1
|
Lv S, Zhou Y, Ji J, Yan Y, Zhu G. Epidemiological and genetic characteristics of enteroviruses associated with hand, foot, and mouth disease in Jiaxing, China from 2019 to 2022. Sci Rep 2025; 15:14546. [PMID: 40281098 PMCID: PMC12032032 DOI: 10.1038/s41598-025-99251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Hand, foot, and mouth disease (HFMD) is mainly caused by enteroviruses (EVs) and represents an important public health problem in China. The aim of this study was to investigate the epidemiological and genetic characteristics of EVs associated with HFMD in Jiaxing City in 2019-2022. In total, 1807 clinical specimens collected from patients with HFMD were evaluated by real-time reverse transcription polymerase chain reaction, and 1553 EV-positive specimens were detected, including 1018 coxsackievirus A6 (CVA6), 301 coxsackievirus A16 (CVA16), 94 coxsackievirus A10 (CVA10), 7 enterovirus A71 (EV-A71), and 133 other EVs. A phylogenetic analysis revealed that the subgenogroups CVA6 D3a, CVA10 F, and CVA16 B1a B1b were predominant in Jiaxing. Compared with VP1 of the prototype strains of CVA6, CVA10, and CVA16, 34, 36, and 31 amino acid substitutions were detected, respectively. Children aged 1-5 years accounted for the majority of cases, and the infection rate was higher in males than in females. EV infection cases were clearly affected by the COVID-19 epidemic, with decreases in 2020 corresponding to the implementation of protective measures. These findings add to the global genetic resources for EVs and demonstrate the epidemiological characteristics and genetic features of HFMD in Jiaxing.
Collapse
Affiliation(s)
- Shencong Lv
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Yamei Zhou
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Jimei Ji
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Yong Yan
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Guoying Zhu
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China.
| |
Collapse
|
2
|
Wu H, Wang Z, Zhang Y, Hu L, Yang J, Zhang C, Lou M, Pi N, Wang Q, Fan S, Huang Z. A New Human SCARB2 Knock-In Mouse Model for Studying Coxsackievirus A16 and Its Neurotoxicity. Viruses 2025; 17:423. [PMID: 40143350 PMCID: PMC11945865 DOI: 10.3390/v17030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Hand, Foot, and Mouth Disease (HFMD) is a viral illness caused by enterovirus infections. While the introduction of the enterovirus 71 (EV71) vaccine has significantly reduced the number of EV71-related cases, the continued spread of Coxsackievirus A16 (CVA16) remains a major public health threat. Previous studies have shown that human SCARB2 (hSCARB2) knock-in (KI) mice, generated using embryonic stem cell (ESC) technology, are susceptible to CVA16. However, these models have failed to reproduce the clinical pathology and neurotoxicity after CVA16 infection. Therefore, there is an urgent need for a more reliable and effective animal model to study CVA16. In this study, we successfully created a hSCARB2 KI mouse model targeting the ROSA26 locus using CRISPR/Cas9 gene editing technology. The application of CRISPR/Cas9 enabled stable and widespread expression of hSCARB2 in the model. After infection, the KI mice exhibited a clinical pathology that closely mimics human infection, with prominent limb weakness and paralysis. The virus was detectable in multiple major organs of the mice, with peak viral load observed on day 7 post-infection, gradually clearing thereafter. Further analysis revealed widespread neuronal necrosis and infiltration of inflammatory cells in the brain and spinal cord of the KI mice. Additionally, significant activation of astrocytes (GFAP-positive) and microglia (IBA1-positive) was observed in the brain, suggesting that CVA16 infection may induce limb paralysis by attacking neuronal cells. Overall, this model effectively replicates the neuropathological changes induced by CVA16 infection and provides a potential experimental platform for studying CVA16-associated pathogenesis and neurotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 935, Jiaoling Road, Kunming 650118, China; (H.W.); (Z.W.); (Y.Z.); (L.H.); (J.Y.); (C.Z.); (M.L.); (N.P.); (Q.W.)
| | - Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 935, Jiaoling Road, Kunming 650118, China; (H.W.); (Z.W.); (Y.Z.); (L.H.); (J.Y.); (C.Z.); (M.L.); (N.P.); (Q.W.)
| |
Collapse
|
3
|
Schwartz J, Capistrano K, Hussein H, Hafedi A, Shukla D, Naqvi A. Oral SARS-CoV-2 Infection and Risk for Long Covid. Rev Med Virol 2025; 35:e70029. [PMID: 40074704 PMCID: PMC11903386 DOI: 10.1002/rmv.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/30/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism. Dysbiotic microbiome-induced inflammation can promote viral entry via angiotensin-converting enzyme receptor-2 (ACE2), serine transmembrane TMPRSS2 and possibly other non-canonical pathways. Additionally, metabolites derived from a dysbiotic microbiome can alter the physiological and biochemical pathways related to the metabolism of lipids, carbohydrates, and amino acids. This may promote a pro-inflammatory microenvironment, leading to immune exhaustion, loss of tolerance, and susceptibility to a variety of oral pathogens, causing acute and later chronic inflammation. Microbial release of mimics of host metallopeptidases related to furin, ADAM17 (A disintegrin and metalloproteinase 17), and glycoprotein metabolites can further aid viral attachment to T cell immunoglobulin-like (TIMs), enhancing viral entry while simultaneously depressing oral mucosal immune resistance and clearance. Membrane reorganization characterised by neuroproteins, such as neuropilins, also functionally assists with SARS-CoV-2 entry and extends the pathogenesis of PASC from the oral cavity to the brain, gut, or other non-oral tissues. Thus, poor oral health, characterised by disrupted oral microbiomes can promote viral tropism, weaken antiviral resistance, and heightens susceptibility to SARS-CoV-2 infection. This immune dysfunction also increases the risk of additional viral infections, exacerbating oral conditions like periodontal and endodontic diseases. These persistent oral health issues can contribute to systemic inflammation, creating bidirectional effects between oral and non-oral tissues, potentially leading to Post-Acute Sequelae of COVID-19 (PASC).
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Kristelle Capistrano
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Heba Hussein
- Department of Oral Medicine, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Avin Hafedi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Afsar Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Hu Y, Deng X, Lv Y, Liu C, Chen J, Song J, Zhang Y. Coxsackievirus-A10 induced RIPK3-driven necroptosis to promote the formation of inflammatory response and enhance virus production via being recognized by TLR3. Mol Immunol 2025; 178:107-116. [PMID: 39889589 DOI: 10.1016/j.molimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Neuronal death and neuroinflammation has been considered as the main contributors to the progression and deterioration of HFMD caused by CV-A10. Necroptosis is a lytic and inflammatory form of cell death that plays a crucial role in viral pathogenicity. Herein, our study showed that CV-A10-infected SH-SY5Y cells induced necroptosis via activating RIPK3-depedent pathway, but not requiring RIPK1, and meanwhile triggered the release of inflammatory cytokines. Moreover, RIPK3-mediated necroptosis was also involved in virus production, which did not require RIPK1 either. Finally, it was further verified that TLR3 drove RIPK3-mediated cell death by sensing CV-A10 RNA and activating RIPK3. Collectively, our study demonstrated that initiation of necroptosis in SH-SY5Y cells induced by CV-A10 accelerated the formation of inflammatory response and promoted virus replication through triggering a TLR3-initiated RIPK3-dependent pathway of necroptosis, which advanced the current understanding of necroptosis for the neuropathogenesis of CV-A10 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoli Deng
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yaming Lv
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen Liu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- National & Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Peng W, Wu J, Zhao B, Zhang L, Chen X, Wei X, Rong N, Han Y, Liu J. Pathogenicity and transcriptomic profiling reveals immunology molecular hallmarks after CA10 virus infection. Animal Model Exp Med 2024; 7:717-731. [PMID: 38747004 PMCID: PMC11528388 DOI: 10.1002/ame2.12415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Hand, foot and mouth disease (HFMD) is a common infectious disease caused by viral infection by a variety of enteroviruses, with coxsackievirus A 10 (CA10) having become more prevalent in recent years. METHODS In this study, models of CA10 infection were established in 7-day-old Institute of Cancer Research (ICR) mice by intraperitoneal injection to analyze the pathogenicity of the virus. RNA sequencing analysis was used to screen the differentially expressed genes (DEGs) after CA10 infection. Coxsackievirus A 16 (CA16) and enterovirus 71 (EV71) infections were also compared with CA10. RESULTS After CA10 virus infection, the mice showed paralysis of the hind limbs at 3 days post infection and weight loss at 5 days post infection. We observed viral replication in various tissues and severe inflammatory cell infiltration in skeletal muscle. The RNA-sequencing analysis showed that the DEGs in blood, muscle, thymus and spleen showed heterogeneity after CA10 infection and the most up-regulated DEGs in muscle were enriched in immune-related pathways. Compared with CA16 and EV71 infection, CA10 may have an inhibitory effect on T helper (Th) cell differentiation and cell growth. Additionally, the common DEGs in the three viruses were most enriched in the immune system response, including the Toll-like receptor pathway and the nucleotide-binding and oligomerization domain (NOD)-like pathway. CONCLUSIONS Our findings revealed a group of genes that coordinate in response to CA10 infection, which increases our understanding of the pathological mechanism of HFMD.
Collapse
Affiliation(s)
- Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Jing Wu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Lihong Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Xin Chen
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Yunlin Han
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious DiseasesInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Chi F, Liu X, Li J, Guo M, Zhang Z, Zhou H, Carr MJ, Li Y, Shi W. Doxycycline inhibits neurotropic enterovirus proliferation in vitro. Virus Res 2024; 345:199388. [PMID: 38714218 PMCID: PMC11127601 DOI: 10.1016/j.virusres.2024.199388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Human enteroviruses (EVs) represent a global public health concern due to their association with a range of serious pediatric illnesses. Despite the high morbidity and mortality exerted by EVs, no broad-spectrum antivirals are currently available. Herein, we presented evidence that doxycycline can inhibit in vitro replication of various neurotropic EVs, including enterovirus A71 (EV-A71), enterovirus D68 (EV-D68), and coxsackievirus (CV)-A6, in a dose-dependent manner. Further investigations indicated that the drug primarily acted at the post-entry stage of virus infection in vitro, with inhibitory effects reaching up to 89 % for EV-A71 when administered two hours post-infection. These findings provide valuable insights for the development of antiviral drugs against EV infections.
Collapse
Affiliation(s)
- Fengyu Chi
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Xinzhuo Liu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Juan Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Moujian Guo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenjie Zhang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Hong Zhou
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Michael J Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, D04 E1W1, Ireland; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Yuming Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China.
| | - Weifeng Shi
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
7
|
Hu Y, Zhao W, Lv Y, Li H, Li J, Zhong M, Pu D, Jian F, Song J, Zhang Y. NLRP3-dependent pyroptosis exacerbates coxsackievirus A16 and coxsackievirus A10-induced inflammatory response and viral replication in SH-SY5Y cells. Virus Res 2024; 345:199386. [PMID: 38705479 PMCID: PMC11091677 DOI: 10.1016/j.virusres.2024.199386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Coxsackievirus A16 (CV-A16) and coxsackievirus A10 (CV-A10), more commonly etiological agents of hand, foot and mouth disease (HFMD), are capable of causing severe neurological syndromes with high fatalities, but their neuropathogenesis has rarely been studied. Mounting evidence indicated that pyroptosis is an inflammatory form of cell death that might be widely involved in the pathogenic mechanisms of neurotropic viruses. Our study was designed to examine the effects of NLRP3-mediated pyroptosis in CV-A16- and CV-A10-induced inflammatory neuropathologic formation. In this work, it was showed that SH-SY5Y cells were susceptible to CV-A16 and CV-A10, and meanwhile their infections could result in a decreasing cell viability and an increasing LDH release as well as Caspase1 activation. Moreover, CV-A16 and CV-A10 infections triggered NLRP3-mediated pyroptosis and promoted the release of inflammatory cytokines. Additionally, activated NLRP3 accelerated the pyroptosis formation and aggravated the inflammatory response, but inhibited NLRP3 had a dampening effect on the above situation. Finally, it was further revealed that NLRP3 agonist enhanced the viral replication, but NLRP3 inhibitor suppressed the viral replication, suggesting that NLRP3-driven pyroptosis might support CV-A16 and CV-A10 production in SH-SY5Y cells. Together, our findings demonstrated a mechanism by which CV-A16 and CV-A10 induce inflammatory responses by evoking NLRP3 inflammasome-regulated pyroptosis, which in turn further stimulated the viral replication, providing novel insights into the pathogenesis of CV-A16 and CV-A10 infections.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yaming Lv
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hui Li
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiang Li
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Mingmei Zhong
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dandan Pu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Fuping Jian
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
8
|
Lian H, Yi L, Qiu M, Li B, Sun L, Zeng H, Zeng B, Yang F, Yang H, Yang M, Xie C, Qu L, Lin H, Hu P, Xu S, Zeng H, Lu J. Genomic epidemiology of CVA10 in Guangdong, China, 2013-2021. Virol J 2024; 21:122. [PMID: 38816865 PMCID: PMC11140982 DOI: 10.1186/s12985-024-02389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Hand, Foot and Mouth Disease (HFMD) is a highly contagious viral illness primarily affecting children globally. A significant epidemiological transition has been noted in mainland China, characterized by a substantial increase in HFMD cases caused by non-Enterovirus A71 (EV-A71) and non-Coxsackievirus A16 (CVA16) enteroviruses (EVs). Our study conducts a retrospective examination of 36,461 EV-positive specimens collected from Guangdong, China, from 2013 to 2021. Epidemiological trends suggest that, following 2013, Coxsackievirus A6 (CVA6) and Coxsackievirus A10 (CVA10) have emerged as the primary etiological agents for HFMD. In stark contrast, the incidence of EV-A71 has sharply declined, nearing extinction after 2018. Notably, cases of CVA10 infection were considerably younger, with a median age of 1.8 years, compared to 2.3 years for those with EV-A71 infections, possibly indicating accumulated EV-A71-specific herd immunity among young children. Through extensive genomic sequencing and analysis, we identified the N136D mutation in the 2 A protein, contributing to a predominant subcluster within genogroup C of CVA10 circulating in Guangdong since 2017. Additionally, a high frequency of recombination events was observed in genogroup F of CVA10, suggesting that the prevalence of this lineage might be underrecognized. The dynamic landscape of EV genotypes, along with their potential to cause outbreaks, underscores the need to broaden surveillance efforts to include a more diverse spectrum of EV genotypes. Moreover, given the shifting dominance of EV genotypes, it may be prudent to re-evaluate and optimize existing vaccination strategies, which are currently focused primarily target EV-A71.
Collapse
Affiliation(s)
- Huimin Lian
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lina Yi
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ming Qiu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Baisheng Li
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Limei Sun
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huiling Zeng
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutica University, Guangzhou, China
| | - Biao Zeng
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Haiyi Yang
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Mingda Yang
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Jinan University, Guangzhou, China
| | - Chunyan Xie
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Jinan University, Guangzhou, China
| | - Lin Qu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Huifang Lin
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Pengwei Hu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Shaojian Xu
- Longhua District Center for Disease Control and Prevention, Shenzhen, China
| | - Hanri Zeng
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Jing Lu
- School of Public Health, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| |
Collapse
|
9
|
Yuan Y, Chen Y, Huang J, Bao X, Shen W, Sun Y, Mao H. Epidemiological and etiological investigations of hand, foot, and mouth disease in Jiashan, northeastern Zhejiang Province, China, during 2016 to 2022. Front Public Health 2024; 12:1377861. [PMID: 38751577 PMCID: PMC11094292 DOI: 10.3389/fpubh.2024.1377861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Background Hand, foot, and mouth disease (HFMD) is a common infectious disease in children. Enterovirus A71 (EV71) and coxsackievirus A16 (CA16) have been identified as the predominant pathogens for several decades. In recent years, coxsackievirus A6 (CA6) and coxsackievirus A10 (CA10) have played increasingly important roles in a series of HFMD outbreaks. We performed a retrospective analysis of the epidemiology of HFMD and the spectrum of different viral serotypes, to elucidate the genetic and phylogenetic characteristics of the main serotypes in the Jiashan area during 2016 to 2022. Methods Descriptive epidemiological methods were used to analyze the time and population distribution of HFMD in Jiashan during 2016 to 2022 based on surveillance data. Molecular diagnostic methods were performed to identify the viral serotypes and etiological characteristics of HFMD. Phylogenetic analyses was based on VP1 region of CA16 and CA6. Results The average annual incidence rate of HFMD fluctuated from 2016 to 2022. Children aged 1-5 years accounted for 81.65% of cases and boys were more frequently affected than girls. Except when HFMD was affected by the COVID-19 epidemic in 2020 and 2022, epidemics usually peak in June to July, followed by a small secondary peak from October to December and a decline in February. Urban areas had a high average incidence and rural areas had the lowest. Among 560 sample collected in Jiashan, 472 (84.29%) were positive for enterovirus. The most frequently identified serotypes were CA6 (296, 52.86%), CA16 (102, 18.21%), EV71 (16, 2.86%), CA10 (14, 2.50%) and other enteroviruses (44, 7.86%). There were 71 and 142 VP1 sequences from CA16 and CA6, respectively. Substitution of N218D, A220L and V251I was detected in CA16 and may have been related to viral infectivity. Phylogenetic analysis showed that CA16 could be assigned to two genogroups, B1a and B1b, while all the CA6 sequences belonged to the D3a genogroup. Conclusion CA6 and CA16 were the two major serotypes of enteroviruses circulating in the Jiashan area during 2016 to 2022. Continuous and comprehensive surveillance for HFMD is needed to better understand and evaluate the prevalence and evolution of the associated pathogens.
Collapse
Affiliation(s)
- Yongjuan Yuan
- Jiashan County Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Yun Chen
- Jiashan County Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Jian Huang
- Jiashan County Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Xiaoxia Bao
- Jiashan County Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Wei Shen
- Jiashan County Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Yi Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Hu Y, Zhong M, Lv Y, Zhao W, Qian B, Song J, Zhang Y. MST1/2 exerts a pivotal role in inducing neuroinflammation and Coxsackievirus-A10 replication by interacting with innate immunity. Virol J 2024; 21:89. [PMID: 38641810 PMCID: PMC11031903 DOI: 10.1186/s12985-024-02355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 04/21/2024] Open
Abstract
Coxsackievirus-A10 (CV-A10), responsible for the hand, foot and mouth disease (HFMD) pandemic, could cause serious central nervous system (CNS) complications. The underlying molecular basis of CV-A10 and host interactions inducing neuropathogenesis is still unclear. The Hippo signaling pathway, historically known for a dominator of organ development and homeostasis, has recently been implicated as an immune regulator. However, its role in host defense against CV-A10 has not been investigated. Herein, it was found that CV-A10 proliferated in HMC3 cells and promoted the release of inflammatory cytokines. Moreover, pattern recognition receptors (PRRs)-mediated pathways, including TLR3-TRIF-TRAF3-TBK1-NF-κB axis, RIG-I/MDA5-MAVS-TRAF3-TBK1-NF-κB axis and TLR7-MyD88-IRAK1/IRAK4-TRAF6-TAK1-NF-κB axis, were examined to be elevated under CV-A10 infection. Meanwhile, it was further uncovered that Hippo signaling pathway was inhibited in HMC3 cells with CV-A10 infection. Previous studies have been reported that there exist complex relations between innate immune and Hippo signaling pathway. Then, plasmids of knockdown and overexpression of MST1/2 were transfected into HMC3 cells. Our results showed that MST1/2 suppressed the levels of inflammatory cytokines via interacting with TBK1 and IRAK1, and also enhanced virus production via restricting IRF3 and IFN-β expressions. Overall, these data obviously pointed out that CV-A10 accelerated the formation of neuroinflammation by the effect of the Hippo pathway on the PRRs-mediated pathway, which delineates a negative immunoregulatory role for MST1/2 in CV-A10 infection and the potential for this pathway to be pharmacologically targeted to treat CV-A10.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Minigmei Zhong
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yaming Lv
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Baojiang Qian
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
11
|
Zhang QY, Li JQ, Li Q, Zhang Y, Zhang ZR, Li XD, Zhang HQ, Deng CL, Yang FX, Xu Y, Zhang B. Identification of fangchinoline as a broad-spectrum enterovirus inhibitor through reporter virus based high-content screening. Virol Sin 2024; 39:301-308. [PMID: 38452856 DOI: 10.1016/j.virs.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common pediatric illness mainly caused by enteroviruses, which are important human pathogens. Currently, there are no available antiviral agents for the therapy of enterovirus infection. In this study, an excellent high-content antiviral screening system utilizing the EV-A71-eGFP reporter virus was developed. Using this screening system, we screened a drug library containing 1042 natural compounds to identify potential EV-A71 inhibitors. Fangchinoline (FAN), a bis-benzylisoquinoline alkaloid, exhibits potential inhibitory effects against various enteroviruses that cause HFMD, such as EV-A71, CV-A10, CV-B3 and CV-A16. Further investigations revealed that FAN targets the early stage of the enterovirus life cycle. Through the selection of FAN-resistant EV-A71 viruses, we demonstrated that the VP1 protein could be a potential target of FAN, as two mutations in VP1 (E145G and V258I) resulted in viral resistance to FAN. Our research suggests that FAN is an efficient inhibitor of EV-A71 and has the potential to be a broad-spectrum antiviral drug against human enteroviruses.
Collapse
Affiliation(s)
- Qiu-Yan Zhang
- The Joint Center of Translational Precision Medicine, Department of Infections and Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jia-Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yang Zhang
- University of Science and Technology of China, Department of Life Sciences and Medicine, Hefei, 230026, China
| | - Zhe-Rui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiao-Dan Li
- Hunan Normal University, School of Medicine, Changsha, 410081, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Feng-Xia Yang
- The Joint Center of Translational Precision Medicine, Department of Infections and Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Yi Xu
- The Joint Center of Translational Precision Medicine, Department of Infections and Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China.
| | - Bo Zhang
- The Joint Center of Translational Precision Medicine, Department of Infections and Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
12
|
Zhang X, Zhao Y, Zhu X, Tian W, Zhang C. Rapid detection of four major HFMD-associated enteroviruses by multiplex HiFi-LAMP assays. Anal Bioanal Chem 2024; 416:1971-1982. [PMID: 38358534 DOI: 10.1007/s00216-024-05197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Hand, foot, and mouth disease (HFMD) caused by various enteroviruses is a major public health concern globally. Human enterovirus 71(EVA71), coxsackievirus A16 (CVA16), coxsackievirus A6 (CVA6), and coxsackievirus A10 (CVA10) are four major enteroviruses responsible for HFMD. Rapid, accurate, and specific point-of-care (POC) detection of the four enteroviruses is crucial for the prevention and control of HFMD. Here, we developed two multiplex high-fidelity DNA polymerase loop-mediated isothermal amplification (mHiFi-LAMP) assays for simultaneous detection of EVA71, CVA16, CVA6, and CVA10. The assays have good specificity and exhibit high sensitivity, with limits of detection (LOD) of 11.2, 49.6, 11.4, and 20.5 copies per 25 μL reaction for EVA71, CVA16, CVA6, and CVA10, respectively. The mHiFi-LAMP assays showed an excellent clinical performance (sensitivity 100.0%, specificity 83.3%, n = 47) when compared with four singleplex RT-qPCR assays (sensitivity 93.1%, specificity 100%). In particular, the HiFi-LAMP assays exhibited better performance (sensitivity 100.0%, specificity 100%) for CVA16 and CVA6 than the RT-qPCR assays (sensitivity 75.0-92.3%, specificity 100%). Furthermore, the mHiFi-LAMP assays detected all clinical samples positive for the four enteroviruses within 30 min, obviously shorter than about 1-1.5 h by the RT-qPCR assays. The new mHiFi-LAMP assays can be used as a robust point-of-care testing (POCT) tool to facilitate surveillance of HFMD at rural and remote communities and resource-limited settings.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Yongjuan Zhao
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Xiaoyi Zhu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Weimin Tian
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China.
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
13
|
Kordi R, Chang AJ, Hicar MD. Seasonal Testing, Results, and Effect of the Pandemic on Coxsackievirus Serum Studies. Microorganisms 2024; 12:367. [PMID: 38399771 PMCID: PMC10893248 DOI: 10.3390/microorganisms12020367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Coxsackieviruses (CVs) are common causes of infections and can be life-threatening. Unfortunately, rigorous studies guiding the clinician in interpreting CV serum antibody titer testing is lacking. To explore the epidemiology of circulating CVs and the serological test utility in aiding diagnosis of CV infections in our community, we obtained results of CV immunologic diagnostic tests between 2018 and 2022 from a regional healthcare database. For CV type A, rare individuals had positive CF (complement fixation) tests whereas all 16 individuals with IFA testing showed at least one positive serotype. For CV type B CF testing, 52.2% of 222 patients had at least one serotype positive, with B5 being most common and also the most common with higher titers (14.8% with ≥1:32). We found a significant reduction in seropositivity rate during the pandemic in 2020 compared to 2018, which continued through 2022 (OR: 0.2, 95% CI: 0.08-0.49, p-value < 0.001). During the pandemic, the seasonal pattern of positive tests varied from the pre-pandemic pattern. Testing for CVs was increased after the first year of the pandemic. Overall, the variability by month and seasonal change in our data support that CF testing can be used to identify recent CVB infection.
Collapse
Affiliation(s)
- Ramesh Kordi
- Department of Pediatric Infectious Diseases, State University of New York at Buffalo, Buffalo, NY 14203, USA;
| | - Arthur J. Chang
- Division of Pediatric Infectious Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Mark D. Hicar
- Department of Pediatric Infectious Diseases, State University of New York at Buffalo, Buffalo, NY 14203, USA;
| |
Collapse
|
14
|
Liu X, Zhu H, Wang M, Zhang N, Wang J, Tan W, Wu G, Yu P, Liu H, Liu Q. An enterovirus A71 virus-like particle with replaced loops confers partial cross-protection in mice. Virus Res 2023; 337:199235. [PMID: 37788720 PMCID: PMC10562737 DOI: 10.1016/j.virusres.2023.199235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Enterovirus A71 (EV-A71), coxsackievirus A16 (CV-A16), and CV-A10 belong to the main prevailing types causing hand-foot-and-mouth disease. Since EV-A71 monovalent vaccine does not confer cross-protection, developing a multivalent vaccine is essential. In this study, a trivalent chimeric virus-like particle of EV-A71 (EV-A71-VLPCHI3) was constructed based on EV-A71-VLP backbone by replacing the corresponding surface loops with CV-A16 VP1 G-H, CV-A10 VP1 B-C and E-F loops, which are critical for immunogenic neutralization. The baculovirus-insect cell expression system was employed for EV-A71-VLPCHI3 production. EV-A71-VLPCHI3 was purified by sucrose density gradient and observed by transmission electron microscopy. The immunogenicity and protective efficacy of EV-A71-VLPCHI3 were evaluated in mice. Our results revealed that EV-A71-VLPCHI3 had a similar morphology to inactivated EV-A71 particles and could induce specific IgG antibodies against EV-A71, CV-A16 and CV-A10 in mice. More importantly, EV-A71-VLPCHI3 enhanced cross-reactive protection against CV-A16 and CV-A10, by 20 % and 40 %, compared to inactivated EV-A71 counterparts, respectively. In conclusion, the successful construction of EV-A71-VLPCHI3 suggested that loop-dependent heterologous protection could be transferred by loops replacement on the surface of viral capsid. This strategy may also supplement the development of multivalent vaccines against other infectious viral diseases.
Collapse
Affiliation(s)
- Xin Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China; College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China
| | - Hanyu Zhu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China; College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China
| | - Mei Wang
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China
| | - Ning Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China
| | - Jing Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China
| | - Wenbian Tan
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China
| | - Guochuan Wu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China
| | - Pei Yu
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China.
| | - Qiliang Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China; College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China.
| |
Collapse
|
15
|
Pei J, Liu RL, Yang ZH, Du YX, Qian SS, Meng SL, Guo J, Zhang B, Shen S. Identification of Critical Amino Acids of Coxsackievirus A10 Associated with Cell Tropism and Viral RNA Release during Uncoating. Viruses 2023; 15:2114. [PMID: 37896891 PMCID: PMC10611408 DOI: 10.3390/v15102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) is a prevailing causative agent of hand-foot-mouth disease, necessitating the isolation and adaptation of appropriate strains in cells allowed for human vaccine development. In this study, amino acid sequences of CV-A10 strains with different cell tropism on RD and Vero cells were compared. Various amino acids on the structural and non-structural proteins related to cell tropism were identified. The reverse genetic systems of several CV-A10 strains with RD+/Vero- and RD+/Vero+ cell tropism were developed, and a set of CV-A10 recombinants were produced. The binding, entry, uncoating, and proliferation steps in the life cycle of these viruses were evaluated. P1 replacement of CV-A10 strains with different cell tropism revealed the pivotal role of the structural proteins in cell tropism. Further, seven amino acid substitutions in VP2 and VP1 were introduced to further investigate their roles played in cell tropism. These mutations cooperated in the growth of CV-A10 in Vero cells. Particularly, the valine to isoleucine mutation at the position VP1-236 (V1236I) was found to significantly restrict viral uncoating in Vero cells. Co-immunoprecipitation assays showed that the release of viral RNA from the KREMEN1 receptor-binding virions was restricted in r0195-V1236I compared with the parental strain r0195 (a RD+/Vero+ strain). Overall, this study highlights the dominant effect of structural proteins in CV-A10 adaption in Vero cells and the importance of V1236 in viral uncoating, providing a foundation for the mechanism study of CV-A10 cell tropism, and facilitating the development of vaccine candidates.
Collapse
Affiliation(s)
- Jie Pei
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Rui-Lun Liu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Zhi-Hui Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Ya-Xin Du
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Sha-Sha Qian
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Jing Guo
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| | - Bo Zhang
- Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Shuo Shen
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.P.); (R.-L.L.); (Z.-H.Y.); (Y.-X.D.); (S.-S.Q.); (S.-L.M.); (J.G.)
| |
Collapse
|
16
|
Cheong DHJ, Yogarajah T, Wong YH, Arbrandt G, Westman J, Chu JJH. CUR-N399, a PI4KB inhibitor, for the treatment of Enterovirus A71 infection. Antiviral Res 2023; 218:105713. [PMID: 37657668 DOI: 10.1016/j.antiviral.2023.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Over the years, the hand, foot and mouth disease (HFMD) has sparked epidemics across many countries which mainly affected young children. While symptoms are usually mild, severe complications may arise, and some even lead to death. Such concerns, coupled with the lack of approved vaccines and antivirals to date, create an urgency in the identification of safe therapeutics against HFMD. The disease is mainly transmitted by enteroviruses like enterovirus A71 (EV-A71). Essential for enterovirus replication is the host protein, PI4KB. In this study, we investigate the antiviral efficacy of a novel PI4KB inhibitor, CUR-N399. We found that CUR-N399 displayed broad-spectrum antiviral activity against picornaviruses in cell culture models. Using a suckling mouse model of lethal EV-A71 infection, CUR-N399 was found to be well-tolerated, promote survival and reduce viral titre in mice organs. Together, these support the discovery of CUR-N399 as an antiviral against EV-A71 and potentially other closely related viruses.
Collapse
Affiliation(s)
- Dorothy Hui Juan Cheong
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thinesshwary Yogarajah
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Hao Wong
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Justin Jang Hann Chu
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
17
|
Li X, Liu Z, Yan X, Tian Y, Liu K, Zhao Y, Shao J, Hao P, Zhang C. VP2 residue N142 of coxsackievirus A10 is critical for the interaction with KREMEN1 receptor and neutralizing antibodies and the pathogenicity in mice. PLoS Pathog 2023; 19:e1011662. [PMID: 37788227 PMCID: PMC10547193 DOI: 10.1371/journal.ppat.1011662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Coxsackievirus A10 (CVA10) has recently emerged as one of the major causative agents of hand, foot, and mouth disease. CVA10 may also cause a variety of complications. No approved vaccine or drug is currently available for CVA10. The residues of CVA10 critical for viral attachment, infectivity and in vivo pathogenicity have not been identified by experiment. Here, we report the identification of CVA10 residues important for binding to cellular receptor KREMEN1. We identified VP2 N142 as a key receptor-binding residue by screening of CVA10 mutants resistant to neutralization by soluble KREMEN1 protein. The receptor-binding residue N142 is exposed on the canyon rim but highly conserved in all naturally occurring CVA10 strains, which provides a counterexample to the canyon hypothesis. Residue N142 when mutated drastically reduced receptor-binding activity, resulting in decreased viral attachment and infection in cell culture. More importantly, residue N142 when mutated reduced viral replication in limb muscle and spinal cord of infected mice, leading to lower mortality and less severe clinical symptoms. Additionally, residue N142 when mutated could decrease viral binding affinity to anti-CVA10 polyclonal antibodies and a neutralizing monoclonal antibody and render CVA10 resistant to neutralization by the anti-CVA10 antibodies. Overall, our study highlights the essential role of VP2 residue N142 of CVA10 in the interactions with KREMEN1 receptor and neutralizing antibodies and viral virulence in mice, facilitating the understanding of the molecular mechanisms of CVA10 infection and immunity. Our study also provides important information for rational development of antibody-based treatment and vaccines against CVA10 infection.
Collapse
Affiliation(s)
- Xue Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zeyu Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xingyu Yan
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yuan Tian
- Institutional Center for Shared Technologies and Facilities of Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Kexin Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yue Zhao
- Institutional Center for Shared Technologies and Facilities of Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Shao
- Institutional Center for Shared Technologies and Facilities of Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Pei Hao
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chao Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Chen Y, Li X, Wang M, Li Y, Fan J, Yan J, Zhang S, Lu L, Zou P. A cysteine protease inhibitor GC376 displays potent antiviral activity against coxsackievirus infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100203. [PMID: 37767059 PMCID: PMC10520345 DOI: 10.1016/j.crmicr.2023.100203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Infection with coxsackievirus A10 (CV-A10) can cause hand-foot-mouth disease and is also associated with severe complications, including viral pneumonia, aseptic and viral meningitis. Coxsackievirus infection may also play a role in the pathogenesis of acute myocardial infarction and in the increased risk of type 1 diabetes mellitus in adults. However, there are no approved vaccines or direct antiviral agents available to prevention or treatment of coxsackievirus infection. Here, we reported that GC376 potently inhibited CV-A10 infection in different cell lines without cytotoxicity, significantly suppressed production of viral proteins, and strongly reduced the yields of infectious progeny virions. Further study indicated that GC376, as viral 3C protease inhibitor, had the potential to restrain the cleavage of the viral polyprotein into individually functional proteins, thus suppressed the replication of CV-A10. Furthermore, the drug exhibited antiviral activity against coxsackieviruses of various serotypes including CV-A6, CV-A7 and CV-A16, suggesting that GC376 is a broad-spectrum anti-coxsackievirus inhibitor and the 3C protease is a promising target for developing anti-coxsackievirus agents.
Collapse
Affiliation(s)
- Yongkang Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaohong Li
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuan Li
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Fan
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jingjing Yan
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Clinical Center for BioTherapy and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Sun Y, Cai J, Mao H, Gong L, Chen Y, Yan H, Shi W, Lou X, Su L, Wang X, Zhou B, Pei Z, Cao Y, Ge Q, Zhang Y. Epidemiology of hand, foot and mouth disease and genomic surveillance of coxsackievirus A10 circulating in Zhejiang Province, China during 2017 to 2022. J Clin Virol 2023; 166:105552. [PMID: 37523938 DOI: 10.1016/j.jcv.2023.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Coxsackievirus A10 (CA10) is one of the etiological agents associated with hand, foot and mouth disease (HFMD). OBJECTIVES We aimed to perform a retrospective analysis of the molecular epidemiological characteristics and genetic features of HFMD associated with CA10 infections in Zhejiang Province from 2017 to 2022. STUDY DESIGN Epidemiologic features were summarized. Throat swab specimens were collected and tested. The VP1 regions were sequenced for genotyping. CA10 positive samples were isolated. Whole genomes of CA10 isolations were sequenced. Nucleotide and amino acid changes were characterized. Phylogenetic trees were constructed. RESULTS The number of HFMD cases fluctuated from 2017 to 2022. Children aged below 3 years accounted for the majority (66.29%) and boys were more frequently affected than girls. Cases peaked in June. The positivity rate of HEV was 62.69%. A total of 90 strains of CA10 were isolated and 53 genomes were obtained. All CA10 in this study could be assigned to two genogroups, C (C2) and F (F1 and F3). CONCLUSION The clinical manifestations of HFMD associated with HEV are complex and diverse. CA10 infection may be emerging as a new and major cause of HFMD because an upward trend was observed in the proportion of CA10 cases after the use of EV71 vaccines. Different genogroups of CA10 had different geographic distribution patterns. Surveillance should be strengthened and further comprehensive studies should be continued to provide a scientific basis for HFMD prevention and control.
Collapse
Affiliation(s)
- Yi Sun
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Jian Cai
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Liming Gong
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Yin Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Hao Yan
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Wen Shi
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Xiuyu Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Lingxuan Su
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Xingxing Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Biaofeng Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Zhichao Pei
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Yanli Cao
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China
| | - Qiong Ge
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China.
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, China.
| |
Collapse
|
20
|
Song J, Zhao G, Li H, Yang Y, Yu Y, Hu Y, Li Y, Li J, Hu Y. Tandem mass tag (TMT) labeling-based quantitative proteomic analysis reveals the cellular protein characteristics of 16HBE cells infected with coxsackievirus A10 and the potential effect of HMGB1 on viral replication. Arch Virol 2023; 168:217. [PMID: 37524962 DOI: 10.1007/s00705-023-05821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 08/02/2023]
Abstract
Coxsackievirus A10 (CV-A10) is recognized as one of the most important pathogens associated with hand, foot, and mouth disease (HFMD) in young children under 5 years of age worldwide, and it can lead to fatal neurological complications. However, available commercial vaccines fail to protect against CV-A10. Therefore, there is an urgent need to study new protein targets of CV-A10 and develop novel vaccine-based therapeutic strategies. Advances in proteomics in recent years have enabled a comprehensive understanding of host pathogen interactions. Here, to study CV-A10-host interactions, a global quantitative proteomic analysis was conducted to investigate the molecular characteristics of host cell proteins and identify key host proteins involved in CV-A10 infection. Using tandem mass tagging (TMT)-based mass spectrometry, a total of 6615 host proteins were quantified, with 293 proteins being differentially regulated. To ensure the validity and reliability of the proteomics data, three randomly selected proteins were verified by Western blot analysis, and the results were consistent with the TMT results. Further functional analysis showed that the upregulated and downregulated proteins were associated with diverse biological activities and signaling pathways, such as metabolic processes, biosynthetic processes, the AMPK signaling pathway, the neurotrophin signaling pathway, the MAPK signaling pathway, and the GABAergic synaptic signaling. Moreover, subsequent bioinformatics analysis demonstrated that these differentially expressed proteins contained distinct domains, were localized in different subcellular components, and generated a complex network. Finally, high-mobility group box 1 (HMGB1) might be a key host factor involved in CV-A10 replication. In summary, our findings provide comprehensive insights into the proteomic profile during CV-A10 infection, deepen our understanding of the relationship between CV-A10 and host cells, and establish a proteomic signature for this viral infection. Moreover, the observed effect of HMGB1 on CV-A10 replication suggests that it might be a potential therapeutic target treatment of CV-A10 infection.
Collapse
Affiliation(s)
- Jie Song
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Guifang Zhao
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Hui Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yan Yang
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yue Yu
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yunguang Hu
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yadong Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiang Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
21
|
Hu Y, Cui F, Wang S, Liu C, Zhang S, Wang R, Song J, Zhang Y. MicroRNA expression profile of human umbilical vein endothelial cells in response to coxsackievirus A10 infection reveals a potential role of miR-143-3p in maintaining the integrity of the blood-brain barrier. Front Cell Infect Microbiol 2023; 13:1217984. [PMID: 37577373 PMCID: PMC10419304 DOI: 10.3389/fcimb.2023.1217984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) has been one of the main etiologies of hand, foot, and mouth disease (HFMD) epidemics in recent years and can cause mild to severe illness and even death. Most of these severe and fatal cases were closely associated with neurological impairments, but the potential mechanism of neuropathological injury triggered by CV-A10 infection has not been elucidated. MicroRNAs (miRNAs), implicated in the regulation of gene expression in a post-transcriptional manner, play a vital role in the pathogenesis of various central nervous system (CNS) diseases; therefore, they serve as diagnostic biomarkers and are emerging as novel therapeutic targets for CNS injuries. To gain insights into the CV-A10-induced regulation of host miRNA-processing machinery, we employed high-throughput sequencing to identify differentially expressed miRNAs in CV-A10-infected human umbilical vein endothelial cells (HUVECs) and further analyzed the potential functions of these miRNAs during CV-A10 infection. The results showed that CV-A10 infection could induce 189 and 302 significantly differentially expressed miRNAs in HUVECs at 24 and 72 hpi, respectively, compared with the uninfected control. Moreover, the expression of four selected miRNAs and their relevant mRNAs was determined to verify the sequencing data by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) methods. After that, gene target prediction and functional annotation revealed that the targets of these dysregulated miRNAs were mostly enriched in cell proliferation, signal transduction, cAMP signalling pathway, cellular response to interleukin-6, ventral spinal cord interneuron differentiation, negative regulation of glial cell differentiation, neuron migration, positive regulation of neuron projection development, etc., which were primarily involved in the processes of basic physiology, host immunity, and neurological impairments and further reflected vital regulatory roles of miRNA in viral pathogenicity. Finally, the construction of a miRNA-regulated network also suggested that the complex regulatory mechanisms mediated by miRNAs might be involved in viral pathogenesis and virus-host interactions during CV-A10 infection. Furthermore, among these dysregulated miRNAs, miR-143-3p was demonstrated to be involved in the maintenance of blood-brain barrier (BBB) integrity.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Clinical Virology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Fengxian Cui
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Shenglan Wang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen Liu
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shengxiong Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ruiqi Wang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
22
|
Romanenkova NI, Nguyen TTT, Golitsyna LN, Ponomareva NV, Rozaeva NR, Kanaeva OI, Leonov AV, Novikova NA, Bichurina MA. Enterovirus 71-Associated Infection in South Vietnam: Vaccination Is a Real Solution. Vaccines (Basel) 2023; 11:vaccines11050931. [PMID: 37243035 DOI: 10.3390/vaccines11050931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is the most common enteroviral infection in South-East Asia. When evaluating the role of enterovirus 71 (EVA71) as an etiological agent of infectious disease in South Vietnam, we revealed a high proportion of EVA71 among identified species A enteroviruses found in 3542 samples from HFMD cases; 125 samples from cases of enteroviral meningitis; and 130 samples from acute flaccid paralysis (AFP) cases. These represent 50%, 54.8%, and 51.5%, respectively. According to molecular analysis, 90% of EVA71 were attributed to genotype C4 and 10% were attributed to genotype B5. The predominance of EVA71 circulation among the population proves the need to strengthen surveillance (with monitoring of enterovirus circulation for facilitation of HFMD outbreak prediction) and to increase the effectiveness of preventative measures by the implementation of vaccination against EVA71-associated infections. A phase III trial of a Taiwanese vaccine (EV71vac) in Taiwan and South Vietnam showed its safety, tolerability, and efficacy in children aged 2-71 months. This B4 genotype-based vaccine, which features cross-protection against B5 and C4 genotypes, and other existing EV71 vaccines can serve as a good approach to solving the HFMD problem, which is so important for Vietnam.
Collapse
Affiliation(s)
| | - Thi Thanh Thao Nguyen
- Pasteur Institute, Ho Chi Minh City 167 Pasteur, Phường Võ Thị Sáu, Quận 3, TP. Hồ Chí Minh 643103, Vietnam
| | - Liudmila N Golitsyna
- Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod 603950, Russia
| | - Natalia V Ponomareva
- Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod 603950, Russia
| | | | - Olga I Kanaeva
- Saint Petersburg Pasteur Institute, St. Petersburg 197101, Russia
| | - Artem V Leonov
- Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod 603950, Russia
| | - Nadezhda A Novikova
- Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod 603950, Russia
| | | |
Collapse
|
23
|
Yu SL, Chung NH, Lin YC, Liao YA, Chen YC, Chow YH. Human SCARB2 Acts as a Cellular Associator for Helping Coxsackieviruses A10 Infection. Viruses 2023; 15:932. [PMID: 37112912 PMCID: PMC10144829 DOI: 10.3390/v15040932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Coxsackievirus A10 (CVA10) causes hand, foot, and mouth disease (HFMD) and herpangina, which can result in severe neurological symptoms in children. CVA10 does not use the common enterovirus 71 (EV71) receptor, human SCARB2 (hSCARB2, scavenger receptor class B, member 2), for infection but instead uses another receptor, such as KREMEN1. Our research has shown that CVA10 can infect and replicate in mouse cells expressing human SCARB2 (3T3-SCARB2) but not in the parental NIH3T3 cells, which do not express hSCARB2 for CVA10 entry. Knocking down endogenous hSCARB2 and KREMEN1 with specific siRNAs inhibited CVA10 infection in human cells. Co-immunoprecipitation confirmed that VP1, a main capsid protein where virus receptors for attaching to the host cells, could physically interact with hSCARB2 and KREMEN1 during CVA10 infection. It is the efficient virus replication following virus attachment to its cellular receptor. It resulted in severe limb paralysis and a high mortality rate in 12-day-old transgenic mice challenged with CVA10 but not in wild-type mice of the same age. Massive amounts of CVA10 accumulated in the muscles, spinal cords, and brains of the transgenic mice. Formalin inactivated CVA10 vaccine-induced protective immunity against lethal CVA10 challenge and reduced the severity of disease and tissue viral loads. This is the first report to show that hSCARB2 serves as an associate to aid CVA10 infection. hSCARB2-transgenic mice could be useful in evaluating anti-CVA10 medications and studying the pathogenesis induced by CVA10.
Collapse
Affiliation(s)
- Shu-Ling Yu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
- Graduate School of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Nai-Hsiang Chung
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
- Graduate Program of Biotechnology in Medicine, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Ching Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
| | - Yi-An Liao
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
| | - Ying-Chin Chen
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
- Graduate School of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
24
|
Wang J, Liu H, Cao Z, Xu J, Guo J, Zhao L, Wang R, Xu Y, Gao R, Gao L, Zuo Z, Xiao J, Lu H, Zhang Y. Epidemiology of Hand, Foot, and Mouth Disease and Genetic Evolutionary Characteristics of Coxsackievirus A10 in Taiyuan City, Shanxi Province from 2016 to 2020. Viruses 2023; 15:v15030694. [PMID: 36992403 PMCID: PMC10052898 DOI: 10.3390/v15030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, the prevalence of hand, foot, and mouth disease (HFMD) caused by enteroviruses other than enterovirus A71 (EV-A71) and coxsackievirus A16 (CVA16) has gradually increased. The throat swab specimens of 2701 HFMD cases were tested, the VP1 regions of CVA10 RNA were amplified using RT-PCR, and phylogenetic analysis of CVA10 was performed. Children aged 1–5 years accounted for the majority (81.65%) and boys were more than girls. The positivity rates of EV-A71, CVA16, and other EVs were 15.22% (219/1439), 28.77% (414/1439), and 56.01% (806/1439), respectively. CVA10 is one of the important viruses of other EVs. A total of 52 CVA10 strains were used for phylogenetic analysis based on the VP1 region, 31 were from this study, and 21 were downloaded from GenBank. All CVA10 sequences could be assigned to seven genotypes (A, B, C, D, E, F, and G), and genotype C was further divided into C1 and C2 subtypes, only one belonged to subtype C1 and the remaining 30 belonged to C2 in this study. This study emphasized the importance of strengthening the surveillance of HFMD to understand the mechanisms of pathogen variation and evolution, and to provide a scientific basis for HFMD prevention, control, and vaccine development.
Collapse
Affiliation(s)
- Jitao Wang
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
- Correspondence: (J.W.); (Y.Z.); Fax: +86-0351-7822732 (J.W.); +86-10-58900184 (Y.Z.)
| | - Hongyan Liu
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Zijun Cao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Jihong Xu
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Jiane Guo
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Lifeng Zhao
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Rui Wang
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Yang Xu
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Ruihong Gao
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Li Gao
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Zhihong Zuo
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (J.W.); (Y.Z.); Fax: +86-0351-7822732 (J.W.); +86-10-58900184 (Y.Z.)
| |
Collapse
|
25
|
Qiao X, Liu X, Wang Y, Li Y, Wang L, Yang Q, Wang H, Shen H. Analysis of the epidemiological trends of enterovirus A in Asia and Europe. J Infect Chemother 2023; 29:316-321. [PMID: 36528275 DOI: 10.1016/j.jiac.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Enteroviruses have been in massive, cyclical epidemics worldwide. An in-depth understanding of the international epidemiological characteristics of Enterovirus A (EVA) is critical to determining its clinical significance and total disease burden. Although much research has been conducted on EVA epidemiology, there is still a lack of a comprehensive overview of EVA epidemiological characteristics and trends. OBJECTIVE EVA nucleic acid sequences from the NCBI virus database were used to summarize the epidemic time (based on the time of specimen collection), spatial and serotype distribution of EVA, and to analyze EVA isolated from cerebrospinal fluid specimens. METHODS EVA sequences were searched in NCBI Virus by keyword ("Enterovirus A″ or "EVA") to screen sequences released before December 2021 and sort them to analyze EVA by year, geographic region and serotype prevalence. RESULTS The results found 23,041 retrieved nucleic acid sequences with precise collection dates and geographical regions as of December 2021, with Asia accounting for 87%, Europe for 11% and Africa and the Americas for only 2%. Overall, EV-A71, CVA6 and CVA16 are a few of the main prevalent serotypes; and the prevalence characteristics of the different serotypes change over time from place to place. CONCLUSION The prevalence of different serotypes of EVA varies considerably over time and space, and we focused on analysing the epidemiological characteristics of EVAs in Asia and Europe and EVAs that invade the nervous system. This study will likely provide important clues for prevention, control and future research in virological surveillance, disease management and vaccine development.
Collapse
Affiliation(s)
- Xiaorong Qiao
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiaolan Liu
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yan Wang
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yuhan Li
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lulu Wang
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qingru Yang
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hua Wang
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hongxing Shen
- Key Laboratory of Jiangsu Province, Medical College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
26
|
Xu Y, Ma J, Ouyang W, Yao RSY, Cao W, Li J, Zou R, Fang C, Zeng F, Yang F, Wang X, Yuan J, Xia H, Wang H, Gong S, Liu Y. Suppression of innate and acquired immunity in severe hand foot and mouth disease caused by EV71 infections in children. Clin Immunol 2023; 248:109260. [PMID: 36791943 DOI: 10.1016/j.clim.2023.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is a common children infectious disease caused by human enteroviruses. Most of the cases have minimal symptoms, however, some patients may develop serious neurological, cardiac complications, or even death. The pathological mechanism leading to severe HFMD is not clearly understood, and the immunological status of the individual patient may play an important role. Transcriptomes of peripheral blood mononuclear cells from EV71-infected patients (n = 45) and healthy controls (n = 36) were examined. Immune pathways were up-regulated in patients with mild disease symptoms (n = 11, M) compared to the healthy controls (n = 36, H), demonstrating an effective anti-viral response upon EV71 infection. However, in patients with severe symptoms (n = 23, S) as well as severe patients following treatment (n = 11, A), their innate and acquired immune pathways were down-regulated, indicating a global immunity suppression. Such immune suppression characteristics could thus provide an opportunity for early EV-71 infection prognosis prediction. Based on our cohort, an SVM model using RNA-seq expression levels of five genes (MCL1, ZBTB37, PLEKHM1P, IFNAR2 and YEATS2) was developed and achieved a high ROC-AUC (91·3%) in predicting severe HFMD. Meanwhile, qPCR fold-changes method was performed based three genes (MCL1, IFNAR2 and YEATS2) on additional cohort. This qPCR method achieved a ROC-AUC of 78.6% in predicting severe HFMD, which the patients could be distinguished in 2-3 h. Therefore, our models demonstrate the possibility of HFMD severity prediction based on the selected biomarkers that predict severe HFMD effectively.
Collapse
Affiliation(s)
- Yi Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jinmin Ma
- BGI-Shenzhen, Shenzhen 518083, China; BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Rosary Sin Yu Yao
- BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen 518083, China
| | - Wei Cao
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Rongrong Zou
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Chunxiao Fang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Fansen Zeng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Fengxia Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Xinfa Wang
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Jing Yuan
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Huimin Xia
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Hui Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom; Oxford-Suzhou Centre for Advanced Research, Suzhou Industrial Park, Suzhou 215123, China.
| | - Sitang Gong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Yingxia Liu
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, China.
| |
Collapse
|
27
|
Yan R, He J, Liu G, Zhong J, Xu J, Zheng K, Ren Z, He Z, Zhu Q. Drug Repositioning for Hand, Foot, and Mouth Disease. Viruses 2022; 15:75. [PMID: 36680115 PMCID: PMC9861398 DOI: 10.3390/v15010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease in children caused by a group of enteroviruses. HFMD currently presents a major threat to infants and young children because of a lack of antiviral drugs in clinical practice. Drug repositioning is an attractive drug discovery strategy aimed at identifying and developing new drugs for diseases. Notably, repositioning of well-characterized therapeutics, including either approved or investigational drugs, is becoming a potential strategy to identify new treatments for virus infections. Various types of drugs, including antibacterial, cardiovascular, and anticancer agents, have been studied in relation to their therapeutic potential to treat HFMD. In this review, we summarize the major outbreaks of HFMD and the progress in drug repositioning to treat this disease. We also discuss the structural features and mode of action of these repositioned drugs and highlight the opportunities and challenges of drug repositioning for HFMD.
Collapse
Affiliation(s)
- Ran Yan
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jiahao He
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Ge Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jianfeng Zhong
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Jiapeng Xu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Zhendan He
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
28
|
Zhu H, Liu X, Wu Y, He Y, Zheng H, Liu H, Liu Q. Identification of a neutralizing linear epitope within the VP1 protein of coxsackievirus A10. Virol J 2022; 19:203. [PMID: 36457099 PMCID: PMC9714398 DOI: 10.1186/s12985-022-01939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Coxsackievirus A10 (CV-A10) is a leading cause of hand, foot, and mouth disease (HFMD). It is necessary to identify neutralizing epitopes to investigate and develop an epitope-based vaccine against CV-A10. The viral protein VP1 is the immunodominant capsid protein and contains the critical neutralizing epitope. However, neutralizing epitopes within VP1 protein of CV-A10 have not been well characterized. METHODS Bioinformatics techniques were applied to predict linear epitopes on the CV-A10 VP1 protein. The advanced structural features of epitopes were analyzed by three-dimensional (3D) modeling. The anticipated epitope peptides were synthesized and used to immunize mice as antigens. ELISA and micro-neutralization assay were used to determine the specific IgG antibody and neutralizing antibody titers. The protective efficacy of the epitope peptides in vivo was evaluated using a passive immunization/challenge assay. RESULTS Three linear epitopes (EP3, EP4, and EP5) were predicted on CV-A10 VP1, all spatially exposed on the capsid surface, and exhibited adequate immunogenicity. However, only EP4, corresponding to residues 162-176 of VP1, demonstrated potent neutralization against CV-A10. To determine the neutralizing capacity of EP4 further, EP4 double-peptide was synthesized and injected into mice. The mean neutralizing antibody titer of the anti-EP4 double-peptide sera was 1:50.79, which provided 40% protection against lethal infection with CV-A10 in neonatal mice. In addition, sequence and advanced structural analysis revealed that EP4 was highly conserved among representative strains of CV-A10 and localized in the EF loop region of VP1, like EV-A71 SP55 or CV-A16 PEP55. CONCLUSIONS These data demonstrate that EP4 is a specific linear neutralizing epitope on CV-A10 VP1. Its protective efficacy can be enhanced by increasing its copy number, which will be the foundation for developing a CV-A10 epitope-based vaccine.
Collapse
Affiliation(s)
- Hanyu Zhu
- grid.443385.d0000 0004 1798 9548College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi China ,grid.484105.cKey Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Xin Liu
- grid.443385.d0000 0004 1798 9548College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi China ,grid.484105.cKey Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Yue Wu
- grid.443385.d0000 0004 1798 9548Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi China
| | - Yunyi He
- grid.443385.d0000 0004 1798 9548Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi China
| | - Huanying Zheng
- grid.508326.a0000 0004 1754 9032Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong China
| | - Hongbo Liu
- grid.443385.d0000 0004 1798 9548Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi China ,Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin, Guangxi China ,grid.484105.cKey Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Qiliang Liu
- grid.443385.d0000 0004 1798 9548College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi China ,grid.484105.cKey Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, China
| |
Collapse
|
29
|
Molecular Characteristics and Genetic Evolution of Echovirus 33 in Mainland of China. Pathogens 2022; 11:pathogens11111379. [PMID: 36422630 PMCID: PMC9697921 DOI: 10.3390/pathogens11111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
Echovirus, a member of the Enterovirus B (EV-B) family, has led to numerous outbreaks and pandemics, causing a broad spectrum of diseases. Based on the national hand, foot, and mouth disease (HFMD) surveillance system, seven strains of echovirus 33 (E33) were isolated from Mainland of China between 2010 and 2018. The whole genomes of these strains were isolated and sequenced, and phylogenetic trees were constructed based on the gene sequences in different regions of the EV-B prototype strains. It was found that E33 may be recombined in the P2 and P3 regions. Five genotypes (A–E) were defined based on the entire VP1 region of E33, of which the C gene subtype was the dominant gene subtype at present. Recombinant analysis showed that genotype C strains likely recombined with EV-B80, EV-B85, E13, and CVA9 in the P2 and P3 regions, while genotype E had the possibility of recombination with CVB3, E3, E6, and E4. Results of Bayesian analysis indicated that E33 may have appeared around 1955 (95% confidence interval: 1945–1959), with a high evolutionary rate of 1.11 × 10−2 substitution/site/year (95% highest posterior density (HPD): 8.17 × 10−3 to 1.4 × 10−2 substitution/site/year). According to spatial transmission route analysis, two significant transmission routes were identified: from Australia to India and from Oman to Thailand, which the E33 strain in Mainland of China likely introduced from Mexico and India. In conclusion, our study fills the gaps in the evolutionary analysis of E33 and can provide important data for enterovirus surveillance.
Collapse
|
30
|
Li JF, Zhang CJ, Li YW, Li C, Zhang SC, Wang SS, Jiang Y, Luo XB, Liao XJ, Wu SX, Lin L. Coxsackievirus A6 was the most common enterovirus serotype causing hand, foot, and mouth disease in Shiyan City, central China. World J Clin Cases 2022; 10:11358-11370. [PMID: 36387823 PMCID: PMC9649535 DOI: 10.12998/wjcc.v10.i31.11358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) has become one of the most common infectious diseases in China. Before 2016, the primary causal serotypes were enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Following the introduction of EV-A71 vaccines in China since 2016, the situation could change. CV-A6 has recently replaced EV-A71 and CV-A16 in some areas of China. However, the epidemiological characteristics of central China remain unknown.
AIM To investigate the clinical symptoms and pathogen spectrum of HFMD in Shiyan City, central China, in recent years.
METHODS The epidemiological, clinical, and laboratory data from HFMD cases reported to the Shiyan Center for Disease Control and Prevention between January 2016 and December 2020 were analyzed. 196 throat swab specimens were collected from hospitalized HFMD patients between January 2018 and December 2020. To detect and genotype enteroviruses, real-time reverse transcription-polymerase chain reaction and sequencing of the 5'-untranslated region were used. In Shiyan, 168 laboratory-confirmed HFMD cases were studied using a logistic regression model to determine the effect of predominant enterovirus serotypes. Based on the logistic regression model, the least absolute shrinkage and selection operator model was used to analyze the correlation between CV-A6 infection and various clinical characteristics in HFMD patients in Shiyan.
RESULTS From 2016 to 2020, 35840 HFMD cases were reported in Shiyan. The number of cases decreased by 48.4% from 2016 to 2017. Approximately 1.58-fold increases were found in 2018 and 2019 when compared to the previous year, respectively. In 2020, a decrease of about 85.5% was reported when compared to 2019. The most common serotypes shifted from EV-A71 and CV-A16 (about 60%-80% in 2016 and 2018) to others (more than 80.0% in 2017, 2019, and 2020). EV-A71 lost its dominance in 2017 in Shiyan. Among 196 confirmed HFMD cases, 85.7% tested positive for enterovirus, with CV-A6 being the most common serotype (121/168, 72.0%). The positive rates for CV-A16 and CV-A10 were 4.8% and 3.0%, respectively. There was no EV-A71 discovered. Infection with CV-A6 was linked to fever, myocardial damage, increased creatine kinase MB isoenzyme, and lactate dehydrogenase levels.
CONCLUSION CV-A6 was the most common enterovirus serotype in Shiyan City, replacing EV-A71 and CV-A16 as the HFMD pathogen. Developing vaccines against CV-A6 or multiple pathogens, as well as rising CV-A6 surveillance, will help prevent HFMD in central China.
Collapse
Affiliation(s)
- Jing-Feng Li
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Chuan-Jie Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430061, Hubei Province, China
| | - Ya-Wei Li
- Department of Health Services, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Chao Li
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Shi-Chao Zhang
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Sha-Sha Wang
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Yong Jiang
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Xin-Bing Luo
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Xing-Juan Liao
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Shou-Xin Wu
- Department of Pharmaceuticals, Shanghai Biotecan Pharmaceuticals Co. Ltd., Shanghai 200000, China
- Zhangjiang Center for Translational Medicine, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 442000, China
| | - Ling Lin
- Department of Pharmaceuticals, Shanghai Biotecan Pharmaceuticals Co. Ltd., Shanghai 200000, China
- Zhangjiang Center for Translational Medicine, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 442000, China
| |
Collapse
|
31
|
Xie Y, Hu Q, Jiang W, Ji W, Chen S, Jin Y, Duan G. Laboratory Indicators for Identifying Hand, Foot, and Mouth Disease Severity: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:1829. [PMID: 36366337 PMCID: PMC9694715 DOI: 10.3390/vaccines10111829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE The purpose of this study is to study laboratory indicators for the identification of hand, foot, and mouth disease (HFMD) severity. METHODS We searched PubMed, Embase, and the Web of Science for literature that was published before May 2022. The main results are presented as forest plots. Subgroup analyses, sensitivity analyses, and publication bias were also performed. RESULTS Our study indicated that white blood cells (WBC) (95%CI: 0.205-0.778), blood glucose (95%CI: 0.505-0.778), lymphocytes (95%CI: 0.072-0.239), creatinine (95%CI: 0.024-0.228), interleukin (IL)-2 (95%CI: 0.192-1.642), IL-6 (95%CI: 0.289-0.776), IL-8 (95%CI: 0.499-0.867), IL-10 (95%CI: 0.226-0.930), interferon-γ (IFN-γ) (95%CI: 0.193-2.584), tumor necrosis factor-α (TNF-α) (95%CI: 1.078-2.715), and creatine kinase MB isoenzyme (CK-MB) (95%CI: 0.571-1.459) were associated with an increased risk of HFMD severity, and the results of the sensitivity analysis of these indicators were stable and free of publication bias. CONCLUSIONS Our results suggest that various deleterious immune and metabolic changes can increase the risk of HFMD severity, which can provide a basis for predicting the prognosis and useful evidence for clinicians to manage patients efficiently.
Collapse
Affiliation(s)
- Yaqi Xie
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanman Hu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Jiang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
32
|
Leung AKC, Lam JM, Barankin B, Leong KF, Hon KL. Hand, Foot, and Mouth Disease: A Narrative Review. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:77-95. [PMID: 36284392 DOI: 10.2174/1570180820666221024095837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hand, foot, and mouth disease is a common viral disease in childhood. Because the disease has the potential to reach epidemic levels and mortality is high in some countries, early recognition of this disease is of paramount importance. OBJECTIVE This purpose of this article is to familiarize pediatricians with the clinical manifestations and management of hand, foot, and mouth disease. METHODS A search was conducted in February 2022 in PubMed Clinical Queries using the key term "hand, foot, and mouth disease". The search strategy included all clinical trials, observational studies, and reviews published within the past 10 years. Only papers published in English were included in this review. RESULTS Hand, foot, and mouth disease is characterized by a painful oral enanthem and asymptomatic exanthem on the palms and soles. Children younger than 5 years are most commonly affected. Hand, foot, and mouth disease caused by enterovirus A71 is more severe and has a higher rate of complications than that attributed to other viruses such as coxsackievirus A16. Circulatory failure secondary to myocardial impairment and neurogenic pulmonary edema secondary to brainstem damage are the main causes of death. Fortunately, the disease is usually benign and resolves in 7 to10 days without sequelae. Given the self-limited nature of most cases, treatment is mainly symptomatic and supportive. Intravenous immunoglobulin should be considered for the treatment of severe/complicated hand, foot, and mouth disease and has been recommended by several national and international guideline committees. Currently, there are no specific antiviral agents approved for the treatment of the disease. Drugs such as ribavirin, suramin, mulberroside C, aminothiazole analogs, and sertraline have emerged as potential candidates for the treatment of hand, foot, and mouth disease. Vaccination of susceptible individuals in high-risk areas and good personal hygiene are important preventative measures to combat the disease. CONCLUSION Familiarity of the disease including its atypical manifestations is crucial so that a correct diagnosis can be made, and appropriate treatment initiated. A timely diagnosis can help avoid contact with the affected individual and decrease the risk of an outbreak.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Paediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kin Fon Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam Lun Hon
- Department of Paediatrics, Hong Kong Institute of Integrative Medicine, and the Jockey Club School of Public Health and Primary Care, The Chinese University Hong Kong, Hong Kong
| |
Collapse
|
33
|
Hu Y, Wang L, Zhong M, Zhao W, Wang Y, Song J, Zhang Y. Comprehensive profiling and characterization of cellular microRNAs in response to coxsackievirus A10 infection in bronchial epithelial cells. Virol J 2022; 19:120. [PMID: 35864512 PMCID: PMC9302563 DOI: 10.1186/s12985-022-01852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Coxsackievirus A10 (CV-A10), the causative agent of hand, foot, and mouth disease (HFMD), caused a series of outbreaks in recent years and often leads to neurological impairment, but a clear understanding of the disease pathogenesis and host response remains elusive. Cellular microRNAs (miRNAs), a large family of non-coding RNA molecules, have been reported to be key regulators in viral pathogenesis and virus-host interactions. However, the role of host cellular miRNAs defensing against CV-A10 infection is still obscure. To address this issue, we systematically analyzed miRNA expression profiles in CV-A10-infected 16HBE cells by high-throughput sequencing methods in this study. It allowed us to successfully identify 312 and 278 miRNAs with differential expression at 12 h and 24 h post-CV-A10 infection, respectively. Among these, 4 miRNAs and their target genes were analyzed by RT-qPCR, which confirmed the sequencing data. Gene target prediction and enrichment analysis revealed that the predicted targets of these miRNAs were significantly enriched in numerous cellular processes, especially in regulation of basic physical process, host immune response and neurological impairment. And the integrated network was built to further indicate the regulatory roles of miRNAs in host-CV-A10 interactions. Consequently, our findings could provide a beneficial basis for further studies on the regulatory roles of miRNAs relevant to the host immune responses and neuropathogenesis caused by CV-A10 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lan Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Mingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Zhao
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yujue Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China. .,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
34
|
Duan S, Yang F, Li Y, Zhao Y, Shi L, Qin M, Liu Q, Jin W, Wang J, Chen L, Zhang W, Li Y, Zhang Y, Zhang J, Ma S, He Z, Li Q. Pathogenic analysis of coxsackievirus A10 in rhesus macaques. Virol Sin 2022; 37:610-618. [PMID: 35777657 PMCID: PMC9437613 DOI: 10.1016/j.virs.2022.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 06/22/2022] [Indexed: 12/15/2022] Open
Abstract
Coxsackievirus A10 (CV-A10) is one of the etiological agents associated with hand, foot and mouth disease (HFMD) and also causes a variety of illnesses in humans, including pneumonia, and myocarditis. Different people, particularly young children, may have different immunological responses to infection. Current CV-A10 infection animal models provide only a rudimentary understanding of the pathogenesis and effects of this virus. The characteristics of CV-A10 infection, replication, and shedding in humans remain unknown. In this study, rhesus macaques were infected by CV-A10 via respiratory or digestive route to mimic the HFMD in humans. The clinical symptoms, viral shedding, inflammatory response and pathologic changes were investigated in acute infection (1–11 day post infection) and recovery period (12–180 day post infection). All infected rhesus macaques during acute infection showed obvious viremia and clinical symptoms which were comparable to those observed in humans. Substantial inflammatory pathological damages were observed in multi-organs, including the lung, heart, liver, and kidney. During the acute period, all rhesus macaques displayed clinical signs, viral shedding, normalization of serum cytokines, and increased serum neutralizing antibodies, whereas inflammatory factors caused some animals to develop severe hyperglycemia during the recovery period. In addition, there were no significant differences between respiratory and digestive tract infected animals. Overall, all data presented suggest that the rhesus macaques provide the first non-human primate animal model for investigating CV-A10 pathophysiology and assessing the development of potential human therapies. Rhesus macaque as the first non-human primate model in CV-A10 infection was investigated. The clinical manifestations of CV-A10-infected macaques were as similar as the patients. CV-A10-infected macaques have typical viremia and viral excretion. Pathological damage and hyperglycemia were caused by abnormal inflammatory factors.
Collapse
Affiliation(s)
- Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Quan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Junbin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Lixiong Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Wei Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yongjie Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Jingjing Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| |
Collapse
|
35
|
Kang YJ, Shi C, Zhou J, Qian J, Qiu Y, Ge G. Multiple molecular characteristics of circulating enterovirus types among pediatric hand, foot and mouth disease patients after EV71 vaccination campaign in Wuxi, China. Epidemiol Infect 2022; 150:1-19. [PMID: 35473720 PMCID: PMC9128351 DOI: 10.1017/s0950268822000784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 11/08/2022] Open
Abstract
The molecular properties of the circulating causative agents of hand, foot and mouth disease (HFMD) in Wuxi remain unclear, posing diagnostic and prevention challenges. Additionally, in several regions of mainland China, the EV71 immunisation drastically reduced related cases and altered the HFMD pathogen spectrum, while the precise situation in Wuxi remained unknown. To address these issues, paediatric HFMD cases diagnosed in the clinic were enrolled and anal swabs were acquired in the spring of 2019. The 5′-UTR and VP1 genes were interpreted using RT-nPCR with degenerate primers to confirm their genotypes. Following that, the entire genome sequences of each viral type were recovered, allowing for the interpretation of several molecular properties. A total of 249 clinically confirmed HFMD cases had their anal swabs taken for viral identification, from which the genome sequences of seven genotypes were recovered. Coxsackievirus A16 is the most prevalent type, followed by Coxsackievirus A6, A10, A2, A4, A5 and Echovirus 11, all of which were genetically determined for the first time in Wuxi. Phylogenetic and recombination analyses were used to evaluate their evolutionary relationships with other strains found in other regions. Noticeably, a CVA16 subtype, responsible for a large proportion of the observed cases, phylogenetically clustered within clade B1a along with some strains from other countries, was the first one to be reported in China. Furthermore, some recombination events were inferred from strains detected in sporadic cases, particularly the recombination between CVA2 and CVA5 strains. Our investigation elucidated the multiple molecular characteristics of the HFMD causal enterovirus strains in Wuxi, underlining the potential hazards associated with these circulating viral types in the population and aiding in future surveillance and prevention of this disease.
Collapse
Affiliation(s)
- Yan-Jun Kang
- Department of Pediatric Laboratory, Wuxi Children's Hospital, Wuxi, China
| | - Chao Shi
- Department of Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Jian Zhou
- Department of Pediatric Laboratory, Wuxi Children's Hospital, Wuxi, China
| | - Jun Qian
- Department of Pediatrics, Wuxi Children's Hospital, Wuxi 214023, China
| | - Yuanwang Qiu
- Department of Infectious Diseases, The Fifth People's Hospital of Wuxi, Wuxi, China
| | - Guizhi Ge
- Department of Infectious Disease, Wuxi Children's Hospital, Wuxi, China
| |
Collapse
|
36
|
Zhao H, Yang T, Yue L, Li H, Xie T, Xiang H, Wang J, Wei X, Zhang Y, Xie Z. Comparative analysis of the biological characteristics of three CV-A10 clones adaptively cultured on Vero cells. J Med Virol 2022; 94:3820-3828. [PMID: 35437759 DOI: 10.1002/jmv.27796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022]
Abstract
Coxsackievirus A10 (CV-A10) is a major pathogen that causes hand, foot, and mouth disease. There are no effective therapeutic drugs for CV-A10 infection; therefore, CV-A10 vaccines should be developed. Previously, we isolated a CV-A10 strain (N25) that can be cultured on Vero cells. In this study, the N25 strain was plaque-purified thrice from Vero cells, and three clones were selected for adaptive culture. The three clones of the 5th , 12th , and 19th generations were compared and analyzed in terms of viral titers, plaque morphology, pathogenicity in suckling mice, and nucleotide and amino acid sequences of the complete genome. The infectivity titers of the three clones (P2-P22) were maintained at 6.5-7.0 lgCCID50 /ml. The three clones began to proliferate at 6 h and peaked at 36 h; the corresponding CCID50 was in the range of 106.5 -106.875 /ml, which gradually decreased. The suckling mice in the challenged group exhibited clinical symptoms such as paralysis of the limbs, which gradually worsened until death. The inactivated vaccines prepared using the three clones efficiently induced antigen-specific serum antibodies in mice. There were eight nucleotide mutations in the three clones, which resulted in two and four amino acid substitutions in the VP3 and VP1 coding regions, respectively. The nucleotide and amino acid sequence homology between the three clones and N25 were 99.92%-100% and 99.78%-100%, respectively, indicating high genetic stability. Our findings provide a theoretical basis for screening CV-A10 vaccine candidate clones. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hong Zhao
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Ting Yang
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Hua Li
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Tianhong Xie
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Hong Xiang
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Jie Wang
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Xingchen Wei
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Yuhao Zhang
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Zhongping Xie
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| |
Collapse
|
37
|
Yi L, Zhang L, Feng L, Luan X, Zhao Q, Xu P, Wang Y, Tao L, Wu W. Genomic analysis of a recombinant coxsackievirus A19 identified in Xinxiang, China, in 2019. Arch Virol 2022; 167:1405-1420. [DOI: 10.1007/s00705-022-05433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
|
38
|
Larsson SB, Vracar D, Karlsson M, Ringlander J, Norder H. Epidemiology and clinical manifestations of different enterovirus and rhinovirus types show EV‐D68 may still impact on severity of respiratory infections. J Med Virol 2022; 94:3829-3839. [PMID: 35403229 PMCID: PMC9321759 DOI: 10.1002/jmv.27767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Respiratory infections are often caused by enteroviruses (EVs). The aim of this study was to identify whether certain types of EV were more likely to cause severe illness in 2016, when an increasing spread of upper respiratory infections was observed in Gothenburg, Sweden. The EV strain in 137 of 1341 nasopharyngeal samples reactive for EV by polymerase chain reaction could be typed by sequencing the viral 5′‐untranslated region and VP1 regions. Phylogenetic trees were constructed. Patient records were reviewed. Hospital care was needed for 46 of 74 patients with available medical records. The majority of the patients (83) were infected with the rhinovirus (RV). The remaining 54 were infected with EV A, B, C, and D strains of 13 different types, with EV‐D68 and CV‐A10 being the most common (17 vs. 14). Significantly more patients with EV‐D68 presented with dyspnea, both when compared with other EV types (p = 0.003) and compared to all other EV and RV infections (p = 0.04). Phylogenetic analysis of the sequences revealed the spread of both Asian and European CV‐A10 strains and 12 different RV C types. This study showed an abundance of different EV types spreading during a year with increased upper respiratory increased infections. EV‐D68 infections were associated with more severe disease manifestation. Other EV and RV types were more evenly distributed between hospitalized and nonhospitalized patients. The EV type CV‐A10 was also found in infected patients, which warrants further studies and surveillance, as this pathogen could cause more severe disease and outbreaks of hand, foot, and mouth disease.
Collapse
Affiliation(s)
- Simon B. Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Beroendekliniken, Region Västra Götaland, Sahlgrenska University HospitalGothenburgSweden
| | - Diana Vracar
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Marie Karlsson
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Johan Ringlander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Heléne Norder
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
39
|
Transmissibility of hand, foot, and mouth disease in 97 counties of China. Sci Rep 2022; 12:4103. [PMID: 35260706 PMCID: PMC8902910 DOI: 10.1038/s41598-022-07982-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a serious disease burden in the Asia–Pacific region, including China. This study calculated the transmissibility of HFMD at county levels in Jiangsu Province, China, analyzed the differences of transmissibility and explored the possible influencing factors of its transmissibility. We built a mathematical model for seasonal characteristics of HFMD, estimated the effective reproduction number (Reff), and compared the incidence rate and transmissibility in different counties using non-parametric tests, rapid cluster analysis and rank-sum ratio in 97 counties in Jiangsu Province from 2015 to 2020. The average daily incidence rate was between 0 and 4 per 100,000 people in Jiangsu Province from 2015–2020. The Quartile of Reff in Jiangsu Province from 2015 to 2020 was 1.54 (0.49, 2.50). Rugao District and Jianhu District had the highest transmissibility according to the rank-sum ratio. Reff generally decreased in 2017 and increased in 2018 in most counties, and the median level of Reff was the lowest in 2017 (P < 0.05). The transmissibility was different in 97 counties in Jiangsu Province. The reasons for the differences may be related to the climate, demographic characteristics, virus subtypes, vaccination, hygiene and other infectious diseases.
Collapse
|
40
|
Singh S, Mane SS, Kasniya G, Cartaya S, Rahman MM, Maheshwari A, Motta M, Dudeja P. Enteroviral Infections in Infants. NEWBORN (CLARKSVILLE, MD.) 2022; 1:297-305. [PMID: 36304567 PMCID: PMC9599990 DOI: 10.5005/jp-journals-11002-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enteroviruses (EVs) are major pathogens in young infants. These viruses were traditionally classified into the following four subgenera: polio, coxsackie A and B, and echoviruses. Now that poliomyelitis seems to be controlled in most parts of the world, coxsackie and echoviruses are gaining more attention because (i) the structural and pathophysiological similarities and (ii) the consequent possibilities in translational medicine. Enteroviruses are transmitted mainly by oral and fecal-oral routes; the clinical manifestations include a viral prodrome including fever, feeding intolerance, and lethargy, which may be followed by exanthema; aseptic meningitis and encephalitis; pleurodynia; myopericarditis; and multi-system organ failure. Laboratory diagnosis is largely based on reverse transcriptase-polymerase chain reaction, cell culture, and serology. Prevention and treatment can be achieved using vaccination, and administration of immunoglobulins and antiviral drugs. In this article, we have reviewed the properties of these viruses, their clinical manifestations, and currently available methods of detection, treatment, and prognosis.
Collapse
Affiliation(s)
- Srijan Singh
- Department of Pediatrics, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Sushant Satish Mane
- Department of Pediatrics, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Gangajal Kasniya
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, New York, United States of America
| | - Sofia Cartaya
- Department of Pediatrics, University of South Florida, Tampa, Florida, United States of America
| | - Mohd Mujibur Rahman
- Department of Neonatology, Institute of Child and Mother Health, Dhaka, Bangladesh
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| | - Mario Motta
- Neonatologia e Terapia Intensiva Neonatale ASST Spedali Civili di Brescia, Italy
| | - Pradeep Dudeja
- Department of Gastroenterology, University of Illinois at Chicago, Illinois, United States of America
| |
Collapse
|
41
|
Ji H, Fan H, Ai J, Shi C, Bi J, Chen YH, Lu XP, Chen QH, Tian JM, Bao CJ, Zhang XF, Jin Y. Neurocognitive Deficits and Sequelae Following Severe hand, foot, and mouth disease from 2009 to 2017, in JiangSu Province, China: A Long-Term Follow-Up Study. Int J Infect Dis 2021; 115:245-255. [PMID: 34910955 DOI: 10.1016/j.ijid.2021.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND To evaluate the long-term sequela and cognitive profile resulting from severe hand, foot and mouth disease (HFMD) with central nervous system (CNS) involvement. METHODS Two-hundred-and-ninety-four HFMD cases were included in a retrospective follow-up study. Physical examination were conducted. The Chinese Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV) was used to assess intelligence. RESULTS Fifty-eight mild HFMD cases and 99 severe HFMD cases with mild CNS involvement did not present any neurological sequelae. While the sequelae incidence of severe HFMD with more severe CNS complications were 50.0%. The proportion of full scale intelligence quotient (FSIQ) impairment was 45.0%. In the 2:6-3:11 age group, severe HFMD with more severe CNS complications and lower maternal education level were risk factors for verbal comprehension disorder. Urban-rural residence and lower paternal education level were risk factors for FSIQ disorder. Furthermore, in the 4:0-6:11 age group, severe HFMD with more severe CNS complication was a risk factor for visual spatial disorder and fluid reasoning disorder. Lower paternal education level was a risk factor for FSIQ disorder. CONCLUSION Early assessment and intervention among severe HFMD patients with more severe CNS involvement at a very young age will prove beneficial for their future performance.
Collapse
Affiliation(s)
- Hong Ji
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China 210009; Medical School of Nanjing University, Nanjing 210093, China
| | - Huan Fan
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China 210009
| | - Jing Ai
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China 210009
| | - Chao Shi
- Wuxi Municipal Center for Disease Control and Prevention, Wuxi 214023, China
| | - Jun Bi
- Xuzhou Municipal Center for Disease Control and Prevention, Xuzhou 221006, China
| | - Yin-Hua Chen
- Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiao-Peng Lu
- Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Qin-Hui Chen
- Children's Hospital of Soochow University, Nanjing 211166, China
| | - Jian-Mei Tian
- Children's Hospital of Soochow University, Nanjing 211166, China
| | - Chang-Jun Bao
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China 210009
| | - Xue-Feng Zhang
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China 210009.
| | - Yu Jin
- Medical School of Nanjing University, Nanjing 210093, China; Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
42
|
Pan Z, Zhao R, Shen Y, Liu K, Xue W, Liang C, Peng M, Hu P, Chen M, Xu H. Low-frequency, exhausted immune status of CD56 dim NK cells and disordered inflammatory cytokine secretion of CD56 bright NK cells associated with progression of severe HFMD, especially in EV71-infected patients. Int Immunopharmacol 2021; 101:108369. [PMID: 34844872 DOI: 10.1016/j.intimp.2021.108369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The roles of CD56bright and CD56dim natural killer (NK) subsets in the viral clearance and inflammatory processes of hand, foot, and mouth disease (HFMD) remain undefined. METHODS A total of 39 HCs and 55 patients were enrolled to analyze peripheral CD56bright and CD56dim NK cells according to cell number, surface receptors, cytotoxic activities, and cytokine production. The plasma concentrations of IL-2, IL-6, IL-10, IFN-γ, TNF-α,and MCP-1 were detected using ELSA. RESULTS Peripheral blood NK cells was significantly lower in severe patients than in HCs due to the dramatic loss of CD56dim NK cells with no changes in the cell count of CD56bright NK cells. For mild patients, decreased NKp46 expression coincided with enhanced cytolysis (CD107a, GNLY, and GrB) in CD56dim NK cells and decreased NKG2A expression with enhanced IL-10 production in CD56bright NK cells. In contrast, severe patients showed the dominant expression of NKG2A and decreased expression of NKG2D accompanied by cytotoxic dysfunction in CD56dim NK cells. Imbalanced receptor expression coincided with the increased concentrations of TNF-α in CD56bright NK cells. Moreover, EV71+ patients showed significantly decreased counts of CD56dim NK cells with cytolysis dysfunction, displayed cytokine hypersecretion in CD56bright NK cells, while the EV71- patients displayed significantly higher plasma cytokine concentrations. The changes in the immune function of NK subsets and their subpopulations were closely related to clinical inflammatory parameters. CONCLUSIONS Low-frequency, exhausted immune status of CD56dim NK cells and disordered inflammatory cytokine secretion of CD56bright NK cells were associated with the progression of severe HFMD, especially in EV71-infected patients. This promoted the severity of inflammatory disorders, leading to enhanced disease pathogenesis.
Collapse
Affiliation(s)
- Zhaojun Pan
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China
| | - Ruiqiu Zhao
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China
| | - Yanxi Shen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Kai Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wei Xue
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Chengfei Liang
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China
| | - Mingli Peng
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Min Chen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Hongmei Xu
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China.
| |
Collapse
|
43
|
Gao W, Yue L, Yang T, Shen D, Li H, Song X, Xie T, He X, Xie Z. Proliferation characteristics of coxsackievirus A10 in mice and immune protection ability of experimental inactivated vaccine. Biomed Pharmacother 2021; 143:112212. [PMID: 34649345 DOI: 10.1016/j.biopha.2021.112212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Coxsackievirus A10 (CVA10) is the main pathogen of hand, foot, and mouth disease in China. However, there are no CVA10-specific drugs and vaccines, and the pathogenesis and effects of this virus in the body are unknown. We investigated the effect of a clinically isolated CVA10 virus strain (CVA10-25) to investigate its effect in suckling mice through different infection routes. We observed the dynamic distribution and proliferation of the virus in mouse tissues by infecting suckling mice with different doses of the virus and mice of different ages with the same dose of the virus. We also analysed the pathological characteristics after infection. A formaldehyde-inactivated experimental vaccine was prepared to immunise 5-week-old BALB/c female mice three times, and newborn suckling mice were tested for the presence of maternally transmitted antibodies. The viral load in each organ after intracerebral administration was higher than that after intraperitoneal administration; the peroral administration route did not cause disease in mice. Mouse paralysis and death after infection were related to age. The skeletal muscles, heart, and lung showed histopathological changes after infection. We established a 2-day-old BALB/c suckling mouse model that could be infected intracranially to study the pathogenesis and pathology of CVA10. Maternally transmitted antibodies protected the mice against the virus. This study provides a reference for CVA10-related pathogenesis and vaccine research.
Collapse
MESH Headings
- Animals
- Animals, Suckling
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Chlorocebus aethiops
- Disease Models, Animal
- Enterovirus/growth & development
- Enterovirus/immunology
- Female
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/prevention & control
- Hand, Foot and Mouth Disease/virology
- Host-Pathogen Interactions
- Immunogenicity, Vaccine
- Mice, Inbred BALB C
- Vaccination
- Vaccine Efficacy
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Vero Cells
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Mice
Collapse
Affiliation(s)
- Weijie Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Ting Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Dong Shen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Hua Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Xia Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Tianhong Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Xin He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China
| | - Zhongping Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, Yunnan 650118, China; Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan 650118, China.
| |
Collapse
|
44
|
Zhang J, Xu D, Liu H, Zhang M, Feng C, Cong S, Sun H, Yang Z, Ma S. Characterization of coxsackievirus A10 strains isolated from children with hand, foot, and mouth disease. J Med Virol 2021; 94:601-609. [PMID: 34387895 DOI: 10.1002/jmv.27268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a contagious disease that threatens the health of children under 5 years of age. Coxsackievirus A10 (CV-A10) is one of the main pathogens of HFMD. Currently, preventive vaccines and specific therapeutic drugs are not available for CV-A10. In this study, a total of 327 stool specimens were collected from pediatric patients from 2009 to 2017 during HFMD surveillance, among which 14 CV-A10 strains could only be isolated from RD cells, but not from KMB17 and Vero cells. Through adaptive culture, two and 11 CV-A10 strains were recovered from Vero and KMB17 cell cultures, respectively. The growth of CV-A10 strains in Vero cells was better than that in KMB17 cells. The 14 CV-A10 strains belonged to the F genotype, and the nucleotides and amino acids of their complete genomes shared 92.6% - 96.3% and 98.4 - 98.9% identities, respectively. The different CV-A10 strains exhibited varying virulence in vivo, but had similar effects on tissue injury, with the hind limb muscles, kidneys, and lungs being severely affected. Additionally, the hind limb muscles had the highest viral loads. CV-A10 was found to exhibit strong tropism to muscle tissue. The results of this study are critical to developing vaccines against CV-A10 infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hongbo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| |
Collapse
|
45
|
Xiao J, Wang J, Zhang Y, Sun D, Lu H, Han Z, Song Y, Yan D, Zhu S, Pei Y, Xu W, Wang X. Coxsackievirus B4: an underestimated pathogen associated with a hand, foot, and mouth disease outbreak. Arch Virol 2021; 166:2225-2234. [PMID: 34091782 DOI: 10.1007/s00705-021-05128-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023]
Abstract
In order to discover the causes of a coxsackievirus B4 (CV-B4)-associated hand, foot, and mouth disease (HFMD) outbreak and to study the evolutionary characteristics of the virus, we sequenced isolates obtained during an outbreak for comparative analysis with previously sequenced strains. Phylogenetic and evolutionary dynamics analysis was performed to examine the genetic characteristics of CV-B4 in China and worldwide. Phylogenetic analysis showed that CV-B4 originated from a common ancestor in Shandong. CV-B4 strains isolated worldwide could be classified into genotypes A-E based on the sequence of the VP1 region. All CV-B4 strains in China belonged to genotype E. The global population diversity of CV-B4 fluctuated substantially over time, and CV-B4 isolated in China accounted for a significant increase in the diversity of CV-B4. The average nucleotide substitution rate in VP1 of Chinese CV-B4 (5.20 × 10-3 substitutions/site/year) was slightly higher than that of global CV-B4 (4.82 × 10-3 substitutions/site/year). This study is the first to investigate the evolutionary dynamics of CV-B4 and its association with an HFMD outbreak. These findings explain both the 2011 outbreak and the global increase in CV-B4 diversity. In addition to improving our understanding of a major outbreak, these findings provide a basis for the development of surveillance strategies.
Collapse
Affiliation(s)
- Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Jianxing Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China. .,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Dapeng Sun
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Yaowen Pei
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
46
|
Zhao TS, Du J, Li HJ, Cui Y, Liu Y, Yang Y, Cui F, Lu QB. Molecular epidemiology and clinical characteristics of herpangina children in Beijing, China: a surveillance study. PeerJ 2020; 8:e9991. [PMID: 33088614 PMCID: PMC7568857 DOI: 10.7717/peerj.9991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/28/2020] [Indexed: 11/20/2022] Open
Abstract
Background Herpangina is a highly infectious disease, which is usually prevalent in preschool children. Methods This study analyzed the clinical and pathogenic characteristics of herpangina children to demonstrate the epidemiology of herpangina. Clinical manifestations, laboratory indicators and pharyngeal swabs were collected from children with herpangina who were monitored by Tongzhou Center for Disease Control and Prevention in Beijing, 2008. Utilizing pharyngeal swabs, virus extraction and amplification were performed for nucleotide identification and sequencing. The phylogenetic analysis was conducted based on all sequences amplified in this study and strains retrieved from GenBank. Results Among 190 children with herpangina, 69.0% (131/190) were positive for enterovirus. Eight genotypes were identified, mainly including CV-A6 (39/131), CV-A4 (25/131), CV-A10 (24/131). The phylogenetic analysis showed one CV-A6 strain of Tongzhou was imported from Japan. CV-A10 strains were clustered into five groups (A-E). The dominant cluster of CV-A10 was Group E6 between 2009 and 2013, and converted to Group E5 after 2013. CV-A6 was the predominant pathogen causing herpangina in Tongzhou in 2018, followed by CV-A4 and CV-A10. Conclusions The circulation of coxsackievirus had spatiotemporal cluster. In controlling the transmission of herpangina, the surveillance and reporting system should be enhanced.
Collapse
Affiliation(s)
- Tian-Shuo Zhao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Juan Du
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Hong-Jun Li
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Control and Prevention, Beijing, China
| | - Yan Cui
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Control and Prevention, Beijing, China
| | - Yaqiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Yanna Yang
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Control and Prevention, Beijing, China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
47
|
Han Y, Chen Z, Zheng K, Li X, Kong J, Duan X, Xiao X, Guo B, Luan R, Long L. Epidemiology of Hand, Foot, and Mouth Disease Before and After the Introduction of Enterovirus 71 Vaccines in Chengdu, China, 2009-2018. Pediatr Infect Dis J 2020; 39:969-978. [PMID: 32433221 DOI: 10.1097/inf.0000000000002745] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) has posed a serious threat to children's health. Three inactivated monovalent enterovirus 71 (EV71) vaccines are proved to be highly efficacious in phase III clinical trials and are now available in China. METHODS We analyzed the citywide surveillance data on HFMD cases in Chengdu during 2009-2018, and estimated cumulative first-dose EV71 vaccination coverage among children eligible to EV71 vaccination after August 2016 in Chengdu. Time series susceptible-infected-recovered model was developed to analyze basic reproduction number and herd immunity threshold of HFMD. Overall and serotype-specific HFMD incidences and severity risks were compared before and after the EV71 vaccination. RESULTS Among 3 laboratory-identified serotype categories, i.e. EV71, coxsackievirus A16 (CV-A16), and other enteroviruses, the major serotype attributed to HFMD has been changing across years. The cumulative first-dose EV71 vaccination coverage rate was estimated as 60.8% during the study period in Chengdu. By contrast, herd immunity threshold for EV71-related HFMD was 94.0%. After introduction of EV71 vaccines, the overall incidence of HFMD increased 60.8%, mainly driven by 173.7% and 11.8% increased in HFMD caused by other enteroviruses and CV-A16, respectively, which offset a significant reduction in the incidence of HFMD caused by EV71. The overall case-severity risk decreased from 1.4% to 0.3%, with significantly declined presented in all serotype categories. CONCLUSIONS The incidence and severity of EV71-related HFMD decreased following implementation of EV71 vaccination. Developing multivalent vaccines and strengthening laboratory-based surveillance could further decline burden of HFMD.
Collapse
Affiliation(s)
- Yutong Han
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Zhenhua Chen
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Ke Zheng
- Department of Immunization Planning, Chengdu Municipal Center for Disease Control and Prevention, Sichuan, China
| | - Xianzhi Li
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Jinwang Kong
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Xiaoxia Duan
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Xiong Xiao
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Bing Guo
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Rongsheng Luan
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Lu Long
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
48
|
From Monovalent to Multivalent Vaccines, the Exploration for Potential Preventive Strategies Against Hand, Foot, and Mouth Disease (HFMD). Virol Sin 2020; 36:167-175. [PMID: 32997323 PMCID: PMC7525078 DOI: 10.1007/s12250-020-00294-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) recently emerged as a global public threat. The licensure of inactivated enterovirus A71 (EV-A71) vaccine was the first step in using a vaccine to control HFMD. New challenges arise from changes in the pathogen spectrum while vaccines directed against other common serotypes are in the preclinical stage. The mission of a broad-spectrum prevention strategy clearly favors multivalent vaccines. The development of multivalent vaccines was attempted via the simple combination of potent monovalent vaccines or the construction of chimeric vaccines comprised of epitopes derived from different virus serotypes. The present review summarizes recent advances in HFMD vaccine development and discusses the next steps toward a safe and effective HFMD vaccine that is capable of establishing a cross-protective antibody response.
Collapse
|
49
|
Kua JA, Pang J. The epidemiological risk factors of hand, foot, mouth disease among children in Singapore: A retrospective case-control study. PLoS One 2020; 15:e0236711. [PMID: 32780749 PMCID: PMC7418981 DOI: 10.1371/journal.pone.0236711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/11/2020] [Indexed: 01/16/2023] Open
Abstract
The incidence of hand, foot, and mouth disease (HFMD) is increasing over the years despite current prevention and control policies in Singapore. A retrospective case-control study was conducted among parents whose children attended childcare centres in Singapore to assess the epidemiological risk factors associated with HFMD among children below 7 years old. Parents of 363 children with HFMD (as cases) and 362 children without HFMD (as controls) were enrolled from 22 childcare centres. Data of potential risk factors were collected through a standardised self-administered questionnaire from parents which include demographics and hygiene practices. Multivariate analysis were adjusted for age group, parent’s education level, mother's age, HFMD-infected siblings, and preschool admission period. Child’s age between 1.5 and 4.9 years, child who had been in childcare for more than 1.9years, having HFMD-infected siblings, two or more children in a family, higher educated parents, parents who had HFMD episode previously, wash toys with soap once every two to three weeks, sanitise toys once every two to three weeks, out-sourced cleaner in childcare centre, no domestic helper at home and more than 22 children in a classroom were independent risk factors of HFMD. These evidence provide crucial implications to guide more effective prevention and control of HFMD in Singapore.
Collapse
Affiliation(s)
- Jo Ann Kua
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Junxiong Pang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
50
|
Molecular basis of Coxsackievirus A10 entry using the two-in-one attachment and uncoating receptor KRM1. Proc Natl Acad Sci U S A 2020; 117:18711-18718. [PMID: 32690697 DOI: 10.1073/pnas.2005341117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
KREMEN1 (KRM1) has been identified as a functional receptor for Coxsackievirus A10 (CV-A10), a causative agent of hand-foot-and-mouth disease (HFMD), which poses a great threat to infants globally. However, the underlying mechanisms for the viral entry process are not well understood. Here we determined the atomic structures of different forms of CV-A10 viral particles and its complex with KRM1 in both neutral and acidic conditions. These structures reveal that KRM1 selectively binds to the mature viral particle above the canyon of the viral protein 1 (VP1) subunit and contacts across two adjacent asymmetry units. The key residues for receptor binding are conserved among most KRM1-dependent enteroviruses, suggesting a uniform mechanism for receptor binding. Moreover, the binding of KRM1 induces the release of pocket factor, a process accelerated under acidic conditions. Further biochemical studies confirmed that receptor binding at acidic pH enabled CV-A10 virion uncoating in vitro. Taken together, these findings provide high-resolution snapshots of CV-A10 entry and identify KRM1 as a two-in-one receptor for enterovirus infection.
Collapse
|