1
|
Malasala S, Azimian F, Chen YH, Twiss JL, Boykin C, Akhtar SN, Lu Q. Enabling systemic identification and functionality profiling for Cdc42 homeostatic modulators. Commun Chem 2024; 7:271. [PMID: 39562759 PMCID: PMC11577034 DOI: 10.1038/s42004-024-01352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Maintaining body homeostasis is the ultimate key to health. There are rich resources of bioactive materials for the functionality of homeostatic modulators (HMs) from both natural and synthetic chemical repertories1-3. HMs are powerful modern therapeutics for human diseases including neuropsychiatric diseases, mental disorders, and drug addiction (e.g. Buspirone and benzodiazepines)4-7. However, the identification of therapeutic HMs are often unpredictable and limited to membrane protein receptors and ion channels. Based on a serendipitously encountered small molecule ZCL278 with partial agonist (PA) profile as a model compound8-10, the Mant-GTP fluorophore-based Cdc42-GEF (guanine nucleotide exchange factor) screening uncovered a near holistic spectrum of HMs for Cdc42, a cytoplasmic small GTPase in the Ras superfamily11,12. We categorized these HMs as functionally distinct, with some previously understudied classes: Class I-competitive PAs, Class II-hormetic agonists, Class III-bona fide inhibitors, Class IV-bona fide activators, and Class V-ligand-enhanced agonists. The model HMs elicited striking biological functionalities in modulating bradykinin activation of Cdc42 signaling as well as actin remodeling while they ameliorated Alzheimer's disease-like social behavior in mouse model. Furthermore, molecular structural modeling analyses led to the concept of preferential binding pocket order (PBPO) for profiling HMs that target Cdc42 complexed with intersectin (ITSN), a GEF selectively activating Cdc42. Remarkably, the PBPO enabled a prediction of HM class that mimics the pharmacological functionality. Therefore, our study highlights a model path to actively capture different classes of HM to broaden therapeutic landscape.
Collapse
Affiliation(s)
- Satyaveni Malasala
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Fereshteh Azimian
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Yan-Hua Chen
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
- Carolina Autism and Neurodevelopment Center, University of South Carolina, Columbia, SC, USA
| | - Christi Boykin
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Shayan Nik Akhtar
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Qun Lu
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA.
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
- Laboratory of Molecular Neurotherapeutics, Center for Neurotherapeutics, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
2
|
Zhang Q, Qin Z, Wang Q, Lu L, Wang J, Lu M, Wang P, Liu D, Zhou C, Liu Z. Pharmacokinetic profiling of ZCL-278, a cdc42 inhibitor, and its effectiveness against chronic kidney disease. Biomed Pharmacother 2024; 179:117329. [PMID: 39180793 DOI: 10.1016/j.biopha.2024.117329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
ZCL-278 is a selective small molecule specifically inhibiting the Cdc42-intersectin interaction, yet its in-vivo pharmacokinetic and pharmacodynamic properties against renal diseases had not been determined. Thus, our study explored the absorption, distribution and excretion of ZCL-278 as well as its pharmacological efficacy against chronic kidney disease (CKD). With the optimized detection method, absolute oral bioavailability of ZCL-278 was determined as 10.99 % in male and 17.34 % in female rats. ZCL-278 was rapidly and abundantly distributed in various tissues, especially the kidney and heart, while few excreted through urine and feces. In the adenine-induced CKD mice, the increased plasma creatinine and urea, the decreased body weight as well as the renal pathological alterations, including vacuolization of renal tubular epithelial cells, granular degeneration, cell flattening, luminal dilation, and cylindruria, were significantly ameliorated after ZCL-278 administration. Moreover, ZCL-278 could also reverse the increased intensities of renal inflammation and fibrosis in the CKD mice. These results clarified the pharmacokinetics of ZCL-278 in rats and preliminarily indicated that ZCL-278 has favorable pharmacodynamic properties for CKD primed for lead development and optimization, warranting further drug development.
Collapse
Affiliation(s)
- Qing Zhang
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhiying Qin
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China; Henan Engineering Research Center for Application and Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qiang Wang
- Department of Nephrology, The Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Liqian Lu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jiao Wang
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Manman Lu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Pei Wang
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Chunyu Zhou
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China; Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| |
Collapse
|
3
|
Chen S, Zhao Q, Zhang R, Liu J, Peng W, Xu H, Li X, Wang X, Wu S, Li G, Nan A. A transcribed ultraconserved noncoding RNA, uc.285+, promotes colorectal cancer proliferation through dual targeting of CDC42 by directly binding mRNA and protein. Transl Res 2024; 270:52-65. [PMID: 38552953 DOI: 10.1016/j.trsl.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
The transcribed ultraconserved region (T-UCR) belongs to a new type of lncRNAs that are conserved in homologous regions of the rat, mouse and human genomes. A lot of research has reported that differential expression of T-UCRs can influence the development of various cancers, revealing the ability of T-UCRs as new therapeutic targets or potential cancer biomarkers. Most studies on the molecular mechanisms of T-UCRs in cancer have focused on ceRNA regulatory networks and interactions with target proteins, but the present study reveals an innovative dual-targeted regulatory approach in which T-UCRs bind directly to mRNAs and directly to proteins. We screened T-UCRs that may be related to colorectal cancer (CRC) by performing a whole-genome T-UCR gene microarray and further studied the functional mechanism of T-UCR uc.285+ in the development of CRC. Modulation of uc.285+ affected the proliferation of CRC cell lines and influenced the expression of the CDC42 gene. We also found that uc.285+ promoted the proliferation of CRC cells by directly binding to CDC42 mRNA and enhancing its stability while directly binding to CDC42 protein and affecting its stability. In short, our research on the characteristics of cell proliferation found that uc.285+ has a biological function in promoting CRC proliferation. uc.285+ may have considerable potential as a new diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Sixian Chen
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China
| | - Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China
| | - Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China
| | - Xiaofei Li
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China
| | - Xin Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Shuilian Wu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
4
|
Brindani N, Vuong LM, La Serra MA, Salvador N, Menichetti A, Acquistapace IM, Ortega JA, Veronesi M, Bertozzi SM, Summa M, Girotto S, Bertorelli R, Armirotti A, Ganesan AK, De Vivo M. Discovery of CDC42 Inhibitors with a Favorable Pharmacokinetic Profile and Anticancer In Vivo Efficacy. J Med Chem 2024; 67:10401-10424. [PMID: 38866385 PMCID: PMC11215724 DOI: 10.1021/acs.jmedchem.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
We previously reported trisubstituted pyrimidine lead compounds, namely, ARN22089 and ARN25062, which block the interaction between CDC42 with its specific downstream effector, a PAK protein. This interaction is crucial for the progression of multiple tumor types. Such inhibitors showed anticancer efficacy in vivo. Here, we describe a second class of CDC42 inhibitors with favorable drug-like properties. Out of the 25 compounds here reported, compound 15 (ARN25499) stands out as the best lead compound with an improved pharmacokinetic profile, increased bioavailability, and efficacy in an in vivo PDX tumor mouse model. Our results indicate that these CDC42 inhibitors represent a promising chemical class toward the discovery of anticancer drugs, with ARN25499 as an additional lead candidate for preclinical development.
Collapse
Affiliation(s)
- Nicoletta Brindani
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Linh M. Vuong
- Department
of Dermatology, University of California, Irvine, California 92697, United States
| | - Maria Antonietta La Serra
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Noel Salvador
- Department
of Dermatology, University of California, Irvine, California 92697, United States
| | - Andrea Menichetti
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Isabella Maria Acquistapace
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Jose Antonio Ortega
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Marina Veronesi
- Structural
Biophysics Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Maria Summa
- Translational
Pharmacology Facility, Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Stefania Girotto
- Structural
Biophysics Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Rosalia Bertorelli
- Translational
Pharmacology Facility, Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Anand K. Ganesan
- Department
of Dermatology, University of California, Irvine, California 92697, United States
| | - Marco De Vivo
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| |
Collapse
|
5
|
Chen XY, Cheng AY, Wang ZY, Jin JM, Lin JY, Wang B, Guan YY, Zhang H, Jiang YX, Luan X, Zhang LJ. Dbl family RhoGEFs in cancer: different roles and targeting strategies. Biochem Pharmacol 2024; 223:116141. [PMID: 38499108 DOI: 10.1016/j.bcp.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Small Ras homologous guanosine triphosphatase (Rho GTPase) family proteins are highly associated with tumorigenesis and development. As intrinsic exchange activity regulators of Rho GTPases, Rho guanine nucleotide exchange factors (RhoGEFs) have been demonstrated to be closely involved in tumor development and received increasing attention. They mainly contain two families: the diffuse B-cell lymphoma (Dbl) family and the dedicator of cytokinesis (Dock) family. More and more emphasis has been paid to the Dbl family members for their abnormally high expression in various cancers and their correlation to poor prognosis. In this review, the common and distinctive structures of Dbl family members are discussed, and their roles in cancer are summarized with a focus on Ect2, Tiam1/2, P-Rex1/2, Vav1/2/3, Trio, KALRN, and LARG. Significantly, the strategies targeting Dbl family RhoGEFs are highlighted as novel therapeutic opportunities for cancer.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ao-Yu Cheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zi-Ying Wang
- School of Biological Engineering, Tianjin University of Science&Technology, Tianjin 301617, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hao Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Mintoo M, Rajagopalan V, O'Bryan JP. Intersectin - many facets of a scaffold protein. Biochem Soc Trans 2024; 52:1-13. [PMID: 38174740 DOI: 10.1042/bst20211241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Intersectin (ITSN) is a multi-domain scaffold protein with a diverse array of functions including regulation of endocytosis, vesicle transport, and activation of various signal transduction pathways. There are two ITSN genes located on chromosomes 21 and 2 encoding for proteins ITSN1 and ITSN2, respectively. Each ITSN gene encodes two major isoforms, ITSN-Long (ITSN-L) and ITSN-Short (ITSN-S), due to alternative splicing. ITSN1 and 2, collectively referred to as ITSN, are implicated in many physiological and pathological processes, such as neuronal maintenance, actin cytoskeletal rearrangement, and tumor progression. ITSN is mis-regulated in many tumors, such as breast, lung, neuroblastomas, and gliomas. Altered expression of ITSN is also found in several neurodegenerative diseases, such as Down Syndrome and Alzheimer's disease. This review summarizes recent studies on ITSN and provides an overview of the function of this important family of scaffold proteins in various biological processes.
Collapse
Affiliation(s)
- Mubashir Mintoo
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Vinodh Rajagopalan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, U.S.A
| |
Collapse
|
7
|
Malasala S, Azimian F, Chen YH, Twiss JL, Boykin C, Akhtar SN, Lu Q. Enabling Systemic Identification and Functionality Profiling for Cdc42 Homeostatic Modulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574351. [PMID: 38260445 PMCID: PMC10802479 DOI: 10.1101/2024.01.05.574351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Homeostatic modulation is pivotal in modern therapeutics. However, the discovery of bioactive materials to achieve this functionality is often random and unpredictive. Here, we enabled a systemic identification and functional classification of chemicals that elicit homeostatic modulation of signaling through Cdc42, a classical small GTPase of Ras superfamily. Rationally designed for high throughput screening, the capture of homeostatic modulators (HMs) along with molecular re-docking uncovered at least five functionally distinct classes of small molecules. This enabling led to partial agonists, hormetic agonists, bona fide activators and inhibitors, and ligand-enhanced agonists. Novel HMs exerted striking functionality in bradykinin-Cdc42 activation of actin remodelingand modified Alzheimer's disease-like behavior in mouse model. This concurrent computer-aided and experimentally empowered HM profiling highlights a model path for predicting HM landscape. One Sentence Summary With concurrent experimental biochemical profiling and in silico computer-aided drug discovery (CADD) analysis, this study enabled a systemic identification and holistic classification of Cdc42 homeostatic modulators (HMs) and demonstrated the power of CADD to predict HM classes that can mimic the pharmacological functionality of interests. Introduction Maintainingbody homeostasisis the ultimate keyto health. Thereare rich resources of bioactive materials for this functionality from both natural and synthetic chemical repertories including partial agonists (PAs) and various allosteric modulators. These homeostatic modulators (HMs) play a unique role in modern therapeutics for human diseases such as mental disorders and drug addiction. Buspirone, for example, acts as a PA for serotonin 5-HT 1A receptor but is an antagonist of the dopamine D 2 receptor. Such medical useto treat general anxietydisorders (GADs) has become one of the most-commonly prescribed medications. However, most HMs in current uses target membrane proteins and are often derived from random discoveries. HMs as therapeutics targeting cytoplasmic proteins are even more rare despite that they are in paramount needs (e. g. targeting Ras superfamily small GTPases). Rationale Cdc42, a classical member of small GTPases of Ras superfamily, regulates PI3K-AKT and Raf-MEK-ERK pathways and has been implicated in various neuropsychiatric and mental disorders as well as addictive diseases and cancer. We previously reported the high-throughput in-silico screening followed by biological characterization of novel small molecule modulators (SMMs) of Cdc42-intersectin (ITSN) protein-protein interactions (PPIs). Based on a serendipitously discovered SMM ZCL278 with PA profile as a model compound, we hypothesized that there are more varieties of such HMs of Cdc42 signaling, and the model HMs can be defined by their distinct Cdc42-ITSN binding mechanisms using computer-aided drug discovery (CADD) analysis. We further reasoned that molecular modeling coupled with experimental profiling can predict HM spectrum and thus open the door for the holistic identification and classification of multifunctional cytoplasmic target-dependent HMs as therapeutics. Results The originally discovered Cdc42 inhibitor ZCL278 displaying PA properties prompted the inquiry whether this finding represented a random encounter of PAs or whether biologically significant PAs can be widely present. The top ranked compounds were initially defined by structural fitness and binding scores to Cdc42. Because higher binding scores do not necessarily translate to higher functionality, we performed exhaustive experimentations with over 2,500 independent Cdc42-GEF (guanine nucleotide exchange factor) assays to profile the GTP loading activities on all 44 top ranked compounds derived from the SMM library. The N-MAR-GTP fluorophore-based Cdc42-GEF assay platform provided the first glimpse of the breadth of HMs. A spectrum of Cdc42 HMs was uncovered that can be categorized into five functionally distinct classes: Class I-partial competitive agonists, Class II-hormetic agonists, Class III- bona fide inhibitors (or inverse agonists), Class IV- bona fide activators or agonists, and Class V-ligand-enhanced agonists. Remarkably, model HMs such as ZCL278, ZCL279, and ZCL367 elicited striking biological functionality in bradykinin-Cdc42 activation of actin remodeling and modified Alzheimer's disease (AD)-like behavior in mouse model. Concurrently, we applied Schrödinger-enabled analyses to perform CADD predicted classification of Cdc42 HMs. We modified the classic molecular docking to instill a preferential binding pocket order (PBPO) of Cdc42-ITSN, which was based on the five binding pockets in interface of Cdc42-ITSN. We additionally applied a structure-based pharmacophore hypothesis generation for the model compounds. Then, using Schrödinger's Phase Shape, 3D ligand alignments assigned HMs to Class I, II, III, IV, and V compounds. In this HM library compounds, PBPO, matching pharmacophoric featuring, and shape alignment, all put ZCL993 in Class II compound category, which was confirmed in the Cdc42-GEF assay. Conclusion HMs can target diseased cells or tissues while minimizing impacts on tissues that are unaffected. Using Cdc42 HM model compounds as a steppingstone, GTPase activation-based screening of SMM library uncovered five functionally distinct Cdc42 HM classes among which novel efficacies towards alleviating dysregulated AD-like features in mice were identified. Furthermore, molecular re-docking of HM model compounds led to the concept of PBPO. The CADD analysis with PBPO revealed similar profile in a color-coded spectrum to these five distinct classes of Cdc42 HMs identified by biochemical functionality-based screening. The current study enabled a systemic identification and holistic classification of Cdc42 HMs and demonstrated the power of CADD to predict an HM category that can mimic the pharmacological functionality of interests. With artificial intelligence/machine learning (AI/ML) on the horizon to mirror experimental pharmacological discovery like AlphaFold for protein structure prediction, our study highlights a model path to actively capture and profile HMs in potentially any PPI landscape. Graphic Abstract Identification and functional classification of Cdc42 homeostatic modulators HMs Using Cdc42 HM model compounds as reference, GTPase activation-based screening of compound libraries uncovered five functionally distinct Cdc42 HM classes. HMs showed novel efficacies towards alleviating dysregulated Alzheimer's disease (AD)-like behavioral and molecular deficits. In parallel, molecular re-docking of HM model compounds established their preferential binding pocket orders (PBPO). PBPO-based profiling (Red reflects the most, whereas green reflects the least, preferable binding pocket) revealed trends of similar pattern to the five classes from the functionality-based classification.
Collapse
|
8
|
Zhang Y, Chen S, Choi T, Qi Y, Wang Q, Li G, Zhao Y. Molecular dynamics simulations reveal the inhibition mechanism of Cdc42 by RhoGDI1. J Comput Aided Mol Des 2023; 37:301-312. [PMID: 37286854 DOI: 10.1007/s10822-023-00508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
Cell division control protein 42 homolog (Cdc42), which controls a variety of cellular functions including rearrangements of the cell cytoskeleton, cell differentiation and proliferation, is a potential cancer therapeutic target. As an endogenous negative regulator of Cdc42, the Rho GDP dissociation inhibitor 1 (RhoGDI1) can prevent the GDP/GTP exchange of Cdc42 to maintain Cdc42 into an inactive state. To investigate the inhibition mechanism of Cdc42 through RhoGDI1 at the atomic level, we performed molecular dynamics (MD) simulations. Without RhoGDI1, Cdc42 has more flexible conformations, especially in switch regions which are vital for binding GDP/GTP and regulators. In the presence of RhoGDI1, it not only can change the intramolecular interactions of Cdc42 but also can maintain the switch regions into a closed conformation through extensive interactions with Cdc42. These results which are consistent with findings of biochemical and mutational studies provide deep structural insights into the inhibition mechanisms of Cdc42 by RhoGDI1. These findings are beneficial for the development of novel therapies targeting Cdc42-related cancers.
Collapse
Affiliation(s)
- Yijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shiyao Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Taeyoung Choi
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuzheng Qi
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qianhui Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guanyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
9
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Zhang Y, Li G, Zhao Y. Advances in the development of Rho GTPase inhibitors. Bioorg Med Chem 2023; 90:117337. [PMID: 37253305 DOI: 10.1016/j.bmc.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Rho guanosine triphosphatases (Rho GTPases), as members of the Ras superfamily, are GDP/GTP binding proteins that behave as molecular switches for the transduction of signals from external stimuli. Rho GTPases play essential roles in a number of cellular processes including cell cycle, cell polarity as well as cell migration. The dysregulations of Rho GTPases are related with various diseases, especially with cancers. Accumulating evidence supports that Rho GTPases play important roles in cancer development and progression. Rho GTPases become potential therapeutic targets for cancer therapy. And a number of inhibitors targeting Rho GTPases have been developed. In this review, we discuss their structural features, summarize their roles in cancer, and focus on the recent progress of their inhibitors, which are beneficial for the drug discovery targeting Rho GTPases.
Collapse
Affiliation(s)
- Yijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
11
|
Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, Roué G. RHOA Therapeutic Targeting in Hematological Cancers. Cells 2023; 12:cells12030433. [PMID: 36766776 PMCID: PMC9914237 DOI: 10.3390/cells12030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Salvador Sánchez-Vinces
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, São Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-935572835
| |
Collapse
|
12
|
Chen W, Huang W, Pather SR, Chang W, Sung L, Wu H, Liao M, Lee C, Wu H, Wu C, Liao K, Lin C, Yang S, Lin H, Lai P, Ng C, Hu C, Chen I, Chuang C, Lai C, Lin P, Lee Y, Schuyler SC, Schambach A, Lu FL, Lu J. Podocalyxin-Like Protein 1 Regulates Pluripotency through the Cholesterol Biosynthesis Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205451. [PMID: 36373710 PMCID: PMC9811443 DOI: 10.1002/advs.202205451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Deciphering signaling mechanisms critical for the extended pluripotent stem cell (EPSC) state and primed pluripotency is necessary for understanding embryonic development. Here, a membrane protein, podocalyxin-like protein 1 (PODXL) as being essential for extended and primed pluripotency, is identified. Alteration of PODXL expression levels affects self-renewal, protein expression of c-MYC and telomerase, and induced pluripotent stem cell (iPSC) and EPSC colony formation. PODXL is the first membrane protein reported to regulate de novo cholesterol biosynthesis, and human pluripotent stem cells (hPSCs) are more sensitive to cholesterol depletion than fibroblasts. The addition of exogenous cholesterol fully restores PODXL knockdown-mediated loss of pluripotency. PODXL affects lipid raft dynamics via the regulation of cholesterol. PODXL recruits the RAC1/CDC42/actin network to regulate SREBP1 and SREBP2 maturation and lipid raft dynamics. Single-cell RNA sequencing reveals PODXL overexpression enhanced chimerism between human cells in mouse host embryos (hEPSCs 57%). Interestingly, in the human-mouse chimeras, laminin and collagen signaling-related pathways are dominant in PODXL overexpressing cells. It is concluded that cholesterol regulation via PODXL signaling is critical for ESC/EPSC.
Collapse
Affiliation(s)
- Wei‐Ju Chen
- Genomics Research CenterAcademia SinicaGenome and Systems Biology Degree ProgramCollege of Life ScienceNational Taiwan UniversityTaipei10617Taiwan
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Wei‐Kai Huang
- Center for Genomic MedicineMassachusetts General HospitalBostonMA02114USA
| | - Sarshan R. Pather
- Cell and Molecular Biology Graduate GroupPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Wei‐Fang Chang
- Institute of BiotechnologyNational Taiwan UniversityTaipei10617Taiwan
| | - Li‐Ying Sung
- Institute of BiotechnologyNational Taiwan UniversityTaipei10617Taiwan
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Animal Resource CenterNational Taiwan UniversityTaipei10617Taiwan
| | - Han‐Chung Wu
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei11529Taiwan
- Biomedical Translation Research Center (BioTReC)Academia SinicaTaipei11529Taiwan
| | - Mei‐Ying Liao
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei11529Taiwan
| | - Chi‐Chiu Lee
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei11529Taiwan
| | - Hsuan‐Hui Wu
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei11529Taiwan
| | - Chung‐Yi Wu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | | | - Chun‐Yu Lin
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | | | - Hsuan Lin
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Pei‐Lun Lai
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Chi‐Hou Ng
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Chun‐Mei Hu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - I‐Chih Chen
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | | | - Chien‐Ying Lai
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Po‐Yu Lin
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Yueh‐Chang Lee
- Department of OphthalmologyHualien Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationHualien97004Taiwan
| | - Scott C. Schuyler
- Department of Biomedical SciencesCollege of MedicineChang Gung UniversityDivision of Head and Neck SurgeryDepartment of OtolaryngologyChang Gung Memorial HospitalTaoyuan33302Taiwan
| | - Axel Schambach
- Institute of Experimental HematologyHannover Medical School30625HannoverGermany
| | - Frank Leigh Lu
- Department of PediatricsNational Taiwan University Hospital and National Taiwan University Medical CollegeTaipei10051Taiwan
| | - Jean Lu
- Genomics Research CenterAcademia SinicaGenome and Systems Biology Degree ProgramCollege of Life ScienceNational Taiwan UniversityTaipei10617Taiwan
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- National RNAi Platform/ National Core Facility Program for BiotechnologyTaipei11529Taiwan
- Department of Life ScienceTzu Chi UniversityHualien97004Taiwan
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipei11490Taiwan
| |
Collapse
|
13
|
Chen Z, Xu C, Pan X, Cheng G, Liu M, Li J, Mei Y. lncRNA DSCR8 mediates miR-137/Cdc42 to regulate gastric cancer cell proliferation, invasion, and cell cycle as a competitive endogenous RNA. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:468-482. [PMID: 34553033 PMCID: PMC8430047 DOI: 10.1016/j.omto.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
lncRNA DSCR8 (Down syndrome critical region 8) is involved in progression of many cancers, but its specific role in gastric cancer (GC) is still unclear. Here, qRT-PCR detected upregulated expression of DSCR8 and Cdc42 and downregulated expression of miR-137 in GC. The protein expression level of Cdc42 in GC was upregulated as tested by western blot. Statistical analysis showed that DSCR8 was closely associated with some malignant clinicopathological features (such as tumor size, metastasis, and stage) in GC patients. Fluorescence in situ hybridization showed that DSCR8 was localized in the nucleus and cytoplasm. Dual-luciferase reporter gene, RNA immunoprecipitation, and biotin pull-down assays showed that DSCR8 could bind to miR-137 could bind to Cdc42. In vitro and in vivo assays showed that DSCR8 could promote proliferation, invasion, and the cycle of GC cells and inhibit cell apoptosis. In addition, a rescue experiment showed that DSCR8 regulated progression of GC cells via miR-137. Furthermore, DSCR8 regulated Cdc42 in GC cells by inhibiting miR-137. Taken together, these data indicated that DSCR8 could adsorb miR-137 to reduce its inhibitory effect on Cdc42 expression, thereby promoting the progression of GC cells and regulating the cell cycle. These results provide a novel direction for DSCR8 as a target of GC.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Chaobo Xu
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Xiaoming Pan
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Guoxiong Cheng
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Ming Liu
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Jiaxin Li
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Yijun Mei
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| |
Collapse
|
14
|
Feng X, Ding W, Ma J, Liu B, Yuan H. Targeted Therapies in Lung Cancers: Current Landscape and Future Prospects. Recent Pat Anticancer Drug Discov 2021; 16:540-551. [PMID: 34132185 DOI: 10.2174/1574892816666210615161501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is the most common and malignant cancer worldwide. Targeted therapies have emerged as a promising treatment strategy for lung cancers. OBJECTIVE The objective of this study is to evaluate the current landscape of targets and finding promising targets for future new drug discovery for lung cancers by identifying the science-technology-clinical development pattern and mapping the interaction network of targets. METHODS Targets for cancers were classified into 3 groups based on a paper published in Nature. We search for scientific literature, patent documents and clinical trials of targets in Group 1 and Group 2 for lung cancers. Then, a target-target interaction network of Group 1 was constructed, and the science-technology-clinical(S-T-C) development patterns of targets in Group 1 were identified. Finally, based on the cluster distribution and the development pattern of targets in Group 1, interactions between the targets were employed to predict potential targets in Group 2 on drug development. RESULTS The target-target interaction(TTI)network of group 1 resulted in 3 clusters with different developmental stages. The potential targets in Group 2 are divided into 3 ranks. Level-1 is the first priority and level-3 is the last. Level-1 includes 16 targets, such as STAT3, CRKL, and PTPN11, that are mostly involved in signaling transduction pathways. Level-2 and level-3 contain 8 and 6 targets related to various biological functions. CONCLUSION This study will provide references for drug development in lung cancers, emphasizing that priorities should be given to targets in Level-1, whose mechanisms are worth further exploration.
Collapse
Affiliation(s)
- Xin Feng
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenqing Ding
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Junhong Ma
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Baijun Liu
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongmei Yuan
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
15
|
Progress in the therapeutic inhibition of Cdc42 signalling. Biochem Soc Trans 2021; 49:1443-1456. [PMID: 34100887 PMCID: PMC8286826 DOI: 10.1042/bst20210112] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Cdc42 is a member of the Rho family of small GTPases and a key regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. It signals downstream of the master regulator Ras and is essential for cell transformation by this potent oncogene. Overexpression of Cdc42 is observed in several cancers, where it is linked to poor prognosis. As a regulator of both cell architecture and motility, deregulation of Cdc42 is also linked to tumour metastasis. Like Ras, Cdc42 and other components of the signalling pathways it controls represent important potential targets for cancer therapeutics. In this review, we consider the progress that has been made targeting Cdc42, its regulators and effectors, including new modalities and new approaches to inhibition. Strategies under consideration include inhibition of lipid modification, modulation of Cdc42-GEF, Cdc42-GDI and Cdc42-effector interactions, and direct inhibition of downstream effectors.
Collapse
|
16
|
Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological Modulators of Small GTPases of Rho Family in Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:661612. [PMID: 34054432 PMCID: PMC8149604 DOI: 10.3389/fncel.2021.661612] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Classical Rho GTPases, including RhoA, Rac1, and Cdc42, are members of the Ras small GTPase superfamily and play essential roles in a variety of cellular functions. Rho GTPase signaling can be turned on and off by specific GEFs and GAPs, respectively. These features empower Rho GTPases and their upstream and downstream modulators as targets for scientific research and therapeutic intervention. Specifically, significant therapeutic potential exists for targeting Rho GTPases in neurodegenerative diseases due to their widespread cellular activity and alterations in neural tissues. This study will explore the roles of Rho GTPases in neurodegenerative diseases with focus on the applications of pharmacological modulators in recent discoveries. There have been exciting developments of small molecules, nonsteroidal anti-inflammatory drugs (NSAIDs), and natural products and toxins for each classical Rho GTPase category. A brief overview of each category followed by examples in their applications will be provided. The literature on their roles in various diseases [e.g., Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Frontotemporal dementia (FTD), and Multiple sclerosis (MS)] highlights the unique and broad implications targeting Rho GTPases for potential therapeutic intervention. Clearly, there is increasing knowledge of therapeutic promise from the discovery of pharmacological modulators of Rho GTPases for managing and treating these conditions. The progress is also accompanied by the recognition of complex Rho GTPase modulation where targeting its signaling can improve some aspects of pathogenesis while exacerbating others in the same disease model. Future directions should emphasize the importance of elucidating how different Rho GTPases work in concert and how they produce such widespread yet different cellular responses during neurodegenerative disease progression.
Collapse
Affiliation(s)
| | | | | | - Qun Lu
- Department of Anatomy and Cell Biology, The Harriet and John Wooten Laboratory for Alzheimer’s and Neurogenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
17
|
Tummanatsakun D, Proungvitaya T, Roytrakul S, Proungvitaya S. Bioinformatic Prediction of Signaling Pathways for Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1) and Its Role in Cholangiocarcinoma Cells. Molecules 2021; 26:molecules26092587. [PMID: 33946672 PMCID: PMC8125001 DOI: 10.3390/molecules26092587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) is involved in the DNA damage repair pathways and associates with the metastasis of several human cancers. However, the signaling pathway of APEX1 in cholangiocarcinoma (CCA) has never been reported. In this study, to predict the signaling pathways of APEX1 and related proteins and their functions, the effects of APEX1 gene silencing on APEX1 and related protein expression in CCA cell lines were investigated using mass spectrometry and bioinformatics tools. Bioinformatic analyses predicted that APEX1 might interact with cell division cycle 42 (CDC42) and son of sevenless homolog 1 (SOS1), which are involved in tumor metastasis. RNA and protein expression levels of APEX1 and its related proteins, retrieved from the Gene Expression Profiling Interactive Analysis (GEPIA) and the Human Protein Atlas databases, revealed that their expressions were higher in CCA than in the normal group. Moreover, higher levels of APEX1 expression and its related proteins were correlated with shorter survival time. In conclusion, the signaling pathway of APEX1 in metastasis might be mediated via CDC42 and SOS1. Furthermore, expression of APEX1 and related proteins is able to predict poor survival of CCA patients.
Collapse
Affiliation(s)
- Doungdean Tummanatsakun
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, KhonKaen University, KhonKaen 40002, Thailand; (D.T.); (T.P.)
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, KhonKaen University, KhonKaen 40002, Thailand; (D.T.); (T.P.)
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Functional Ingredients and Food Innovation Research Group, National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand;
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, KhonKaen University, KhonKaen 40002, Thailand; (D.T.); (T.P.)
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, KhonKaen University, KhonKaen 40002, Thailand
- Correspondence: ; Tel.: +66-4320-2088
| |
Collapse
|
18
|
Lee SJ, Zdradzinski MD, Sahoo PK, Kar AN, Patel P, Kawaguchi R, Aguilar BJ, Lantz KD, McCain CR, Coppola G, Lu Q, Twiss JL. Selective axonal translation of the mRNA isoform encoding prenylated Cdc42 supports axon growth. J Cell Sci 2021; 134:237797. [PMID: 33674450 DOI: 10.1242/jcs.251967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
The small Rho-family GTPase Cdc42 has long been known to have a role in cell motility and axon growth. The eukaryotic Ccd42 gene is alternatively spliced to generate mRNAs with two different 3' untranslated regions (UTRs) that encode proteins with distinct C-termini. The C-termini of these Cdc42 proteins include CaaX and CCaX motifs for post-translational prenylation and palmitoylation, respectively. Palmitoyl-Cdc42 protein was previously shown to contribute to dendrite maturation, while the prenyl-Cdc42 protein contributes to axon specification and its mRNA was detected in neurites. Here, we show that the mRNA encoding prenyl-Cdc42 isoform preferentially localizes into PNS axons and this localization selectively increases in vivo during peripheral nervous system (PNS) axon regeneration. Functional studies indicate that prenyl-Cdc42 increases axon length in a manner that requires axonal targeting of its mRNA, which, in turn, needs an intact C-terminal CaaX motif that can drive prenylation of the encoded protein. In contrast, palmitoyl-Cdc42 has no effect on axon growth but selectively increases dendrite length. Together, these data show that alternative splicing of the Cdc42 gene product generates an axon growth promoting, locally synthesized prenyl-Cdc42 protein. This article has an associated First Person interview with one of the co-first authors of the paper.
Collapse
Affiliation(s)
- Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Matthew D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Riki Kawaguchi
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kelsey D Lantz
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Caylee R McCain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Giovanni Coppola
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA.,Department of Neurology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| |
Collapse
|
19
|
Wang J, Feng D, Gao B. An Overview of Potential Therapeutic Agents Targeting WNT/PCP Signaling. Handb Exp Pharmacol 2021; 269:175-213. [PMID: 34463852 DOI: 10.1007/164_2021_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the discovery of the proto-oncogene Wnt1 (Int1) in 1982, WNT signaling has been identified as one of the most important pathways that regulates a wide range of fundamental developmental and physiological processes in multicellular organisms. The canonical WNT signaling pathway depends on the stabilization and translocation of β-catenin and plays important roles in development and homeostasis. The WNT/planar cell polarity (WNT/PCP) signaling, also known as one of the β-catenin-independent WNT pathways, conveys directional information to coordinate polarized cell behaviors. Similar to WNT/β-catenin signaling, disruption or aberrant activation of WNT/PCP signaling also underlies a variety of developmental defects and cancers. However, the pharmacological targeting of WNT/PCP signaling for therapeutic purposes remains largely unexplored. In this review, we briefly discuss WNT/PCP signaling in development and disease and summarize the known drugs/inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
20
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
21
|
Dysregulation of Rho GTPases in Human Cancers. Cancers (Basel) 2020; 12:cancers12051179. [PMID: 32392742 PMCID: PMC7281333 DOI: 10.3390/cancers12051179] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 01/28/2023] Open
Abstract
Rho GTPases play central roles in numerous cellular processes, including cell motility, cell polarity, and cell cycle progression, by regulating actin cytoskeletal dynamics and cell adhesion. Dysregulation of Rho GTPase signaling is observed in a broad range of human cancers, and is associated with cancer development and malignant phenotypes, including metastasis and chemoresistance. Rho GTPase activity is precisely controlled by guanine nucleotide exchange factors, GTPase-activating proteins, and guanine nucleotide dissociation inhibitors. Recent evidence demonstrates that it is also regulated by post-translational modifications, such as phosphorylation, ubiquitination, and sumoylation. Here, we review the current knowledge on the role of Rho GTPases, and the precise mechanisms controlling their activity in the regulation of cancer progression. In addition, we discuss targeting strategies for the development of new drugs to improve cancer therapy.
Collapse
|
22
|
Zheng CW, Zeng RJ, Xu LY, Li EM. Rho GTPases: Promising candidates for overcoming chemotherapeutic resistance. Cancer Lett 2020; 475:65-78. [PMID: 31981606 DOI: 10.1016/j.canlet.2020.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Despite therapeutic advances, resistance to chemotherapy remains a major challenge to patients with malignancies. Rho GTPases are essential for the development and progression of various diseases including cancer, and a vast number of studies have linked Rho GTPases to chemoresistance. Therefore, understanding the underlying mechanisms can expound the effects of Rho GTPases towards chemotherapeutic agents, and targeting Rho GTPases is a promising strategy to downregulate the chemo-protective pathways and overcome chemoresistance. Importantly, exceptions in certain biological conditions and interactions among the members of Rho GTPases should be noted. In this review, we focus on the role of Rho GTPases, particularly Rac1, in regulating chemoresistance and provide an overview of their related mechanisms and available inhibitors, which may offer novel options for future targeted cancer therapy.
Collapse
Affiliation(s)
- Chun-Wen Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Rui-Jie Zeng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
23
|
Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020; 8:201. [PMID: 32322580 PMCID: PMC7156542 DOI: 10.3389/fcell.2020.00201] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Rho, Rac, and Cdc42 have emerged as key players in cancer metastasis, due to their essential roles in regulating cell division and actin cytoskeletal rearrangements; and thus, cell growth, migration/invasion, polarity, and adhesion. This review will focus on the close homologs Rac and Cdc42, which have been established as drivers of metastasis and therapy resistance in multiple cancer types. Rac and Cdc42 are often dysregulated in cancer due to hyperactivation by guanine nucleotide exchange factors (GEFs), belonging to both the diffuse B-cell lymphoma (Dbl) and dedicator of cytokinesis (DOCK) families. Rac/Cdc42 GEFs are activated by a myriad of oncogenic cell surface receptors, such as growth factor receptors, G-protein coupled receptors, cytokine receptors, and integrins; consequently, a number of Rac/Cdc42 GEFs have been implicated in metastatic cancer. Hence, inhibiting GEF-mediated Rac/Cdc42 activation represents a promising strategy for targeted metastatic cancer therapy. Herein, we focus on the role of oncogenic Rac/Cdc42 GEFs and discuss the recent advancements in the development of Rac and Cdc42 GEF-interacting inhibitors as targeted therapy for metastatic cancer, as well as their potential for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Isabel Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
24
|
Clayton NS, Ridley AJ. Targeting Rho GTPase Signaling Networks in Cancer. Front Cell Dev Biol 2020; 8:222. [PMID: 32309283 PMCID: PMC7145979 DOI: 10.3389/fcell.2020.00222] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
As key regulators of cytoskeletal dynamics, Rho GTPases coordinate a wide range of cellular processes, including cell polarity, cell migration, and cell cycle progression. The adoption of a pro-migratory phenotype enables cancer cells to invade the stroma surrounding the primary tumor and move toward and enter blood or lymphatic vessels. Targeting these early events could reduce the progression to metastatic disease, the leading cause of cancer-related deaths. Rho GTPases play a key role in the formation of dynamic actin-rich membrane protrusions and the turnover of cell-cell and cell-extracellular matrix adhesions required for efficient cancer cell invasion. Here, we discuss the roles of Rho GTPases in cancer, their validation as therapeutic targets and the challenges of developing clinically viable Rho GTPase inhibitors. We review other therapeutic targets in the wider Rho GTPase signaling network and focus on the four best characterized effector families: p21-activated kinases (PAKs), Rho-associated protein kinases (ROCKs), atypical protein kinase Cs (aPKCs), and myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs).
Collapse
Affiliation(s)
- Natasha S Clayton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
25
|
Gao J, Ma F, Wang X, Li G. Combination of dihydroartemisinin and resveratrol effectively inhibits cancer cell migrationviaregulation of the DLC1/TCTP/Cdc42 pathway. Food Funct 2020; 11:9573-9584. [DOI: 10.1039/d0fo00996b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mechanism of DHA combined with RES in inhibition of cancer cell migration by DLC1/TCTP/Cdc42 signaling.
Collapse
Affiliation(s)
- Junying Gao
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| | - Fengqiu Ma
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| | - Xingjie Wang
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| |
Collapse
|
26
|
Song XD, Wang YN, Zhang AL, Liu B. Advances in research on the interaction between inflammation and cancer. J Int Med Res 2019; 48:300060519895347. [PMID: 31885347 PMCID: PMC7686609 DOI: 10.1177/0300060519895347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inflammation is the body's response to cell damage. Cancer is a general
term that describes all malignant tumours. There are no confirmed data
on cancer-related inflammation, but some research suggests that up to
50% of cancers may be linked to inflammation, which has led to the
concept of ‘cancer-associated inflammation’. Although some cancer
patients do not appear to have a chronic inflammatory background,
there might be inflammatory cell infiltration in their cancer tissues.
The continuation of the inflammatory response plays an important role
in the initiation, promotion, malignant transformation, invasion and
metastasis of cancer. Anti-inflammatory therapy has been shown to have
some effects on the prevention and treatment of cancer, which supports
a pathogenic relationship between inflammation and cancer. This review
describes the interaction between inflammation and tumour development
and the main mechanism of regulation of the inflammatory response
during tumour development.
Collapse
Affiliation(s)
- Xin-Da Song
- Department of Urinary Surgery, Graduate School of Peking Union Medical College, Beijing Hospital, National Centre of Gerontology, Beijing, China
| | - Ya-Ni Wang
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ai-Li Zhang
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Bin Liu
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|