1
|
Ubero-Pascal N, Aboal M. Cyanobacteria and Macroinvertebrate Relationships in Freshwater Benthic Communities beyond Cytotoxicity. Toxins (Basel) 2024; 16:190. [PMID: 38668615 PMCID: PMC11054157 DOI: 10.3390/toxins16040190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Cyanobacteria are harmful algae that are monitored worldwide to prevent the effects of the toxins that they can produce. Most research efforts have focused on direct or indirect effects on human populations, with a view to gain easy accurate detection and quantification methods, mainly in planktic communities, but with increasing interest shown in benthos. However, cyanobacteria have played a fundamental role from the very beginning in both the development of our planet's biodiversity and the construction of new habitats. These organisms have colonized almost every possible planktic or benthic environment on earth, including the most extreme ones, and display a vast number of adaptations. All this explains why they are the most important or the only phototrophs in some habitats. The negative effects of cyanotoxins on macroinvertebrates have been demonstrated, but usually under conditions that are far from natural, and on forms of exposure, toxin concentration, or composition. The cohabitation of cyanobacteria with most invertebrate groups is long-standing and has probably contributed to the development of detoxification means, which would explain the survival of some species inside cyanobacteria colonies. This review focuses on benthic cyanobacteria, their capacity to produce several types of toxins, and their relationships with benthic macroinvertebrates beyond toxicity.
Collapse
Affiliation(s)
- Nicolás Ubero-Pascal
- Department of Zoology and Physical Anthropology, Faculty of Biology, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain;
| | - Marina Aboal
- Laboratory of Algology, Faculty of Biology, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain
| |
Collapse
|
2
|
Haida M, El Khalloufi F, Tamegart L, Mugani R, Essadki Y, Redouane EM, Azevedo J, Araújo MJ, Campos A, Vasconcelos V, Gamrani H, Oudra B. Tracing the fate of microcystins from irrigation water to food chains: Studies with Fragaria vulgaris and Meriones shawi. Toxicon 2023; 236:107345. [PMID: 37963511 DOI: 10.1016/j.toxicon.2023.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023]
Abstract
Microcystins (MCs) are cyanobacterial toxins that can negatively impact human and animal health. This study investigated the bioaccumulation, transfer, depuration, and health risks of MCs in strawberry plants (Fragaria vulgaris) and Meriones shawi animals. The plants were irrigated with 1, 5, 10, and 20 μg/L MCs for 60 days (bioaccumulation phase) and then with clean water for 30 days (depuration phase). The harvested plants (roots and leaves) were then prepared in an aliquot form and used as feed for Meriones shawi. Liquid chromatography-mass spectrometry (LC/MS/MS) was used to measure MC concentrations in plant and animal tissues. The bioaccumulation of MCs was found to be highest in the roots, followed by leaves, fruits, liver, stomach, and fecal matter. The bioaccumulation factor (BAF) was highest in perlite (8.48), followed by roots (5.01), leaves (1.55), stomach (0.87), and fecal matter (1.18), indicating that the parts with high bioaccumulation factor had high translocation of MCs. The transfer of MCs to animal organs was low, and the daily toxin intake of adult consumers of strawberry fruit irrigated with 1, 5, 10, and 20 μg/L MC did not exceed the WHO-recommended limit of 0.04 μg MC-LR/Kg of bw/day. However, fruits from plants irrigated with 10 and 20 μg/L may pose a moderate health risk to children (25 Kg bw), and Meriones' consumption of leaves may pose a significant health risk. After the depuration phase, MC concentration in perlite, roots, leaves, and fruits decreased, indicating that depuration reduced the danger of MC transmission and bioaccumulation. The study also found that glutathione reductase and glutathione S-transferase activity were essential in the depuration of MCs in the tested plants. The findings suggest that legislation regulating the quality of irrigation water in terms of MC concentrations is necessary to prevent detrimental consequences to crops and human exposure.
Collapse
Affiliation(s)
- Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P: 145, 25000, Khouribga, Morocco
| | - Lahcen Tamegart
- Department of Biology, Faculty of Science, AbdelmalekEssaadi University, Tetouan, Morocco; Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Mário Jorge Araújo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
3
|
Zaidi H, Amrani A, Sedrati F, Maaref H, Leghrib F, Benamara M, Amara H, Wang Z, Nasri H. Histological and chemical damage induced by microcystin-LR and microcystin-RR on land snail Helix aspersa tissues after acute exposure. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109031. [PMID: 33737222 DOI: 10.1016/j.cbpc.2021.109031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/09/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
Microcystins (MCs) are the most common cyanotoxins with more than 200 variants. Among these cyanotoxins, microcystin-LR (MC-LR) and microcystin-RR (MC-RR) are the most studied congeners due to their high toxicity and frequent occurrence in surface waters. MC-LR has been detected in more than 75% of natural cyanobacteria bloom, along with other toxic and less toxic congeners. Accumulation of several microcystins variants (MC-LR and MC-RR) has been confirmed in aquatic snails exposed naturally or in the laboratory to toxic blooms. Thus, this paper aims to compare the biochemical and histological impact of both toxic variants (microcystin-LR and microcystin-RR) and their mixed form on a bioindicator, the land snail Helix aspersa. During experiments, snails were gavaged with a single acute dose (0.5 μg/g) of purified MC-LR, MC-RR, or mixed MC-LR + MC-RR (0.25 + 0.25 μg/g). After 96 h of exposure, effects on the hepatopancreas, kidney, intestine and lungs were assessed by histological observations and analysis of oxidative stress biomarkers. The results show that a small dose of MCs variants can increase the non-enzymatic antioxidant glutathione (GSH), inhibit glutathione-s-transferase (GST) level and trigger a defense system by activating glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). Microcystin-RR causes serious anomalies in the hepatopancreas and kidney than Microcystin-LR. The organ most affected is the kidney. The damage caused by MC-LR + MC-RR is greater than that caused by single variants.
Collapse
Affiliation(s)
- H Zaidi
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - A Amrani
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - F Sedrati
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - H Maaref
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria; Central Pathology Laboratory, El Taref Hospital, El Tarf, Algeria
| | - F Leghrib
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - M Benamara
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - H Amara
- Central Pathology Laboratory, El Taref Hospital, El Tarf, Algeria
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation, Hubei, Institute of Geodesy and Geophysics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - H Nasri
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of life and nature Sciences, University of Chadli Bendjedid, El Taref, Algeria; Thematic Agency for Research in Health Sciences, Oran, Algeria.
| |
Collapse
|
4
|
Nowruzi B, Porzani SJ. Toxic compounds produced by cyanobacteria belonging to several species of the order Nostocales: A review. J Appl Toxicol 2020; 41:510-548. [PMID: 33289164 DOI: 10.1002/jat.4088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Cyanobacteria are well recognised as producers of a wide range of natural compounds that are in turn recognised as toxins that have potential and useful applications in the future as pharmaceutical agents. The order Nostocales, which is largely overlooked in this regard, has become increasingly recognised as a source of toxin producers including Anabaena, Nostoc, Hapalosiphon, Fischerella, Anabaenopsis, Aphanizomenon, Gloeotrichia, Cylindrospermopsis, Scytonema, Raphidiopsis, Cuspidothrix, Nodularia, Stigonema, Calothrix, Cylindrospermum and Desmonostoc species. The toxin compounds (i.e., microcystins, nodularin, anatoxins, ambiguines, fischerindoles and welwitindolinones) and metabolites are about to have a destructive effect on both inland and aquatic environment aspects. The present review gives an overview of the various toxins that are extracted by the order Nostocales. The current research suggests that these compounds that are produced by cyanobacterial species have promising future considerations as potentially harmful algae and as promising leads for drug discovery.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Amorim J, Abreu I, Rodrigues P, Peixoto D, Pinheiro C, Saraiva A, Carvalho AP, Guimarães L, Oliva-Teles L. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:11-28. [PMID: 30877957 DOI: 10.1016/j.scitotenv.2019.03.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/23/2019] [Accepted: 03/03/2019] [Indexed: 05/14/2023]
Abstract
Lymnaea stagnalis, also referred to as great or common pond snail, is an abundant and widespread invertebrate species colonizing temperate limnic systems. Given the species importance, studies involving L. stagnalis have the potential to produce scientifically relevant information, leading to a better understanding of the damage caused by aquatic contamination, as well as the modes of action of toxicants. Lymnaea stagnalis individuals are easily maintained in laboratory conditions, with a lifespan of about two years. The snails are hermaphrodites and sexual maturity occurs about three months after egg laying. Importantly, they can produce a high number of offspring all year round and are considered well suited for use in investigations targeting the identification of developmental and reproductive impairments. The primary aims of this review were two-fold: i) to provide an updated and insightful compilation of established toxicological measures determined in both chronic and acute toxicity assays, as useful tool to the design and development of future research; and ii) to provide a state of the art related to direct toxicant exposure and its potentially negative effects on this species. Relevant and informative studies were analysed and discussed. Knowledge gaps in need to be addressed in the near future were further identified.
Collapse
Affiliation(s)
- João Amorim
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| | - Isabel Abreu
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Pedro Rodrigues
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Diogo Peixoto
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Carlos Pinheiro
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Aurélia Saraiva
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - António Paulo Carvalho
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Laura Guimarães
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| | - Luis Oliva-Teles
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) da Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
6
|
Zhang P, Grutters BMC, van Leeuwen CHA, Xu J, Petruzzella A, van den Berg RF, Bakker ES. Effects of Rising Temperature on the Growth, Stoichiometry, and Palatability of Aquatic Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1947. [PMID: 30671079 PMCID: PMC6331454 DOI: 10.3389/fpls.2018.01947] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/14/2018] [Indexed: 05/10/2023]
Abstract
Global warming is expected to strengthen herbivore-plant interactions leading to enhanced top-down control of plants. However, latitudinal gradients in plant quality as food for herbivores suggest lower palatability at higher temperatures, but the underlying mechanisms are still unclear. If plant palatability would decline with temperature rise, then this may question the expectation that warming leads to enhanced top-down control. Therefore, experiments that directly test plant palatability and the traits underlying palatability along a temperature gradient are needed. Here we experimentally tested the impact of temperature on aquatic plant growth, plant chemical traits (including stoichiometry) and plant palatability. We cultured three aquatic plant species at three temperatures (15, 20, and 25°C), measured growth parameters, determined chemical traits and performed feeding trial assays using the generalist consumer Lymnaea stagnalis (pond snail). We found that rising temperature significantly increased the growth of all three aquatic plants. Plant nitrogen (N) and phosphorus (P) content significantly decreased, and carbon (C):N and C:P stoichiometry increased as temperature increased, for both Potamogeton lucens and Vallisneria spiralis, but not for Elodea nuttallii. By performing the palatability test, we found that rising temperatures significantly decreased plant palatability in P. lucens, which could be explained by changes in the underlying chemical plant traits. In contrast, the palatability of E. nuttallii and V. spiralis was not affected by temperature. Overall, P. lucens and V. spiralis were always more palatable than E. nuttallii. We conclude that warming generally stimulates aquatic plant growth, whereas the effects on chemical plant traits and plant palatability are species-specific. These results suggest that the outcome of the impact of temperature rise on macrophyte stoichiometry and palatability from single-species studies may not be broadly applicable. In contrast, the plant species tested consistently differed in palatability, regardless of temperature, suggesting that palatability may be more strongly linked to species identity than to intraspecific variation in plant stoichiometry.
Collapse
Affiliation(s)
- Peiyu Zhang
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- *Correspondence: Peiyu Zhang
| | - Bart M. C. Grutters
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Casper H. A. van Leeuwen
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Antonella Petruzzella
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Reinier F. van den Berg
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Elisabeth S. Bakker
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
7
|
Lance E, Desprat J, Holbech BF, Gérard C, Bormans M, Lawton LA, Edwards C, Wiegand C. Accumulation and detoxication responses of the gastropod Lymnaea stagnalis to single and combined exposures to natural (cyanobacteria) and anthropogenic (the herbicide RoundUp(®) Flash) stressors. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:116-24. [PMID: 27267390 DOI: 10.1016/j.aquatox.2016.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 05/21/2023]
Abstract
Freshwater gastropods are increasingly exposed to multiple stressors in the field such as the herbicide glyphosate in Roundup formulations and cyanobacterial blooms either producing or not producing microcystins (MCs), potentially leading to interacting effects. Here, the responses of Lymnaea stagnalis to a 21-day exposure to non-MC or MC-producing (33μgL(-1)) Planktothrix agardhii alone or in combination with the commercial formulation RoundUp(®) Flash at a concentration of 1μgL(-1) glyphosate, followed by 14days of depuration, were studied via i) accumulation of free and bound MCs in tissues, and ii) activities of anti-oxidant (catalase CAT) and biotransformation (glutathione-S-transferase GST) enzymes. During the intoxication, the cyanobacterial exposure induced an early increase of CAT activity, independently of the MC content, probably related to the production of secondary cyanobacterial metabolites. The GST activity was induced by RoundUp(®) Flash alone or in combination with non MC-producing cyanobacteria, but was inhibited by MC-producing cyanobacteria with or without RoundUp(®) Flash. Moreover, MC accumulation in L. stagnalis was 3.2 times increased when snails were concomitantly exposed to MC-producing cyanobacteria with RoundUp(®), suggesting interacting effects of MCs on biotransformation processes. The potent inhibition of detoxication systems by MCs and RoundUp(®) Flash was reversible during the depuration, during which CAT and GST activities were significantly higher in snails previously exposed to MC-producing cyanobacteria with or without RoundUp(®) Flash than in other conditions, probably related to the oxidative stress caused by accumulated MCs remaining in tissues.
Collapse
Affiliation(s)
- Emilie Lance
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France; UMR-I 02 SEBIO, Bat 18, Campus du Moulin de la Housse, BP 1039, 51687 Reims cedex, France.
| | - Julia Desprat
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France; UMR 5023-LEHNA, Université Lyon 1, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Bâtiment Darwin C, F-69622 Villeurbanne Cedex France, France
| | - Bente Frost Holbech
- IDEAS Research Institute, School of Pharmacy & Life Sciences, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK
| | - Claudia Gérard
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Myriam Bormans
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Linda A Lawton
- IDEAS Research Institute, School of Pharmacy & Life Sciences, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK
| | - Christine Edwards
- IDEAS Research Institute, School of Pharmacy & Life Sciences, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK
| | - Claudia Wiegand
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France; University of Southern Denmark, Institute of Biology, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
8
|
Neves RAF, Figueiredo GM, Valentin JL, da Silva Scardua PM, Hégaret H. Immunological and physiological responses of the periwinkle Littorina littorea during and after exposure to the toxic dinoflagellate Alexandrium minutum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 160:96-105. [PMID: 25621399 DOI: 10.1016/j.aquatox.2015.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Species of the dinoflagellate genus Alexandrium produce phycotoxins responsible for paralytic shellfish poisoning. Blooms of Alexandrium minutum reach very high concentrations of vegetative cells in the water column; and when these blooms occur, large numbers of toxic cysts can be produced and deposited on sediments becoming available to benthic species. The present study investigated the potential effect of exposure to toxic cysts of A. minutum on the periwinkle Littorinalittorea. Snails were exposed for nine days to pellicle cysts of toxic and non-toxic dinoflagellates, A. minutum and Heterocapsa triquetra, respectively, followed by six days of depuration while they were fed only H. triquetra. Toxin accumulation, condition index, immune and histopathological responses were analyzed. Histological alterations were also monitored in snails exposed to a harmful A. minutum bloom, which naturally occurred in the Bay of Brest. Snails exposed to toxic cysts showed abnormal behavior that seems to be toxin-induced and possibly related to muscle paralysis. Periwinkles accumulated toxins by preying on toxic cysts and accumulation appeared dependent on the time of exposure, increasing during intoxication period but tending to stabilize during depuration period. Toxic exposure also seemed to negatively affect hemocyte viability and functions, as ROS production and phagocytosis. Histological analyses revealed that toxic exposure induced damages on digestive organs of snails, both in laboratory and natural systems. This study demonstrates that an exposure to the toxic dinoflagellate A. minutum leads to sublethal effects on L. littorea, which may alter individual fitness and increase the susceptibility of snails to pathogens and diseases.
Collapse
Affiliation(s)
- Raquel A F Neves
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Gisela M Figueiredo
- Laboratório de Ecologia Trófica, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Jean Louis Valentin
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Zooplâncton Marinho, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Patricia Mirella da Silva Scardua
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Paraíba, Brazil.
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO/IRD/IFREMER, Institut Universitaire Européen de la Mer, 29280 Plouzané, France; GDR 3569 'PHYCOTOX, Des Microalgues aux Risques pour l'Homme et l'Ecosystème', 29280 Plouzané, France.
| |
Collapse
|
9
|
Clearwater SJ, Wood SA, Phillips NR, Parkyn SM, Van Ginkel R, Thompson KJ. Toxicity thresholds for juvenile freshwater mussels Echyridella menziesii and crayfish Paranephrops planifrons, after acute or chronic exposure to Microcystis sp. ENVIRONMENTAL TOXICOLOGY 2014; 29:487-502. [PMID: 22489020 DOI: 10.1002/tox.21774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/05/2012] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
Survival of juvenile freshwater mussels (Echyridella menziesii (Gray, 1843) formerly known as Hyridella menziesi) and crayfish (Paranephrops planifrons, White, 1842) decreased after four days exposure to microcystin-containing cell-free extracts (MCFE) of Microcystis sp. at concentrations typical of severe cyanobacterial blooms. Crayfish survival was 100, 80, and 50% in microcystin concentrations of 1339, 2426, and 11146 μg L(-1) respectively, and shade- and shelter-seeking behavior was negatively affected when concentrations were ≥2426 μg L(-1) . Mussel survival decreased to 92% and reburial rates decreased to 16% after exposure for 96 h to MCFE containing microcystins at concentrations of 5300 μg L(-1) . Crayfish survival was 100% when fed freeze-dried Microcystis sp. incorporated into an artificial diet (6-100 μg microcystin kg(-1) ww) at dietary doses from 0.03 to 0.55 μg g(-1) body weight d(-1) for 27 days. Specific growth rate was significantly lower in crayfish fed ≥0.15 μg g(-1) body weight day(-1) compared with controls, but not compared with a diet incorporating nontoxic cyanobacteria. Microcystins accumulated preferentially in crayfish hepatopancreas and mussel digesta as MCFE or dietary concentrations increased. These laboratory data indicate that, assuming dissolved oxygen concentrations remain adequate, and no simultaneous exposure to live Microcystis sp. cells, cell-free microcystins will only be a significant stressor to juvenile crayfish and mussels in severe Microcystis sp. blooms. In contrast, crayfish were negatively affected by relatively low concentrations of microcystins in artificial diets compared with those measured locally in benthic cyanobacterial mats.
Collapse
Affiliation(s)
- S J Clearwater
- National Institute of Water and Atmospheric Research Ltd., PO Box 11115, Hamilton 3251, New Zealand
| | | | | | | | | | | |
Collapse
|
10
|
Thirumavalavan M, Hu YL, Lee JF. Evaluation of analytical approaches linked to high performance liquid chromatography for analysis of microcystin-LR in natural water systems: effects of column and mobile phase gradient. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2013; 95:221-231. [DOI: 10.1080/02772248.2013.768368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
11
|
Bellém F, Nunes S, Morais M. Cyanobacteria toxicity: potential public health impact in South Portugal populations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:263-71. [PMID: 23514068 DOI: 10.1080/15287394.2013.757204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cyanobacteria are prokaryotic, plantlike organisms present in lakes, recreational waters, and reservoirs, and often dominate phytoplankton communities in warm, nutrient-enriched hard waters. A stable water column rich in certain nutrients, especially nitrogen and phosphorus, is associated with favorable environmental conditions that support development of cyanobacterial population maxima or "blooms." Under specific conditions, cyanobacteria produce toxins that are responsible for acute poisoning and death of animals and humans. The main aim of this study was to correlate the presence of cyanobacteria blooms with potential toxicity to humans as a public health issue. In Portugal, seven reservoirs located in the southern region were selected and studied between 2000 and 2008. Reservoirs were characterized by physical and chemical aspects, and identification of phytoplankton communities. In the case of cyanobacterial blooms, toxins that affected the liver, nervous system, and skin were detected, namely, Microcystis aeruginosa, Aphanizomenon spp., and Oscillatoria. These findings suggest the presence of a potential risk for public health, and indicate the need to implement mitigation measures in all studied reservoirs. These measures may involve (1) water eutrophication control to avoid blooms, (2) appropriate treatment of water for human consumption, and (3) public warnings or information to those individuals that use these reservoirs for several recreational activities.
Collapse
Affiliation(s)
- Fernando Bellém
- Escola Superior de Tecnologia da Saúde de Lisboa, Lisbon, Portugal.
| | | | | |
Collapse
|
12
|
Gutiérrez-Praena D, Jos Á, Pichardo S, Moreno IM, Cameán AM. Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: a review. Food Chem Toxicol 2012. [PMID: 23200893 DOI: 10.1016/j.fct.2012.10.062] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microcystins (MCs) and cylindrospermopsin (CYN) are among the cyanotoxins which occur naturally, produced by different cyanobacteria species when they grow or proliferate under favorable environmental conditions. From a toxicological point of view, their relevance is due to the deleterious effects that they have been reported to induce in a wide range of organisms, including humans. Cyanotoxins intake from contaminated water and food is an important source of human exposure. Various edible aquatic organisms, plants, and food supplements based on algae, can bioaccumulate these toxins. A thorough review of the scientific data available on this topic is provided, the studies on MCs being much more numerous than those focused on CYN. The scientific literature suggests that these cyanotoxins can be accumulated at concentrations higher than their respective recommended tolerable daily intake (TDI). Finally, the influence of different cooking procedures on their levels in food has been considered. In this regard, again studies on the matter dealing with CYN have been not yet raised. MCs contents have been reported to be reduced in muscle of fish after boiling, or cooking in a microwave-oven, although the effect of other traditional cooking processes such as frying, roasting or grilling have not been demonstrated.
Collapse
Affiliation(s)
- Daniel Gutiérrez-Praena
- Nutrición y Bromatología, Toxicología y Medicina Legal Department, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
13
|
Zhang J, Wang Z, Song Z, Xie Z, Li L, Song L. Bioaccumulation of microcystins in two freshwater gastropods from a cyanobacteria-bloom plateau lake, Lake Dianchi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 164:227-234. [PMID: 22366482 DOI: 10.1016/j.envpol.2012.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 01/08/2012] [Accepted: 01/15/2012] [Indexed: 05/31/2023]
Abstract
To investigate the bioaccumulation patterns of microcystins (MCs) in organs of two gastropods, samples were collected in Lake Dianchi monthly from May to October, 2008, when cyanobacteria typically bloom. The average MCs concentrations for Radix swinhoei (pulmonate) and Margarya melanioides (prosobranch) tended to be similar for the different organs: the highest values in the hepatopancreas (9.33 by 3.74 μg/g DW), followed by digestive tracts (1.66 by 3.03 μg/g DW), gonads (0.45 by 1.34 μg/g DW) and muscles (0.22 by 0.40 μg/g DW). Pulmonate had higher value than prosobranch because of the stronger bioaccumulation ability in hepatopancreas. The levels in organs of R. swinhoei were correlated with environmentally dissolved MCs, but influenced by intracellular MCs for M. melanioides. The estimated MCs concentrations in edible parts of M. melanioides were beyond the WHO's provisional tolerable daily intake (0.04 μg/kg), suggesting the risk of consumption of M. melanioides from the lake.
Collapse
Affiliation(s)
- Junqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | | | | | | | | | | |
Collapse
|
14
|
Martins JC, Machado J, Martins A, Azevedo J, OlivaTeles L, Vasconcelos V. Dynamics of protein phosphatase gene expression in Corbicula fluminea exposed to microcystin-LR and to toxic Microcystis aeruginosa cells. Int J Mol Sci 2011; 12:9172-88. [PMID: 22272126 PMCID: PMC3257123 DOI: 10.3390/ijms12129172] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/21/2011] [Accepted: 11/30/2011] [Indexed: 12/31/2022] Open
Abstract
This study investigated the in vivo effects of microcystins on gene expression of several phosphoprotein phosphatases (PPP) in the freshwater clam Corbicula fluminea with two different exposure scenarios. Clams were exposed for 96 h to 5 μg L−1 of dissolved microcystin-LR and the relative changes of gene expression of three different types of PPP (PPP1, 2 and 4) were analyzed by quantitative real-time PCR. The results showed a significant induction of PPP2 gene expression in the visceral mass. In contrast, the cyanotoxin did not cause any significant changes on PPP1 and PPP4 gene expression. Based on these results, we studied alterations in transcriptional patterns in parallel with enzymatic activity of C. fluminea for PPP2, induced by a Microcystis aeruginosa toxic strain (1 × 105 cells cm−3) during 96 h. The relative changes of gene expression and enzyme activity in visceral mass were analyzed by quantitative real-time PCR and colorimetric assays respectively. The clams exhibited a significant reduction of PPP2 activity with a concomitant enhancement of gene expression. Considering all the results we can conclude that the exposure to an ecologically relevant concentration of pure or intracellular microcystins (-LR) promoted an in vivo effect on PPP2 gene expression in C. fluminea.
Collapse
Affiliation(s)
- José Carlos Martins
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| | - João Machado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
| | - António Martins
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
| | - Joana Azevedo
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
| | - Luís OlivaTeles
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mails: (J.C.M.); (J.M.); (A.M.); (J.A.) (L.O.T.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-223401814; Fax: +351-223390608
| |
Collapse
|
15
|
Lance E, Josso C, Dietrich D, Ernst B, Paty C, Senger F, Bormans M, Gérard C. Histopathology and microcystin distribution in Lymnaea stagnalis (Gastropoda) following toxic cyanobacterial or dissolved microcystin-LR exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:211-220. [PMID: 20227118 DOI: 10.1016/j.aquatox.2010.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 05/28/2023]
Abstract
The accumulation of hepatotoxic microcystins (MCs) in gastropods has been demonstrated to be higher following grazing of toxic cyanobacteria than from MCs dissolved in ambient water. Previous studies, however, did not adequately consider MCs covalently bound to protein phosphatases, which may represent a considerably part of the MC body burden. Thus, using an immunohistochemical method, we examined and compared the histopathology and organ distribution of covalently bound MCs in Lymnaea stagnalis following a 5-week exposure to (i) dmMC-LR, dmMC-RR, and MC-YR-producing Planktothrix agardhii (5 microg MC-LReqL(-1)) and (ii) dissolved MC-LR (33 and 100 microgL(-1)). A subsequent 3-week depuration investigated potential MC elimination and tissue regeneration. Following both exposures, bound MCs were primarily observed in the digestive gland and tract of L. stagnalis. Snails exposed to toxic cyanobacteria showed severe and widespread necrotic changes in the digestive gland co-occurring with a pronounced cytoplasmic presence of MCs in digestive cells and in the lumen of digestive lobules. Snails exposed to dissolved MC-LR showed moderate and negligible pathological changes of the digestive gland co-occurring with a restrained presence of MCs in the apical membrane of digestive cells and in the lumen of digestive lobules. These results confirm lower uptake of dissolved MC-LR and correspondingly lower cytotoxicity in the digestive gland of L. stagnalis. In contrast, after ingestion of MC-containing cyanobacterial filaments, the most likely longer residual time within the digestive gland and/or the MC variant involved (e.g., MC-YR) allowed for increased MC uptake, consequently a higher MC burden in situ and thus a more pronounced ensuing pathology. While no pathological changes were observed in kidney, foot and the genital gland, MCs were detected in spermatozoids and oocytes of all exposed snails, most likely involving a hemolymph transport from the digestive system to the genital gland. The latter results indicate the potential for adverse impact of MCs on gastropod health and reproduction as well as the possible transfer of MCs to higher trophic levels of the food web.
Collapse
Affiliation(s)
- Emilie Lance
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes, France.
| | - Celine Josso
- UMR INRA Bio3P, Université de Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Daniel Dietrich
- Human & Environmental Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| | - Bernhard Ernst
- Human & Environmental Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| | - Chrystelle Paty
- UMR INRA Bio3P, Université de Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Fabrice Senger
- UMR CNRS 6026, Université de Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Myriam Bormans
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes, France
| | - Claudia Gérard
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes, France
| |
Collapse
|
16
|
First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis). Toxicon 2010; 55:930-8. [DOI: 10.1016/j.toxicon.2009.07.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/07/2009] [Accepted: 07/21/2009] [Indexed: 11/23/2022]
|
17
|
Lance E, Neffling MR, Gérard C, Meriluoto J, Bormans M. Accumulation of free and covalently bound microcystins in tissues of Lymnaea stagnalis (Gastropoda) following toxic cyanobacteria or dissolved microcystin-LR exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:674-80. [PMID: 19906474 DOI: 10.1016/j.envpol.2009.10.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/28/2009] [Accepted: 10/15/2009] [Indexed: 05/21/2023]
Abstract
Accumulation of free microcystins (MCs) in freshwater gastropods has been demonstrated but accumulation of MCs covalently bound to tissues has never been considered so far. Here, we follow the accumulation of total (free and bound) MCs in Lymnaea stagnalis exposed to i) dissolved MC-LR (33 and 100 microg L(-1)) and ii) Planktothrix agardhii suspensions producing 5 and 33 microg MC-LR equivalents L(-1) over a 5-week period, and after a 3-week depuration period. Snails exposed to dissolved MC-LR accumulated up to 0.26 microg total MCs g(-1) dry weight (DW), with no detection of bound MCs. Snails exposed to MCs producing P. agardhii accumulated up to 69.9 microg total MCs g(-1) DW, of which from 17.7 to 66.7% were bound. After depuration, up to 15.3 microg g(-1) DW of bound MCs were detected in snails previously exposed to toxic cyanobacteria, representing a potential source of MCs transfer through the food web.
Collapse
Affiliation(s)
- Emilie Lance
- UMR CNRS Ecobio 6553, University of Rennes 1, Campus de Beaulieu, 265 Avenue du Général Leclerc, 35042 Rennes Cedex, France.
| | | | | | | | | |
Collapse
|
18
|
Martins JC, Leão PN, Vasconcelos V. Differential protein expression in Corbicula fluminea upon exposure to a Microcystis aeruginosa toxic strain. Toxicon 2009; 53:409-16. [DOI: 10.1016/j.toxicon.2008.12.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Gérard C, Poullain V, Lance E, Acou A, Brient L, Carpentier A. Influence of toxic cyanobacteria on community structure and microcystin accumulation of freshwater molluscs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:609-617. [PMID: 18938004 DOI: 10.1016/j.envpol.2008.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/13/2008] [Accepted: 08/18/2008] [Indexed: 05/26/2023]
Abstract
Community structure and microcystin accumulation of freshwater molluscs were studied before and after cyanobacterial proliferations, in order to assess the impact of toxic blooms on molluscs and the risk of microcystin transfer in food web. Observed decrease in mollusc abundance and changes in species richness in highly contaminated waters were not significant; however, relative abundances of taxa (prosobranchs, pulmonates, bivalves) were significantly different before and after cyanobacterial bloom. Pulmonates constituted the dominant taxon, and bivalves never occurred after bloom. Microcystin accumulation was significantly higher in molluscs from highly (versus lowly) contaminated waters, in adults (versus juveniles) and in pulmonates (versus prosobranchs and bivalves). Results are discussed according to the ecology of molluscs, their sensitivity and their ability to detoxify.
Collapse
Affiliation(s)
- Claudia Gérard
- ECOBIO, Université de Rennes 1, CNRS, Avenue du Général Leclerc, 35042 Rennes, France.
| | | | | | | | | | | |
Collapse
|
20
|
Martins JC, Vasconcelos VM. Microcystin dynamics in aquatic organisms. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:65-82. [PMID: 19117210 DOI: 10.1080/10937400802545151] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Eutrophication of surface water has increased significantly during the past decade, resulting in increased occurrences of toxic blooms. Cyanotoxins have become a global health threat to humans, wild animals, or domestic livestock. Hepatotoxic microcystins (MC) are the predominant cyanotoxins, which accumulate in aquatic organisms and are transferred to higher trophic levels. This is an issue of major concern in aquatic toxicology, as it involves the risk for human exposure through the consumption of contaminated fish and other aquatic organisms. The persistence and detoxification of MC in aquatic organisms are important issues for public health and fishery economics. Bioaccumulation of MC depends on the toxicity of the strains, mode of feeding, and detoxication mechanisms. Although mussels, as sessile filter feeders, seem to be organisms that ingest more MC, other molluscs like gastropods, as well as zooplankton and fish, may also retain average similar levels of toxins. Edible animals such as some species of molluscs, crustaceans, and fish present different risk because toxins accumulate in muscle at low levels. Carnivorous fish seem to accumulate high MC concentrations compared to phytophagous or omnivorous fish. This review summarizes the existing data on the distribution and dynamics of MC in contaminated aquatic organisms.
Collapse
Affiliation(s)
- José C Martins
- Departamento de Zoologia e Antropologia, Faculdade de Ciencias, Universidade do Porto, Centro Interdisciplinar de Investigacao Marinha e Ambiental, CIIMAR/CIMAR, Porto, Portugal
| | | |
Collapse
|
21
|
Smith JL, Boyer GL, Mills E, Schulz KL. Toxicity of microcystin-LR, a cyanobacterial toxin, to multiple life stages of the burrowing mayfly, Hexagenia, and possible implications for recruitment. ENVIRONMENTAL TOXICOLOGY 2008; 23:499-506. [PMID: 18246549 DOI: 10.1002/tox.20369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Burrowing mayflies, genus Hexagenia, were extirpated from the major water bodies of North America in the early 1950s, paralleling an increase in eutrophication and organic pollution, and a decrease in dissolved oxygen concentrations. Burrowing mayflies recolonized the western basin of Lake Erie, but remain absent in other former habitats such as Oneida Lake, New York. Eutrophication is commonly associated with a shift in the phytoplankton community toward dominance by cyanobacteria, and therefore, one class of cyanobacterial toxins, microcystins, were investigated as a contributing factor to Hexagenia's eradication or as an impediment to recolonization. Laboratory experiments were conducted to determine if microcystin-LR (MC-LR) produced negative effects on Hexagenia at three points within its life cycle: egg, hatchling nymph (<24-h old, <1 mm total length), and pre-emergence nymph (>17 mm). Treatment concentrations ranged from the guideline set by the World Health Organization for drinking water (0.001 microg mL(-1)) to 0.1 microg mL(-1) for the egg experiment and 10 microg mL(-1) for the nymph trials. Eggs showed a delay in hatching and an altered distribution of hatching over the study period when submerged in 0.1 microg mL(-1) MC-LR (an elevated concentration representative of bloom scum). The 72-h (1.1 microg mL(-1)) and 96-h (0.049 microg mL(-1)) LC(50) values for hatchling nymphs exceeded typical bloom concentrations of North American lakes, (0.01 microg mL(-1)). Large nymphs were more tolerant of the toxin, as indicated by 100% survival over seven days exposure to 10 microg mL(-1), suggesting older larvae can withstand brief encounters with high microcystin levels for at least short periods of time. The sensitivity of young nymphs and eggs to MC-LR may have implications for the recruitment of the genus in water bodies with persistent summer cyanobacterial blooms.
Collapse
Affiliation(s)
- Juliette L Smith
- Department of Environmental and Forest Biology, SUNY Syracuse, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|