeted transcriptomic analysis of 160 pneumococcal genes encoding bacterial surface-exposed proteins in mouse models, human colonization, and human meningitis. We present the overlap of these different transcriptomic profiles. We identify two bacterial genes that are highly expressed in the context of mouse and human infection: SP_0282, an IID component of a mannose phosphotransferase system (PTS), and SP_1739, encoding RNase Y. We show that these two proteins can confer protection against pneumococcal nasopharyngeal colonization and intraperitoneal challenge in a murine model and generate opsonophagocytic antibodies. This study emphasizes and confirms the importance of studies of pneumococcal gene expression of bacterial surface proteins during human infection and colonization and may pave the way for the selection of a protein-based vaccine candidate.
Collapse
Affiliation(s)
- Alan Basset
- Division of Infectious Diseases, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Emma Wall
- Research Division of Infection, University College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Chloe Deshusses
- Division of Infectious Diseases, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raecliffe Daly
- Division of Infectious Diseases, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesús Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | | | - Simon P. Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robert Heyderman
- Research Division of Infection, University College London, London, United Kingdom
| | - Jeremy Brown
- Research Division of Infection, University College London, London, United Kingdom
| | - Ying-Jie Lu
- Division of Infectious Diseases, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Richard Malley
- Division of Infectious Diseases, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Moscardini IF, Santoro F, Carraro M, Gerlini A, Fiorino F, Germoni C, Gholami S, Pettini E, Medaglini D, Iannelli F, Pozzi G. Immune Memory After Respiratory Infection With Streptococcus pneumoniae Is Revealed by in vitro Stimulation of Murine Splenocytes With Inactivated Pneumococcal Whole Cells: Evidence of Early Recall Responses by Transcriptomic Analysis. Front Cell Infect Microbiol 2022; 12:869763. [PMID: 35795182 PMCID: PMC9251119 DOI: 10.3389/fcimb.2022.869763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The in vitro stimulation of immune system cells with live or killed bacteria is essential for understanding the host response to pathogens. In the present study, we propose a model combining transcriptomic and cytokine assays on murine splenocytes to describe the immune recall in the days following pneumococcal lung infection. Mice were sacrificed at days 1, 2, 4, and 7 after Streptococcus pneumoniae (TIGR4 serotype 4) intranasal infection and splenocytes were cultured in the presence or absence of the same inactivated bacterial strain to access the transcriptomic and cytokine profiles. The stimulation of splenocytes from infected mice led to a higher number of differentially expressed genes than the infection or stimulation alone, resulting in the enrichment of 40 unique blood transcription modules, including many pathways related to adaptive immunity and cytokines. Together with transcriptomic data, cytokines levels suggested the presence of a recall immune response promoting both innate and adaptive immunity, stronger from the fourth day after infection. Dimensionality reduction and feature selection identified key variables of this recall response and the genes associated with the increase in cytokine concentrations. This model could study the immune responses involved in pneumococcal infection and possibly monitor vaccine immune response and experimental therapies efficacy in future studies.
Collapse
Affiliation(s)
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
- *Correspondence: Francesco Santoro,
| | - Monica Carraro
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Germoni
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Samaneh Gholami
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
20
|
Molecular Epidemiology of Multidrug-Resistant Pneumococci among Ghanaian Children under Five Years Post PCV13 Using MLST. Microorganisms 2022; 10:microorganisms10020469. [PMID: 35208923 PMCID: PMC8879552 DOI: 10.3390/microorganisms10020469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance in pneumococci contributes to the high pneumococcal deaths in children. We assessed the molecular characteristics of multidrug-resistant (MDR) pneumococci isolated from healthy vaccinated children under five years of age in Cape Coast, Ghana. A total of 43 MDR isolates were selected from 151 pneumococcal strains obtained from nasopharyngeal carriage. All isolates were previously serotyped by multiplex PCR and Quellung reaction. Susceptibility testing was performed using either the E-test or disk diffusion method. Virulence and antibiotic resistance genes were identified by PCR. Molecular epidemiology was analyzed using multilocus sequence typing (MLST). Vaccine-serotypes 23F and 19F were predominant. The lytA and pavB virulence genes were present in all isolates, whiles 14–86% of the isolates carried pilus-islets 1 and 2, pcpA, and psrP genes. Penicillin, tetracycline, and cotrimoxazole resistance were evident in >90% of the isolates. The ermB, mefA, and tetM genes were detected in (n = 7, 16.3%), (n = 4, 9.3%) and (n = 43, 100%) of the isolates, respectively. However, >60% showed alteration in the pbp2b gene. MLST revealed five novel and six known sequence types (STs). ST156 (Spain9V-3) and ST802 were identified as international antibiotic-resistant clones. The emergence of international-MDR clones in Ghana requires continuous monitoring of the pneumococcus through a robust surveillance system.
Collapse
|
21
|
Pneumococcal Vaccines: Past Findings, Present Work, and Future Strategies. Vaccines (Basel) 2021; 9:vaccines9111338. [PMID: 34835269 PMCID: PMC8620834 DOI: 10.3390/vaccines9111338] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/24/2023] Open
Abstract
The importance of Streptococcus pneumoniae has been well established. These bacteria can colonize infants and adults without symptoms, but in some cases can spread, invade other tissues and cause disease with high morbidity and mortality. The development of pneumococcal conjugate vaccines (PCV) caused an enormous impact in invasive pneumococcal disease and protected unvaccinated people by herd effect. However, serotype replacement is a well-known phenomenon that has occurred after the introduction of the 7-valent pneumococcal conjugate vaccine (PCV7) and has also been reported for other PCVs. Therefore, it is possible that serotype replacement will continue to occur even with higher valence formulations, but the development of serotype-independent vaccines might overcome this problem. Alternative vaccines are under development in order to improve cost effectiveness, either using proteins or the pneumococcal whole cell. These approaches can be used as a stand-alone strategy or together with polysaccharide vaccines. Looking ahead, the next generation of pneumococcal vaccines can be impacted by the new technologies recently approved for human use, such as mRNA vaccines and viral vectors. In this paper, we will review the advantages and disadvantages of the addition of new polysaccharides in the current PCVs, mainly for low- and middle-income countries, and we will also address future perspectives.
Collapse
|
22
|
Intranasal vaccination with protein bodies elicit strong protection against Streptococcus pneumoniae colonization. Vaccine 2021; 39:6920-6929. [PMID: 34696934 DOI: 10.1016/j.vaccine.2021.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
Protein bodies (PBs) are particles consisting of insoluble, aggregated proteins with potential as a vaccine formulation. PBs can contain high concentrations of antigen, are stable and relatively resistant to proteases, release antigen slowly and are cost-effective to manufacture. Yet, the capacity of PBs to provoke immune responses and protection in the upper respiratory tract, a major entry route of respiratory pathogens, is largely unknown. In this study, we vaccinated mice intranasally with PBs comprising antigens from Streptococcus pneumoniae and evaluated the level of protection against nasopharyngeal colonization. PBs composed of the α-helical domain of pneumococcal surface protein A (PspAα) provided superior protection against colonization with S. pneumoniae compared to soluble PspAα. Immunization with soluble protein or PBs induced differences in antibody binding to pneumococci as well as a highly distinct antigen-specific nasal cytokine profile upon in vivo stimulation with inactivated S. pneumoniae. Moreover, immunization with PBs composed of conserved putative pneumococcal antigens reduced colonization by S. pneumoniae in mice, both as a single- and as a multi-antigen formulation. In conclusion, PBs represent a vaccine formulation that elicits strong mucosal immune responses and protection. The versatility of this platform offers opportunities for development of next-generation vaccine formulations.
Collapse
|
23
|
Weinberger B. Vaccination of older adults: Influenza, pneumococcal disease, herpes zoster, COVID-19 and beyond. Immun Ageing 2021; 18:38. [PMID: 34627326 PMCID: PMC8501352 DOI: 10.1186/s12979-021-00249-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Preserving good health in old age is of utmost importance to alleviate societal, economic and health care-related challenges caused by an aging society. The prevalence and severity of many infectious diseases is higher in older adults, and in addition to the acute disease, long-term sequelae, such as exacerbation of underlying chronic disease, onset of frailty or increased long-term care dependency, are frequent. Prevention of infections e.g. by vaccination is therefore an important measure to ensure healthy aging and preserve quality of life. Several vaccines are specifically recommended for older adults in many countries, and in the current SARS-CoV-2 pandemic older adults were among the first target groups for vaccination due to their high risk for severe disease. This review highlights clinical data on the influenza, Streptococcus pneumoniae and herpes zoster vaccines, summarizes recent developments to improve vaccine efficacy, such as the use of adjuvants or higher antigen dose for influenza, and gives an overview of SARS-CoV-2 vaccine development for older adults. Substantial research is ongoing to further improve vaccines, e.g. by developing universal influenza and pneumococcal vaccines to overcome the limitations of the current strain-specific vaccines, and to develop novel vaccines against pathogens, which cause considerable morbidity and mortality in older adults, but for which no vaccines are currently available. In addition, we need to improve uptake of the existing vaccines and increase awareness for life-long vaccination in order to provide optimal protection for the vulnerable older age group.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Rennweg 10, 6020, Innsbruck, Austria.
| |
Collapse
|
24
|
Bedeley E, Gori A, Yeboah-Manu D, Diallo K. Control of Streptococcal Infections: Is a Common Vaccine Target Achievable Against Streptococcus agalactiae and Streptococcus pneumoniae. Front Microbiol 2021; 12:658824. [PMID: 33967998 PMCID: PMC8103614 DOI: 10.3389/fmicb.2021.658824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Both Streptococcus agalactiae [group B streptococcus (GBS)] and Streptococcus pneumoniae (pneumococcus) remain significant pathogens as they cause life threatening infections mostly in children and the elderly. The control of diseases caused by these pathogens is dependent on antibiotics use and appropriate vaccination. The introduction of the pneumococcal conjugate vaccines (PCVs) against some serotypes has led to reduction in pneumococcal infections, however, the subsequent serotype switching, and replacement has been a serious challenge. On the other hand, no vaccine is yet licensed for use in the control of GBS diseases. In this review, we provide an overview of the history and global disease burden, disease pathophysiology and management, vaccines update, and the biology of both pathogens. Furthermore, we address recent findings regarding structural similarities that could be explored for vaccine targets across both mucosal pathogens. Finally, we conclude by proposing future genomic sequence comparison using the wealth of available sequences from both species and the possibility of identifying more related structural components that could be exploited for pan-pathogen vaccine development.
Collapse
Affiliation(s)
- Edmund Bedeley
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Andrea Gori
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Dorothy Yeboah-Manu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kanny Diallo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Centre Suisse de Recherche Scientifique de Côte d’Ivoire, Abidjan, Côte d’Ivoire
| |
Collapse
|
25
|
Scelfo C, Menzella F, Fontana M, Ghidoni G, Galeone C, Facciolongo NC. Pneumonia and Invasive Pneumococcal Diseases: The Role of Pneumococcal Conjugate Vaccine in the Era of Multi-Drug Resistance. Vaccines (Basel) 2021; 9:420. [PMID: 33922273 PMCID: PMC8145843 DOI: 10.3390/vaccines9050420] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae related diseases are a leading cause of morbidity and mortality, especially in children and in the elderly population. It is transmitted to other individuals through droplets and it can spread to other parts of the human host, causing a wide spectrum of clinical syndromes, affecting between 10 and 100 cases per 100,000 people in Europe and the USA. In order to reduce morbidity and mortality caused by this agent, pneumococcal vaccines have been developed over the years and have shown incredible effectiveness in reducing the spread of this bacterium and the development of related diseases, obtaining a significant reduction in mortality, especially in developing countries. However, considerable problems are emerging mainly due to the replacement phenomenon, multi-drug resistance, and the high production costs of conjugated vaccines. There is still a debate about the indications given by various countries to different age groups; this is one of the reasons for the diffusion of different serotypes. To cope with these problems, significant efforts have been made in the research field to further improve vaccination serotypes coverage. On the other hand, an equally important commitment by health care systems to all age group populations is needed to improve vaccination coverage.
Collapse
Affiliation(s)
- Chiara Scelfo
- Pneumology Unit, Department of Medical Specialties, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42100 Reggio Emilia, Italy; (F.M.); (M.F.); (G.G.); (C.G.); (N.C.F.)
| | | | | | | | | | | |
Collapse
|
26
|
Tchalla EYI, Bhalla M, Wohlfert EA, Bou Ghanem EN. Neutrophils Are Required During Immunization With the Pneumococcal Conjugate Vaccine for Protective Antibody Responses and Host Defense Against Infection. J Infect Dis 2021; 222:1363-1370. [PMID: 32391562 DOI: 10.1093/infdis/jiaa242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Neutrophils can shape adaptive immunity; however, their role in vaccine-induced protection against infections in vivo remains unclear. Here, we tested their role in the clinically relevant polysaccharide conjugate vaccine against Streptococcus pneumoniae (pneumococcus). We antibody depleted neutrophils during vaccination, allowed them to recover, and 4 weeks later challenged mice with pneumococci. We found that while isotype-treated vaccinated controls were protected against an otherwise lethal infection in naive mice, full protection was lost upon neutrophil depletion. Compared to vaccinated controls, neutrophil-depleted mice had higher lung bacterial burdens, increased incidence of bacteremia, and lower survival rates. Sera from neutrophil-depleted mice had less antipneumococcal IgG2c and IgG3, were less efficient at inducing opsonophagocytic killing of bacteria by neutrophils in vitro, and were worse at protecting naive mice against pneumococcal pneumonia. In summary, neutrophils are required during vaccination for optimal host protection, which has important implications for future vaccine design against pneumococci and other pathogens.
Collapse
Affiliation(s)
- Essi Y I Tchalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Elizabeth A Wohlfert
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
27
|
Luck JN, Tettelin H, Orihuela CJ. Sugar-Coated Killer: Serotype 3 Pneumococcal Disease. Front Cell Infect Microbiol 2020; 10:613287. [PMID: 33425786 PMCID: PMC7786310 DOI: 10.3389/fcimb.2020.613287] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Capsular polysaccharide (CPS), which surrounds the bacteria, is one of the most significant and multifaceted contributors to Streptococcus pneumoniae virulence. Capsule prevents entrapment in mucus during colonization, traps water to protect against desiccation, can serve as an energy reserve, and protects the bacterium against complement-mediated opsonization and immune cell phagocytosis. To date, 100 biochemically and serologically distinct capsule types have been identified for S. pneumoniae; 20 to 30 of which have well-defined propensity to cause opportunistic human infection. Among these, serotype 3 is perhaps the most problematic as serotype 3 infections are characterized as having severe clinical manifestations including empyema, bacteremia, cardiotoxicity, and meningitis; consequently, with a fatality rate of 30%-47%. Moreover, serotype 3 resists antibody-mediated clearance despite its inclusion in the current 13-valent conjugate vaccine formulation. This review covers the role of capsule in pneumococcal pathogenesis and the importance of serotype 3 on human disease. We discuss how serotype 3 capsule synthesis and presentation on the bacterial surface is distinct from other serotypes, the biochemical and physiological properties of this capsule type that facilitate its ability to cause disease, and why existing vaccines are unable to confer protection. We conclude with discussion of the clonal properties of serotype 3 and how these have changed since introduction of the 13-valent vaccine in 2000.
Collapse
Affiliation(s)
- Jennifer N. Luck
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
28
|
Feng S, Xiong C, Wang G, Wang S, Jin G, Gu G. Exploration of Recombinant Fusion Proteins YAPO and YAPL as Carrier Proteins for Glycoconjugate Vaccine Design against Streptococcus pneumoniae Infection. ACS Infect Dis 2020; 6:2181-2191. [PMID: 32687317 DOI: 10.1021/acsinfecdis.0c00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pneumolysin (Ply), pneumococcal surface protein A (PspA), and pneumococcal surface adhesin A (PsaA) are promising cell surface protein antigen targets for Streptococcus pneumoniae (Spn) vaccine development. Herein, we designed and recombined two fusion proteins, named YAPO and YAPL, which contained the main antigenic epitopes of Ply, PspA, and PsaA. In-depth immunological evaluations revealed that YAPO and YAPL had strong immunocompetence to be well-qualified potential carrier proteins. To verify this possibility, a serotype 3 Spn (ST3) CPS pentasaccharide was conjugated to each fusion protein to generate the resultant glycoconjugates. Immunological studies in mice revealed that, as compared with TT conjugate, YAPO and YAPL conjugates provoked robust T-cell dependent immune responses that could provide better recognition, in vitro efficient opsonophagocytosis, and in vivo effective protection against various serotypes of Spn. Collectively, YAPO and YAPL were identified as immunopotentiating carriers that could help convert immunologically inactive ST3 pentasaccharide into a T cell-dependent antigen and provide efficient and broad spectrum of immunoprotection coverage so as to formulate functional glycoconjugate vaccines against Spn infections.
Collapse
Affiliation(s)
- Shaojie Feng
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Chenghe Xiong
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guirong Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Subo Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guoxia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua Dong Lu, Jinan 250014, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review highlights the recent impacts of vaccines against the major bacterial causes of meningitis in children, and the challenges for further prevention of bacterial meningitis, with a focus on Streptococcus pneumoniae, Neisseria meningitidis and group B Streptococcus. RECENT FINDINGS Conjugate vaccines against S. pneumoniae and N. meningitidis have resulted in dramatic reductions in bacterial meningitis globally where they have been used. Recent licensure and use of capsular group B meningococcal protein vaccines have further reduced meningococcal meningitis in infants, young children and adolescents for countries with endemic disease and during outbreaks. SUMMARY Existing vaccines to prevent bacterial meningitis in children should be utilized in countries with significant numbers of cases of pneumococcal and/or meningococcal meningitis. Vaccines, which are able to protect against more than 13 serotypes of S. pneumoniae are in clinical trials and should be able to further reduce pneumococcal meningitis cases. Cost effective meningococcal vaccines against non-A capsular groups are needed for low-resource countries. There remains an urgent need for a vaccine against group B Streptococcus, which is a major cause of neonatal meningitis globally and for which no vaccine currently exists.
Collapse
|
30
|
Wagner A, Weinberger B. Vaccines to Prevent Infectious Diseases in the Older Population: Immunological Challenges and Future Perspectives. Front Immunol 2020; 11:717. [PMID: 32391017 PMCID: PMC7190794 DOI: 10.3389/fimmu.2020.00717] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are a major cause for morbidity and mortality in the older population. Demographic changes will lead to increasing numbers of older persons over the next decades. Prevention of infections becomes increasingly important to ensure healthy aging for the individual, and to alleviate the socio-economic burden for societies. Undoubtedly, vaccines are the most efficient health care measure to prevent infections. Age-associated changes of the immune system are responsible for decreased immunogenicity and clinical efficacy of most currently used vaccines in older age. Efficacy of standard influenza vaccines is only 30-50% in the older population. Several approaches, such as higher antigen dose, use of MF59 as adjuvant and intradermal administration have been implemented in order to specifically target the aged immune system. The use of a 23-valent polysaccharide vaccine against Streptococcus pneumoniae has been amended by a 13-valent conjugated pneumococcal vaccine originally developed for young children several years ago to overcome at least some of the limitations of the T cell-independent polysaccharide antigens, but still is only approximately 50% protective against pneumonia. A live-attenuated vaccine against herpes zoster, which has been available for several years, demonstrated efficacy of 51% against herpes zoster and 67% against post-herpetic neuralgia. Protection was lower in the very old and decreased several years after vaccination. Recently, a recombinant vaccine containing the viral glycoprotein gE and the novel adjuvant AS01B has been licensed. Phase III studies demonstrated efficacy against herpes zoster of approx. 90% even in the oldest age groups after administration of two doses and many countries now recommend the preferential use of this vaccine. There are still many infectious diseases causing substantial morbidity in the older population, for which no vaccines are available so far. Extensive research is ongoing to develop vaccines against novel targets with several vaccine candidates already being clinically tested, which have the potential to substantially reduce health care costs and to save many lives. In addition to the development of novel and improved vaccines, which specifically target the aged immune system, it is also important to improve uptake of the existing vaccines in order to protect the vulnerable, older population.
Collapse
Affiliation(s)
- Angelika Wagner
- Department of Pathophysiology, Infectiology, and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Lecrenier N, Marijam A, Olbrecht J, Soumahoro L, Nieto Guevara J, Mungall B. Ten years of experience with the pneumococcal non-typeable Haemophilus influenzae protein D-conjugate vaccine (Synflorix) in children. Expert Rev Vaccines 2020; 19:247-265. [DOI: 10.1080/14760584.2020.1738226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines (Basel) 2020; 8:vaccines8010132. [PMID: 32192117 PMCID: PMC7157650 DOI: 10.3390/vaccines8010132] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is a major pathogen causing pneumonia with over 2 million deaths annually, especially in young children and the elderly. To date, at least 98 different pneumococcal capsular serotypes have been identified. Currently, the vaccines for prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes and are unable to protect against non-vaccine serotypes and unencapsulated S. pneumoniae. This has led to a rapid increase in antibiotic-resistant non-vaccine serotypes. Hence, there is an urgent need to develop new, effective, and affordable pneumococcal vaccines, which could cover a wide range of serotypes. This review discusses the new approaches to develop effective vaccines with broad serotype coverage as well as recent development of promising pneumococcal vaccines in clinical trials. New vaccine candidates are the inactivated whole-cell vaccine strain (Δpep27ΔcomD mutant) constructed by mutations of specific genes and several protein-based S. pneumoniae vaccines using conserved pneumococcal antigens, such as lipoprotein and surface-exposed protein (PspA). Among the vaccines in Phase 3 clinical trials are the pneumococcal conjugate vaccines, PCV-15 (V114) and 20vPnC. The inactivated whole-cell and several protein-based vaccines are either in Phase 1 or 2 trials. Furthermore, the recent progress of nanoparticles that play important roles as delivery systems and adjuvants to improve the performance, as well as the immunogenicity of the nanovaccines, are reviewed.
Collapse
|
33
|
Santos-Cortez RLP, Bhutta MF, Earl JP, Hafrén L, Jennings M, Mell JC, Pichichero ME, Ryan AF, Tateossian H, Ehrlich GD. Panel 3: Genomics, precision medicine and targeted therapies. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109835. [PMID: 32007292 PMCID: PMC7155947 DOI: 10.1016/j.ijporl.2019.109835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To review the most recent advances in human and bacterial genomics as applied to pathogenesis and clinical management of otitis media. DATA SOURCES PubMed articles published since the last meeting in June 2015 up to June 2019. REVIEW METHODS A panel of experts in human and bacterial genomics of otitis media was formed. Each panel member reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019, discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. CONCLUSION Trans-disciplinary approaches applying pan-omic technologies to identify human susceptibility to otitis media and to understand microbial population dynamics, patho-adaptation and virulence mechanisms are crucial to the development of novel, personalized therapeutics and prevention strategies for otitis media. IMPLICATIONS FOR PRACTICE In the future otitis media prevention strategies may be augmented by mucosal immunization, combination vaccines targeting multiple pathogens, and modulation of the middle ear microbiome. Both treatment and vaccination may be tailored to an individual's otitis media phenotype as defined by molecular profiles obtained by using rapidly developing techniques in microbial and host genomics.
Collapse
Affiliation(s)
- Regie Lyn P. Santos-Cortez
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19 Ave., Aurora, CO 80045, USA
| | - Mahmood F. Bhutta
- Department of ENT, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, UK
| | - Joshua P. Earl
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Tukholmankatu 8A, 00290 Helsinki, Finland
| | - Michael Jennings
- Institute for Glycomics, Gold Coast campus, Griffith University, QLD 4222, Australia
| | - Joshua C. Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, 1425 Portland Ave., Rochester, NY 14621, USA
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Hilda Tateossian
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxford, Didcot OX11 0RD, UK
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| |
Collapse
|
34
|
Converso TR, Assoni L, André GO, Darrieux M, Leite LCC. The long search for a serotype independent pneumococcal vaccine. Expert Rev Vaccines 2020; 19:57-70. [PMID: 31903805 DOI: 10.1080/14760584.2020.1711055] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Serotype replacement - a consequence of polysaccharide vaccine use - will continue to drive the inclusion of new serotypes on conjugate vaccines, increasing production complexity and costs, and making an already expensive vaccine less accessible to developing countries, where prevalence is higher and resources available for health systems, scarcer. Serotype-independent formulations are a promising option, but so far they have not been successful in reducing colonization/transmission.Areas covered: Protein-based and whole-cell vaccine candidates studied in the past 30 years. Challenges for serotype-independent vaccine development and alternative approaches.Expert opinion: Clinical trials performed so far demonstrated the importance to establish more reliable animal models and better correlates of protection. Defining appropriate endpoints for clinical trials of serotype-independent vaccine candidates has been a challenge. Inhibition of colonization has been evaluated, but concern on the extent of bacterial elimination is still a matter of debate. Challenges on establishing representative sites for clinical trials, sample sizes and appropriate age groups are discussed. On a whole, although many challenges will have to be overcome, establishing protein-based antigens as serotype-independent vaccines is still the best alternative against the huge burden of pneumococcal diseases in the world.
Collapse
Affiliation(s)
- T R Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - L Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - G O André
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - M Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - L C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol 2019; 22:e13132. [PMID: 31658405 DOI: 10.1111/cmi.13132] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
The skull, spine, meninges, and cellular barriers at the blood-brain and the blood-cerebrospinal fluid interfaces well protect the brain and meningeal spaces against microbial invasion. However, once in the bloodstream, a range of pathogenic bacteria is able to reach the brain and cause meningitis. Despite advances in antibacterial therapy, bacterial meningitis remains one of the most important infectious diseases worldwide. The most common causative bacteria in children and adults are Streptococcus pneumoniae and Neisseria meningitidis associated with high morbidity and mortality, while among neonates, most cases of bacterial meningitis are due to group B Streptococcus and Escherichia coli. Here we summarise our current knowledge on the strategies used by these bacterial pathogens to survive in the bloodstream, to colonise the brain vasculature and to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Loic Le Guennec
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | - Xavier Nassif
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
36
|
Sanz Moreno JC, Ramos Blázquez B. Papel del estado de portador en el control de enfermedades infecciosas y su relación con la vacunación. REVISTA MADRILEÑA DE SALUD PÚBLICA 2019. [DOI: 10.36300/remasp.2019.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
El reservorio natural de Streptococcus pneumoniae,
Neisseria meningitidis y Bordetella pertussis es el ser
humano. De este modo, en caso de disponer de vacunas
efectivas que impidieran la colonización por estas bacterias
se podría interrumpir su transmisión.
La respuesta inmune frente a los antígenos capsulares
de Streptococcus pneumoniae condiciona el estado
de portador de los diferentes serotipos. La vacuna
neumocócica polisacárida 23 valente (PPV23) induce
una respuesta inmune T independiente que es de corta
duración y no previene la colonización. Por el contrario
las vacunas conjugadas 10 valente (PCV10V) y 13 valente
(PCV13) generan una inmunidad T dependiente que
si reduce la colonización por los serotipos incluidos en
su composición. Por este motivo las vacunas conjugadas
proporcionan inmunidad de grupo.
La vacunación de adolescentes frente a Neisseria menigintidis
puede modificar el patrón de transmisión de la
infección con una reducción de la incidencia en niños. En
la actualidad se dispone de vacunas conjugadas frente
a meningococo C, conjugadas tetravalantes frente a los
serogrupos ACWY y de proteínas recombinantes frente a
meningococo B. La inmunidad de grupo generada por vacunas
conjugadas ha sido demostrada para Neisseria menigintidis
C. Desafortunadamente existe escasa evidencia
del impacto de las vacunas frente a meningococo B en la
reducción del estado de portador entre adultos jóvenes.
La infección natural por Bordetella pertussis estimula la
producción de linfocitos T de memoria e induce una intensa
respuesta de IgA secretora en la nasofaringe. En
contraste con la infección natural y con las vacunas de
células completas las actuales vacunas acelulares, no
generan inmunidad en mucosas y no otorgan inmunidad
de grupo. En un intento de resolver este problema se
están desarrollando vacunas alternativas frente a Bordetella
pertussis como las nuevas de células completas y
las vivas atenuadas.
Collapse
Affiliation(s)
- Juan Carlos Sanz Moreno
- Unidad de Microbiología Clínica. Laboratorio Regional de Salud Pública. Dirección General de Salud Pública. Consejería de Sanidad. Comunidad de Madrid
| | - Belén Ramos Blázquez
- Unidad de Microbiología Clínica. Laboratorio Regional de Salud Pública. Dirección General de Salud Pública. Consejería de Sanidad. Comunidad de Madrid
| |
Collapse
|
37
|
Gonçalves VM, Kaneko K, Solórzano C, MacLoughlin R, Saleem I, Miyaji EN. Progress in mucosal immunization for protection against pneumococcal pneumonia. Expert Rev Vaccines 2019; 18:781-792. [PMID: 31305196 DOI: 10.1080/14760584.2019.1643719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Lower respiratory tract infections are the fourth cause of death worldwide and pneumococcus is the leading cause of pneumonia. Nonetheless, existing pneumococcal vaccines are less effective against pneumonia than invasive diseases and serotype replacement is a major concern. Protein antigens could induce serotype-independent protection, and mucosal immunization could offer local and systemic immune responses and induce protection against pneumococcal colonization and lung infection. Areas covered: Immunity induced in the experimental human pneumococcal carriage model, approaches to address the physiological barriers to mucosal immunization and improve delivery of the vaccine antigens, different strategies already tested for pneumococcal mucosal vaccination, including live recombinant bacteria, nanoparticles, bacterium-like particles, and nanogels as well as, nasal, pulmonary, sublingual and oral routes of vaccination. Expert opinion: The most promising delivery systems are based on nanoparticles, bacterial-like particles or nanogels, which possess greater immunogenicity than the antigen alone and are considered safer than approaches based on living cells or toxoids. These particles can protect the antigen from degradation, eliminating the refrigeration need during storage and allowing the manufacture of dry powder formulations. They can also increase antigen uptake, control release of antigen and trigger innate immune responses.
Collapse
Affiliation(s)
| | - Kan Kaneko
- b School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University James Parsons Building , Liverpool , UK
| | - Carla Solórzano
- c Department of Clinical Sciences, Liverpool School of Tropical Medicine , Liverpool , UK
| | - Ronan MacLoughlin
- d Science Department and Clinical Department, Aerogen Ltd., IDA Business Park , Galway , Ireland
| | - Imran Saleem
- b School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University James Parsons Building , Liverpool , UK
| | | |
Collapse
|
38
|
Principi N, Esposito S. Experimental and investigational drugs for the treatment of acute otitis media. Expert Opin Investig Drugs 2019; 28:687-694. [DOI: 10.1080/13543784.2019.1638364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Susanna Esposito
- Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
39
|
Complementary Role of CD4+ T Cells in Response to Pneumococcal Polysaccharide Vaccines in Humans. Vaccines (Basel) 2019; 7:vaccines7010018. [PMID: 30754689 PMCID: PMC6466080 DOI: 10.3390/vaccines7010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/29/2019] [Indexed: 01/14/2023] Open
Abstract
Bacterial pathogens expressing capsular polysaccharides are common causes of mucosal infections (pneumonia, intestinal), as well as often fatal, invasive infections (meningitis, bloodstream infections) in children and adults worldwide. These chemically simple but structurally complex carbohydrate structures on the bacterial surface confer resistance to recognition and clearance by the immune system through a range of mechanisms. Such recognition of capsular polysaccharides may be reduced by their limited ability to directly stimulate B cells and the T cells that may facilitate these humoral responses. The capsules may promote the evasion of complement deposition and activation and may sterically shield the recognition of other subjacent protein antigens by innate factors. Antibodies to capsular polysaccharides, elicited by infection and vaccines, may overcome these obstacles and facilitate bacterial agglutination at mucosal surfaces, as well as the opsonization and clearance of these organisms in tissues and the systemic compartment. However, the immunogenicity of these antigens may be limited by their lack of direct recognition by T cells (“T-independent” antigens) and their restricted ability to generate effective memory responses. In this review, we consider the mechanisms by which polysaccharides may initiate B cell responses and specific antibody responses and the role of T cells, particularly CD4+ follicular helper (TFH) cells to support this process. In addition, we also consider more recent counterintuitive data that capsular polysaccharides themselves may bind major histocompatibility antigen HLA class II to provide a more physiologic mechanism of T cell enhancement of B cell responses to capsular polysaccharides. Defining the contributions of T cells in the generation of effective humoral responses to the capsular polysaccharides will have important implications for understanding and translating this immunobiology for the development of more effective vaccines, to prevent the morbidity and mortality associated with these common mucosal and invasive pathogens in populations at risk.
Collapse
|
40
|
Comparison of four adjuvants revealed the strongest protection against lethal pneumococcal challenge following immunization with PsaA-PspA fusion protein and AS02 as adjuvant. Med Microbiol Immunol 2019; 208:215-226. [PMID: 30707297 DOI: 10.1007/s00430-019-00579-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Streptococcuspneumoniae, or pneumococcus, is a major respiratory-tract pathogen that causes high levels of mortality and morbidity in infants and elderly individuals. Despite the development of various capsular polysaccharide vaccines to prevent pneumococcal disease, it remains epidemic. Pneumococcal surface protein A (PspA) is a highly immunogenic surface protein existing in all strains of S. pneumoniae, and it can elicit immunizing protection against pneumococcal infection. In our previous studies, a fusion protein (PsaA-PspA23), consisting of PspA and pneumococcal surface antigen A (PsaA), displayed greater immunogenicity and provided better protection in mice against S. pneumoniae strains than either PsaA or PspA. In this study, the fusion protein PsaA-PspA23, together with PspA4, was formulated with four adjuvants Al(OH)3, MF59, AS03, and AS02, and subsequently subjected to dose optimization and immunological evaluation for determination of the antibody titers, bacterial burden, survival rates, and levels of cytokines in mice. All vaccines with high adjuvant doses displayed higher antigen-specific immunoglobulin G (IgG) titers. Bacterial burdens were notably decreased to different extents in the lungs and blood of mice immunized with the antigen and various adjuvants. Among these adjuvants, AS02 provided outstanding protection against challenge with pathogenic bacteria from different families and clades; it also induced high titers of IgG1 and IgG2a. Moreover, only AS02 elicited high levels of cytokines, such as TNF-α, IFN-γ, IL-2, and IL-4. These results suggest that PsaA-PspA23 and PspA4 formulated with AS02 may potentially be used as a subunit vaccine against deadly pneumococcal infection.
Collapse
|
41
|
Sánchez-Ramón S, Conejero L, Netea MG, Sancho D, Palomares Ó, Subiza JL. Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum Anti-infectious Formulations. Front Immunol 2018; 9:2936. [PMID: 30619296 PMCID: PMC6304371 DOI: 10.3389/fimmu.2018.02936] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Challenge with specific microbial stimuli induces long lasting epigenetic changes in innate immune cells that result in their enhanced response to a second challenge by the same or unrelated microbial insult, a process referred to as trained immunity. This opens a new avenue in vaccinology to develop Trained Immunity-based Vaccines (TIbV), defined as vaccine formulations that induce training in innate immune cells. Unlike conventional vaccines, which are aimed to elicit only specific responses to vaccine-related antigens, TIbV aim to stimulate broader responses. As trained immunity is generally triggered by pattern recognition receptors (PRRs), TIbV should be formulated with microbial structures containing suitable PRR-ligands. The TIbV concept we describe here may be used for the development of vaccines focused to promote host resistance against a wide spectrum of pathogens. Under the umbrella of trained immunity, a broad protection can be achieved by: (i) increasing the nonspecific effector response of innate immune cells (e.g., monocyte/macrophages) to pathogens, (ii) harnessing the activation state of dendritic cells to enhance adaptive T cell responses to both specific and nonrelated (bystander) antigens. This capacity of TIbV to promote responses beyond their nominal antigens may be particularly useful when conventional vaccines are not available or when multiple coinfections and/or recurrent infections arise in susceptible individuals. As the set of PRR-ligands chosen is essential not only for stimulating trained immunity but also to drive adaptive immunity, the precise design of TIbV will improve with the knowledge on the functional relationship among the different PRRs. While the TIbV concept is emerging, a number of the current anti-infectious vaccines, immunostimulants, and even vaccine adjuvants may already fall in the TIbV category. This may apply to increase immunogenicity of novel vaccine design approaches based on small molecules, like those achieved by reverse vaccinology.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, ENT and Ophthalmology, Complutense University School of Medicine, Madrid, Spain
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Óscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | | |
Collapse
|
42
|
O'Grady KAF, Cripps AW, Grimwood K. Paediatric and adult bronchiectasis: Vaccination in prevention and management. Respirology 2018; 24:107-114. [PMID: 30477047 DOI: 10.1111/resp.13446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
Abstract
Bronchiectasis has received increased attention recently, including an emphasis on preventing infective exacerbations that are associated with disease progression and lung function decline. While there are several bacteria and viruses associated with bronchiectasis, licensed vaccines are only currently available for Streptococcus pneumoniae, Haemophilus influenzae (H. influenzae protein D as a conjugate in a pneumococcal vaccine), Mycobacterium tuberculosis, Bordetella pertussis and influenza virus. The evidence for the efficacy and effectiveness of these vaccines in both preventing and managing bronchiectasis in children and adults is limited with the focus of most research being on other chronic lung disorders, such as chronic obstructive pulmonary diseases, asthma and cystic fibrosis. We review the existing evidence for these vaccines in bronchiectasis and highlight the existing gaps in knowledge. High-quality experimental and non-experimental studies using current state-of-the-art microbiological methods and validated, standardised case definitions are needed across the depth and breadth of the vaccine development pathway.
Collapse
Affiliation(s)
- Kerry-Ann F O'Grady
- Queensland University of Technology, Institute of Health and Biomedical Innovation @ Centre for Children's Health Research, Brisbane, QLD, Australia
| | - Allan W Cripps
- School of Medicine, Griffith University, Gold Coast, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Keith Grimwood
- School of Medicine, Griffith University, Gold Coast, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Department of Infectious Diseases, Gold Coast Health, Gold Coast, QLD, Australia.,Department of Paediatrics, Gold Coast Health, Gold Coast, QLD, Australia
| |
Collapse
|
43
|
Sohail I, Ghosh S, Mukundan S, Zelewski S, Khan MN. Role of Inflammatory Risk Factors in the Pathogenesis of Streptococcus pneumoniae. Front Immunol 2018; 9:2275. [PMID: 30333833 PMCID: PMC6176091 DOI: 10.3389/fimmu.2018.02275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 09/12/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is a colonizer of the human nasopharynx (NP), causing a variety of infections in humans including otitis media, pneumonia, sepsis, and meningitis. The NP is an immune permissive site which allows for the persistence of commensal bacteria. Acute or chronic respiratory airway inflammation constitutes a significant risk factor for the manifestation of Spn infections. The inflammatory conditions caused by an upper respiratory viral infection or respiratory conditions such as allergic asthma and chronic obstructive pulmonary disorders (COPDs) are implicated in the dysregulation of airway inflammation and tissue damage, which compromise the respiratory barrier integrity. These immune events promote bacterial outgrowth leading to Spn dissemination and invasion into the bloodstream. Therefore, suppression of inflammation and restoration of respiratory barrier integrity could contain Spn infections manifesting in the backdrop of an inflammatory disease condition. The gained knowledge could be harnessed in the design of novel therapeutic interventions to circumvent Spn bacterial infections.
Collapse
Affiliation(s)
- Ifrah Sohail
- Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Sumit Ghosh
- Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Santhosh Mukundan
- Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Susan Zelewski
- Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - M Nadeem Khan
- Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
44
|
Croucher NJ, Løchen A, Bentley SD. Pneumococcal Vaccines: Host Interactions, Population Dynamics, and Design Principles. Annu Rev Microbiol 2018; 72:521-549. [DOI: 10.1146/annurev-micro-090817-062338] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a nasopharyngeal commensal and respiratory pathogen. Most isolates express a capsule, the species-wide diversity of which has been immunologically classified into ∼100 serotypes. Capsule polysaccharides have been combined into multivalent vaccines widely used in adults, but the T cell independence of the antibody response means they are not protective in infants. Polysaccharide conjugate vaccines (PCVs) trigger a T cell–dependent response through attaching a carrier protein to capsular polysaccharides. The immune response stimulated by PCVs in infants inhibits carriage of vaccine serotypes (VTs), resulting in population-wide herd immunity. These were replaced in carriage by non-VTs. Nevertheless, PCVs drove reductions in infant pneumococcal disease, due to the lower mean invasiveness of the postvaccination bacterial population; age-varying serotype invasiveness resulted in a smaller reduction in adult disease. Alternative vaccines being tested in trials are designed to provide species-wide protection through stimulating innate and cellular immune responses, alongside antibodies to conserved antigens.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, United Kingdom
| | - Alessandra Løchen
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, United Kingdom
| | - Stephen D. Bentley
- Infection Genomics Programme, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
45
|
Liao H, Peng X, Gan L, Feng J, Gao Y, Yang S, Hu X, Zhang L, Yin Y, Wang H, Xu X. Protective Regulatory T Cell Immune Response Induced by Intranasal Immunization With the Live-Attenuated Pneumococcal Vaccine SPY1 via the Transforming Growth Factor-β1-Smad2/3 Pathway. Front Immunol 2018; 9:1754. [PMID: 30116243 PMCID: PMC6082925 DOI: 10.3389/fimmu.2018.01754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022] Open
Abstract
Vaccine effectiveness is mainly determined by the mechanism mediating protection, emphasizing the importance of unraveling the protective mechanism for novel pneumococcal vaccine development. We previously demonstrated that the regulatory T cell (Treg) immune response has a protective effect against pneumococcal infection elicited by the live-attenuated pneumococcal vaccine SPY1. However, the mechanism underlying this protective effect remains unclear. In this study, a short synthetic peptide (P17) was used to downregulate Tregs during immunization and subsequent challenges in a mouse model. In immunized mice, increase in immune cytokines (IL-12p70, IL-4, IL-5, and IL-17A) induced by SPY1 were further upregulated by P17 treatment, whereas the decrease in the infection-associated inflammatory cytokine TNF-α by SPY1 was reversed. P17 also inhibited the increase in the immunosuppressive cytokine IL-10 and inflammatory mediator IL-6 in immunized mice. More severe pulmonary injuries and more dramatic inflammatory responses with worse survival in P17-treated immunized mice indicated the indispensable role of the Treg immune response in protection against pneumococcal infection by maintaining a balance among acquired immune responses stimulated by SPY1. Further studies revealed that the significant elevation of active transforming growth factor β (TGF-β)1 by SPY1 vaccination activated FOXP3, leading to increased frequencies of CD4+CD25+Foxp3+ T cells. Moreover, SPY1 vaccination elevated the levels of Smad2/3 and phosphor-Smad2/3 and downregulated the negative regulatory factor Smad7 in a time-dependent manner during pneumococcal infection, and these changes were reversed by P17 treatment. These results illustrate that SPY1-stimulated TGF-β1 induced the generation of SPY1-specific Tregs via the Smad2/3 signaling pathway. In addition, SPY1-specific Tregs may participate in protection via the enhanced expression of PD-1 and CTLA-4. The data presented here extend our understanding of how the SPY1-induced acquired Treg immune response contributes to protection elicited by live-attenuated vaccines and may be helpful for the evaluation of live vaccines and other mucosal vaccine candidates.
Collapse
Affiliation(s)
- Hongyi Liao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaoqiong Peng
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingling Gan
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Yue Gao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shenghui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Liping Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiuyu Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Wagner-Muñiz DA, Haughney SL, Kelly SM, Wannemuehler MJ, Narasimhan B. Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity. Front Immunol 2018; 9:325. [PMID: 29599766 PMCID: PMC5863507 DOI: 10.3389/fimmu.2018.00325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae is a major causative agent of pneumonia, a debilitating disease particularly in young and elderly populations, and is the leading worldwide cause of death in children under the age of five. While there are existing vaccines against S. pneumoniae, none are protective across all serotypes. Pneumococcal surface protein A (PspA), a key virulence factor of S. pneumoniae, is an antigen that may be incorporated into future vaccines to address the immunological challenges presented by the diversity of capsular antigens. PspA has been shown to be immunogenic and capable of initiating a humoral immune response that is reactive across approximately 94% of pneumococcal strains. Biodegradable polyanhydrides have been studied as a nanoparticle-based vaccine (i.e., nanovaccine) platform to stabilize labile proteins, to provide adjuvanticity, and enhance patient compliance by providing protective immunity in a single dose. In this study, we designed a room temperature stable PspA-based polyanhydride nanovaccine that eliminated the need for a free protein component (i.e., 100% encapsulated within the nanoparticles). Mice were immunized once with the lead nanovaccine and upon challenge, presented significantly higher survival rates than animals immunized with soluble protein alone, even with a 25-fold reduction in protein dose. This lead nanovaccine formulation performed similarly to protein adjuvanted with Alum, however, with much less tissue reactogenicity at the site of immunization. By eliminating the free PspA from the nanovaccine formulation, the lead nanovaccine was efficacious after being stored dry for 60 days at room temperature, breaking the need for maintaining the cold chain. Altogether, this study demonstrated that a single dose PspA-based nanovaccine against S. pneumoniae induced protective immunity and provided thermal stability when stored at room temperature for at least 60 days.
Collapse
Affiliation(s)
- Danielle A. Wagner-Muñiz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Shannon L. Haughney
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Sean M. Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
47
|
Xu Q, Casey JR, Almudevar A, Pichichero ME. Correlation of higher antibody levels to pneumococcal proteins with protection from pneumococcal acute otitis media but not protection from nasopharyngeal colonization in young children. Clin Microbiol Infect 2017; 23:487.e1-487.e6. [PMID: 28143785 DOI: 10.1016/j.cmi.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We previously found that nasopharyngeal (NP) colonization by Streptococcus pneumoniae elicits mucosal antibody responses to three protein vaccine candidates: pneumococcal histidine triad protein D (PhtD), pneumococcal choline-binding protein A (PcpA), and detoxified pneumolysin (PlyD1). Here we sought to determine if mucosal antibody levels to the proteins correlated with protection from acute otitis media (AOM) and NP colonization. METHODS A total of 228 NP samples were prospectively collected from 100 healthy infants at 6-24 months of age. Whenever children were diagnosed with AOM, middle ear fluids were collected to confirm the diagnosis by microbiological culture. NP mucosal IgG and IgA were quantified by ELISA. RESULTS Higher NP mucosal antibody levels to S. pneumoniae proteins correlated with significantly decreased likelihood of developing AOM caused by S. pneumoniae during 3 to 12 months of subsequent prospective monitoring. Specifically, children who did not experience AOM (n=111samples) caused by S. pneumoniae had two- to five-fold higher mucosal IgG levels to PcpA (all p values <0.01), six- to eight-fold higher IgA to PhtD (all p values <0.05); two- to three-folder higher IgA to PcpA (all p values <0.05), and two- to three-fold higher IgA to PlyD1 (p 0.08, p 0.03 and p 0.08) compared with children who did experience AOM (n=18samples). No association between mucosal antibody levels to the three proteins and NP colonization with S. pneumoniae was found. CONCLUSION Higher NP mucosal IgG levels to PcpA, and IgA to PhtD, PcpA and PlyD1 correlate with reduced risk of development of S. pneumoniae AOM infection but not with reduced risk of NP colonization in young children.
Collapse
Affiliation(s)
- Q Xu
- Rochester General Hospital Research Institute, Rochester, NY, USA
| | - J R Casey
- Legacy Pediatrics, Rochester, NY, USA
| | - A Almudevar
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - M E Pichichero
- Rochester General Hospital Research Institute, Rochester, NY, USA; Legacy Pediatrics, Rochester, NY, USA.
| |
Collapse
|