1
|
Kim JK, Zhu W, Dong C, Wei L, Ma Y, Denning T, Kang SM, Wang BZ. Double-layered protein nanoparticles conjugated with truncated flagellin induce improved mucosal and systemic immune responses in mice. NANOSCALE HORIZONS 2024; 9:2016-2030. [PMID: 39240547 PMCID: PMC11493517 DOI: 10.1039/d4nh00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Influenza viral infection poses a severe risk to global public health. Considering the suboptimal protection provided by current influenza vaccines against circulating influenza A viruses, it is imperative to develop novel vaccine formulations to combat respiratory infections. Here, we report the development of an intranasally-administered, self-adjuvanted double-layered protein nanoparticle consisting of influenza nucleoprotein (NP) cores coated with hemagglutinin (HA) and a truncated form of bacterial flagellin (tFliC). Intranasal vaccination of these nanoparticles notably amplified both antigen-specific humoral and cellular immune responses in the systematic compartments. Elevated antigen-specific IgA and IgG levels in mucosal washes, along with increased lung-resident memory B cell populations, were observed in the respiratory system of the immunized mice. Furthermore, intranasal vaccination of tFliC-adjuvanted nanoparticles enhanced survival rates against homologous and heterologous H3N2 viral challenges. Intriguingly, mucosal slow delivery of the prime dose (by splitting the dose into 5 applications over 8 days) significantly enhanced germinal center reactions and effector T-cell populations in lung draining lymph nodes, therefore promoting the protective efficacy against heterologous influenza viral challenges compared to single-prime immunization. These findings highlight the potential of intranasal immunization with tFliC-adjuvanted protein nanoparticles to bolster mucosal and systemic immune responses, with a slow-delivery strategy offering a promising approach for combating influenza epidemics.
Collapse
Affiliation(s)
- Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Timothy Denning
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| |
Collapse
|
2
|
Di Y, Zhang C, Ren Z, Jiang R, Tang J, Yang S, Wang Z, Yu T, Zhang T, Yu Z, Xu Z, Zhuang X, Jin N, Tian M. The self-assembled nanoparticle-based multi-epitope influenza mRNA vaccine elicits protective immunity against H1N1 and B influenza viruses in mice. Front Immunol 2024; 15:1483720. [PMID: 39445022 PMCID: PMC11497263 DOI: 10.3389/fimmu.2024.1483720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The influenza virus is recognized as the primary cause of human respiratory diseases, with the current influenza vaccine primarily offering strain-specific immunity and limited protection against drifting strains. Considering this, the development of a broad-spectrum influenza vaccine capable of inducing effective immunity is considered the future direction in combating influenza. Methods The present study proposes a novel mRNA-based multi-epitope influenza vaccine, which combines three conserved antigens derived from the influenza A virus. The antigens consist of M2 ion channel's extracellular domain (M2e), the conserved epitope of located in HA2 of hemagglutinin (H1, H3, B), and HA1 of hemagglutinin. At the same time, trimeric sequences and ferritin were conjugated separately to investigate the immune effects of antigen multivalent presentation. Results Immunization studies conducted on C57BL/6 mice with these vaccines revealed that they can elicit both humoral immunity and CD4+ and CD8+ T cell responses, which collectively contribute to enhancing cross-protective effects. The virus challenge results showed that vaccinated groups had significantly reduced lung damage, lower viral loads in the lungs, nasal turbinates, and trachea, as well as decreased levels of pro-inflammatory cytokines. Conclusion These findings clearly demonstrate the wide range of protective effects provided by these vaccines against H1N1 and B influenza viruses. The present finding highlights the potential of mRNA-based influenza vaccines encoding conserved proteins as a promising strategy for eliciting broad-spectrum protective humoral and cellular immunity against H1N1 and B influenza viruses.
Collapse
Affiliation(s)
- Yaxin Di
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Chenchao Zhang
- College of Agriculture, Yanbian University, Yanji, China
| | - Zilin Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Renyue Jiang
- College of Agriculture, Yanbian University, Yanji, China
| | - Jiafeng Tang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Songhui Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Ziliang Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Tong Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Tong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziping Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Zhiqiang Xu
- College of Agriculture, Yanbian University, Yanji, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| |
Collapse
|
3
|
Zhu H, Li X, Li X, Chen H, Qian P. Protection against the H1N1 influenza virus using self-assembled nanoparticles formed by lumazine synthase and bearing the M2e peptide. Virology 2024; 597:110162. [PMID: 38955082 DOI: 10.1016/j.virol.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
There is an urgent need for influenza vaccines that offer broad cross-protection. The highly conserved ectodomain of the influenza matrix protein 2 (M2e) is a promising candidate; however, its low immunogenicity can be addressed. In this study, we developed influenza vaccines using the Lumazine synthase (LS) platform. The primary objective of this study was to determine the protective potential of M2e proteins expressed on Lumazine synthase (LS) nanoparticles. M2e-LS proteins, produced through the E. coli system, spontaneously assemble into nanoparticles. The study investigated the efficacy of the M2e-LS nanoparticle vaccine in mice. Mice immunized with M2e-LS nanoparticles exhibited significantly higher levels of intracellular cytokines than those receiving soluble M2e proteins. The M2e-LS protein exhibited robust immunogenicity and provided 100% protection against cross-clade influenza.
Collapse
Affiliation(s)
- Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Xinxin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Kim SH, Españo E, Padasas BT, Son JH, Oh J, Webby RJ, Lee YR, Park CS, Kim JK. Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines. Immune Netw 2024; 24:e19. [PMID: 38974213 PMCID: PMC11224667 DOI: 10.4110/in.2024.24.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | | | - Ju-Ho Son
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Jihee Oh
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38195, USA
| | - Young-Ran Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Korea
| | - Chan-Su Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| |
Collapse
|
5
|
Lim CML, Komarasamy TV, Adnan NAAB, Radhakrishnan AK, Balasubramaniam VRMT. Recent Advances, Approaches and Challenges in the Development of Universal Influenza Vaccines. Influenza Other Respir Viruses 2024; 18:e13276. [PMID: 38513364 PMCID: PMC10957243 DOI: 10.1111/irv.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/23/2024] Open
Abstract
Every year, influenza virus infections cause significant morbidity and mortality worldwide. They pose a substantial burden of disease, in terms of not only health but also the economy. Owing to the ability of influenza viruses to continuously evolve, annual seasonal influenza vaccines are necessary as a prophylaxis. However, current influenza vaccines against seasonal strains have limited effectiveness and require yearly reformulation due to the virus undergoing antigenic drift or shift. Vaccine mismatches are common, conferring suboptimal protection against seasonal outbreaks, and the threat of the next pandemic continues to loom. Therefore, there is a great need to develop a universal influenza vaccine (UIV) capable of providing broad and durable protection against all influenza virus strains. In the quest to develop a UIV that would obviate the need for annual vaccination and formulation, a multitude of strategies is currently underway. Promising approaches include targeting the highly conserved epitopes of haemagglutinin (HA), neuraminidase (NA), M2 extracellular domain (M2e) and internal proteins of the influenza virus. The identification and characterization of broadly neutralizing antibodies (bnAbs) targeting conserved regions of the viral HA protein, in particular, have provided important insight into novel vaccine designs and platforms. This review discusses universal vaccine approaches presently under development, with an emphasis on those targeting the highly conserved stalk of the HA protein, recent technological advancements used and the future prospects of a UIV in terms of its advantages, developmental obstacles and potential shortcomings.
Collapse
Affiliation(s)
- Caryn Myn Li Lim
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Nur Amelia Azreen Binti Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Ammu Kutty Radhakrishnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| |
Collapse
|
6
|
Xia Y, Liu K, Wang F, Xu Z, Wang Y, Zong R, Xu Y, Li P, Deng B, Xu M, Chen G. Self-Assembled Virus-Like Particle Vaccines via Fluorophilic Interactions Enable Infection Mimicry and Immune Protection. Adv Healthc Mater 2023; 12:e2301647. [PMID: 37703498 DOI: 10.1002/adhm.202301647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Influenza epidemics persistently threaten global health. Vaccines based on virus-like particles (VLPs), which resemble the native conformation of viruses, have emerged as vaccine candidates. However, the production of VLPs via genetic engineering remains constrained by challenges such as low yields, high costs, and being time consuming. In this study, a novel VLP platform is developed that could mimic infection and confer influenza protection through fluorination-driven self-assembly. The VLPs closely mimick the key steps in viral infection including dendritic cell (DC) attachment and pH-responsive endo-lysosomal escape, which enhances DC maturation and antigen cross-presentation. It is also observed that the VLPs migrate from the injection site to the draining lymph nodes efficiently. Immunization with VLPs triggers both Th1 and Th2 cellular responses, thereby inducing an improved CD8+ T cell response along with strong antigen-specific antibody responses. In several infected mouse models, VLP vaccines ameliorate weight loss, lung virus titers, pulmonary pathologies, and confer full protection against H1N1, H6N2, H9N2, and mixed influenza viruses. Therefore, the results support the potential of VLPs as an effective influenza vaccine with improved immune potency against infection. A methodology to generate VLPs based on fluorophilic interactions, which can be a general approach for development of pathogenic VLPs, is reported.
Collapse
Affiliation(s)
- Yinhe Xia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Kai Liu
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Fei Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Zhou Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Yuesheng Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Rongling Zong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Yemin Xu
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Ping Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| |
Collapse
|
7
|
Park J, Champion JA. Effect of Antigen Structure in Subunit Vaccine Nanoparticles on Humoral Immune Responses. ACS Biomater Sci Eng 2023; 9:1296-1306. [PMID: 36848229 PMCID: PMC10015428 DOI: 10.1021/acsbiomaterials.2c01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Subunit vaccines offer numerous attractive features, including good safety profiles and well-defined components with highly characterized properties because they do not contain whole pathogens. However, vaccine platforms based on one or few selected antigens are often poorly immunogenic. Several advances have been made in improving the effectiveness of subunit vaccines, including nanoparticle formulation and/or co-administration with adjuvants. Desolvation of antigens into nanoparticles is one approach that has been successful in eliciting protective immune responses. Despite this advance, damage to the antigen structure by desolvation can compromise the recognition of conformational antigens by B cells and the subsequent humoral response. Here, we used ovalbumin as a model antigen to demonstrate enhanced efficacy of subunit vaccines by preserving antigen structures in nanoparticles. An altered antigen structure due to desolvation was first validated by GROMACS and circular dichroism. Desolvant-free nanoparticles with a stable ovalbumin structure were successfully synthesized by directly cross-linking ovalbumin or using ammonium sulfate to form nanoclusters. Alternatively, desolvated OVA nanoparticles were coated with a layer of OVA after desolvation. Vaccination with salt-precipitated nanoparticles increased OVA-specific IgG titers 4.2- and 22-fold compared to the desolvated and coated nanoparticles, respectively. In addition, enhanced affinity maturation by both salt precipitated and coated nanoparticles was displayed in contrast to desolvated nanoparticles. These results demonstrate both that salt-precipitated antigen nanoparticles are a potential new vaccine platform with significantly improved humoral immunity and a functional value of preserving antigen structures in vaccine nanoparticle design.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| | - Julie A. Champion
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| |
Collapse
|
8
|
Wang Y, Dong C, Ma Y, Zhu W, Gill HS, Denning TL, Kang SM, Wang BZ. Monophosphoryl lipid A-adjuvanted nucleoprotein-neuraminidase nanoparticles improve immune protection against divergent influenza viruses. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102614. [PMID: 36265560 PMCID: PMC9756393 DOI: 10.1016/j.nano.2022.102614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Universal influenza vaccines are urgently needed to prevent recurrent influenza epidemics and inevitable pandemics. We generated double-layered protein nanoparticles incorporating two conserved influenza antigens-nucleoprotein and neuraminidase-through a two-step desolvation-crosslinking method. These protein nanoparticles displayed immunostimulatory properties to antigen-presenting cells by promoting inflammatory cytokine (IL-6 and TNF-α) secretion from JAWS II dendric cells. The nanoparticle immunization induced significant antigen-specific humoral and cellular responses, including antigen-binding and neutralizing antibodies, antibody- and cytokine (IFN-γ and IL-4)-secreting cells, and NP147-155 tetramer-specific cytotoxic T lymphocyte (CTL) responses. Co-administration of monophosphoryl lipid A (MPLA, a toll-like receptor 4 agonist) with the protein nanoparticles further improved immune responses and conferred heterologous and heterosubtypic influenza protection. The MPLA-adjuvanted nanoparticles reduced lung inflammation post-infection. The results demonstrated that the combination of MPLA and conserved protein nanoparticles could be developed into an improved universal influenza vaccine strategy.
Collapse
Affiliation(s)
- Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
9
|
Zhu H, Li X, Ren X, Chen H, Qian P. Improving cross-protection against influenza virus in mice using a nanoparticle vaccine of mini-HA. Vaccine 2022; 40:6352-6361. [PMID: 36175214 DOI: 10.1016/j.vaccine.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to investigate the protective effect of mini-hemagglutinin (mini-HA) proteins expressed on lumazine synthase (LS) nanoparticles against influenza. Soluble mini-HA proteins were assembled with LS proteins via SpyTag/SpyCatcher in vitro. The size of mini-HA-LS nanoparticles was characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the effect of mini-HA-LS nano-vaccines was explored in mice. The results indicate that the diameter of mini-HA-LS nanoparticles was approximately 60-80 nm. The nanoparticles could induce stronger humoral and cellular immune responses and produce cross-clade protection against influenza in mice.
Collapse
Affiliation(s)
- Hechao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
10
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
11
|
Gomes KB, Menon I, Bagwe P, Bajaj L, Kang SM, D’Souza MJ. Enhanced Immunogenicity of an Influenza Ectodomain Matrix-2 Protein Virus-like Particle (M2e VLP) Using Polymeric Microparticles for Vaccine Delivery. Viruses 2022; 14:1920. [PMID: 36146733 PMCID: PMC9506217 DOI: 10.3390/v14091920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we demonstrate how encapsulating a conserved influenza ectodomain matrix-2 protein virus-like particle (M2e5x VLP) into a pre-crosslinked bovine serum albumin (BSA) polymeric matrix enhances in vitro antigen immunogenicity and in vivo efficacy. The spray-dried M2e5x VLP-loaded BSA microparticles (MPs) showed enhanced stimulation of antigen presenting cells (APCs), as confirmed through nitrite production and increased antigen-cell interactions seen in real time using live-cell imaging. Next, to further boost the immunogenicity of M2e5x VLP microparticles, M2e5x MPs were combined with Alhydrogel® and monophosphoryl lipid-A (MPL-A®) adjuvant microparticles. M2e5x VLP MPs and the combination VLP M2e5x VLP + Alhydrogel® + MPL-A® MPs elicited a significant increase in the expression of antigen-presenting molecules in dendritic cells compared to M2e5x VLP alone. Lastly, for preliminary evaluation of in vivo efficacy, the vaccine was administered in mice through the skin using an ablative laser. The M2e5x VLP + Alhydrogel® + MPL-A® MPs were shown to induce high levels of M2e-specific IgG antibodies. Further, a challenge with live influenza revealed heightened T-cell stimulation in immune organs of mice immunized with M2e5x VLP + Alhydrogel® + MPL-A® MPs. Hence, we utilized the advantages of both VLP and polymeric delivery platforms to enhance antigen immunogenicity and adaptive immunity in vivo.
Collapse
Affiliation(s)
- Keegan Braz Gomes
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Ipshita Menon
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Priyal Bagwe
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Lotika Bajaj
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Martin J. D’Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
12
|
The Delivery of mRNA Vaccines for Therapeutics. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081254. [PMID: 36013433 PMCID: PMC9410089 DOI: 10.3390/life12081254] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022]
Abstract
mRNA vaccines have been revolutionary in combating the COVID-19 pandemic in the past two years. They have also become a versatile tool for the prevention of infectious diseases and treatment of cancers. For effective vaccination, mRNA formulation, delivery method and composition of the mRNA carrier play an important role. mRNA vaccines can be delivered using lipid nanoparticles, polymers, peptides or naked mRNA. The vaccine efficacy is influenced by the appropriate delivery materials, formulation methods and selection of a proper administration route. In addition, co-delivery of several mRNAs could also be beneficial and enhance immunity against various variants of an infectious pathogen or several pathogens altogether. Here, we review the recent progress in the delivery methods, modes of delivery and patentable mRNA vaccine technologies.
Collapse
|
13
|
Song Y, Zhu W, Wang Y, Deng L, Ma Y, Dong C, Gonzalez GX, Kim J, Wei L, Kang SM, Wang BZ. Layered protein nanoparticles containing influenza B HA stalk induced sustained cross-protection against viruses spanning both viral lineages. Biomaterials 2022; 287:121664. [PMID: 35810540 PMCID: PMC9822777 DOI: 10.1016/j.biomaterials.2022.121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023]
Abstract
The influenza epidemics pose a significant threat to public health. Of them, type B influenza coincided with several severe flu outbreaks. The efficacy of the current seasonal flu vaccine is limited due to the antigenicity changes of circulating strains. In this study, we generated structure-stabilized HA stalk antigens from influenza B and fabricated double-layered protein nanoparticles as universal influenza B vaccine candidates. In vitro studies found that the resulting protein nanoparticles were effectively taken up to activate dendritic cells. Nanoparticle immunization induced broadly reactive immune responses conferring robust and sustained cross-immune protection against influenza B virus strains of both lineages. The results reveal the potential of layered protein nanoparticles incorporated with structure-stabilized constant antigens as a universal influenza vaccine with improved immune protective potency and breadth.
Collapse
Affiliation(s)
- Yufeng Song
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Lei Deng
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA; Hunan Provincial Kay Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, 410082, China
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Gilbert X Gonzalez
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kim
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
14
|
Tsybalova LM, Stepanova LA, Ramsay ES, Vasin AV. Influenza B: Prospects for the Development of Cross-Protective Vaccines. Viruses 2022; 14:1323. [PMID: 35746794 PMCID: PMC9228933 DOI: 10.3390/v14061323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/04/2023] Open
Abstract
In this review, we analyze the epidemiological and ecological features of influenza B, one of the most common and severe respiratory infections. The review presents various strategies for cross-protective influenza B vaccine development, including recombinant viruses, virus-like particles, and recombinant proteins. We provide an overview of viral proteins as cross-protective vaccine targets, along with other updated broadly protective vaccine strategies. The importance of developing such vaccines lies not only in influenza B prevention, but also in the very attractive prospect of eradicating the influenza B virus in the human population.
Collapse
Affiliation(s)
- Liudmila M. Tsybalova
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Liudmila A. Stepanova
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Edward S. Ramsay
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Andrey V. Vasin
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
- Research Institute of Influenza named after A.A. Smorodintsev, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russia
| |
Collapse
|
15
|
Qiao Y, Li S, Jin S, Pan Y, Shi Y, Kong W, Shan Y. A self-assembling nanoparticle vaccine targeting the conserved epitope of influenza virus hemagglutinin stem elicits a cross-protective immune response. NANOSCALE 2022; 14:3250-3260. [PMID: 35157751 DOI: 10.1039/d1nr08460g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various vaccine strategies have been developed to provide broad protection against diverse influenza viruses. The hemagglutinin (HA) stem is the major potential target of these vaccines. Enhancing immunogenicity and eliciting cross-protective immune responses are critical for HA stem-based vaccine designs. In this study, the A helix (Ah) and CD helix (CDh) from the HA stem were fused with ferritin, individually, or in tandem, yielding Ah-f, CDh-f and (A + CD)h-f nanoparticles (NPs), respectively. These NPs were produced through a prokaryotic expression system. After three immunizations with AS03-adjuvanted NPs in BALB/c mice via the subcutaneous route, CDh-f and (A + CD)h-f induced robust humoral and cellular immune responses. Furthermore, CDh-f and (A + CD)h-f conferred complete protection against a lethal challenge of H3N2 virus, while no remarkable immune responses and protective effects were detected in the Ah-f group. These results indicate that the CDh-based nanovaccine represents a promising vaccine platform against influenza, and the epitope-conjugated ferritin NPs may be a potential vaccine platform against other infectious viruses, such as SARS-COV-2.
Collapse
Affiliation(s)
- Yongbo Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Shenghui Jin
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
16
|
Arista-Romero M, Delcanale P, Pujals S, Albertazzi L. Nanoscale Mapping of Recombinant Viral Proteins: From Cells to Virus-Like Particles. ACS PHOTONICS 2022; 9:101-109. [PMID: 35083366 PMCID: PMC8778639 DOI: 10.1021/acsphotonics.1c01154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 05/17/2023]
Abstract
Influenza recombinant proteins and virus-like particles (VLPs) play an important role in vaccine development (e.g., CadiFlu-S). However, their production from mammalian cells suffers from low yields and lack of control of the final VLPs. To improve these issues, characterization techniques able to visualize and quantify the different steps of the process are needed. Fluorescence microscopy represents a powerful tool able to image multiple protein targets; however, its limited resolution hinders the study of viral constructs. Here, we propose the use of super-resolution microscopy and in particular of DNA-point accumulation for imaging in nanoscale topography (DNA-PAINT) microscopy as a characterization method for recombinant viral proteins on both cells and VLPs. We were able to quantify the amount of the three main influenza proteins (hemagglutinin (HA), neuraminidase (NA), and ion channel matrix protein 2 (M2)) per cell and per VLP with nanometer resolution and single-molecule sensitivity, proving that DNA-PAINT is a powerful technique to characterize recombinant viral constructs.
Collapse
Affiliation(s)
- Maria Arista-Romero
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
| | - Pietro Delcanale
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco area delle Scienze 7/A, 43124 Parma, Italy
| | - Silvia Pujals
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
17
|
Liu Y, Wang X, Zhou J, Shi S, Shen T, Chen L, Zhang M, Liao C, Wang C. Development of PDA Nanoparticles for H9N2 Avian Influenza BPP-V/BP-IV Epitope Peptide Vaccines: Immunogenicity and Delivery Efficiency Improvement. Front Immunol 2021; 12:693972. [PMID: 34386005 PMCID: PMC8353371 DOI: 10.3389/fimmu.2021.693972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
The protection of current influenza vaccines is limited due to the viral antigenic shifts and antigenic drifts. The universal influenza vaccine is a new hotspot in vaccine research that aims to overcome these problems. Polydopamine (PDA), a versatile biomaterial, has the advantages of an excellent biocompatibility, controllable particle size, and distinctive drug loading approach in drug delivery systems. To enhance the immunogenicities and delivery efficiencies of H9N2 avian influenza virus (AIV) epitope peptide vaccines, PDA nanoparticles conjugated with the BPP-V and BP-IV epitope peptides were used to prepare the nano BPP-V and BP-IV epitope peptide vaccines, respectively. The characteristics of the newly developed epitope peptide vaccines were then evaluated, revealing particle sizes ranging from approximately 240 to 290 nm (PDI<0.3), indicating that the synthesized nanoparticles were stable. Simultaneously, the immunoprotective effects of nano BPP-V and BP-IV epitope peptide vaccines were assessed. The nano BPP-V and BP-IV epitope vaccines, especially nano BP-IV epitope vaccine, quickly induced anti-hemagglutinin (HA) antibody production and a sustained immune response, significantly promoted humoral and cellular immune responses, reduced viral lung damage and provided effective protection against AIV viral infection. Together, these results reveal that PDA, as a delivery carrier, can improve the immunogenicities and delivery efficiencies of H9N2 AIV nano epitope vaccines, thereby providing a theoretical basis for the design and development of PDA as a carrier of new universal influenza vaccines.
Collapse
Affiliation(s)
- Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Jiangfei Zhou
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Min Zhang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
18
|
Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9070787. [PMID: 34358203 PMCID: PMC8310120 DOI: 10.3390/vaccines9070787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Animal models have been an important tool for the development of influenza virus vaccines since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines, and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying levels of protection that range between 40–60% and must be reformulated every few years to combat antigenic drift. To address these issues, novel influenza virus vaccines are currently in development. These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this review, we describe seasonal and novel influenza virus vaccines and highlight important animal models used to develop them.
Collapse
|
19
|
Luzuriaga MA, Shahrivarkevishahi A, Herbert FC, Wijesundara YH, Gassensmith JJ. Biomaterials and nanomaterials for sustained release vaccine delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1735. [PMID: 34180608 DOI: 10.1002/wnan.1735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Vaccines are considered one of the most significant medical advancements in human history, as they have prevented hundreds of millions of deaths since their discovery; however, modern travel permits disease spread at unprecedented rates, and vaccine shortcomings like thermal sensitivity and required booster shots have been made evident by the COVID-19 pandemic. Approaches to overcoming these issues appear promising via the integration of vaccine technology with biomaterials, which offer sustained-release properties and preserve proteins, prevent conformational changes, and enable storage at room temperature. Sustained release and thermal stabilization of therapeutic biomacromolecules is an emerging area that integrates material science, chemistry, immunology, nanotechnology, and pathology to investigate different biocompatible materials. Biomaterials, including natural sugar polymers, synthetic polyesters produced from biologically derived monomers, hydrogel blends, protein-polymer blends, and metal-organic frameworks, have emerged as early players in the field. This overview will focus on significant advances of sustained release biomaterial in the context of vaccines against infectious disease and the progress made towards thermally stable "single-shot" formulations. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Michael A Luzuriaga
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA.,Department of Bioengineering, The University of Texas at Dallas, Richardon, Texas, USA
| |
Collapse
|
20
|
Chan Y, Ng SW, Singh SK, Gulati M, Gupta G, Chaudhary SK, Hing GB, Collet T, MacLoughlin R, Löbenberg R, Oliver BG, Chellappan DK, Dua K. Revolutionizing polymer-based nanoparticle-linked vaccines for targeting respiratory viruses: A perspective. Life Sci 2021; 280:119744. [PMID: 34174324 PMCID: PMC8223024 DOI: 10.1016/j.lfs.2021.119744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
Viral respiratory tract infections have significantly impacted global health as well as socio-economic growth. Respiratory viruses such as the influenza virus, respiratory syncytial virus (RSV), and the recent SARS-CoV-2 infection (COVID-19) typically infect the upper respiratory tract by entry through the respiratory mucosa before reaching the lower respiratory tract, resulting in respiratory disease. Generally, vaccination is the primary method in preventing virus pathogenicity and it has been shown to remarkably reduce the burden of various infectious diseases. Nevertheless, the efficacy of conventional vaccines may be hindered by certain limitations, prompting the need to develop novel vaccine delivery vehicles to immunize against various strains of respiratory viruses and to mitigate the risk of a pandemic. In this review, we provide an insight into how polymer-based nanoparticles can be integrated with the development of vaccines to effectively enhance immune responses for combating viral respiratory tract infections.
Collapse
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Sushil Kumar Chaudhary
- Faculty of Pharmacy, DIT University, Mussoorie-Diversion Road, Makkawala, Dehradun 248 009, Uttarakhand, India
| | - Goh Bey Hing
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, H91 HE94 Galway, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Raimar Löbenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB T6G 2N8, Canada
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Kamal Dua
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB T6G 2N8, Canada; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
21
|
Lutz CS, Biggerstaff M, Rolfes MA, Lafond KE, Azziz-Baumgartner E, Porter RM, Reed C, Bresee JS. Estimating the number of averted illnesses and deaths as a result of vaccination against an influenza pandemic in nine low- and middle-income countries. Vaccine 2021; 39:4219-4230. [PMID: 34119348 DOI: 10.1016/j.vaccine.2021.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND During the 2009 influenza A(H1N1)pdm09 pandemic, 77 countries received donated monovalent A(H1N1)pdm09 vaccine through the WHO Pandemic Influenza A(H1N1) Vaccine Deployment Initiative. However, 47% did not receive their first shipment until after the first wave of virus circulation, and 8% did not receive their first shipment until after the WHO declared the end of the pandemic. Arguably, these shipments were too late into the pandemic to have a substantial effect on virus transmission or disease burden during the first waves of the pandemic. OBJECTIVES In order to evaluate the potential benefits of earlier vaccine availability, we estimated the number of illnesses and deaths that could be averted during a 2009-like influenza pandemic under five different vaccine-availability timing scenarios. METHODS We adapted a model originally developed to estimate annual influenza morbidity and mortality burden averted through US seasonal vaccination and ran it for five vaccine availability timing scenarios in nine low- and middle-income countries that received donated vaccine. RESULTS Among nine study countries, we estimated that the number of averted cases was 61-216,197 for actual vaccine receipt, increasing to 2,914-283,916 had vaccine been available simultaneously with the United States. CONCLUSIONS Earlier delivery of vaccines can reduce influenza case counts during a simulated 2009-like pandemic in some low- and middle-income countries. For others, increasing the number of cases and deaths prevented through vaccination may be dependent on factors other than timely initiation of vaccine administration, such as distribution and administration capacity.
Collapse
Affiliation(s)
- Chelsea S Lutz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, United States; Oak Ridge Institute for Science and Education, United States Department of Energy, 100 ORAU Way, Oak Ridge, TN 37830, United States; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
| | - Matthew Biggerstaff
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, United States
| | - Melissa A Rolfes
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, United States
| | - Kathryn E Lafond
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, United States
| | - Eduardo Azziz-Baumgartner
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, United States
| | - Rachael M Porter
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, United States
| | - Carrie Reed
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, United States
| | - Joseph S Bresee
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, United States
| |
Collapse
|
22
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|
23
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
24
|
Population Disequilibrium as Promoter of Adaptive Explorations in Hepatitis C Virus. Viruses 2021; 13:v13040616. [PMID: 33916702 PMCID: PMC8067247 DOI: 10.3390/v13040616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Replication of RNA viruses is characterized by exploration of sequence space which facilitates their adaptation to changing environments. It is generally accepted that such exploration takes place mainly in response to positive selection, and that further diversification is boosted by modifications of virus population size, particularly bottleneck events. Our recent results with hepatitis C virus (HCV) have shown that the expansion in sequence space of a viral clone continues despite prolonged replication in a stable cell culture environment. Diagnosis of the expansion was based on the quantification of diversity indices, the occurrence of intra-population mutational waves (variations in mutant frequencies), and greater individual residue variations in mutant spectra than those anticipated from sequence alignments in data banks. In the present report, we review our previous results, and show additionally that mutational waves in amplicons from the NS5A-NS5B-coding region are equally prominent during HCV passage in the absence or presence of the mutagenic nucleotide analogues favipiravir or ribavirin. In addition, by extending our previous analysis to amplicons of the NS3- and NS5A-coding region, we provide further evidence of the incongruence between amino acid conservation scores in mutant spectra from infected patients and in the Los Alamos National Laboratory HCV data banks. We hypothesize that these observations have as a common origin a permanent state of HCV population disequilibrium even upon extensive viral replication in the absence of external selective constraints or changes in population size. Such a persistent disequilibrium—revealed by the changing composition of the mutant spectrum—may facilitate finding alternative mutational pathways for HCV antiviral resistance. The possible significance of our model for other genetically variable viruses is discussed.
Collapse
|
25
|
Ertas YN, Mahmoodi M, Shahabipour F, Jahed V, Diltemiz SE, Tutar R, Ashammakhi N. Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). EMERGENT MATERIALS 2021; 4:35-55. [PMID: 33748672 PMCID: PMC7962632 DOI: 10.1007/s42247-021-00165-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
Recently emerged novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting corona virus disease 2019 (COVID-19) led to urgent search for methods to prevent and treat COVID-19. Among important disciplines that were mobilized is the biomaterials science and engineering. Biomaterials offer a range of possibilities to develop disease models, protective, diagnostic, therapeutic, monitoring measures, and vaccines. Among the most important contributions made so far from this field are tissue engineering, organoids, and organ-on-a-chip systems, which have been the important frontiers in developing tissue models for viral infection studies. Also, due to low bioavailability and limited circulation time of conventional antiviral drugs, controlled and targeted drug delivery could be applied alternatively. Fortunately, at the time of writing this paper, we have two successful vaccines and new at-home detection platforms. In this paper, we aim to review recent advances of biomaterial-based platforms for protection, diagnosis, vaccination, therapeutics, and monitoring of SARS-CoV-2 and discuss challenges and possible future research directions in this field.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mahboobeh Mahmoodi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA USA
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Fahimeh Shahabipour
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
- Skin Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Jahed
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI USA
| |
Collapse
|
26
|
Khramtsov P, Kalashnikova T, Bochkova M, Kropaneva M, Timganova V, Zamorina S, Rayev M. Measuring the concentration of protein nanoparticles synthesized by desolvation method: Comparison of Bradford assay, BCA assay, hydrolysis/UV spectroscopy and gravimetric analysis. Int J Pharm 2021; 599:120422. [PMID: 33647407 DOI: 10.1016/j.ijpharm.2021.120422] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/04/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
The desolvation technique is one of the most popular methods for preparing protein nanoparticles for medicine, biotechnology, and food applications. We fabricated 11 batches of BSA nanoparticles and 2 batches of gelatin nanoparticles by desolvation method. BSA nanoparticles from 2 batches were cross-linked by heating at +70 °C for 2 h; other nanoparticles were stabilized by glutaraldehyde. We compared several analytical approaches to measuring their concentration: gravimetric analysis, bicinchoninic acid assay, Bradford assay, and alkaline hydrolysis combined with UV spectroscopy. We revealed that the cross-linking degree and method of cross-linking affect both Bradford and BCA assay. Direct measurement of protein concentration in the suspension of purified nanoparticles by dye-binding assays can lead to significant (up to 50-60%) underestimation of nanoparticle concentration. Quantification of non-desolvated protein (indirect method) is affected by the presence of small nanoparticles in supernatants and can be inaccurate when the yield of desolvation is low. The reaction of cross-linker with protein changes UV absorbance of the latter. Therefore pure protein solution is an inappropriate calibrator when applying UV spectroscopy for the determination of nanoparticle concentration. Our recommendation is to determine the concentration of protein nanoparticles by at least two different methods, including gravimetric analysis.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia.
| | - Tatyana Kalashnikova
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Maria Bochkova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Maria Kropaneva
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Valeria Timganova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Svetlana Zamorina
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Mikhail Rayev
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| |
Collapse
|
27
|
Tang S, Zhu W, Wang BZ. Influenza Vaccines toward Universality through Nanoplatforms and Given by Microneedle Patches. Viruses 2020; 12:E1212. [PMID: 33114336 PMCID: PMC7690886 DOI: 10.3390/v12111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Influenza is one of the top threats to public health. The best strategy to prevent influenza is vaccination. Because of the antigenic changes in the major surface antigens of influenza viruses, current seasonal influenza vaccines need to be updated every year to match the circulating strains and are suboptimal for protection. Furthermore, seasonal vaccines do not protect against potential influenza pandemics. A universal influenza vaccine will eliminate the threat of both influenza epidemics and pandemics. Due to the massive challenge in realizing influenza vaccine universality, a single vaccine strategy cannot meet the need. A comprehensive approach that integrates advances in immunogen designs, vaccine and adjuvant nanoplatforms, and vaccine delivery and controlled release has the potential to achieve an effective universal influenza vaccine. This review will summarize the advances in the research and development of an affordable universal influenza vaccine.
Collapse
Affiliation(s)
| | | | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (W.Z.)
| |
Collapse
|
28
|
Li S, Qiao Y, Xu Y, Li P, Nie J, Zhao Q, Chai W, Shi Y, Kong W, Shan Y. Identification of Linear Peptide Immunogens with Verified Broad-spectrum Immunogenicity from the Conserved Regions within the Hemagglutinin Stem Domain of H1N1 Influenza Virus. Immunol Invest 2020; 51:411-424. [PMID: 33078652 DOI: 10.1080/08820139.2020.1834579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Influenza A viruses (IAVs) induce acute respiratory disease and cause severe epidemics and pandemics. Since IAVs exhibit antigenic variation and genome reassortment, the development of broad-spectrum influenza vaccines is crucial. The stem of the hemagglutinin (HA) is highly conserved across IAV strains and thus has been explored in broad-spectrum influenza vaccine studies. The present study aimed to identify viral epitopes capable of eliciting effective host immune responses, which can be explored for the development of broad-spectrum non-strain specific prophylactic options against IAV.Methods: In this study, a series of conserved linear sequences from the HA stem of IAV (H1N1) was recognized by sequence alignment and B/T-cell epitope prediction after being chemically coupled to the Keyhole Limpet Hemocyanin (KLH) protein. The predicted linear epitopes were identified by enzyme-linked immunosorbent assay (ELISA) after animal immunization and then fused with ferritin carriers.Results: Three predicted linear epitopes with relatively strong immunogenicity, P3, P6 and P8 were fused with ferritin carriers P3F, P6F and P8F, respectively to further improve their immunogenicity. Antibody titre of the sera of mice immunized with the recombinant immunogens revealed the elicitation of specific antibody-binding activities by the identified sequences. While hemagglutinin-inhibition activities were not detected in the antisera, neutralizing antibodies against the H1 and H3 virus subtypes were detected by the microneutralization assay.Conclusion: The linear epitopes fused with ferritin identified in this study can lay the foundation for future advancements in development of broad-spectrum subunit vaccine against IAV (H1N1), and give rise to the potential future applicability of ferritin-based antigen delivery nanoplatforms.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yongbo Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Xu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Pengju Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Wen Chai
- Changchun Institute of Biological Products Co., Ltd, Changchun, Jilin, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
29
|
Chan Y, Ng SW, Mehta M, Anand K, Kumar Singh S, Gupta G, Chellappan DK, Dua K. Advanced drug delivery systems can assist in managing influenza virus infection: A hypothesis. Med Hypotheses 2020; 144:110298. [PMID: 33254489 PMCID: PMC7515600 DOI: 10.1016/j.mehy.2020.110298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Outbreaks of influenza infections in the past have severely impacted global health and socioeconomic growth. Antivirals and vaccines are remarkable medical innovations that have been successful in reducing the rates of morbidity and mortality from this disease. However, the relentless emergence of drug resistance has led to a worrisome increase in the trend of influenza outbreaks, characterized by worsened clinical outcomes as well as increased economic burden. This has prompted the need for breakthrough innovations that can effectively manage influenza outbreaks. This article provides an insight into a novel hypothesis that describes how the integration of nanomedicine, with the development of drugs and vaccines can potentially enhance body immune response and the efficacies of anti-viral therapeutics to combat influenza infections.
Collapse
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Nanotherapeutics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya Medical Centre, Subang Jaya, 47500 Selangor, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, 302017 Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| |
Collapse
|
30
|
Abstract
INTRODUCTION Otitis media (OM) is a spectrum of infectious and inflammatory diseases that involve the middle ear. It includes acute otitis media (AOM), otitis media with effusion (OME) and chronic suppurative otitis media (CSOM). AREAS COVERED This manuscript discusses some of the emerging and unsolved problems regarding OM, and some of the newly developed prophylactic and therapeutic medical measures. EXPERT OPINION In recent years, considerable progress in the knowledge of OM physiopathology has been made. However, although extremely common, diseases included under OM have not been adequately studied, and many areas of development, evolution and possible treatments of these pathologies are not defined. It is necessary that these deficiencies be quickly overcome if we want to reduce the total burden of a group of diseases that still have extremely high medical, social and economic relevance.
Collapse
Affiliation(s)
- Nicola Principi
- Emeritus of Pediatrics, Università Degli Studi Di Milano , Milan, Italy
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma , Parma, Italy
| |
Collapse
|
31
|
Ostrowsky J, Arpey M, Moore K, Osterholm M, Friede M, Gordon J, Higgins D, Molto-Lopez J, Seals J, Bresee J. Tracking progress in universal influenza vaccine development. Curr Opin Virol 2020; 40:28-36. [PMID: 32279026 DOI: 10.1016/j.coviro.2020.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
Conventional influenza vaccines are designed to stimulate neutralizing antibodies against immunodominant but highly variable hemagglutinin antigens. Inherent limitations include suboptimal protection against rapidly changing seasonal influenza viruses and a lack of protection against antigenically novel pandemic influenza. New technologies for developing influenza vaccines that induce more broadly protective and durable immunity are a growing area of research and focus on a variety of approaches, including targeting conserved antigens and stimulating cross-reactive T cell responses. This review highlights a new effort to track the development of universal influenza vaccine technologies. The Universal Influenza Vaccine Technology Landscape is intended to provide stakeholders and funders with a common source of information to monitor research progress and identify opportunities for informed investments and collaboration.
Collapse
Affiliation(s)
- Julie Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA.
| | - Meredith Arpey
- Center for Infectious Disease Research and Policy, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Kristine Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Michael Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Martin Friede
- Initiative for Vaccine Research, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland
| | - Jennifer Gordon
- Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, 5601 Fishers Lane, Rockville, MD 20852, USA
| | - Deborah Higgins
- Center for Vaccine Innovation and Access, PATH, 2201 Westlake Ave, Seattle, Washington 98121, USA
| | - Julia Molto-Lopez
- Directorate-General for Research and Innovation, European Commission, rue Champ de Mars 21, 1050 Brussels, Belgium
| | - Jonathan Seals
- Office of Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, 330 Independence Ave SW, Washington DC 20201, USA
| | - Joseph Bresee
- Global Funders Consortium for Universal Influenza Vaccine Development, Task Force for Global Health, 330 W Ponce de Leon Ave, Decatur, GA 30030, USA
| |
Collapse
|
32
|
Wang Y, Deng L, Gonzalez GX, Luthra L, Dong C, Ma Y, Zou J, Kang SM, Wang BZ. Double-Layered M2e-NA Protein Nanoparticle Immunization Induces Broad Cross-Protection against Different Influenza Viruses in Mice. Adv Healthc Mater 2020; 9:e1901176. [PMID: 31840437 PMCID: PMC6980908 DOI: 10.1002/adhm.201901176] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Indexed: 12/13/2022]
Abstract
The development of a universal influenza vaccine is an ideal strategy to eliminate public health threats from influenza epidemics and pandemics. This ultimate goal is restricted by the low immunogenicity of conserved influenza epitopes. Layered protein nanoparticles composed of well-designed conserved influenza structures have shown improved immunogenicity with new physical and biochemical features. Herein, structure-stabilized influenza matrix protein 2 ectodomain (M2e) and M2e-neuraminidase fusion (M2e-NA) recombinant proteins are generated and M2e protein nanoparticles and double-layered M2e-NA protein nanoparticles are produced by ethanol desolvation and chemical crosslinking. Immunizations with these protein nanoparticles induce immune protection against different viruses of homologous and heterosubtypic NA in mice. Double-layered M2e-NA protein nanoparticles induce higher levels of humoral and cellular responses compared with their comprising protein mixture or M2e nanoparticles. Strong cytotoxic T cell responses are induced in the layered M2e-NA protein nanoparticle groups. Antibody responses contribute to the heterosubtypic NA immune protection. The protective immunity is long lasting. These results demonstrate that double-layered protein nanoparticles containing structure-stabilized M2e and NA can be developed into a universal influenza vaccine or a synergistic component of such vaccines. Layered protein nanoparticles can be a general vaccine platform for different pathogens.
Collapse
Affiliation(s)
- Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | | | - Gilbert X. Gonzalez
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Latika Luthra
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Jun Zou
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| |
Collapse
|
33
|
Biswas A, Chakrabarti AK, Dutta S. Current challenges: from the path of “original antigenic sin” towards the development of universal flu vaccines. Int Rev Immunol 2019; 39:21-36. [DOI: 10.1080/08830185.2019.1685990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Asim Biswas
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok K. Chakrabarti
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
34
|
Jazayeri SD, Poh CL. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines (Basel) 2019; 7:E169. [PMID: 31683888 PMCID: PMC6963725 DOI: 10.3390/vaccines7040169] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Vaccination is still the most efficient way to prevent an infection with influenza viruses. Nevertheless, existing commercial vaccines face serious limitations such as availability during epidemic outbreaks and their efficacy. Existing seasonal influenza vaccines mostly induce antibody responses to the surface proteins of influenza viruses, which frequently change due to antigenic shift and or drift, thus allowing influenza viruses to avoid neutralizing antibodies. Hence, influenza vaccines need a yearly formulation to protect against new seasonal viruses. A broadly protective or universal influenza vaccine must induce effective humoral as well as cellular immunity against conserved influenza antigens, offer good protection against influenza pandemics, be safe, and have a fast production platform. Nanotechnology has great potential to improve vaccine delivery, immunogenicity, and host immune responses. As new strains of human epidemic influenza virus strains could originate from poultry and swine viruses, development of a new universal influenza vaccine will require the immune responses to be directed against viruses from different hosts. This review discusses how the new vaccine platforms and nanoparticles can be beneficial in the development of a broadly protective, universal influenza vaccine.
Collapse
Affiliation(s)
- Seyed Davoud Jazayeri
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia.
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
35
|
Jang YH, Seong BL. The Quest for a Truly Universal Influenza Vaccine. Front Cell Infect Microbiol 2019; 9:344. [PMID: 31649895 PMCID: PMC6795694 DOI: 10.3389/fcimb.2019.00344] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
There is an unmet public health need for a universal influenza vaccine (UIV) to provide broad and durable protection from influenza virus infections. The identification of broadly protective antibodies and cross-reactive T cells directed to influenza viral targets present a promising prospect for the development of a UIV. Multiple targets for cross-protection have been identified in the stalk and head of hemagglutinin (HA) to develop a UIV. Recently, neuraminidase (NA) has received significant attention as a critical component for increasing the breadth of protection. The HA stalk-based approaches have shown promising results of broader protection in animal studies, and their feasibility in humans are being evaluated in clinical trials. Mucosal immune responses and cross-reactive T cell immunity across influenza A and B viruses intrinsic to live attenuated influenza vaccine (LAIV) have emerged as essential features to be incorporated into a UIV. Complementing the weakness of the stand-alone approaches, prime-boost vaccination combining HA stalk, and LAIV is under clinical evaluation, with the aim to increase the efficacy and broaden the spectrum of protection. Preexisting immunity in humans established by prior exposure to influenza viruses may affect the hierarchy and magnitude of immune responses elicited by an influenza vaccine, limiting the interpretation of preclinical data based on naive animals, necessitating human challenge studies. A consensus is yet to be achieved on the spectrum of protection, efficacy, target population, and duration of protection to define a “universal” vaccine. This review discusses the recent advancements in the development of UIVs, rationales behind cross-protection and vaccine designs, and challenges faced in obtaining balanced protection potency, a wide spectrum of protection, and safety relevant to UIVs.
Collapse
Affiliation(s)
- Yo Han Jang
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
36
|
Kingstad-Bakke BA, Chandrasekar SS, Phanse Y, Ross KA, Hatta M, Suresh M, Kawaoka Y, Osorio JE, Narasimhan B, Talaat AM. Effective mosaic-based nanovaccines against avian influenza in poultry. Vaccine 2019; 37:5051-5058. [PMID: 31300285 DOI: 10.1016/j.vaccine.2019.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/15/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023]
Abstract
Avian influenza virus (AIV) is an extraordinarily diverse pathogen that causes significant morbidity in domesticated poultry populations and threatens human life with looming pandemic potential. Controlling avian influenza in susceptible populations requires highly effective, economical and broadly reactive vaccines. Several AIV vaccines have proven insufficient despite their wide use, and better technologies are needed to improve their immunogenicity and broaden effectiveness. Previously, we developed a "mosaic" H5 subtype hemagglutinin (HA) AIV vaccine and demonstrated its broad protection against diverse highly pathogenic H5N1 and seasonal H1N1 virus strains in mouse and non-human primate models. There is a significant interest in developing effective and safe vaccines against AIV that cannot contribute to the emergence of new strains of the virus once circulating in poultry. Here, we report on the development of an H5 mosaic (H5M) vaccine antigen formulated with polyanhydride nanoparticles (PAN) that provide sustained release of encapsulated antigens. H5M vaccine constructs were immunogenic whether delivered by the modified virus Ankara (MVA) strain or encapsulated within PAN. Both humoral and cellular immune responses were generated in both specific-pathogen free (SPF) and commercial chicks. Importantly, chicks vaccinated by H5M constructs were protected in terms of viral shedding from divergent challenge with a low pathogenicity avian influenza (LPAI) strain at 8 weeks post-vaccination. In addition, protective levels of humoral immunity were generated against highly pathogenic avian influenza (HPAI) of the similar H5N1 and genetically dissimilar H5N2 viruses. Overall, the developed platform technologies (MVA vector and PAN encapsulation) were safe and provided high levels of sustained protection against AIV in chickens. Such approaches could be used to design more efficacious vaccines against other important poultry infections.
Collapse
Affiliation(s)
- Brock A Kingstad-Bakke
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA; Pan Genome Systems, Madison, WI, USA
| | - Shaswath S Chandrasekar
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Masato Hatta
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - M Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Adel M Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA; Pan Genome Systems, Madison, WI, USA.
| |
Collapse
|
37
|
Rai M, Jamil B. Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. Nanotheranostics 2019. [PMCID: PMC7121811 DOI: 10.1007/978-3-030-29768-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various viruses can be considered as one of the most frequent causes of human diseases, from mild illnesses to really serious sicknesses that end fatally. Numerous viruses are also pathogenic to animals and plants, and many of them, mutating, become pathogenic also to humans. Several cases of affecting humans by originally animal viruses have been confirmed. Viral infections cause significant morbidity and mortality in humans, the increase of which is caused by general immunosuppression of the world population, changes in climate, and overall globalization. In spite of the fact that the pharmaceutical industry pays great attention to human viral infections, many of clinically used antivirals demonstrate also increased toxicity against human cells, limited bioavailability, and thus, not entirely suitable therapeutic profile. In addition, due to resistance, a combination of antivirals is needed for life-threatening infections. Thus, the development of new antiviral agents is of great importance for the control of virus spread. On the other hand, the discovery and development of structurally new antivirals represent risks. Therefore, another strategy is being developed, namely the reformulation of existing antivirals into nanoformulations and investigation of various metal and metalloid nanoparticles with respect to their diagnostic, prophylactic, and therapeutic antiviral applications. This chapter is focused on nanoscale materials/formulations with the potential to be used for the treatment or inhibition of the spread of viral diseases caused by human immunodeficiency virus, influenza A viruses (subtypes H3N2 and H1N1), avian influenza and swine influenza viruses, respiratory syncytial virus, herpes simplex virus, hepatitis B and C viruses, Ebola and Marburg viruses, Newcastle disease virus, dengue and Zika viruses, and pseudorabies virus. Effective antiviral long-lasting and target-selective nanoformulations developed for oral, intravenous, intramuscular, intranasal, intrarectal, intravaginal, and intradermal applications are discussed. Benefits of nanoparticle-based vaccination formulations with the potential to secure cross protection against divergent viruses are outlined as well.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra, India, Department of Chemistry, Federal University of Piauí, Teresina, Piauí Brazil
| | - Bushra Jamil
- Department of DMLS, University of Lahore, Islamabad, Pakistan
| |
Collapse
|