1
|
Beers JL, Hebert MF, Wang J. Transporters and drug secretion into human breast milk. Expert Opin Drug Metab Toxicol 2025; 21:409-428. [PMID: 39893560 PMCID: PMC12002141 DOI: 10.1080/17425255.2025.2461479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Medication use is highly prevalent in breastfeeding persons, posing potential risks for drug exposure to nursing infants. Transporters in the lactating mammary gland carry pharmacological and toxicological significance, as they can mediate the active transfer of drugs and nutrients into breastmilk. AREAS COVERED In this narrative review, we searched and compiled current knowledge on the transport of drugs in the human mammary gland from literature indexed in PubMed (current as of 25 October 2024), and clinical evidence demonstrating active transport of drugs into milk is provided. In vitro and in vivo models of the mammary gland are outlined in brief and known drug transporters at the blood-milk barrier and their potential relevance to drug concentrations in milk are described in detail. EXPERT OPINION Although clinical data show that membrane transporters mediate the transfer of multiple drugs into breast milk, our ability to predict milk concentrations for these drugs is limited. Improving our understanding of the transporter biology and pharmacology in the mammary gland is crucial for developing models to predict drug concentrations in human milk, which will support clinicians and lactating individuals in making rational decisions to balance the benefits of breastfeeding and the risks of drug exposure to infants.
Collapse
Affiliation(s)
- Jessica L. Beers
- Department of Pharmacy, University of Washington, Seattle, Washington, 98195 USA
- Department of Pharmaceutics, University of Washington, Seattle, Washington, 98195 USA
| | - Mary F. Hebert
- Department of Pharmacy, University of Washington, Seattle, Washington, 98195 USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, 98195 USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, 98195 USA
| |
Collapse
|
2
|
Rahimian E, Koochak M, Traikov S, Schroeder M, Brilloff S, Schäfer S, Kufrin V, Küchler S, Krüger A, Mirtschink P, Baretton G, Schröck E, Schewe DM, Ball CR, Bornhäuser M, Glimm H, Bill M, Wurm AA. A quiescence-like/TGF-β1-specific CRISPRi screen reveals drug uptake transporters as secondary targets of kinase inhibitors in AML. Drug Resist Updat 2025; 81:101242. [PMID: 40184725 DOI: 10.1016/j.drup.2025.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/26/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
Relapse in acute myeloid leukemia (AML) is driven by resistant subclones that survive chemotherapy. It is assumed that these resilient leukemic cells can modify their proliferative behavior by entering a quiescent-like state, similar to healthy hematopoietic stem cells (HSCs). These dormant cells can evade the effects of cytostatic drugs that primarily target actively dividing cells. Although quiescence has been extensively studied in healthy hematopoiesis and various solid cancers, its role in AML has remained unexplored. In this study, we applied an HSC-derived quiescence-associated gene signature to an AML patient cohort and found it to be strongly correlated with poor prognosis and active TGF-β signaling. In vitro treatment with TGF-β1 induces a quiescence-like phenotype, resulting in a G0 shift and reduced sensitivity to cytarabine. To find potential therapeutic targets that prevent AML-associated quiescence and improve response to cytarabine, we conducted a comprehensive CRISPR interference (CRISPRi) screen combined with TGF-β1 stimulation. This approach identified TGFBR1 inhibitors, like vactosertib, as effective agents for preventing the G0 shift in AML cell models. However, pretreatment with vactosertib unexpectedly induced complete resistance to cytarabine. To elucidate the underlying mechanism, we performed a multi-faceted approach combining a second CRISPRi screen, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and in silico analysis. Our findings revealed that TGFBR1 inhibitors unintentionally target the nucleoside transporter SLC29A1 (ENT1), leading to reduced intracellular cytarabine levels. Importantly, we found that this drug interaction is not unique to TGFBR1 inhibitors, but extends to other clinically significant kinase inhibitors, such as the FLT3 inhibitor midostaurin. These findings may have important implications for optimizing combination therapies in AML treatment.
Collapse
Affiliation(s)
- Elahe Rahimian
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Masoud Koochak
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Sofia Traikov
- Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Silke Brilloff
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Silvia Schäfer
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Vida Kufrin
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Sandra Küchler
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Alexander Krüger
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT), NCT/UCC Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
| | - Gustavo Baretton
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT), NCT/UCC Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Institute for Pathology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Germany; National Center for Tumor Diseases (NCT), NCT/UCC Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Denis M Schewe
- Department of Pediatric Hematology and Oncology, University Hospital Dresden, Dresden, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; TUD Dresden University of Technology, Faculty of Biology, Dresden, Germany
| | - Martin Bornhäuser
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marius Bill
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Alexander A Wurm
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Department of Pediatric Hematology and Oncology, University Hospital Dresden, Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany.
| |
Collapse
|
3
|
Florêncio M, Cupolillo E, Boité MC. Understanding the genetic complexity of Leishmania infantum in the Americas: a focus on 3'NT/NU gene deletion. Mem Inst Oswaldo Cruz 2025; 120:e240160. [PMID: 40136219 PMCID: PMC11932643 DOI: 10.1590/0074-02760240160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 03/27/2025] Open
Abstract
Visceral Leishmaniasis in the Americas is primarily associated with Leishmania (Leishmania) infantum. This parasite is non-native and was imported during the colonisation era. The constitutive instability of the Leishmania genome allows this parasite to express flexibility in adapting to environmental fluctuations and different selective pressures, such as those the parasite faced when arrived in the New World. Therefore, genetic diversity is expected among the populations of L. infantum in the Americas, despite the bottle neck of importation route. Indeed, subpopulation of strains of L. infantum carrying a homozygous deletion in the genome was detected exclusively in the continent. These strains are more spread across Brazilian territory to the detriment of the non-deleted; the locus includes four genes, two of which encode the enzyme ecto-3'-nucleotidase/nuclease (3'NT/NU), a virulence factor in L. infantum. In this review, we highlight the sub estimated genetic complexity of L. infantum populations in Brazil, addressing the biological importance of the 3'NT/NU enzyme and the possible phenotypic impacts of its deletion, pointing out how it may configure an adaptive strategy for L. infantum. Finally, we raise the discussion of how the genome of L. infantum might be shaped in a unique way under the ecological conditions of Brazil.
Collapse
Affiliation(s)
- Monique Florêncio
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Leishmanioses, Rio de Janeiro, RJ, Brasil
| | - Elisa Cupolillo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Leishmanioses, Rio de Janeiro, RJ, Brasil
| | - Mariana Côrtes Boité
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Leishmanioses, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
4
|
Allard D, Cormery J, Bricha S, Fuselier C, Abbas Aghababazadeh F, Giraud L, Skora E, Haibe-Kains B, Stagg J. Adenosine Uptake through the Nucleoside Transporter ENT1 Suppresses Antitumor Immunity and T-cell Pyrimidine Synthesis. Cancer Res 2025; 85:692-703. [PMID: 39652568 DOI: 10.1158/0008-5472.can-24-1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/15/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
Immunosuppression by adenosine is an important cancer immune checkpoint. Extracellular adenosine signals through specific receptors and can be transported across the cell membrane through nucleoside transporters. Although adenosine receptors are well-known to regulate tumor immunity, the impact of adenosine transporters remains unexplored. In this study, we investigated the effect on tumor immunity of equilibrative nucleoside transporter-1 (ENT1), the major regulator of extracellular adenosine concentrations. Blocking or deleting host ENT1 significantly enhanced CD8+ T-cell-dependent antitumor responses. Tumors inoculated into ENT1-deficient mice showed increased infiltration of effector CD8+ T cells with an enhanced cytotoxic transcriptomic profile and significant upregulation of granzyme B, IFNγ, IL2, TNFα, and CXCL10. ENT1 deficiency was further associated with decreased tumor-infiltrating T regulatory cells and CD206high macrophages and suppressed CCL17 production. ENT1 deficiency notably potentiated the therapeutic activity of PD-1 blockade. T cells upregulated ENT1 upon activation, and blocking ENT1 enhanced their function when cocultured with cognate antigen/HLA-matched melanoma cells. Mechanistically, ENT1-mediated adenosine uptake inhibited the activity of phosphoribosyl pyrophosphate synthetase in activated T cells, thereby suppressing production of uridine 5'-monophosphate and its derivatives required for DNA and RNA synthesis. In summary, this study identified ENT1-mediated adenosine uptake as an important mechanism of adenosine-mediated immunosuppression and pyrimidine starvation that can be targeted to enhance antitumor T-cell responses. Significance: ENT1 is a potential therapeutic target to overcome immunosuppression induced by extracellular adenosine and to increase the activity of PD-1 blockade.
Collapse
Affiliation(s)
- David Allard
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Faculté de Pharmacie de l'Université de Montréal, Montréal, Canada
| | - Jeanne Cormery
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Faculté de Pharmacie de l'Université de Montréal, Montréal, Canada
| | - Salma Bricha
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Faculté de Pharmacie de l'Université de Montréal, Montréal, Canada
| | - Camille Fuselier
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | | | - Lucie Giraud
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Emma Skora
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Faculté de Pharmacie de l'Université de Montréal, Montréal, Canada
| | | | - John Stagg
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| |
Collapse
|
5
|
Chen X, Tian C, He Y, Li Y, Zhou Y, Wang X, Zhou M, Lin J, Lian Z, Deng D. Substrate and inhibitor specificity of Plasmodium nucleoside transporters ENT1 orthologs. J Biol Chem 2025; 301:108115. [PMID: 39725030 PMCID: PMC11787452 DOI: 10.1016/j.jbc.2024.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Malaria caused by Plasmodium infection poses a serious hazard to human health. Plasmodium falciparum equilibrative nucleoside transporter 1 (PfENT1), which mediates nucleoside uptake, is essential for the growth and proliferation of Plasmodium parasites, suggesting that PfENT1 is a potential antimalarial target. The promising compound GSK4 effectively inhibits the transport activity of PfENT1, thereby restraining the growth of Plasmodium parasites. However, it still needs to be clarified whether Plasmodium ENT1 orthologs have different selectivities for nucleosides and inhibitors. Here, we systematically compared the nucleoside selectivity of Plasmodium ENT1 orthologs from P. falciparum (PfENT1), Plasmodium berghei (PbENT1), and Plasmodium vivax (PvENT1), revealing that Plasmodium ENT1 orthologs present a distinct nucleoside recognition pattern. In addition, GSK4 robustly binds to PfENT1 and PvENT1 from two human-hosted Plasmodium parasites but has a weakened binding affinity for PbENT1 from mouse-hosted Plasmodium parasites. We further structurally optimized the inhibitor and generated three GSK4 analogs. One of the GSK4 analogs presented a slightly increased binding affinity for PfENT1. This optimization represents a promising advancement for antimalarial drug development, providing a novel foundation for future endeavors in antimalarial drug design.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chengyu Tian
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingying He
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yaozong Li
- Department of Chemistry, Umeå University, Umea, Sweden; Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Yanxia Zhou
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiang Wang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Mi Zhou
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jingwen Lin
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhong Lian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Chen M, Yuan L, Chen B, Chang H, Luo J, Zhang H, Chen Z, Kong J, Yi Y, Bai M, Dong M, Zhou H, Jiang H. SLC29A1 and SLC29A2 are human nicotinamide cell membrane transporters. Nat Commun 2025; 16:1181. [PMID: 39885119 PMCID: PMC11782521 DOI: 10.1038/s41467-025-56402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Nicotinamide (NAM), a main precursor of NAD+, is essential for cellular fuel respiration, energy production, and other cellular processes. Transporters for other precursors of NAD+ such as nicotinic acid and nicotinamide mononucleotide (NMN) have been identified, but the cellular transporter of nicotinamide has not been elucidated. Here, we demonstrate that equilibrative nucleoside transporter 1 and 2 (ENT1 and 2, encoded by SLC29A1 and 2) drive cellular nicotinamide uptake and establish nicotinamide metabolism homeostasis. In addition, ENT1/2 exhibits a strong capacity to change the cellular metabolite composition and the transcript, especially those related to nicotinamide. We further observe that ENT1/2 regulates cellular respiration and senescence, contributing by altering the NAD+ pool level and mitochondrial status. Changes to cellular respiration, mitochondrial status and senescence by ENT1/2 knockdown are reversed by NMN supplementation. Together, ENT1 and ENT2 act as both cellular nicotinamide-level keepers and nicotinamide biological regulators through their NAM transport functions.
Collapse
Affiliation(s)
- Mingyang Chen
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Luexiang Yuan
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Binxin Chen
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, China
| | - Hui Chang
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Luo
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, China
| | - Hengbin Zhang
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Zhongjian Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Jiao Kong
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Yaodong Yi
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Mengru Bai
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, China
| | - Minlei Dong
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
| | - Huidi Jiang
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
| |
Collapse
|
7
|
Dong L, Lu B, Luo W, Gu X, Wu C, Trotta L, Seppanen M, Zhang Y, Zavialov AV. Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation. Front Med 2025:10.1007/s11684-024-1110-6. [PMID: 39832022 DOI: 10.1007/s11684-024-1110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/18/2024] [Indexed: 01/22/2025]
Abstract
Adenosine, a critical molecule regulating cellular function both inside and outside cells, is controlled by two human adenosine deaminases: ADA1 and ADA2. While ADA1 primarily resides in the cytoplasm, ADA2 can be transported to lysosomes within cells or secreted outside the cell. Patients with ADA2 deficiency (DADA2) often suffer from systemic vasculitis due to elevated levels of TNF-α in their blood. Monocytes from DADA2 patients exhibit excessive TNF-α secretion and differentiate into pro-inflammatory M1-type macrophages. Our findings demonstrate that ADA2 localizes to endolysosomes within macrophages, and its intracellular concentration decreases in cells secreting TNF-α. This suggests that ADA2 may function as a lysosomal adenosine deaminase, regulating TNF-α expression by the cells. Interestingly, pneumonia patients exhibit higher ADA2 concentrations in their bronchoalveolar lavage (BAL), correlating with elevated pro-inflammatory cytokine levels. Conversely, cord blood has low ADA2 levels, creating a more immunosuppressive environment. Additionally, secreted ADA2 can bind to apoptotic cells, activating immune cells by reducing extracellular adenosine levels. These findings imply that ADA2 release from monocytes during inflammation, triggered by growth factors, may be crucial for cell activation. Targeting intracellular and extracellular ADA2 activities could pave the way for novel therapies in inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Liang Dong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Bingtai Lu
- Department of Respiratory Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenwen Luo
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, 571199, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoqiong Gu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Chengxiang Wu
- Tulane National Primate Research Center, Covington, USA
| | - Luca Trotta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mikko Seppanen
- Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Rare Diseases Center, Hospital for Children and Adolescents, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Yuxia Zhang
- Department of Respiratory Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, China
| | - Andrey V Zavialov
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, 571199, China.
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Turku Center for Biotechnology, Turku, Finland.
| |
Collapse
|
8
|
Yamamura R, Nagayoshi Y, Nishiguchi K, Kaneko H, Yamamoto K, Matsushita K, Shimamura M, Kunisawa A, Sakakida K, Chujo T, Adachi M, Kakizoe Y, Izumi Y, Kuwabara T, Mukoyama M, Tomizawa K. Bacteria-specific modified nucleoside is released and elevated in urine of patients with bacterial infections. mBio 2025; 16:e0312424. [PMID: 39660929 PMCID: PMC11708014 DOI: 10.1128/mbio.03124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Over 170 types of chemical modifications have been identified in cellular RNAs across the three domains of life. Modified RNA is eventually degraded to constituent nucleosides, and in mammals, modified nucleosides are released into the extracellular space. By contrast, the fate of modified nucleosides in bacteria remains unknown. In this study, we performed liquid chromatography-mass spectroscopy (LC-MS) analysis of modified nucleosides from the RNA of 23 pathogenic bacteria, revealing 2-methyladenosine (m2A) as a common bacteria-specific modified nucleoside detected in all bacterial RNAs. Under normal culture conditions, bacteria did not actively release most modified nucleoside species, but robustly released nucleosides, including m2A, following addition of antibiotics or immune cells. These results indicate that m2A is released following bacterial lysis. Intraperitoneal injection of mice with m2A increased detectable levels of m2A in the urine, indicating that mammals can effectively excrete m2A. Additionally, mice infected with wild-type E. coli showed higher levels of m2A in their urine than mice infected by m2A-deficient rlmN KO E. coli. This suggests that m2A from the infected bacteria is excreted in the urine. Lastly, clinical studies using urine samples from febrile patients revealed significantly elevated levels of m2A during bacterial infections, and these values did not correlate with inflammation severity markers, such as white blood count (WBC) and C-reactive protein (CRP). This study reports the mammalian metabolism of modified nucleosides derived from bacterial RNA, and the elevation of urinary m2A in patients with bacterial infections. IMPORTANCE This study reveals the differences in the fate and release of modified nucleosides in bacteria and mammals. Additionally, our study highlights that external bacteria-damaging factors, such as antibiotics and phagocytosis by host immune cells, promote the release of bacteria-specific modified nucleosides. Furthermore, we found that m2A was elevated in the urine from animal models of bacterial infection and the urine of patients with bacterial infections. Collectively, this work spans basic biology and clinical science, offering valuable insights into the fate of modified nucleosides in bacterial systems and their relevance to infectious diseases.
Collapse
Affiliation(s)
- Ryosuke Yamamura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yu Nagayoshi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Kayo Nishiguchi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitomi Kaneko
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichi Yamamoto
- Department of Laboratory Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Koki Matsushita
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Miho Shimamura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihiro Kunisawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Korin Sakakida
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masataka Adachi
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
9
|
Jani T, Santoro D, Shmalberg J. Investigation of the in vitro effects of cannabidiol, cannabidiolic acid, and the terpene β-caryophyllene on lymphocytes harvested from atopic and healthy dogs: A preliminary study. Res Vet Sci 2025; 182:105483. [PMID: 39616944 DOI: 10.1016/j.rvsc.2024.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Cannabidiol (CBD) has been shown to have anti-inflammatory and antipruritic properties without the significant psychoactive effects. This study aims to evaluate the cytotoxic effects of, and the production of cytokines after exposure to CBD, cannabidiolic acid (CBDA), and β-caryophyllene (BCP), alone and in combination, by peripheral blood mononuclear cells (PBMC) from healthy and atopic dogs. Six healthy and five atopic, privately-owned dogs were enrolled. Peripheral blood mononuclear cells were harvested and incubated for 24 h with different concentrations of CBD, CBDA, and BCP alone or in combination. Cell viability and inflammatory cytokines were assessed. There was no difference in cell viability between baseline and tested concentrations of CBD, CBDA, or BCP in either healthy or in atopic PBMC. There was no effect of CBD, CBDA and BCP on the secretion of cytokines compared to baseline in healthy or atopic PMBC. The only exception was interleukin (IL)-10, increased in healthy PMBC exposed to CBD 100 ng/mL (p = 0.031) or CBDA 600 ng/mL (p = 0.017). Tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP-1), IL-2, and IL-18 were higher in atopic PBMC exposed to combinations of CBD, CBDA, and BCP compared to healthy post-exposure PBMC. This is the first study that tested the effect of CBD, CBDA, and BCP at different concentrations on atopic and healthy canine PBMC. The results of this study show that CBD, CBDA and BCP, at the tested concentrations, are safe for canine PBMC. However, CBD, CBDA and BCP did not show any direct anti-inflammatory effect under these experimental conditions. Further research is needed to confirm these results in a larger canine population.
Collapse
Affiliation(s)
- Twisha Jani
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16(th) Ave., Gainesville, FL 32610, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16(th) Ave., Gainesville, FL 32610, USA.
| | - Justin Shmalberg
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Demir EA, Gonder O. Ticagrelor-related dyspnea beyond adenosine: Insights into retrotrapezoid hyperactivity. Respir Physiol Neurobiol 2025; 331:104349. [PMID: 39293566 DOI: 10.1016/j.resp.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Ticagrelor, a P2Y12 receptor antagonist, has been demonstrated to induce dyspnea, which is not associated with cardiac or pulmonary alterations, or metabolic disturbances. The attribution of ticagrelor-related dyspnea to excess adenosine has been widely proposed, yet is not supported by experimental data. In this paper, we put forth a novel hypothesis that the hyperactivity of the retrotrapezoid nucleus, a group of ventral medullary neurons involved in respiratory modulation, is the underlying cause of ticagrelor-related dyspnea. This hypothesis offers a theoretical resolution to the discrepancies and controversies present in previous theories.
Collapse
Affiliation(s)
- Enver Ahmet Demir
- Department of Cardiology, Ankara Etlik City Hospital, Ankara, Republic of Turkey.
| | - Okan Gonder
- Department of Cardiology, Ankara Etlik City Hospital, Ankara, Republic of Turkey
| |
Collapse
|
11
|
Elbahnsi A, Dudas B, Callebaut I, Hinzpeter A, Miteva MA. ATP-Binding Cassette and Solute Carrier Transporters: Understanding Their Mechanisms and Drug Modulation Through Structural and Modeling Approaches. Pharmaceuticals (Basel) 2024; 17:1602. [PMID: 39770445 PMCID: PMC11676857 DOI: 10.3390/ph17121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporters play pivotal roles in cellular transport mechanisms, influencing a wide range of physiological processes and impacting various medical conditions. Recent advancements in structural biology and computational modeling have provided significant insights into their function and regulation. This review provides an overview of the current knowledge of human ABC and SLC transporters, emphasizing their structural and functional relationships, transport mechanisms, and the contribution of computational approaches to their understanding. Current challenges and promising future research and methodological directions are also discussed.
Collapse
Affiliation(s)
- Ahmad Elbahnsi
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| | - Balint Dudas
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| | - Isabelle Callebaut
- Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie—IMPMC, Sorbonne Université, 75005 Paris, France
| | - Alexandre Hinzpeter
- CNRS, INSERM, Institut Necker Enfants Malades—INEM, Université Paris Cité, 75015 Paris, France
| | - Maria A. Miteva
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
12
|
Sahay S, Devine EA, Vargas CFA, McCullumsmith RE, O’Donovan SM. Adenosine Metabolism Pathway Alterations in Frontal Cortical Neurons in Schizophrenia. Cells 2024; 13:1657. [PMID: 39404420 PMCID: PMC11475131 DOI: 10.3390/cells13191657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Schizophrenia is a neuropsychiatric illness characterized by altered neurotransmission, in which adenosine, a modulator of glutamate and dopamine, plays a critical role that is relatively unexplored in the human brain. In the present study, postmortem human brain tissue from the anterior cingulate cortex (ACC) of individuals with schizophrenia (n = 20) and sex- and age-matched control subjects without psychiatric illness (n = 20) was obtained from the Bronx-Mount Sinai NIH Brain and Tissue Repository. Enriched populations of ACC pyramidal neurons were isolated using laser microdissection (LMD). The mRNA expression levels of six key adenosine pathway components-adenosine kinase (ADK), equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2), ectonucleoside triphosphate diphosphohydrolases 1 and 3 (ENTPD1 and ENTPD3), and ecto-5'-nucleotidase (NT5E)-were quantified using real-time PCR (qPCR) in neurons from these individuals. No significant mRNA expression differences were observed between the schizophrenia and control groups (p > 0.05). However, a significant sex difference was found in ADK mRNA expression, with higher levels in male compared with female subjects (Mann-Whitney U = 86; p < 0.05), a finding significantly driven by disease (t(17) = 3.289; p < 0.05). Correlation analyses also demonstrated significant associations (n = 12) between the expression of several adenosine pathway components (p < 0.05). In our dementia severity analysis, ENTPD1 mRNA expression was significantly higher in males in the "mild" clinical dementia rating (CDR) bin compared with males in the "none" CDR bin (F(2, 13) = 5.212; p < 0.05). Lastly, antipsychotic analysis revealed no significant impact on the expression of adenosine pathway components between medicated and non-medicated schizophrenia subjects (p > 0.05). The observed sex-specific variations and inter-component correlations highlight the value of investigating sex differences in disease and contribute to the molecular basis of schizophrenia's pathology.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
| | - Emily A. Devine
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Christina F.-A. Vargas
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
| | - Robert E. McCullumsmith
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
- Neuroscience Institute, ProMedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland
| |
Collapse
|
13
|
Rackear M, Quijano E, Ianniello Z, Colón-Ríos DA, Krysztofiak A, Abdullah R, Liu Y, Rogers FA, Ludwig DL, Dwivedi R, Bleichert F, Glazer PM. Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition. Oncotarget 2024; 15:699-713. [PMID: 39352803 PMCID: PMC11444335 DOI: 10.18632/oncotarget.28651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Monoclonal antibody therapies for cancer have demonstrated extraordinary clinical success in recent years. However, these strategies are thus far mostly limited to specific cell surface antigens, even though many disease targets are found intracellularly. Here we report studies on the humanization of a full-length, nucleic acid binding, monoclonal lupus-derived autoantibody, 3E10, which exhibits a novel mechanism of cell penetration and tumor specific targeting. Comparing humanized variants of 3E10, we demonstrate that cell uptake depends on the nucleoside transporter ENT2, and that faster cell uptake and superior in vivo tumor targeting are associated with higher affinity nucleic acid binding. We show that one human variant retains the ability of the parental 3E10 to bind RAD51, serving as a synthetically lethal inhibitor of homology-directed repair in vitro. These results provide the basis for the rational design of a novel antibody platform for therapeutic tumor targeting with high specificity following systemic administration.
Collapse
Affiliation(s)
- Madison Rackear
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elias Quijano
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zaira Ianniello
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel A Colón-Ríos
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam Krysztofiak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Faye A Rogers
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Rohini Dwivedi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Shahid N, Cromwell C, Hubbard BP, Hammond JR. Development of a Novel HEK293 Cell Model Lacking SLC29A1 to Study the Pharmacology of Endogenous SLC29A2-Encoded Equilibrative Nucleoside Transporter Subtype 2. Drug Metab Dispos 2024; 52:1094-1103. [PMID: 39054074 DOI: 10.1124/dmd.124.001814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Equilibrative nucleoside transporters (ENTs) mediate the transmembrane flux of endogenous nucleosides and nucleoside analogs used clinically. The predominant subtype, ENT1, has been well characterized. However, the other subtype, ENT2, has been less well characterized in its native milieu due to its relatively low expression and the confounding influence of coexpressed ENT1. We created a cell model where ENT1 was removed from human embryonic kidney (HEK293) cells using CRISPR/cas9 [ENT1 knockout (KO) cells]; this cell line has ENT2 as the only functional purine transporter. Transporter function was assessed through measurement of [3H]2-chloroadenosine uptake. ENT1 protein was quantified based on the binding of [3H]nitrobenzylthioinosine, and ENT1/ENT2 protein was detected by immunoblotting. Changes in expression of relevant transporters and enzymes involved in purine metabolism were examined by quantitative polymerase chain reaction. Wild-type HEK293 cells and ENT1KO cells had a similar expression of SLC29A2/ENT2 transcript/protein and ENT2-mediated [3H]2-chloroadenosine transport activity (Vmax values of 1.02 ± 0.06 and 1.50 ± 0.22 pmol/μl/s, respectively). Of the endogenous nucleosides/nucleobases tested, adenosine had the highest affinity (Ki) for ENT2 (2.6 μM), while hypoxanthine was the only nucleobase with a submillimolar affinity (320 μM). A range of nucleoside/nucleobase analogs were also tested for their affinity for ENT2 in this model, with affinities (Ki) ranging from 8.6 μM for ticagrelor to 2,300 μM for 6-mercaptopurine. Our data suggest that the removal of endogenous ENT1 from these cells does not change the expression or function of ENT2. This cell line should prove useful for the analysis of novel drugs acting via ENT2 and to study ENT2 regulation. SIGNIFICANCE STATEMENT: We have created a cell line whereby endogenous ENT2 can be studied in detail in the absence of the confounding influence of ENT1. Loss of ENT1 has no impact on the expression and function of ENT2. This novel cell line will provide an ideal model for studying drug interactions with ENT2 as well as the cellular regulation of ENT2 expression and function.
Collapse
Affiliation(s)
- Nayiar Shahid
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - James R Hammond
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Pain E, Snowden S, Oddy J, Shinhmar S, Alhammad YMA, King JS, Müller-Taubenberger A, Williams RSB. Pharmacological inhibition of ENT1 enhances the impact of specific dietary fats on energy metabolism gene expression. Proc Natl Acad Sci U S A 2024; 121:e2321874121. [PMID: 39207736 PMCID: PMC11388398 DOI: 10.1073/pnas.2321874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/26/2024] [Indexed: 09/04/2024] Open
Abstract
Medium chain fatty acids are commonly consumed as part of diets for endurance sports and as medical treatment in ketogenic diets where these diets regulate energy metabolism and increase adenosine levels. However, the role of the equilibrative nucleoside transporter 1 (ENT1), which is responsible for adenosine transport across membranes in this process, is not well understood. Here, we investigate ENT1 activity in controlling the effects of two dietary medium chain fatty acids (decanoic and octanoic acid), employing the tractable model system Dictyostelium. We show that genetic ablation of three ENT1 orthologues unexpectedly improves cell proliferation specifically following decanoic acid treatment. This effect is not caused by increased adenosine levels triggered by both fatty acids in the presence of ENT1 activity. Instead, we show that decanoic acid increases expression of energy-related genes relevant for fatty acid β-oxidation, and that pharmacological inhibition of ENT1 activity leads to an enhanced effect of decanoic acid to increase expression of tricarboxylicacid cycle and oxidative phosphorylation components. Importantly, similar transcriptional changes have been shown in the rat hippocampus during ketogenic diet treatment. We validated these changes by showing enhanced mitochondria load and reduced lipid droplets. Thus, our data show that ENT1 regulates the medium chain fatty acid-induced increase in cellular adenosine levels and the decanoic acid-induced expression of important metabolic enzymes in energy provision, identifying a key role for ENT1 proteins in metabolic effects of medium chain fatty acids.
Collapse
Affiliation(s)
- Erwann Pain
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Stuart Snowden
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Joseph Oddy
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 4 CH-1211, Switzerland
| | - Sonia Shinhmar
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Yousef M A Alhammad
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jason S King
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Annette Müller-Taubenberger
- Department of Cell Biology, Biomedical Center, Ludwig Maximilian University of Munich, Planegg-Martinsried 82152, Germany
| | - Robin S B Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| |
Collapse
|
16
|
Yu NJ, Jaber QZ, Kleiner RE. Global characterization of RNA modifying enzymes with RNA-mediated activity-based protein profiling (RNABPP). Methods Enzymol 2024; 705:111-125. [PMID: 39389661 DOI: 10.1016/bs.mie.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Post-transcriptional RNA modifications can regulate RNA function and play an important role in gene expression. Studying RNA modifying enzymes and their associated modifications remains a considerable challenge. Here we describe the RNA-mediated activity-based protein profiling (RNABPP) methodology, a chemoproteomic strategy for profiling the activity of RNA modifying enzymes in their native context. RNABPP relies upon metabolic RNA labeling with modified ribonucleoside-based probes, combined with protein-RNA enrichment and quantitative proteomics. The RNABPP approach is a general strategy based on chemical reactivity and enzyme mechanism, making it suitable for probing multiple classes of RNA modifying enzymes across diverse biological systems.
Collapse
Affiliation(s)
- Nathan J Yu
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Qais Z Jaber
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
17
|
BAŞKÖY SAPPAK, KHUNKHUNA A, SCURIC B, NAYDENOVA Z, COE IR. Characterization of Equilibrative Nucleoside Transport of the Pancreatic Cancer Cell Line: Panc-1. Turk J Pharm Sci 2024; 21:167-173. [PMID: 38994796 PMCID: PMC11590551 DOI: 10.4274/tjps.galenos.2023.86727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2024]
Abstract
Objectives Gemcitabine, a first-line chemotherapeutic nucleoside analog drug (NAD) for pancreatic cancer, faces limitations due to drug resistance. Characterizing pancreatic cancer cells' transport characteristics may help identify the mechanisms behind drug resistance, and develop more effective therapeutic strategies. Therefore, in this study, we aimed to determine the nucleoside transport properties of Panc-1 cells, one of the commonly used pancreatic adenocarcinoma cell lines. Materials and Methods To assess the presence of equilibrative nucleoside transporter-1 (ENT-1) in Panc-1 cells, we performed immunofluorescence staining, western blot analysis, and S-(4-nitrobenzyl)-6-thioinosine (NBTI) binding assays. We also conducted standard uptake assays to measure the sodium-independent uptake of [3H]-labeled chloroadenosine, hypoxanthine, and uridine. In addition, we determined the half-maximal inhibitory concentration (IC50) of gemcitabine. Statistical analyses were performed using GraphPad Prism version 8.0 for Windows. Results The sodium-independent uptake of [3H]-labeled chloroadenosine, hypoxanthine, and uridine was measured using standard uptake assays, and the transport rates were determined as 111.1 ± 3.4 pmol/mg protein/10 s, 62.5 ± 4.8 pmol/mg protein/10 s, and 101.3 ± 2.5 pmol/mg protein/10 s, respectively. Furthermore, the presence of ENT-1 protein was confirmed using NBTI binding assays (Bmax 1.52 ± 0.1 pmol/mg protein; equilibrium dissociation constant 0.42 ± 0.1 nM). Immunofluorescence assays and western blot analysis also revealed ENT-1 in Panc-1 cells. The determined IC50 of gemcitabine in Panc-1 cells was 2 μM, indicating moderate sensitivity. Conclusion These results suggest that Panc-1 is a suitable preclinical cellular model for studying NAD transport properties and potential therapies in pancreatic cancer and pharmaceutical research.
Collapse
Affiliation(s)
- Sıla APPAK BAŞKÖY
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
| | | | - Bianca SCURIC
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
| | - Zlatina NAYDENOVA
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
| | - Imogen R. COE
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
| |
Collapse
|
18
|
Tran DH, Kim D, Kesavan R, Brown H, Dey T, Soflaee MH, Vu HS, Tasdogan A, Guo J, Bezwada D, Al Saad H, Cai F, Solmonson A, Rion H, Chabatya R, Merchant S, Manales NJ, Tcheuyap VT, Mulkey M, Mathews TP, Brugarolas J, Morrison SJ, Zhu H, DeBerardinis RJ, Hoxhaj G. De novo and salvage purine synthesis pathways across tissues and tumors. Cell 2024; 187:3602-3618.e20. [PMID: 38823389 PMCID: PMC11246224 DOI: 10.1016/j.cell.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.
Collapse
Affiliation(s)
- Diem H Tran
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Dohun Kim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rushendhiran Kesavan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Harrison Brown
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Trishna Dey
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Mona Hoseini Soflaee
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, Germany
| | - Jason Guo
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Houssam Al Saad
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Halie Rion
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rawand Chabatya
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Salma Merchant
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nathan J Manales
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Vanina T Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Megan Mulkey
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean J Morrison
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Gerta Hoxhaj
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Wu Z, Bezwada D, Cai F, Harris RC, Ko B, Sondhi V, Pan C, Vu HS, Nguyen PT, Faubert B, Cai L, Chen H, Martin-Sandoval M, Do D, Gu W, Zhang Y, Zhang Y, Brooks B, Kelekar S, Zacharias LG, Oaxaca KC, Patricio JS, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. Cell Metab 2024; 36:1504-1520.e9. [PMID: 38876105 PMCID: PMC11240302 DOI: 10.1016/j.cmet.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.
Collapse
Affiliation(s)
- Zheng Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert C Harris
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Varun Sondhi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunxiao Pan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phong T Nguyen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Faubert
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongli Chen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Zhang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bailey Brooks
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - K Celeste Oaxaca
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joao S Patricio
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Javier Garcia-Bermudez
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Petitgas C, Seugnet L, Dulac A, Matassi G, Mteyrek A, Fima R, Strehaiano M, Dagorret J, Chérif-Zahar B, Marie S, Ceballos-Picot I, Birman S. Metabolic and neurobehavioral disturbances induced by purine recycling deficiency in Drosophila. eLife 2024; 12:RP88510. [PMID: 38700995 PMCID: PMC11068357 DOI: 10.7554/elife.88510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.
Collapse
Affiliation(s)
- Céline Petitgas
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
- Metabolomic and Proteomic Biochemistry Laboratory, Necker-Enfants Malades Hospital and Paris Cité UniversityParisFrance
| | - Laurent Seugnet
- Integrated Physiology of the Brain Arousal Systems (WAKING), Lyon Neuroscience Research Centre, INSERM/CNRS/UCBL1BronFrance
| | - Amina Dulac
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Giorgio Matassi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of UdineUdineItaly
- UMR “Ecology and Dynamics of Anthropogenic Systems” (EDYSAN), CNRS, Université de Picardie Jules VerneAmiensFrance
| | - Ali Mteyrek
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Rebecca Fima
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Marion Strehaiano
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Joana Dagorret
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Baya Chérif-Zahar
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Sandrine Marie
- Laboratory of Metabolic Diseases, Cliniques Universitaires Saint-Luc, Université catholique de LouvainBrusselsBelgium
| | - Irène Ceballos-Picot
- Metabolomic and Proteomic Biochemistry Laboratory, Necker-Enfants Malades Hospital and Paris Cité UniversityParisFrance
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| |
Collapse
|
21
|
Granulo N, Sosnin S, Digles D, Ecker GF. The macrocycle inhibitor landscape of SLC-transporter. Mol Inform 2024; 43:e202300287. [PMID: 38288682 PMCID: PMC11475418 DOI: 10.1002/minf.202300287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024]
Abstract
In the past years the interest in Solute Carrier Transporters (SLC) has increased due to their potential as drug targets. At the same time, macrocycles demonstrated promising activities as therapeutic agents. However, the overall macrocycle/SLC-transporter interaction landscape has not been fully revealed yet. In this study, we present a statistical analysis of macrocycles with measured activity against SLC-transporter. Using a data mining pipeline based on KNIME retrieved in total 825 bioactivity data points of macrocycles interacting with SLC-transporter. For further analysis of the SLC inhibitor profiles we developed an interactive KNIME workflow as well as an interactive map of the chemical space coverage utilizing parametric t-SNE models. The parametric t-SNE models provide a good discrimination ability among several corresponding SLC subfamilies' targets. The KNIME workflow, the dataset, and the visualization tool are freely available to the community.
Collapse
Affiliation(s)
- Nejra Granulo
- Department of Pharmaceutical SciencesUniversity of ViennaJosef Holaubek Platz 21090ViennaAustria
- Research Platform NeGeMac–Next Generation Macrocycles to Address Challenging Protein InterfacesUniversity of Vienna1090ViennaAustria
| | - Sergey Sosnin
- Department of Pharmaceutical SciencesUniversity of ViennaJosef Holaubek Platz 21090ViennaAustria
| | - Daniela Digles
- Department of Pharmaceutical SciencesUniversity of ViennaJosef Holaubek Platz 21090ViennaAustria
| | - Gerhard F. Ecker
- Department of Pharmaceutical SciencesUniversity of ViennaJosef Holaubek Platz 21090ViennaAustria
- Research Platform NeGeMac–Next Generation Macrocycles to Address Challenging Protein InterfacesUniversity of Vienna1090ViennaAustria
| |
Collapse
|
22
|
Offensperger F, Tin G, Duran-Frigola M, Hahn E, Dobner S, Ende CWA, Strohbach JW, Rukavina A, Brennsteiner V, Ogilvie K, Marella N, Kladnik K, Ciuffa R, Majmudar JD, Field SD, Bensimon A, Ferrari L, Ferrada E, Ng A, Zhang Z, Degliesposti G, Boeszoermenyi A, Martens S, Stanton R, Müller AC, Hannich JT, Hepworth D, Superti-Furga G, Kubicek S, Schenone M, Winter GE. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science 2024; 384:eadk5864. [PMID: 38662832 DOI: 10.1126/science.adk5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024]
Abstract
Chemical modulation of proteins enables a mechanistic understanding of biology and represents the foundation of most therapeutics. However, despite decades of research, 80% of the human proteome lacks functional ligands. Chemical proteomics has advanced fragment-based ligand discovery toward cellular systems, but throughput limitations have stymied the scalable identification of fragment-protein interactions. We report proteome-wide maps of protein-binding propensity for 407 structurally diverse small-molecule fragments. We verified that identified interactions can be advanced to active chemical probes of E3 ubiquitin ligases, transporters, and kinases. Integrating machine learning binary classifiers further enabled interpretable predictions of fragment behavior in cells. The resulting resource of fragment-protein interactions and predictive models will help to elucidate principles of molecular recognition and expedite ligand discovery efforts for hitherto undrugged proteins.
Collapse
Affiliation(s)
- Fabian Offensperger
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gary Tin
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Miquel Duran-Frigola
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ersilia Open Source Initiative, Cambridge CB1 3DE, UK
| | - Elisa Hahn
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sarah Dobner
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | | | - Andrea Rukavina
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Vincenth Brennsteiner
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kevin Ogilvie
- Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Nara Marella
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Katharina Kladnik
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Rodolfo Ciuffa
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | | | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Vienna Biocenter 5, 1030 Vienna, Austria
| | - Evandro Ferrada
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Amanda Ng
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Zhechun Zhang
- Molecular Informatics, Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, MA 02139, USA
| | - Gianluca Degliesposti
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andras Boeszoermenyi
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Vienna Biocenter 5, 1030 Vienna, Austria
| | - Robert Stanton
- Molecular Informatics, Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, MA 02139, USA
| | - André C Müller
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - J Thomas Hannich
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Giulio Superti-Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Georg E Winter
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
23
|
Lovászi M, Németh ZH, Kelestemur T, Sánchez IV, Antonioli L, Pacher P, Wagener G, Haskó G. EVALUATION OF COMPONENTS OF THE EXTRACELLULAR PURINERGIC SIGNALING SYSTEM IN HUMAN SEPSIS. Shock 2024; 61:527-540. [PMID: 37752081 PMCID: PMC10963342 DOI: 10.1097/shk.0000000000002230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Objective: Extracellular purines such as adenosine triphosphate (ATP), uridine triphosphate (UTP), and uridine diphosphate (UDP) and the ATP degradation product adenosine are biologically active signaling molecules, which accumulate at sites of metabolic stress in sepsis. They have potent immunomodulatory effects by binding to and activating P1 or adenosine and P2 receptors on the surface of leukocytes. Here we assessed the levels of extracellular purines, their receptors, metabolic enzymes, and cellular transporters in leukocytes of septic patients. Methods: Peripheral blood mononuclear cells (PBMCs), neutrophils, and plasma were isolated from blood obtained from septic patients and healthy control subjects. Ribonucleic acid was isolated from cells, and mRNA levels for purinergic receptors, enzymes, and transporters were measured. Adenosine triphosphate, UTP, UDP, and adenosine levels were evaluated in plasma. Results: Adenosine triphosphate levels were lower in septic patients than in healthy individuals, and levels of the other purines were comparable between the two groups. Levels of P1 and P2 receptors did not differ between the two patient groups. mRNA levels of ectonucleoside triphosphate diphosphohydrolase (NTPDase) 1 or CD39 increased, whereas those of NTPDase2, 3, and 8 decreased in PBMCs of septic patients when compared with healthy controls. CD73 mRNA was lower in PBMCs of septic than in healthy individuals. Equilibrative nucleoside transporter (ENT) 1 mRNA concentrations were higher and ENT2, 3, and 4 mRNA concentrations were lower in PBMCs of septic subjects when compared with healthy subjects. Concentrative nucleoside transporter (CNT) 1 mRNA levels were higher in PBMCs of septic versus healthy subjects, whereas the mRNA levels of CNT2, 3, and 4 did not differ. We failed to detect differences in mRNA levels of purinergic receptors, enzymes, and transporters in neutrophils of septic versus healthy subjects. Conclusion: Because CD39 degrades ATP to adenosine monophosphate (AMP), the lower ATP levels in septic individuals may be the result of increased CD39 expression. This increased degradation of ATP did not lead to increased adenosine levels, which may be explained by the decreased expression of CD73, which converts AMP to adenosine. Altogether, our results demonstrate differential regulation of components of the purinergic system in PBMCs during human sepsis.
Collapse
Affiliation(s)
- Marianna Lovászi
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Zoltán H Németh
- Department of Anesthesiology, Columbia University, New York, NY, USA
- Department of Surgery, Morristown Medical Center, Morristown, NJ, USA
| | - Taha Kelestemur
- Department of Anesthesiology, Columbia University, New York, NY, USA
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkiye
| | - Itzel V. Sánchez
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Gebhard Wagener
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Junger W, Ledderose C. Editorial overview: "Purinergic immune cell regulation reveals novel pharmacological targets". Curr Opin Pharmacol 2024; 75:102435. [PMID: 38277943 DOI: 10.1016/j.coph.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Affiliation(s)
- Wolfgang Junger
- University of California San Diego, School of Medicine, Department of Surgery, La Jolla, CA 92037, USA.
| | - Carola Ledderose
- University of California San Diego, School of Medicine, Department of Surgery, La Jolla, CA 92037, USA
| |
Collapse
|
25
|
Sun Y, Liu W, Su M, Zhang T, Li X, Liu W, Cai Y, Zhao D, Yang M, Zhu Z, Wang J, Yu J. Purine salvage-associated metabolites as biomarkers for early diagnosis of esophageal squamous cell carcinoma: a diagnostic model-based study. Cell Death Discov 2024; 10:139. [PMID: 38485739 PMCID: PMC10940714 DOI: 10.1038/s41420-024-01896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) remains an important health concern in developing countries. Patients with advanced ESCC have a poor prognosis and survival rate, and achieving early diagnosis remains a challenge. Metabolic biomarkers are gradually gaining attention as early diagnostic biomarkers. Hence, this multicenter study comprehensively evaluated metabolism dysregulation in ESCC through an integrated research strategy to identify key metabolite biomarkers of ESCC. First, the metabolic profiles were examined in tissue and serum samples from the discovery cohort (n = 162; ESCC patients, n = 81; healthy volunteers, n = 81), and ESCC tissue-induced metabolite alterations were observed in the serum. Afterward, RNA sequencing of tissue samples (n = 46) was performed, followed by an integrated analysis of metabolomics and transcriptomics. The potential biomarkers for ESCC were further identified by censoring gene-metabolite regulatory networks. The diagnostic value of the identified biomarkers was validated in a validation cohort (n = 220), and the biological function was verified. A total of 457 dysregulated metabolites were identified in the serum, of which 36 were induced by tumor tissues. The integrated analyses revealed significant alterations in the purine salvage pathway, wherein the abundance of hypoxanthine/xanthine exhibited a positive correlation with HPRT1 expression and tumor size. A diagnostic model was developed using two purine salvage-associated metabolites. This model could accurately discriminate patients with ESCC from normal individuals, with an area under the curve (AUC) (95% confidence interval (CI): 0.680-0.843) of 0.765 in the external cohort. Hypoxanthine and HPRT1 exerted a synergistic effect in terms of promoting ESCC progression. These findings are anticipated to provide valuable support in developing novel diagnostic approaches for early ESCC and enhance our comprehension of the metabolic mechanisms underlying this disease.
Collapse
Affiliation(s)
- Yawen Sun
- Department of Medical Epidemiology and Biostatistics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wenjuan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Mu Su
- Berry Oncology Corporation, Beijing, 102206, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xia Li
- Department of Public Health, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, 250013, China
| | - Wenbin Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Deli Zhao
- Tumor Preventative and Therapeutic Base of Shandong Province, Feicheng People's Hospital, Feicheng, Shandong, 271600, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong, 250117, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Jialin Wang
- Department of Medical Epidemiology and Biostatistics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
26
|
Klysz DD, Fowler C, Malipatlolla M, Stuani L, Freitas KA, Chen Y, Meier S, Daniel B, Sandor K, Xu P, Huang J, Labanieh L, Keerthi V, Leruste A, Bashti M, Mata-Alcazar J, Gkitsas N, Guerrero JA, Fisher C, Patel S, Asano K, Patel S, Davis KL, Satpathy AT, Feldman SA, Sotillo E, Mackall CL. Inosine induces stemness features in CAR-T cells and enhances potency. Cancer Cell 2024; 42:266-282.e8. [PMID: 38278150 PMCID: PMC10923096 DOI: 10.1016/j.ccell.2024.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Adenosine (Ado) mediates immune suppression in the tumor microenvironment and exhausted CD8+ CAR-T cells express CD39 and CD73, which mediate proximal steps in Ado generation. Here, we sought to enhance CAR-T cell potency by knocking out CD39, CD73, or adenosine receptor 2a (A2aR) but observed only modest effects. In contrast, overexpression of Ado deaminase (ADA-OE), which metabolizes Ado to inosine (INO), induced stemness and enhanced CAR-T functionality. Similarly, CAR-T cell exposure to INO augmented function and induced features of stemness. INO induced profound metabolic reprogramming, diminishing glycolysis, increasing mitochondrial and glycolytic capacity, glutaminolysis and polyamine synthesis, and reprogrammed the epigenome toward greater stemness. Clinical scale manufacturing using INO generated enhanced potency CAR-T cell products meeting criteria for clinical dosing. These results identify INO as a potent modulator of CAR-T cell metabolism and epigenetic stemness programming and deliver an enhanced potency platform for cell manufacturing.
Collapse
Affiliation(s)
- Dorota D Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Carley Fowler
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Meena Malipatlolla
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucille Stuani
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine A Freitas
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yiyun Chen
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefanie Meier
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Huang
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Louai Labanieh
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Vimal Keerthi
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Amaury Leruste
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Malek Bashti
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Janette Mata-Alcazar
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nikolaos Gkitsas
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin A Guerrero
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chris Fisher
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sunny Patel
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyle Asano
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shabnum Patel
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kara L Davis
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ansuman T Satpathy
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Division of Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
27
|
Mucke HA. Patent Highlights April-May 2023. Pharm Pat Anal 2023; 12:253-259. [PMID: 38197382 DOI: 10.4155/ppa-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
28
|
Zhang C, Wang K, Wang H. Adenosine in cancer immunotherapy: Taking off on a new plane. Biochim Biophys Acta Rev Cancer 2023; 1878:189005. [PMID: 37913941 DOI: 10.1016/j.bbcan.2023.189005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
As a new pillar of cancer therapy, tumor immunotherapy has brought irreplaceable durable responses in tumors. Considering its low response rate, additional immune regulatory mechanisms will be critical for the development of next-generation immune therapeutics. As a key regulatory mechanism, adenosine (ADO) protects tissues from excessive immune responses, but as a metabolite highly concentrated in tumor microenvironments, extracellular adenosine acts on adenosine receptors (mainly A2A receptors) expressed on MDSCs, Tregs, NK cells, effector T cells, DCs, and macrophages to promote tumor cell escape from immune surveillance by inhibiting the immune response. Amounting preclinical studies have demonstrated the adenosine pathway as a novel checkpoint for immunotherapy. Large number of adenosine pathway targeting clinical trials are now underway, including antibodies against CD39 and CD73 as well as A2A receptor inhibitors. There has been evidence of antitumor efficacy of these inhibitors in early clinical trials among a variety of tumors such as breast cancer, prostate cancer, non-small cell lung cancer, etc. As more clinical trial results are published, the combination of blockade of this pathway with immune checkpoint inhibitors, targeted drugs, traditional chemotherapy medications, radiotherapy and endocrine therapy will provide cancer patients with better clinical outcomes. We would elaborate on the role of CD39-CD73-A2AR pathway in the contribution of tumor microenvironment and the targeting of the adenosinergic pathway for cancer therapy in the review.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
29
|
Boyd LNC, Nooijen LE, Ali M, Puik JR, Moustaquim J, Fraga Rodrigues SM, Broos R, Belkouz A, Meijer LL, Le Large TYS, Erdmann JI, Hooijer GKJ, Heger M, Van Laarhoven HWM, Roos E, Kazemier G, Giovannetti E, Verheij J, Klümpen HJ. Prognostic and predictive value of human equilibrative nucleoside transporter 1 (hENT1) in extrahepatic cholangiocarcinoma: a translational study. Front Pharmacol 2023; 14:1274692. [PMID: 37920204 PMCID: PMC10619907 DOI: 10.3389/fphar.2023.1274692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction: Effective (neo) adjuvant chemotherapy for cholangiocarcinoma is lacking due to chemoresistance and the absence of predictive biomarkers. Human equilibrative nucleoside transporter 1 (hENT1) has been described as a potential prognostic and predictive biomarker. In this study, the potential of rabbit-derived (SP120) and murine-derived (10D7G2) antibodies to detect hENT1 expression was compared in tissue samples of patients with extrahepatic cholangiocarcinoma (ECC), and the predictive value of hENT1 was investigated in three ECC cell lines. Methods: Tissues of 71 chemonaïve patients with histological confirmation of ECC were selected and stained with SP120 or 10D7G2 to assess the inter-observer variability for both antibodies and the correlation with overall survival. Concomitantly, gemcitabine sensitivity after hENT1 knockdown was assessed in the ECC cell lines EGI-1, TFK-1, and SK-ChA-1 using sulforhodamine B assays. Results: Scoring immunohistochemistry for hENT1 expression with the use of SP120 antibody resulted in the highest interobserver agreement but did not show a prognostic role of hENT1. However, 10D7G2 showed a prognostic role for hENT1, and a potential predictive role for gemcitabine sensitivity in hENT1 in SK-ChA-1 and TFK-1 cells was found. Discussion: These findings prompt further studies for both preclinical validation of the role of hENT1 and histochemical standardization in cholangiocarcinoma patients treated with gemcitabine-based chemotherapy.
Collapse
Affiliation(s)
- Lenka N C Boyd
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Department of Medical Oncology, Lab of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Lynn E Nooijen
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Mahsoem Ali
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Department of Medical Oncology, Lab of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Jisce R Puik
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Department of Medical Oncology, Lab of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Jasmine Moustaquim
- Department of Medical Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Stephanie M Fraga Rodrigues
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Department of Medical Oncology, Lab of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Robert Broos
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Department of Medical Oncology, Lab of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Ali Belkouz
- Department of Medical Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Laura L Meijer
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Tessa Y S Le Large
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Department of Medical Oncology, Lab of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Joris I Erdmann
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Gerrit K J Hooijer
- Department of Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Erasmus Medical Center, Laboratory for Experimental Oncology, Department of Pathology, Rotterdam, Netherlands
| | - Hanneke W M Van Laarhoven
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Eva Roos
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Geert Kazemier
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Lab of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Associazione Italiana per La Ricerca Sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Säll C, Koncsos G, Klukovits A. In Vitro Interaction of Tetrahydrouridine with Key Human Nucleoside Transporters. J Pharm Sci 2023; 112:2676-2684. [PMID: 37364771 DOI: 10.1016/j.xphs.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
NDec is a novel combination of oral decitabine and tetrahydrouridine that is currently under clinical development for the treatment of sickle cell disease (SCD). Here, we investigate the potential for the tetrahydrouridine component of NDec to act as an inhibitor or substrate of key concentrative nucleoside transporters (CNT1-3) and equilibrative nucleoside transporters (ENT1-2). Nucleoside transporter inhibition and tetrahydrouridine accumulation assays were performed using Madin-Darby canine kidney strain II (MDCKII) cells overexpressing human CNT1, CNT2, CNT3, ENT1, and ENT2 transporters. Results showed that tetrahydrouridine did not influence CNT- or ENT-mediated uridine/adenosine accumulation in MDCKII cells at the concentrations tested (25 and 250 µM). Accumulation of tetrahydrouridine in MDCKII cells was initially shown to be mediated by CNT3 and ENT2. However, while time- and concentration-dependence experiments showed active accumulation of tetrahydrouridine in CNT3-expressing cells, allowing for estimation of Km (3,140 µM) and Vmax (1,600 pmol/mg protein/min), accumulation of tetrahydrouridine was not observed in ENT2-expressing cells. Potent CNT3 inhibitors are a class of drugs not generally prescribed to patients with SCD, except in certain specific circumstances. These data suggest that NDec can be administered safely with drugs that act as substrates and inhibitors of the nucleoside transporters included in this study.
Collapse
Affiliation(s)
| | - Gábor Koncsos
- SOLVO Biotechnology a Charles River Company, Budapest, Hungary
| | - Anna Klukovits
- SOLVO Biotechnology a Charles River Company, Budapest, Hungary
| |
Collapse
|
31
|
Mylvaganam S, Freeman SA. The resolution of phagosomes. Immunol Rev 2023; 319:45-64. [PMID: 37551912 DOI: 10.1111/imr.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Phagocytosis is a fundamental immunobiological process responsible for the removal of harmful particulates. While the number of phagocytic events achieved by a single phagocyte can be remarkable, exceeding hundreds per day, the same phagocytic cells are relatively long-lived. It should therefore be obvious that phagocytic meals must be resolved in order to maintain the responsiveness of the phagocyte and to avoid storage defects. In this article, we discuss the mechanisms involved in the resolution process, including solute transport pathways and membrane traffic. We describe how products liberated in phagolysosomes support phagocyte metabolism and the immune response. We also speculate on mechanisms involved in the redistribution of phagosomal metabolites back to circulation. Finally, we highlight the pathologies owed to impaired phagosome resolution, which range from storage disorders to neurodegenerative diseases.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Hau RK, Wright SH, Cherrington NJ. Addressing the Clinical Importance of Equilibrative Nucleoside Transporters in Drug Discovery and Development. Clin Pharmacol Ther 2023; 114:780-794. [PMID: 37404197 PMCID: PMC11347013 DOI: 10.1002/cpt.2984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
The US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA) guidances on small-molecule drug-drug interactions (DDIs), with input from the International Transporter Consortium (ITC), recommend the evaluation of nine drug transporters. Although other clinically relevant drug uptake and efflux transporters have been discussed in ITC white papers, they have been excluded from further recommendation by the ITC and are not included in current regulatory guidances. These include the ubiquitously expressed equilibrative nucleoside transporters (ENT) 1 and ENT2, which have been recognized by the ITC for their potential role in clinically relevant nucleoside analog drug interactions for patients with cancer. Although there is comparatively limited clinical evidence supporting their role in DDI risk or other adverse drug reactions (ADRs) compared with the nine highlighted transporters, several in vitro and in vivo studies have identified ENT interactions with non-nucleoside/non-nucleotide drugs, in addition to nucleoside/nucleotide analogs. Some noteworthy examples of compounds that interact with ENTs include cannabidiol and selected protein kinase inhibitors, as well as the nucleoside analogs remdesivir, EIDD-1931, gemcitabine, and fialuridine. Consequently, DDIs involving the ENTs may be responsible for therapeutic inefficacy or off-target toxicity. Evidence suggests that ENT1 and ENT2 should be considered as transporters potentially involved in clinically relevant DDIs and ADRs, thereby warranting further investigation and regulatory consideration.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| | - Stephen H Wright
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
33
|
Xiao C, Gavrilova O, Liu N, Lewicki SA, Reitman ML, Jacobson KA. In vivo phenotypic validation of adenosine receptor-dependent activity of non-adenosine drugs. Purinergic Signal 2023; 19:551-564. [PMID: 36781825 PMCID: PMC10539256 DOI: 10.1007/s11302-023-09924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Some non-adenosinergic drugs are reported to also act through adenosine receptors (ARs). We used mouse hypothermia, which can be induced by agonism at any of the four ARs, as an in vivo screen for adenosinergic effects. An AR contribution was identified when a drug caused hypothermia in wild type mice that was diminished in mice lacking all four ARs (quadruple knockout, QKO). Alternatively, an adenosinergic effect was identified if a drug potentiated adenosine-induced hypothermia. Four drugs (dipyridamole, nimodipine, cilostazol, cyclosporin A) increased the hypothermia caused by adenosine. Dipyridamole and nimodipine probably achieved this by inhibition of adenosine clearance via ENT1. Two drugs (cannabidiol, canrenoate) did not cause hypothermia in wild type mice. Four other drugs (nifedipine, ranolazine, ketamine, ethanol) caused hypothermia, but the hypothermia was unchanged in QKO mice indicating non-adenosinergic mechanisms. Zinc chloride caused hypothermia and hypoactivity; the hypoactivity was blunted in the QKO mice. Interestingly, the antidepressant amitriptyline caused hypothermia in wild type mice that was amplified in the QKO mice. Thus, we have identified adenosine-related effects for some drugs, while other candidates do not affect adenosine signaling by this in vivo assay. The adenosine-modulating drugs could be considered for repurposing based on predicted effects on AR activation.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Sarah A Lewicki
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA.
| |
Collapse
|
34
|
Patrone M, Galasyn GS, Kerin F, Nyitray MM, Parkin DW, Stockman BJ, Degano M. A riboside hydrolase that salvages both nucleobases and nicotinamide in the auxotrophic parasite Trichomonas vaginalis. J Biol Chem 2023; 299:105077. [PMID: 37482279 PMCID: PMC10474468 DOI: 10.1016/j.jbc.2023.105077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023] Open
Abstract
Pathogenic parasites of the Trichomonas genus are causative agents of sexually transmitted diseases affecting millions of individuals worldwide and whose outcome may include stillbirths and enhanced cancer risks and susceptibility to HIV infection. Trichomonas vaginalis relies on imported purine and pyrimidine nucleosides and nucleobases for survival, since it lacks the enzymatic activities necessary for de novo biosynthesis. Here we show that T. vaginalis additionally lacks homologues of the bacterial or mammalian enzymes required for the synthesis of the nicotinamide ring, a crucial component in the redox cofactors NAD+ and NADP. Moreover, we show that a yet fully uncharacterized T. vaginalis protein homologous to bacterial and protozoan nucleoside hydrolases is active as a pyrimidine nucleosidase but shows the highest specificity toward the NAD+ metabolite nicotinamide riboside. Crystal structures of the trichomonal riboside hydrolase in different states reveals novel intermediates along the nucleoside hydrolase-catalyzed hydrolytic reaction, including an unexpected asymmetry in the homotetrameric assembly. The active site structure explains the broad specificity toward different ribosides and offers precise insights for the engineering of specific inhibitors that may simultaneously target different essential pathways in the parasite.
Collapse
Affiliation(s)
- Marco Patrone
- Biocrystallography Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy; Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy
| | - Gregory S Galasyn
- Department of Chemistry, Adelphi University, Garden City, New York, USA
| | - Fiona Kerin
- Department of Chemistry, Adelphi University, Garden City, New York, USA
| | - Mattias M Nyitray
- Department of Chemistry, Adelphi University, Garden City, New York, USA
| | - David W Parkin
- Department of Chemistry, Adelphi University, Garden City, New York, USA
| | - Brian J Stockman
- Department of Chemistry, Adelphi University, Garden City, New York, USA.
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy; Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
35
|
Baril SA, Gose T, Schuetz JD. How Cryo-EM Has Expanded Our Understanding of Membrane Transporters. Drug Metab Dispos 2023; 51:904-922. [PMID: 37438132 PMCID: PMC10353158 DOI: 10.1124/dmd.122.001004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 07/14/2023] Open
Abstract
Over the past two decades, technological advances in membrane protein structural biology have provided insight into the molecular mechanisms that transporters use to move diverse substrates across the membrane. However, the plasticity of these proteins' ligand binding pockets, which allows them to bind a range of substrates, also poses a challenge for drug development. Here we highlight the structure, function, and transport mechanism of ATP-binding cassette/solute carrier transporters that are related to several diseases and multidrug resistance: ABCB1, ABCC1, ABCG2, SLC19A1, and SLC29A1. SIGNIFICANCE STATEMENT: ATP-binding cassette transporters and solute carriers play vital roles in clinical chemotherapeutic outcomes. This paper describes the current understanding of the structure of five pharmacologically relevant transporters and how they interact with their ligands.
Collapse
Affiliation(s)
- Stefanie A Baril
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tomoka Gose
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
36
|
Wu Z, Bezwada D, Harris RC, Pan C, Nguyen PT, Faubert B, Cai L, Cai F, Vu HS, Chen H, Sandoval MM, Do D, Gu W, Zhang Y, Ko B, Brooks B, Kelekar S, Zhang Y, Zacharias LG, Oaxaca KC, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540429. [PMID: 37214913 PMCID: PMC10197673 DOI: 10.1101/2023.05.11.540429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5' phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.
Collapse
|
37
|
Weese-Myers ME, Cryan MT, Witt CE, Caldwell KCN, Modi B, Ross AE. Dynamic and Rapid Detection of Guanosine during Ischemia. ACS Chem Neurosci 2023; 14:1646-1658. [PMID: 37040534 PMCID: PMC10265669 DOI: 10.1021/acschemneuro.3c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Guanosine acts in both neuroprotective and neurosignaling pathways in the central nervous system; in this paper, we present the first fast voltammetric measurements of endogenous guanosine release during pre- and post-ischemic conditions. We discuss the metric of our measurements via analysis of event concentration, duration, and interevent time of rapid guanosine release. We observe changes across all three metrics from our normoxic to ischemic conditions. Pharmacological studies were performed to confirm that guanosine release is a calcium-dependent process and that the signaling observed is purinergic. Finally, we show the validity of our ischemic model via staining and fluorescent imaging. Overall, this paper sets the tone for rapid monitoring of guanosine and provides a platform to investigate the extent to which guanosine accumulates at the site of brain injury, i.e., ischemia.
Collapse
Affiliation(s)
- Moriah E. Weese-Myers
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
- Co-first author
| | - Michael T. Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
- Co-first author
| | - Colby E. Witt
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Kaejaren C. N. Caldwell
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Bindu Modi
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| |
Collapse
|
38
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
39
|
Wang C, Yu L, Zhang J, Zhou Y, Sun B, Xiao Q, Zhang M, Liu H, Li J, Li J, Luo Y, Xu J, Lian Z, Lin J, Wang X, Zhang P, Guo L, Ren R, Deng D. Structural basis of the substrate recognition and inhibition mechanism of Plasmodium falciparum nucleoside transporter PfENT1. Nat Commun 2023; 14:1727. [PMID: 36977719 PMCID: PMC10050424 DOI: 10.1038/s41467-023-37411-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
By lacking de novo purine biosynthesis enzymes, Plasmodium falciparum requires purine nucleoside uptake from host cells. The indispensable nucleoside transporter ENT1 of P. falciparum facilitates nucleoside uptake in the asexual blood stage. Specific inhibitors of PfENT1 prevent the proliferation of P. falciparum at submicromolar concentrations. However, the substrate recognition and inhibitory mechanism of PfENT1 are still elusive. Here, we report cryo-EM structures of PfENT1 in apo, inosine-bound, and inhibitor-bound states. Together with in vitro binding and uptake assays, we identify that inosine is the primary substrate of PfENT1 and that the inosine-binding site is located in the central cavity of PfENT1. The endofacial inhibitor GSK4 occupies the orthosteric site of PfENT1 and explores the allosteric site to block the conformational change of PfENT1. Furthermore, we propose a general "rocker switch" alternating access cycle for ENT transporters. Understanding the substrate recognition and inhibitory mechanisms of PfENT1 will greatly facilitate future efforts in the rational design of antimalarial drugs.
Collapse
Affiliation(s)
- Chen Wang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Leiye Yu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Warshal Institute of Computational Biology, School of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Jiying Zhang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanxia Zhou
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qingjie Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Minhua Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huayi Liu
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhong Li
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Jialu Li
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of MOE, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jie Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhong Lian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingwen Lin
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Li Guo
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Shanghai Qi Zhi Institute, Shanghai, 200030, China.
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
- NHC key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
40
|
Kowash RR, Akbay EA. Tumor intrinsic and extrinsic functions of CD73 and the adenosine pathway in lung cancer. Front Immunol 2023; 14:1130358. [PMID: 37033953 PMCID: PMC10079876 DOI: 10.3389/fimmu.2023.1130358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
The adenosine pathway is an exciting new target in the field of cancer immunotherapy. CD73 is the main producer of extracellular adenosine. Non-small cell lung cancer (NSCLC) has one of the highest CD73 expression signatures among all cancer types and the presence of common oncogenic drivers of NSCLC, such as mutant epidermal growth factor receptor (EGFR) and KRAS, correlate with increased CD73 expression. Current immune checkpoint blockade (ICB) therapies only benefit a subset of patients, and it has proved challenging to understand which patients might respond even with the current understanding of predictive biomarkers. The adenosine pathway is well known to disrupt cytotoxic function of T cells, which is currently the main target of most clinical agents. Data thus far suggests that combining ICB therapies already in the clinic with adenosine pathway inhibitors provides promise for the treatment of lung cancer. However, antigen loss or lack of good antigens limits efficacy of ICB; simultaneous activation of other cytotoxic immune cells such as natural killer (NK) cells can be explored in these tumors. Clinical trials harnessing both T and NK cell activating treatments are still in their early stages with results expected in the coming years. In this review we provide an overview of new literature on the adenosine pathway and specifically CD73. CD73 is thought of mainly for its role as an immune modulator, however recent studies have demonstrated the tumor cell intrinsic properties of CD73 are potentially as important as its role in immune suppression. We also highlight the current understanding of this pathway in lung cancer, outline ongoing studies examining therapies in combination with adenosine pathway targeting, and discuss future prospects.
Collapse
Affiliation(s)
- Ryan R Kowash
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, Dallas, TX, United States
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, Dallas, TX, United States
| |
Collapse
|
41
|
Vrignaud C, Mikdar M, Duval R, Reininger L, Damaraju VL, Sawyer M, Colin Y, Le Van Kim C, Gelly JC, Etchebest C, Peyrard T, Azouzi S. Molecular and structural characterization of a novel high-prevalence antigen of the Augustine blood group system. Transfusion 2023; 63:610-618. [PMID: 36744388 DOI: 10.1111/trf.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND An antibody directed against a high-prevalence red blood cell (RBC) antigen was detected in a 67-year-old female patient of North African ancestry with a history of a single pregnancy and blood transfusion. So far, the specificity of the proband's alloantibody remained unknown in our immunohematology reference laboratory. STUDY DESIGN AND METHODS Whole-exome sequencing (WES) was performed on the proband's DNA. The reactivity to the SLC29A1-encoded ENT1 adenosine transporter was investigated by flow cytometry analyses of ENT1-expressing HEK293 cells, and RBCs from Augustine-typed individuals. Erythrocyte protein expression level, nucleoside-binding capacity, and molecular structure of the proband's ENT1 variant were further explored by western blot, flow cytometry, and molecular dynamics calculations, respectively. RESULTS A missense variant was identified in the SLC29A1 gene, which encodes the Augustine blood group system. It arises from homozygosity for a rare c.242A > G missense mutation that results in a nonsynonymous p.Asn81Ser substitution within the large extracellular loop of ENT1. Flow cytometry analyses demonstrated that the proband's antibody was reactive against HEK-293 cells transfected with control but not proband's SLC29A1 cDNA. Consistent with this finding, proband's antibody was found to be reactive with At(a-) (AUG:-2), but not AUG:-1 (null phenotype) RBCs. Data from structural analysis further supported that the proband's p.Asn81Ser variation does not alter ENT1 binding of its specific inhibitor NBMPR. CONCLUSION Our study provides evidence for a novel high-prevalence antigen, AUG4 (also called ATAM after the proband's name) in the Augustine blood group system, encoded by the rare SLC29A1 variant allele AUG*04 (c.242A > G, p.Asn81Ser).
Collapse
Affiliation(s)
| | | | - Romain Duval
- Université de Paris Cité, Inserm, BIGR, Paris, France
- Centre National de Référence pour les Groupes Sanguins, Établissement Français de Sang (EFS), Paris, France
| | - Luc Reininger
- Université de Paris Cité, Inserm, BIGR, Paris, France
| | - Vijaya L Damaraju
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Yves Colin
- Université de Paris Cité, Inserm, BIGR, Paris, France
| | | | | | | | - Thierry Peyrard
- Université de Paris Cité, Inserm, BIGR, Paris, France
- Centre National de Référence pour les Groupes Sanguins, Établissement Français de Sang (EFS), Paris, France
| | - Slim Azouzi
- Université de Paris Cité, Inserm, BIGR, Paris, France
- Centre National de Référence pour les Groupes Sanguins, Établissement Français de Sang (EFS), Paris, France
| |
Collapse
|
42
|
Ungogo MA, Aldfer MM, Natto MJ, Zhuang H, Chisholm R, Walsh K, McGee M, Ilbeigi K, Asseri JI, Burchmore RJS, Caljon G, Van Calenbergh S, De Koning HP. Cloning and Characterization of Trypanosoma congolense and T. vivax Nucleoside Transporters Reveal the Potential of P1-Type Carriers for the Discovery of Broad-Spectrum Nucleoside-Based Therapeutics against Animal African Trypanosomiasis. Int J Mol Sci 2023; 24:ijms24043144. [PMID: 36834557 PMCID: PMC9960827 DOI: 10.3390/ijms24043144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
African Animal Trypanosomiasis (AAT), caused predominantly by Trypanosoma brucei brucei, T. vivax and T. congolense, is a fatal livestock disease throughout Sub-Saharan Africa. Treatment options are very limited and threatened by resistance. Tubercidin (7-deazaadenosine) analogs have shown activity against individual parasites but viable chemotherapy must be active against all three species. Divergence in sensitivity to nucleoside antimetabolites could be caused by differences in nucleoside transporters. Having previously characterized the T. brucei nucleoside carriers, we here report the functional expression and characterization of the main adenosine transporters of T. vivax (TvxNT3) and T. congolense (TcoAT1/NT10), in a Leishmania mexicana cell line ('SUPKO') lacking adenosine uptake. Both carriers were similar to the T. brucei P1-type transporters and bind adenosine mostly through interactions with N3, N7 and 3'-OH. Expression of TvxNT3 and TcoAT1 sensitized SUPKO cells to various 7-substituted tubercidins and other nucleoside analogs although tubercidin itself is a poor substrate for P1-type transporters. Individual nucleoside EC50s were similar for T. b. brucei, T. congolense, T. evansi and T. equiperdum but correlated less well with T. vivax. However, multiple nucleosides including 7-halogentubercidines displayed pEC50>7 for all species and, based on transporter and anti-parasite SAR analyses, we conclude that nucleoside chemotherapy for AAT is viable.
Collapse
Affiliation(s)
- Marzuq A. Ungogo
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Mustafa M. Aldfer
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Manal J. Natto
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Hainan Zhuang
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Robyn Chisholm
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Katy Walsh
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - MarieClaire McGee
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Jamal Ibrahim Asseri
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Richard J. S. Burchmore
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Harry P. De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Correspondence:
| |
Collapse
|
43
|
Smircich P, Pérez-Díaz L, Hernández F, Duhagon MA, Garat B. Transcriptomic analysis of the adaptation to prolonged starvation of the insect-dwelling Trypanosoma cruzi epimastigotes. Front Cell Infect Microbiol 2023; 13:1138456. [PMID: 37091675 PMCID: PMC10117895 DOI: 10.3389/fcimb.2023.1138456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Trypanosoma cruzi is a digenetic unicellular parasite that alternates between a blood-sucking insect and a mammalian, host causing Chagas disease or American trypanosomiasis. In the insect gut, the parasite differentiates from the non-replicative trypomastigote forms that arrive upon blood ingestion to the non-infective replicative epimastigote forms. Epimastigotes develop into infective non-replicative metacyclic trypomastigotes in the rectum and are delivered via the feces. In addition to these parasite stages, transitional forms have been reported. The insect-feeding behavior, characterized by few meals of large blood amounts followed by long periods of starvation, impacts the parasite population density and differentiation, increasing the transitional forms while diminishing both epimastigotes and metacyclic trypomastigotes. To understand the molecular changes caused by nutritional restrictions in the insect host, mid-exponentially growing axenic epimastigotes were cultured for more than 30 days without nutrient supplementation (prolonged starvation). We found that the parasite population in the stationary phase maintains a long period characterized by a total RNA content three times smaller than that of exponentially growing epimastigotes and a distinctive transcriptomic profile. Among the transcriptomic changes induced by nutrient restriction, we found differentially expressed genes related to managing protein quality or content, the reported switch from glucose to amino acid consumption, redox challenge, and surface proteins. The contractile vacuole and reservosomes appeared as cellular components enriched when ontology term overrepresentation analysis was carried out, highlighting the roles of these organelles in starving conditions possibly related to their functions in regulating cell volume and osmoregulation as well as metabolic homeostasis. Consistent with the quiescent status derived from nutrient restriction, genes related to DNA metabolism are regulated during the stationary phase. In addition, we observed differentially expressed genes related to the unique parasite mitochondria. Finally, our study identifies gene expression changes that characterize transitional parasite forms enriched by nutrient restriction. The analysis of the here-disclosed regulated genes and metabolic pathways aims to contribute to the understanding of the molecular changes that this unicellular parasite undergoes in the insect vector.
Collapse
Affiliation(s)
- Pablo Smircich
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- *Correspondence: Beatriz Garat, ; Pablo Smircich,
| | - Leticia Pérez-Díaz
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Fabricio Hernández
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| | - Beatriz Garat
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Beatriz Garat, ; Pablo Smircich,
| |
Collapse
|
44
|
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology 2023; 222:109303. [PMID: 36309046 DOI: 10.1016/j.neuropharm.2022.109303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
45
|
de Mariz E Miranda LS. The synergy between nucleotide biosynthesis inhibitors and antiviral nucleosides: New opportunities against viral infections? Arch Pharm (Weinheim) 2023; 356:e2200217. [PMID: 36122181 DOI: 10.1002/ardp.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
5'-Phosphorylated nucleoside derivatives are molecules that can be found in all living organisms and viruses. Over the last century, the development of structural analogs that could disrupt the transcription and translation of genetic information culminated in the development of clinically relevant anticancer and antiviral drugs. However, clinically effective broad-spectrum antiviral compounds or treatments are lacking. This viewpoint proposes that molecules that inhibit nucleotide biosynthesis may sensitize virus-infected cells toward direct-acting antiviral nucleosides. Such potentially synergistic combinations might allow the repurposing of drugs, leading to the development of new combination therapies.
Collapse
Affiliation(s)
- Leandro S de Mariz E Miranda
- Department of Organic Chemistry, Chemistry Institute, Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Duan H, Hu K, Zheng D, Cheng Y, Zhang Z, Wang Y, Liang L, Hu J, Luo T. Recognition and release of uridine and hCNT3: From multivariate interactions to molecular design. Int J Biol Macromol 2022; 223:1562-1577. [PMID: 36402394 DOI: 10.1016/j.ijbiomac.2022.11.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
As a vital target for the development of novel anti-cancer drugs, human concentrative nucleoside transporter 3 (hCNT3) has been widely concerned. Nevertheless, the lack of a comprehensive understanding of molecular interactions and motion mechanism has greatly hindered the development of novel inhibitors against hCNT3. In this paper, molecular recognition of hCNT3 with uridine was investigated with molecular docking, conventional molecular dynamics (CMD) simulations and adaptive steered molecular dynamics (ASMD) simulations; and then, the uridine derivatives with possibly highly inhibitory activity were designed. The result of CMD showed that more water-mediated H-bonds and lower binding free energy both explained higher recognition ability and transported efficiency of hCNT3. While during the ASMD simulation, nucleoside transport process involved the significant side-chain flip of residues F321 and Q142, a typical substrate-induced conformational change. By considering electronegativity, atomic radius, functional group and key H-bonds factors, 25 novel uridine derivatives were constructed. Subsequently, the receptor-ligand binding free energy was predicted by solvated interaction energy (SIE) method to determine the inhibitor c8 with the best potential performance. This work not only revealed molecular recognition and release mechanism of uridine with hCNT3, but also designed a series of uridine derivatives to obtain lead compounds with potential high activity.
Collapse
Affiliation(s)
- Huaichuan Duan
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixuan Hu
- School of Pharmaceutical Sciences, Jishou University, Jishou, China
| | - Dan Zheng
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Cheng
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Zelan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ting Luo
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
47
|
Wang L, Graziano B, Encalada N, Fernandez-Abascal J, Kaplan DH, Bianchi L. Glial regulators of ions and solutes required for specific chemosensory functions in Caenorhabditis elegans. iScience 2022; 25:105684. [PMID: 36567707 PMCID: PMC9772852 DOI: 10.1016/j.isci.2022.105684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Glia and accessory cells regulate the microenvironment around neurons and primary sensory cells. However, the impact of specific glial regulators of ions and solutes on functionally diverse primary cells is poorly understood. Here, we systemically investigate the requirement of ion channels and transporters enriched in Caenorhabditis elegans Amsh glia for the function of chemosensory neurons. Although Amsh glia ablated worms show reduced function of ASH, AWC, AWA, and ASE neurons, we show that the loss of glial enriched ion channels and transporters impacts these neurons differently, with nociceptor ASH being the most affected. Furthermore, our analysis underscores the importance of K+, Cl-, and nucleoside homeostasis in the Amphid sensory organ and uncovers the contribution of glial genes implicated in neurological disorders. Our findings build a unique fingerprint of each glial enriched ion channel and transporter and may provide insights into the function of supporting cells of mammalian sensory organs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Bianca Graziano
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Nicole Encalada
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Jesus Fernandez-Abascal
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Daryn H. Kaplan
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| |
Collapse
|
48
|
Viczjan G, Szilagyi A, Takacs B, Ovari I, Szekeres R, Tarjanyi V, Erdei T, Teleki V, Zsuga J, Szilvassy Z, Juhasz B, Varga B, Gesztelyi R. The effect of a long-term treatment with cannabidiol-rich hemp extract oil on the adenosinergic system of the zucker diabetic fatty (ZDF) rat atrium. Front Pharmacol 2022; 13:1043275. [PMID: 36588715 PMCID: PMC9797669 DOI: 10.3389/fphar.2022.1043275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Cannabidiol (CBD), the most extensively studied non-intoxicating phytocannabinoid, has been attracting a lot of interest worldwide owing to its numerous beneficial effects. The aim of this study was to explore the effect that CBD exerts on the adenosinergic system of paced left atria isolated from obese type Zucker Diabetic Fatty (ZDF) rats, maintained on diabetogenic rat chow, received 60 mg/kg/day CBD or vehicle via gavage for 4 weeks. We found that N6-cyclopentyladenosine (CPA), a relatively stable and poorly transported A1 adenosine receptor agonist, elicited a significantly weaker response in the CBD-treated group than in the vehicle-treated one. In contrast, adenosine, a quickly metabolized and transported adenosine receptor agonist, evoked a significantly stronger response in the CBD-treated group than in the vehicle-treated counterpart (excepting its highest concentrations). These results can be explained only with the adenosine transport inhibitory property of CBD (and not with its adenosine receptor agonist activity). If all the effects of CBD are attributed to the interstitial adenosine accumulation caused by CBD in the myocardium, then a significantly increased adenosinergic activation can be assumed during the long-term oral CBD treatment, suggesting a considerably enhanced adenosinergic protection in the heart. Considering that our results may have been influenced by A1 adenosine receptor downregulation due to the chronic interstitial adenosine accumulation, an adenosinergic activation smaller than it seemed cannot be excluded, but it was above the CBD-naïve level in every case. Additionally, this is the first study offering functional evidence about the adenosine transport inhibitory action of CBD in the myocardium.
Collapse
Affiliation(s)
- Gabor Viczjan
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,University of Debrecen, Doctoral School of Nutrition and Food Sciences, Debrecen, Hungary
| | - Anna Szilagyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Takacs
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ignac Ovari
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Reka Szekeres
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vera Tarjanyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Erdei
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vanda Teleki
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Zsuga
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Szilvassy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bela Juhasz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,*Correspondence: Rudolf Gesztelyi,
| |
Collapse
|
49
|
Nucleoside transporters and immunosuppressive adenosine signaling in the tumor microenvironment: Potential therapeutic opportunities. Pharmacol Ther 2022; 240:108300. [PMID: 36283452 DOI: 10.1016/j.pharmthera.2022.108300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Adenosine compartmentalization has a profound impact on immune cell function by regulating adenosine localization and, therefore, extracellular signaling capabilities, which suppresses immune cell function in the tumor microenvironment. Nucleoside transporters, responsible for the translocation and cellular compartmentalization of hydrophilic adenosine, represent an understudied yet crucial component of adenosine disposition in the tumor microenvironment. In this review article, we will summarize what is known regarding nucleoside transporter's function within the purinome in relation to currently devised points of intervention (i.e., ectonucleotidases, adenosine receptors) for cancer immunotherapy, alterations in nucleoside transporter expression reported in cancer, and potential avenues for targeting of nucleoside transporters for the desired modulation of adenosine compartmentalization and action. Further, we put forward that nucleoside transporters are an unexplored therapeutic opportunity, and modulation of nucleoside transport processes could attenuate the pathogenic buildup of immunosuppressive adenosine in solid tumors, particularly those enriched with nucleoside transport proteins.
Collapse
|
50
|
Hamoud AR, Bach K, Kakrecha O, Henkel N, Wu X, McCullumsmith RE, O’Donovan SM. Adenosine, Schizophrenia and Cancer: Does the Purinergic System Offer a Pathway to Treatment? Int J Mol Sci 2022; 23:ijms231911835. [PMID: 36233136 PMCID: PMC9570456 DOI: 10.3390/ijms231911835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
For over a century, a complex relationship between schizophrenia diagnosis and development of many cancers has been observed. Findings from epidemiological studies are mixed, with reports of increased, reduced, or no difference in cancer incidence in schizophrenia patients. However, as risk factors for cancer, including elevated smoking rates and substance abuse, are commonly associated with this patient population, it is surprising that cancer incidence is not higher. Various factors may account for the proposed reduction in cancer incidence rates including pathophysiological changes associated with disease. Perturbations of the adenosine system are hypothesized to contribute to the neurobiology of schizophrenia. Conversely, hyperfunction of the adenosine system is found in the tumor microenvironment in cancer and targeting the adenosine system therapeutically is a promising area of research in this disease. We outline the current biochemical and pharmacological evidence for hypofunction of the adenosine system in schizophrenia, and the role of increased adenosine metabolism in the tumor microenvironment. In the context of the relatively limited literature on this patient population, we discuss whether hypofunction of this system in schizophrenia, may counteract the immunosuppressive role of adenosine in the tumor microenvironment. We also highlight the importance of studies examining the adenosine system in this subset of patients for the potential insight they may offer into these complex disorders.
Collapse
Affiliation(s)
- Abdul-Rizaq Hamoud
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Karen Bach
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ojal Kakrecha
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Nicholas Henkel
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|