1
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
2
|
Mondal T, Chattopadhyay D, Saha Mondal P, Das S, Mondal A, Das A, Samanta S, Saha T. Fusobacterium nucleatum modulates the Wnt/β-catenin pathway in colorectal cancer development. Int J Biol Macromol 2025; 299:140196. [PMID: 39848378 DOI: 10.1016/j.ijbiomac.2025.140196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The Wnt/β-catenin signalling pathway normally maintains cellular and tissue homeostasis by regulating cellular differentiation and survival in a controlled manner. An aberrantly regulated Wnt/β-catenin signalling pathway can transform into an oncogenic pathway, which is associated with Colorectal cancer (CRC) as well as other cancers. CRC is one of the most frequently occurring gastrointestinal cancers worldwide. In CRC tissues, deregulation of Wnt/β-catenin pathway is observed, which indicates that this oncogenic pathway directly promotes CRC malignancy, cell migration, angiogenesis, chemoresistance, as well as shorter lifespan of a patient. Growing evidence suggests that human commensal microbes have a strong association with carcinogenesis, particularly the prevalence and high enrichment of Fusobacterium nucleatum in CRC progression. The Wnt/β-catenin pathway is one of the targeted pathways by F. nucleatum in CRC, where Fusobacterium adhesin attaches to E-cadherin to initiate infection. Also, Wnt/β-catenin pathway can be a potential target for the treatment of both CRC and F. nucleatum-positive CRC. Here, we discuss the underlying mechanisms of F. nucleatum-positive CRC development through modulation of Wnt/β-catenin signalling and its possibility for the application in targeted therapy of F. nucleatum-positive CRC.
Collapse
Affiliation(s)
- Tanushree Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Deepanjan Chattopadhyay
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Paromita Saha Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Sanjib Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Amalesh Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India; Department of Physiology, Katwa Collage, Katwa, Purba Bardhaman, West Bengal 713130, India
| | - Abhishek Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Subhasree Samanta
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India
| | - Tanima Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| |
Collapse
|
3
|
Kashif M. Gene expression profiling to uncover prognostic and therapeutic targets in colon cancer, combined with docking and dynamics studies to discover potent anticancer inhibitor. Comput Biol Chem 2025; 115:108349. [PMID: 39813876 DOI: 10.1016/j.compbiolchem.2025.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Drug resistance poses a major obstacle to the efficient treatment of colorectal cancer (CRC), which is one of the cancers that kill people most often in the United States. Advanced colorectal cancer patients frequently pass away from the illness, even with advancements in chemotherapy and targeted therapies. Developing new biomarkers and therapeutic targets is essential to enhancing prognosis and therapy effectiveness. My goal in this study was to use bioinformatics analysis of microarray data to find possible biomarkers and treatment targets for colorectal cancer. Using an ArrayExpress database, I examined a dataset on colon cancer to find genes that were differentially expressed (DEGs) in tumor versus healthy tissues. Integration of advanced bioinformatics tools provided robust insights into the identification and analysis of EGFR as a key player. STRING and Cytoscape enabled the construction and visualization of protein-protein interaction networks, highlighting EGFR as a hub gene due to its centrality and interaction profile. Functional enrichment analysis through DAVID revealed EGFR's involvement in critical biological pathways, as identified in GO and KEGG analyses. This underscores the power of combining computational tools to uncover significant biomarkers like EGFR. Autodock Vina screening of the NCI diversity dataset identified two potential EGFR inhibitors, ZINC13597410 and ZINC04896472. MD simulation data revealed that ZINC04896472 could be potential anticancer inhibitor. These findings serve as a basis for the creation of novel therapeutic approaches that target EGFR and other discovered pathways in CRC. The suggested strategy may improve the efficacy of CRC therapy and advance personalized medicine.
Collapse
Affiliation(s)
- Mohammad Kashif
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
4
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [DOI: https:/doi.org/10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Abolfazl Soulat
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Taghi Mohsenpour
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Leila Roshangar
- Department of Histology, Faculty of Medicine
- Tabriz University of Medical Sciences
| | | | - Fatemeh Soulat
- Applied Chemistry laboratory, Department of Chemistry, Faculty of Basic Science
- Azarbaijan Shahid Madani University (ASMU)
| |
Collapse
|
5
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [PMID: 40191350 PMCID: PMC11966581 DOI: 10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Transitional cold atmospheric plasma (TCAP) represents a novel technique for generating plasma remotely from a primary source. It consists of a partially nonthermal ionized gas mixture containing charged and neutral particles, photons, and free radicals. In recent years, TCAP has attracted considerable attention in biomedical applications. In order to evaluate colon cancer stem cells' (CCSCs) proliferation, apoptotic induction, inflammatory response, and survival, TCAP was utilized both directly and indirectly in this study. Using argon and helium gases, TCAP was continuously delivered in two stages during the experiment. For direct state, TCAP was irradiated onto CCSCs for 3 and 5 min. In the indirect technique, Matrigel was treated with TCAP for 5 min before the introduction of cells. In vitro assays demonstrated that TCAP exposure significantly reduced the viability of CCSCs; helium gas and direct application had greater impacts than argon. Numerous investigations confirmed the induction of apoptosis, showing that the treated groups had more apoptotic cells and altered cellular structures than controls (****p < 0.0001). A substantial increase in the Bax/Bcl-2 ratio was found by analyzing the expression of the Bax and Bcl-2 genes, indicating increased susceptibility to apoptosis (*p = 0.0177 and ***p = 0.0004). The higher efficacy of the direct helium mode was further highlighted by inflammatory marker analysis, which showed a significant reduction in interleukin-6 and interleukin-8 expression in cells directly treated with TCAP-helium compared to TCAP-argon (**p = 0.0015 and ***p = 0.0007). Lastly, the proliferation test, which relies on K i-67 expression, demonstrated a noteworthy decline in all TCAP-treated groups, with the direct helium group exhibiting the most robust impact (**p = 0.0014). Overall, the findings highlight the potential of TCAP, particularly with helium, as a promising approach for selectively targeting CCSCs and providing insights into its therapeutic mechanisms for cancer treatment. TCAP, therefore, emerges as a unique therapeutic strategy with potential applications in cancer stem cell-targeted therapies.
Collapse
Affiliation(s)
- Abolfazl Soulat
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Taghi Mohsenpour
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Leila Roshangar
- Department
of Histology, Faculty of Medicine, Tabriz
University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Seyyed Yaghoub Moaddab
- Liver
and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Fatemeh Soulat
- Applied
Chemistry laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), 5375171379 Tabriz, Iran
| |
Collapse
|
6
|
Singh U, Kokkanti RR, Patnaik S. Beyond chemotherapy: Exploring 5-FU resistance and stemness in colorectal cancer. Eur J Pharmacol 2025; 991:177294. [PMID: 39863147 DOI: 10.1016/j.ejphar.2025.177294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, demanding continuous advancements in treatment strategies. This review explores the complexities of targeting colorectal cancer stem cells (CSCs) and the mechanisms contributing to resistance to 5-fluorouracil (5-FU). The efficacy of 5-FU is enhanced by combination therapies such as FOLFOXIRI and targeted treatments like bevacizumab, cetuximab, and panitumumab, particularly in KRAS wild-type tumors, despite associated toxicity. Biomarkers like thymidylate synthase (TYMS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) are crucial for predicting 5-FU efficacy and resistance. Targeting CRC-CSCs remains challenging due to their inherent resistance to conventional therapies, marker variability, and the protective influence of the tumor microenvironment which promotes stemness and survival. Personalized treatment strategies are increasingly essential to address CRC's genetic and phenotypic diversity. Advances in immunotherapy, including immune checkpoint inhibitors and cancer vaccines, along with nanomedicine-based therapies, offer promising targeted drug delivery systems that enhance specificity, reduce toxicity, and provide novel approaches for overcoming resistance mechanisms. Integrating these innovative strategies with traditional therapies may enhance the effectiveness of CRC therapy by addressing the underlying causes of 5-FU resistance in CSCs.
Collapse
Affiliation(s)
- Ursheeta Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
7
|
Khafaga DSR, Muteeb G, Aswa DW, Aatif M, Farhan M, Allam S. Green chemistry: Modern therapies using nanocarriers for treating rare brain cancer metastasis from colon cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100213. [PMID: 39826871 DOI: 10.1016/j.slasd.2025.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Brain metastasis (BM) from colon cancer is associated with a poor prognosis and restricted treatment alternatives, largely due to issues related to blood-brain barrier (BBB) permeability and the negative effects of standard chemotherapy. Nanotechnology improves treatment efficacy by enabling targeted and controlled drug delivery. This review article evaluates the potential of nanotechnology-based therapies for treating colon cancer BM, emphasizing their capacity to cross the BBB, diminish metastatic growth, and enhance overall survival rates. A review of multiple studies evaluated nanoparticles (NPs) as carriers for chemotherapy, focusing on parameters including particle size, surface charge, and drug-loading capacity. The study also reviewed studies that examined BBB penetration, in vitro tumor accumulation, and in vivo tumor growth inhibition. In vitro findings indicated that NPs accumulate more efficiently in BM tissue than in healthy brain tissue and show significant BBB penetration. In vivo, nanotherapy markedly inhibited tumor growth and prolonged survival relative to conventional chemotherapy or control treatments while also exhibiting reduced side effects. Recent studies demonstrated that plant extracts can effectively and safely synthesize nanomaterials, positioning them as a viable and environmentally friendly precursor for nanomaterial production. Nanotechnology-based therapies demonstrate significant potential in the treatment of colon cancer BM by minimizing systemic toxicity, enhancing therapeutic efficacy, and facilitating more targeted drug delivery. Further research is required to confirm these findings and implement them in clinical practice.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City 43511, Suez, Egypt.
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Darin W Aswa
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| |
Collapse
|
8
|
Cong G, Zhu X, Chen XR, Chen H, Chong W. Mechanisms and therapeutic potential of the hedgehog signaling pathway in cancer. Cell Death Discov 2025; 11:40. [PMID: 39900571 PMCID: PMC11791101 DOI: 10.1038/s41420-025-02327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/25/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
A sort of major malignant disease, cancer can compromise human health wherever. Some mechanisms of the occurrence and evolution of cancer still seem elusive even now. Consequently, the therapeutic strategies for cancer must continually evolve. The hedgehog signaling pathway, a critical mediator in the normal development of numerous organs and the pathogenesis of cancer, is typically quiescent but is aberrantly activated in several malignancies. Extensive research has delineated that the aberrant activity of the hedgehog signaling pathway, whether autocrine or paracrine, is implicated in the initiation and progression of various neoplasms, including medulloblastoma (MB), basal cell carcinoma (BCC) and so on. Thus, notably Smo inhibitors, the opening of inhibitors of the hedgehog signaling pathway has become a topic of research attention. This review aims to summarize four aberrant activation pathways and the influence of hedgehog signaling pathway associated chemicals on tumor formation and development. Additionally, it will explore the therapeutic potential of targeted interventions in the hedgehog signaling pathway for cancer treatment.
Collapse
Affiliation(s)
- Ge Cong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Xingyu Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Xin Ru Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology Unit, Qilu Hospital of Shandong University, 250021, Jinan, China.
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China.
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China.
| |
Collapse
|
9
|
Good HJ, Larsen F, Shin AE, Zhang L, Derouet M, Meriwether D, Worthley D, Reddy ST, Wang TC, Asfaha S. Prostaglandin E 2 and Akt Promote Stemness in Apc Mutant Dclk1+ Cells to Give Rise to Colitis-associated Cancer. Cell Mol Gastroenterol Hepatol 2025; 19:101469. [PMID: 39884575 PMCID: PMC11999635 DOI: 10.1016/j.jcmgh.2025.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND & AIMS Loss of the tumor suppressor gene Apc in Lgr5+ intestinal stem cells results in aberrant Wnt signaling and colonic tumorigenesis. In the setting of injury, however, we and others have also shown that non-stem cells can give rise to colonic tumors. The mechanism by which inflammation leads to cellular plasticity and cancer, however, remains largely unknown. METHODS RNA expression analysis of Wnt, COX, and Akt signaling was assessed in patients with quiescent or active ulcerative colitis (UC) and patients with UC-associated neoplasia using available datasets. The role of COX signaling in colonic tumorigenesis was examined using epithelial and doublecortin-like kinase 1 (Dclk1)+ cell-specific conditional COX-1 knockout mice and pharmacologic treatment with different nonsteroidal anti-inflammatory drugs. RESULTS In this study, we show that prostaglandins and phospho-Akt are key inflammatory mediators that promote stemness in Apc mutant Dclk1+ cells that give rise to colorectal cancer. Moreover, prostaglandin E2 (PGE2) and Akt are increased in colitis in both mice and humans, leading to inflammation-associated dysplasia upon activation of Wnt signaling. Importantly, inhibition of epithelial-derived COX-1 by aspirin or conditional knockout in Dclk1+ cells reduced PGE2 levels and prevented the development of inflammation-associated colorectal cancer. CONCLUSIONS Our data shows that epithelial and Dclk1+ cell-derived COX-1 plays an important role in inflammation-associated tumorigenesis. Importantly, low-dose aspirin was effective in chemo-prevention through inhibition of COX-1 that reduced colitis-associated cancer.
Collapse
Affiliation(s)
- Hayley J Good
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Frederikke Larsen
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Alice E Shin
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Liyue Zhang
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Mathieu Derouet
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada
| | - David Meriwether
- Department of Medicine, Division of Cardiology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Daniel Worthley
- South Australian Health Medical Research Institute, North Terrace Adelaide, Australia
| | - Srinivasa T Reddy
- Department of Medicine, Division of Cardiology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York
| | - Samuel Asfaha
- Department of Medicine, University of Western Ontario, London, Ontario, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
10
|
Wang H, Jia L, Yu H, Tang H, Chi H, Zhang W, Chen J. Mechanism Study of Bufalin Reversal of Drug Resistance by Inhibiting Hypoxic Colon Cancer Cell-Induced Polarization of M2 Macrophages. Integr Cancer Ther 2025; 24:15347354251325806. [PMID: 40071641 PMCID: PMC11898227 DOI: 10.1177/15347354251325806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/24/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Chemoresistance is still an important factor affecting the efficacy of treatment in colorectal cancer (CRC) patients. Hypoxia is related to poor prognosis and treatment resistance in cancer. Relevant studies have shown that a hypoxic microenvironment can promote the polarization of M2 macrophages and thus promote tumor development. Previous research has found that bufalin has a wide range of antitumor effects, but whether bufalin can reverse tumor resistance by improving the hypoxic tumor microenvironment is still unclear. In present research, it was found that high expression of SRC-3 in CRC cells under hypoxic conditions promoted the polarization of M2 and caused chemotherapy resistance, while bufalin, a monomeric drug used in Chinese medicine, reduced the level of SRC-3 and HIF-1α, thereby reversing chemoresistance. In addition, overexpression of SRC-3 reduced the hypoxia-mitigating effect of bufalin on CRC cells to promote the polarization of M2. Bufalin also inhibits the polarization of M2 caused by hypoxic CRC cells. Therefore, bufalin has the potential to become a new adjuvant therapy that can be further explored in future studies on its treatment of CRC.
Collapse
Affiliation(s)
- Haijing Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Jia
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjie Yu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Tang
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Huabowen Chi
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhang
- Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Jinbao Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Etzi F, Griñán-Lisón C, Fenu G, González-Titos A, Pisano A, Farace C, Sabalic A, Picon-Ruiz M, Marchal JA, Madeddu R. The Role of miR-486-5p on CSCs Phenotypes in Colorectal Cancer. Cancers (Basel) 2024; 16:4237. [PMID: 39766136 PMCID: PMC11674241 DOI: 10.3390/cancers16244237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third diagnosed cancer worldwide. Forty-four percent of metastatic colorectal cancer patients were diagnosed at an early stage. Despite curative resection, approximately 40% of patients will develop metastases within a few years. Previous studies indicate the presence of cancer stem cells (CSCs) and their contribution to CRC progression and metastasis. miRNAs deregulation plays a role in CSCs formation and in tumor development. In light of previous studies, we investigated the role of miR-486-5p to understand its role in CSC better. METHODS The expression of miR-486-5p was assessed in adherent cells and spheres generated from two CRC cell lines to observe the difference in expression in CSC-enriched spheroids. Afterward, we overexpressed and underexpressed this miRNA in adherent and sphere cultures through the transfection of a miR-486-5p mimic and a mimic inhibitor. RESULTS The results demonstrated that miR-486-5p exhibited a notable downregulation in CSC models, and its overexpression led to a significant decrease in colony size. CONCLUSIONS In this study, we confirmed that miR-486-5p plays an oncosuppressive role in CRC, thereby advancing our understanding of the role of this microRNA in the CSC phenotype.
Collapse
Affiliation(s)
- Federica Etzi
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Carmen Griñán-Lisón
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
| | - Grazia Fenu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Aitor González-Titos
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Andrea Pisano
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Cristiano Farace
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Angela Sabalic
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Manuel Picon-Ruiz
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Roberto Madeddu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| |
Collapse
|
12
|
Liu Y, Gu X, Xuan M, Lou N, Fu L, Li J, Xue C. Notch signaling in digestive system cancers: Roles and therapeutic prospects. Cell Signal 2024; 124:111476. [PMID: 39428027 DOI: 10.1016/j.cellsig.2024.111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Digestive system cancers rank among the most prevalent malignant tumors, maintaining persistently high incidence and mortality rates. Notch signaling activity, often aberrant in esophageal, gastric, hepatic, pancreatic, and colorectal cancers, plays a pivotal role in the initiation, progression, and therapy resistance of these malignancies. As a highly conserved pathway, Notch signaling is integral to cell differentiation, survival, proliferation, stem cell renewal, development, and morphogenesis. Its dysregulation has been increasingly linked to various diseases, particularly digestive system cancers. In these malignancies, altered Notch signaling influences multiple biological processes, including cell proliferation, invasion, cell cycle progression, immune evasion, drug resistance, and stemness maintenance. Understanding the mechanisms of Notch signaling in digestive system cancers is essential for the development of novel targeted therapies. Numerous Notch pathway-targeting drugs are currently in preclinical studies, demonstrating promising efficacy both as monotherapies and in combination with conventional anti-cancer treatments. This review summarizes recent high-quality findings on the involvement of Notch signaling in digestive system cancers, focusing on the expression changes and pathological mechanisms of its dysregulated components. Special emphasis is placed on the potential of translating Notch-targeted approaches into therapeutic strategies, which hold promise for overcoming the limitations of existing treatments and improving the poor prognosis associated with these cancers.
Collapse
Affiliation(s)
- Yingru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Na Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Leiya Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
13
|
Yan H, Su Y, Wang L. Impact of Ahmadi Continuing Nursing Model on self-care ability, stoma complications and quality of life of colostomy patients. BMC Gastroenterol 2024; 24:421. [PMID: 39573999 PMCID: PMC11583414 DOI: 10.1186/s12876-024-03497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVE To analyze the effects of Ahmadi Continuing Nursing Model (ACNM) on the self-care ability, stoma complications and life quality in colostomy patients. METHODS The clinical data of 120 patients who underwent postoperative colostomy in our hospital from June 2020 to June 2023 were retrospectively analyzed. The patients were divided into control group (n = 60, treated with routine nursing) and observation group (n = 60, treated with the ACNM on the basis of routine nursing) according to different nursing methods. Postoperative recovery of gastrointestinal function, ostomy adaptability, self-care ability, and life quality before and after nursing were compared. The probability of complications before and after nursing was recorded between the two groups. RESULTS The time of first exhaust was 3.65 ± 0.82 d, the time of first meal was 1.83 ± 0.65 d, and the first bowel sound recovery was 1.47 ± 0.53 d in the observation group, which were shorter than those in the control group (4.38 ± 1.20 d, 3.12 ± 1.15 d, 2.39 ± 1.06 d, P < 0.001). After intervention, the positive emotions in the ostomy adaptation score were 32.09 ± 5.03 points, negative emotions were 31.41 ± 5.70 points, social life adaptation were 27.12 ± 4.98 points, and the total score was 90.78 ± 5.98 points in the observation group, which were significantly higher than those in the control group (26.32 ± 4.52 points, 24.25 ± 6.02 points, 20.25 ± 4.02 points, 67.25 ± 6.09 points, P < 0.001). The self-willingness was 34.18 ± 4.02 points, self-care skill was 10.57 ± 2.23 points, self-care knowledge was 18.59 ± 3.10 points, and the total score was 63.18 ± 4.98 points in the observation group, which were significantly higher than those in the control group (25.25 ± 3.08 points, 8.72 ± 2.13 points, 15.26 ± 2.70 points, 45.69 ± 4.09 points, P < 0.001). The physical function was 79.74 ± 2.81 points, psychological function was 76.71 ± 3.05 points, social function was 78.11 ± 3.50 points, and material life status was 60.06 ± 2.98 points in the quality of life in the observation group, which were significantly higher than those in the control group (75.36 ± 2.68 points, 69.72 ± 2.93 points, 72.33 ± 3.42 points, 51.23 ± 3.08 points, P < 0.001). CONCLUSION ACNM effectively promoted the recovery of gastrointestinal function after surgery in colostomy patients by improving patients' stoma adaptability, self-care ability and life quality and reducing the occurrence of complications, which was worthy of promotion.
Collapse
Affiliation(s)
- Huiming Yan
- Department of Nursing, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110000, China
| | - Ying Su
- Department of Nursing, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110000, China
| | - Lina Wang
- Department of Nursing, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110000, China.
| |
Collapse
|
14
|
Wang H, Tang R, Jiang L, Jia Y. The role of PIK3CA gene mutations in colorectal cancer and the selection of treatment strategies. Front Pharmacol 2024; 15:1494802. [PMID: 39555098 PMCID: PMC11565213 DOI: 10.3389/fphar.2024.1494802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
PIK3CA gene encodes the p110α catalytic subunit of PI3K, which regulates the PI3K/AKT/mTOR signaling pathway. PIK3CA gene mutation is one of the most common mutations in colorectal cancer (CRC), affecting about 15%-20% of CRC patients. PIK3CA gene mutation leads to the persistent activation of the PI3K/AKT/mTOR signaling pathway, which promotes the proliferation, invasion, metastasis, and drug resistance of CRC. This article provides a summary of the key detection methods for PIK3CA gene mutation, and provides an introduction to the existing colorectal cancer treatments and their practical applications in the clinic. Besides, this article summarizes the role and mechanism of PIK3CA gene mutation in the occurrence and development of CRC. It also explores the relationship between PIK3CA gene mutation and the clinical features and prognosis of CRC. This article focuses on the influence and mechanism of PIK3CA gene mutation on the targeted therapy and immunotherapy of CRC, and discusses the potential value and future direction of PIK3CA gene mutation in the personalized therapy of CRC. We aim to provide new perspectives and ideas for the precise diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Tang
- Chengdu Anorectal Hospital, Chengdu, China
| | - Ling Jiang
- Chengdu Anorectal Hospital, Chengdu, China
| | - Yingtian Jia
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Cunha AF, Delou JM, Barbosa PS, Conceição JSM, Souza KCS, Chagas V, Soletti RC, de Souza HSP, Borges HL. Trp53 Deletion Promotes Exacerbated Colitis, Facilitates Lgr5+ Cancer Stem Cell Expansion, and Fuels Tumorigenesis in AOM/DSS-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:10953. [PMID: 39456736 PMCID: PMC11507199 DOI: 10.3390/ijms252010953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Colorectal cancer CRC remains one of the leading causes of cancer-related deaths worldwide, with chronic intestinal inflammation identified as a major risk factor. Notably, the tumor suppressor TP53 undergoes mutation at higher rates and earlier stages during human inflammation-driven colon tumorigenesis than in sporadic cases. We investigated whether deleting Trp53 affects inflammation-induced tumor growth and the expression of Lgr5+ cancer stem cells in mice. We examined azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon tumorigenesis in wild-type Trp53 (+/+), heterozygous (+/-), and knockout (-/-) mice. Trp53-/- mice showed increased sensitivity to DSS colitis and earlier accelerated tumorigenesis with 100% incidence. All groups could develop invasive tumors, but knockouts displayed the most aggressive features. Unlike wild-type CRC, knockouts selectively showed increased populations of Lgr5+ colon cancer stem-like cells. Trp53 loss also boosted laminin, possibly facilitating the disruption of the tumor border. This study highlights how Trp53 deletion promotes the perfect storm of inflammation and stemness, driving colon cancer progression. Trp53 deletion dramatically shortened AOM/DSS latency and improved tumor induction efficiency, offering an excellent inflammation-driven CRC model.
Collapse
Affiliation(s)
- Anderson F. Cunha
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-90, RJ, Brazil; (A.F.C.); (J.M.D.); (P.S.B.); (J.S.M.C.)
- Instituto D’Or de Ensino e Pesquisa, Rio de Janeiro 22281-100, RJ, Brazil
| | - João M. Delou
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-90, RJ, Brazil; (A.F.C.); (J.M.D.); (P.S.B.); (J.S.M.C.)
- Instituto D’Or de Ensino e Pesquisa, Rio de Janeiro 22281-100, RJ, Brazil
| | - Pedro S. Barbosa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-90, RJ, Brazil; (A.F.C.); (J.M.D.); (P.S.B.); (J.S.M.C.)
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (K.C.S.S.); (H.S.P.d.S.)
| | - Julia S. M. Conceição
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-90, RJ, Brazil; (A.F.C.); (J.M.D.); (P.S.B.); (J.S.M.C.)
| | - Karen C. S. Souza
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (K.C.S.S.); (H.S.P.d.S.)
| | - Vera Chagas
- Departamento de Patologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil;
| | - Rossana C. Soletti
- Departamento Interdisciplinar, Universidade Federal do Rio Grande do Sul, Tramandaí 95590-000, RS, Brazil;
| | - Heitor S. P. de Souza
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (K.C.S.S.); (H.S.P.d.S.)
| | - Helena L. Borges
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-90, RJ, Brazil; (A.F.C.); (J.M.D.); (P.S.B.); (J.S.M.C.)
| |
Collapse
|
16
|
Li X, Pan J, Zheng P. USP7 regulates growth and maintains the stemness of p53-mutant colorectal cancer cells via stabilizing of mutant p53. Front Oncol 2024; 14:1427663. [PMID: 39346740 PMCID: PMC11427698 DOI: 10.3389/fonc.2024.1427663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction TP53 is one of the most frequently mutated genes among all cancers, and TP53 mutants occur more than 40% in colorectal cancers (CRCs). Accumulation of mutant p53 may augment colorectal cancer stem cells (CCSCs) phenotype and enhance colorectal tumorigenesis. Thus, reducing the level of mutant p53 protein is an attractive anticancer strategy. Methods CSC-enriched cancer cells were obtained by tumor sphere formation assay. The effects of USP7 on the proliferation of cancer cells were determined by MTS and colony formation assays. Wound healing assay was used to test cell migratory abilities. qPCR and western blotting assays were performed to verify the mRNA and protein levels of CSC markers, USP7 and p53. Co-immunoprecipitation assay was used to test the interaction effects between USP7 and p53. Results In this study, we found that USP7 and mutant p53 were dramatically elevated in CSC-enriched colorectal cancer cells and USP7 expression was positively associated with self-renewal and maintenance of CCSCs. USP7 regulated cell growth, stemness and migration of colorectal cancer cells. USP7 depletion significantly reduced proliferation of cancer cells and suppressed the self-renewal of CSC-enriched colorectal cancer cells. Further studies indicated that USP7 knockdown could significantly decrease mutant p53 protein levels both in CRCs and CSC-enriched colorectal cancer cells. Moreover, mutant p53 was stabilized by USP7 and they interacted with each other. Furthermore, USP7 inhibitor P5091 also diminished CCSCs self-renewal and reduced mutant p53 levels. Conclusion Taken together, our findings demonstrated that USP7 involved in the modulation of CCSCs stemness, as well as a critical target for clinical treatment of cancers with different p53 mutations.
Collapse
Affiliation(s)
- Xue Li
- Department of Pharmacy, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Pan
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Stomatology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Pengcheng Zheng
- Department of Pharmacy, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
17
|
Xu D, Han S, Yue X, Xu X, Huang T. METTL14 Suppresses Tumor Stemness and Metastasis of Colon Cancer Cells by Modulating m6A-Modified SCD1. Mol Biotechnol 2024; 66:2095-2105. [PMID: 37592151 DOI: 10.1007/s12033-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Colon cancer (CC) is a malignant disease of the digestive tract, and its rising prevalence poses a grave threat to people's health. N6-methyladenosine (m6A) modification is essential for various crucial life processes through modulating gene expression. Methyltransferase-like 14 (METTL14), the m6A methylation transferase core protein, and its aberrant expression is intimately correlated to tumor development. This study was conducted to probe the impacts and specific mechanisms of METTL14 on the biological process of CC. Bioinformatics data disclosed that METTL14 was significantly attenuated in CC. Functional assays were executed to ascertain how METTL14 affected CC tumorigenicity, and METTL14 overexpression caused a notable decline in viability, migration, invasion, and stemness phenotype of CC cells. Then, in-depth mechanistic studies displayed that stearoyl-CoA desaturase 1 (SCD1) was a downstream target gene of METTL14-mediated m6A modification. METTL14 overexpression substantially augmented the m6A modification of SCD1 mRNA and diminished the SCD1 mRNA level. In addition, we revealed that YTHDF2 was the m6A reader to recognize METTL14 m6A-modified SCD1 mRNA and abolish its stability. Finally, we also validated that METTL14 might impede the tumorigenic process of CC through SCD1 mediated Wnt/β-catenin signaling. Taken together, this study presented that METTL14 performed as a potential therapeutic target in CC with important implications for the prognosis amelioration of CC patients.
Collapse
Affiliation(s)
- Dehua Xu
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Shuguang Han
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Xiaoguang Yue
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Xiangyu Xu
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Tieao Huang
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China.
| |
Collapse
|
18
|
Gonçalves J, Feijó M, Socorro S, Luís Â, Gallardo E, Duarte AP. The Role of Ayahuasca in Colorectal Adenocarcinoma Cell Survival, Proliferation and Oxidative Stress. Pharmaceuticals (Basel) 2024; 17:719. [PMID: 38931386 PMCID: PMC11207024 DOI: 10.3390/ph17060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The psychedelic beverage ayahuasca is originally obtained by Banisteriopsis caapi (B. caapi) (BC) and Psychotria viridis (P. viridis) (PV). However, sometimes these plant species are replaced by others that mimic the original effects, such as Mimosa hostilis (M. hostilis) (MH) and Peganum harmala (P. harmala) (PH). Its worldwide consumption and the number of studies on its potential therapeutic effects has increased. This study aimed to evaluate the anticancer properties of ayahuasca in human colorectal adenocarcinoma cells. Thus, the maximum inhibitory concentration (IC50) of decoctions of MH, PH, and a mixture of these (MHPH) was determined. The activities of caspases 3 and 9 were evaluated, and the cell proliferation index was determined through immunocytochemical analysis (Ki-67). Two fluorescent probes were used to evaluate the production of oxidative stress and the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) was also evaluated. It was demonstrated that exposure to the extracts significantly induced apoptosis in Caco-2 cells, while decreasing cell proliferation. MH and MHPH samples significantly reduced oxidative stress and significantly increased glutathione peroxidase activity. No significant differences were found in SOD activity. Overall, it was demonstrated that the decoctions have a potential anticancer activity in Caco-2 cells.
Collapse
Affiliation(s)
- Joana Gonçalves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| | - Mariana Feijó
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
| | - Sílvia Socorro
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| | - Ana Paula Duarte
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| |
Collapse
|
19
|
Wu J, Li W, Su J, Zheng J, Liang Y, Lin J, Xu B, Liu Y. Integration of single-cell sequencing and bulk RNA-seq to identify and develop a prognostic signature related to colorectal cancer stem cells. Sci Rep 2024; 14:12270. [PMID: 38806611 PMCID: PMC11133358 DOI: 10.1038/s41598-024-62913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
The prognosis for patients with colorectal cancer (CRC) remains worse than expected due to metastasis, recurrence, and resistance to chemotherapy. Colorectal cancer stem cells (CRCSCs) play a vital role in tumor metastasis, recurrence, and chemotherapy resistance. However, there are currently no prognostic markers based on CRCSCs-related genes available for clinical use. In this study, single-cell transcriptome sequencing was employed to distinguish cancer stem cells (CSCs) in the CRC microenvironment and analyze their properties at the single-cell level. Subsequently, data from TCGA and GEO databases were utilized to develop a prognostic risk model for CRCSCs-related genes and validate its diagnostic performance. Additionally, functional enrichment, immune response, and chemotherapeutic drug sensitivity of the relevant genes in the risk model were investigated. Lastly, the key gene RPS17 in the risk model was identified as a potential prognostic marker and therapeutic target for further comprehensive studies. Our findings provide new insights into the prognostic treatment of CRC and offer novel perspectives for a systematic and comprehensive understanding of CRC development.
Collapse
Affiliation(s)
- Jiale Wu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Wanyu Li
- Well Lead Medical Co., Ltd., Guangzhou, 511434, Guangdong, China
| | - Junyu Su
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Jiamin Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yanwen Liang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Jiansuo Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Bilian Xu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| | - Yi Liu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
20
|
Naser AN, Xing T, Tatum R, Lu Q, Boyer PJ, Chen YH. Colonic crypt stem cell functions are controlled by tight junction protein claudin-7 through Notch/Hippo signaling. Ann N Y Acad Sci 2024; 1535:92-108. [PMID: 38598500 PMCID: PMC11111361 DOI: 10.1111/nyas.15137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The tight junction protein claudin-7 is essential for tight junction function and intestinal homeostasis. Cldn7 deletion in mice leads to an inflammatory bowel disease-like phenotype exhibiting severe intestinal epithelial damage, weight loss, inflammation, mucosal ulcerations, and epithelial hyperplasia. Claudin-7 has also been shown to be involved in cancer metastasis and invasion. Here, we test our hypothesis that claudin-7 plays an important role in regulating colonic intestinal stem cell function. Conditional knockout of Cldn7 in the colon led to impaired epithelial cell differentiation, hyperproliferative epithelium, a decrease in active stem cells, and dramatically altered gene expression profiles. In 3D colonoid culture, claudin-7-deficient crypts were unable to survive and form spheroids, emphasizing the importance of claudin-7 in stem cell survival. Inhibition of the Hippo pathway or activation of Notch signaling partially rescued the defective stem cell behavior. Concurrent Notch activation and Hippo inhibition resulted in restored colonoid survival, growth, and differentiation to the level comparable to those of wild-type derived crypts. In this study, we highlight the essential role of claudin-7 in regulating Notch and Hippo signaling-dependent colonic stem cell functions, including survival, self-renewal, and differentiation. These new findings may shed light on potential avenues to explore for drug development in colorectal cancer.
Collapse
Affiliation(s)
- Amna N. Naser
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
| | - Tiaosi Xing
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Neural and Behavioral Science Department, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Rodney Tatum
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Philip J. Boyer
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
21
|
Radu P, Zurzu M, Tigora A, Paic V, Bratucu M, Garofil D, Surlin V, Munteanu AC, Coman IS, Popa F, Strambu V, Ramboiu S. The Impact of Cancer Stem Cells in Colorectal Cancer. Int J Mol Sci 2024; 25:4140. [PMID: 38673727 PMCID: PMC11050141 DOI: 10.3390/ijms25084140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Despite incessant research, colorectal cancer (CRC) is still one of the most common causes of fatality in both men and women worldwide. Over time, advancements in medical treatments have notably enhanced the survival rates of patients with colorectal cancer. Managing metastatic CRC involves a complex tradeoff between the potential benefits and adverse effects of treatment, considering factors like disease progression, treatment toxicity, drug resistance, and the overall impact on the patient's quality of life. An increasing body of evidence highlights the significance of the cancer stem cell (CSC) concept, proposing that CSCs occupy a central role in triggering cancer. CSCs have been a focal point of extensive research in a variety of cancer types, including CRC. Colorectal cancer stem cells (CCSCs) play a crucial role in tumor initiation, metastasis, and therapy resistance, making them potential treatment targets. Various methods exist for isolating CCSCs, and understanding the mechanisms of drug resistance associated with them is crucial. This paper offers an overview of the current body of research pertaining to the comprehension of CSCs in colorectal cancer.
Collapse
Affiliation(s)
- Petru Radu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mihai Zurzu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Anca Tigora
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Vlad Paic
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mircea Bratucu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Dragos Garofil
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Valeriu Surlin
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Alexandru Claudiu Munteanu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Ionut Simion Coman
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
- General Surgery Department, “Bagdasar-Arseni” Clinical Emergency Hospital, 12 Berceni Road, 041915 Bucharest, Romania
| | - Florian Popa
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Victor Strambu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Sandu Ramboiu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| |
Collapse
|
22
|
Faghfuri E, Gholizadeh P. The role of Akkermansia muciniphila in colorectal cancer: A double-edged sword of treatment or disease progression? Biomed Pharmacother 2024; 173:116416. [PMID: 38471272 DOI: 10.1016/j.biopha.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is the second most cancer-related death worldwide. In recent years, probiotics have been used to reduce the potential risks of CRC and tumors with various mechanisms. Different bacteria have been suggested to play different roles in the progression, prevention, or treatment of CRC. Akkermansia muciniphila is considered a next-generation probiotic for preventing and treating some diseases. Therefore, in this review article, we aimed to describe and discuss different mechanisms of A. muciniphila as an intestinal microbiota or probiotic in CRC. Some studies suggested that the abundance of A. muciniphila was higher or increased in CRC patients compared to healthy individuals. However, the decreased abundance of A. muciniphila was associated with severe symptoms of CRC, indicating that A. muciniphila did not play a role in the development of CRC. In addition, A. muciniphila administration elevates gene expression of proliferation-associated molecules such as S100A9, Dbf4, and Snrpd1, or markers for cell proliferation. Some other studies suggested that inflammation and tumorigenesis in the intestine might promoted by A. muciniphila. Overall, the role of A. muciniphila in CRC development or inhibition is still unclear and controversial. Various methods of bacterial supplementation, such as viability, bacterial number, and abundance, could all influence the colonization effect of A. muciniphila administration and CRC progression. Overall, A. mucinipila has been revealed to modulate the therapeutic potential of immune checkpoint inhibitors. Preliminary human data propose that oral consumption of A. muciniphila is safe, but its efficacy needs to be confirmed in more human clinical studies.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
23
|
Zhou T, Qian H, Zhang D, Fang W, Yao M, Shi H, Chen T, Chai C, Guo B. PGRN inhibits CD8 +T cell recruitment and promotes breast cancer progression by up-regulating ICAM-1 on TAM. Cancer Immunol Immunother 2024; 73:76. [PMID: 38554213 PMCID: PMC10981592 DOI: 10.1007/s00262-024-03655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/11/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Tumor microenvironment actually reduces antitumor effect against the immune attack by exclusion of CD8+T cells. Progranulin (PGRN) is a multifunctional growth factor with significant pathological effects in multiple tumors; however, its role in immunity evasion of breast cancer (BCa) is not completely understood. METHODS We depleted GRN (PGRN gene) genetically in mice or specifically in PY8119 murine BCa cell line, and mouse models of orthotopic or subcutaneous transplantation were used. Chimeric mice-deficient of PGRN (Grn-/-) in bone marrow (BM) compartment was also generated. Association of PGRN expression with chemokine production or BCa development was investigated by histological and immunological assays. RESULTS We found PGRN was involved in exhaustion of cytotoxic CD8+T cell in BCa with the increasing expressions of M2 markers and intercellular cell adhesion molecule-1 (ICAM-1) on macrophages. Specifically, ablation of PGRN in PY8119 cells reduced tumor burden, accompanied by the infiltrating of cytotoxic CD8+T cells into tumor nests. Moreover, our result revealed that blockade of PD-1 in PGRN-depleted tumors exhibited better antitumor effect in vivo and significantly decreased tumor burden. CONCLUSION These findings suggest that inhibition of PGRN may act as a potential immune-therapeutic strategy by recovering infiltration of CD8+T cell in BCa tissue and thereby enhancing the response to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Ting Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenli Fang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - MengLi Yao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - He Shi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengsen Chai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Bianqin Guo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
24
|
Sah DK, Arjunan A, Park SY, Lee B, Jung YD. Sulforaphane Inhibits IL-1β-Induced IL-6 by Suppressing ROS Production, AP-1, and STAT3 in Colorectal Cancer HT-29 Cells. Antioxidants (Basel) 2024; 13:406. [PMID: 38671854 PMCID: PMC11047376 DOI: 10.3390/antiox13040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) stands as a major cause of cancer-related mortality globally, accounting for approximately 881,000 deaths each year. Traditional approaches such as chemotherapy and surgery have been the primary treatment modalities, yet the outcomes for patients with metastatic CRC are often unsatisfactory. Recent research has focused on targeting the pathways involved in oxidative stress, inflammation, and metastasis to enhance the survival of CRC patients. Within this context, sulforaphane (SFN), a notable phytochemical found predominantly in cruciferous vegetables, has been recognized as a potential anticancer agent. However, the specific mechanisms through which SFN may exert its chemopreventive effects in CRC remain unclear. This study explores the impact of SFN on IL-1β-induced IL-6 activation and MAPK and AP-1 signaling in HT-29 cells. Our findings reveal that SFN treatment not only diminishes IL-1β-stimulated IL-6 expression but also reduces oxidative stress by curtailing reactive oxygen species (ROS) production. Furthermore, it hinders the proliferation and invasiveness of HT-29 cells through the modulation of MAPK/AP-1 and STAT3 signaling pathways. These results indicate that SFN mitigates IL-1β-induced IL-6 expression in CRC cells by attenuating ROS production and disrupting MAPK/AP-1 signaling. This suggests that SFN holds significant potential as a chemotherapeutic agent for both treating and preventing CRC.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Seon Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| |
Collapse
|
25
|
Hu Y, Luo M. Cinobufotalin regulates the USP36/c-Myc axis to suppress malignant phenotypes of colon cancer cells in vitro and in vivo. Aging (Albany NY) 2024; 16:5526-5544. [PMID: 38517383 PMCID: PMC11006458 DOI: 10.18632/aging.205661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 03/23/2024]
Abstract
Ubiquitin-specific protease 36 (USP36) has been reported to exhibit oncogenic effects in various malignancies, but the function of USP36 in colon cancer progression remains indefinite. Herein, we aimed to determine the role and mechanism of USP36 in malignant phenotypes of colon cancer cells and explore the potential drug targeting USP36. Bioinformatics analyses indicated that USP36 is highly expressed and significantly related to tumor stages in colon cancer. Besides, USP36 was further up-regulated in oxaliplatin (Oxa)-resistant colon cancer cells. Colony formation, Edu staining, Transwell, wound healing, sphere formation, and CCK-8 assays were conducted and showed that the proliferation, Oxa-resistance, migration, stemness, and invasion of HCT116 cells were promoted after overexpressing USP36, while suppressed by USP36 knockdown. Mechanically, USP36 enhances c-Myc protein stabilization in HCT116 cells via deubiquitination. AutoDock tool and ubiquitin-AMC hydrolysis assay identified cinobufotalin (CBF), an anti-tumor drug, maybe a USP36 inhibitor by inhibiting its deubiquitination activity. CBF significantly prohibited proliferation, migration, invasion, and stemness of HCT116 cells and reversed Oxa-resistance, whereas enforced expression of USP36 blocked these effects. Moreover, in vivo analyses confirmed the oncogenic role of USP36 and the therapeutic potential of CBF in the malignancy of colon cancer. In conclusion, CBF may be a promising therapeutic agent for colon cancer due to its regulation of the USP36/c-Myc axis.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ming Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
26
|
Ke C, Zhou H, Xia T, Xie X, Jiang B. GTP binding protein 2 maintains the quiescence, self-renewal, and chemoresistance of mouse colorectal cancer stem cells via promoting Wnt signaling activation. Heliyon 2024; 10:e27159. [PMID: 38468952 PMCID: PMC10926081 DOI: 10.1016/j.heliyon.2024.e27159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and the second most deadly cancer across the globe. Colorectal cancer stem cells (CCSCs) fuel CRC growth, metastasis, relapse, and chemoresistance. A complete understanding of the modulatory mechanisms of CCSC biology is essential for developing efficacious CRC treatment. In the current study, we characterized the expression and function of GTP binding protein 2 (GTPBP2) in a chemical-induced mouse CRC model. We found that GTPBP2 was expressed at a higher level in CD133+CD44+ CCSCs compared with other CRC cells. Using a lentivirus-based Cas9/sgRNA system, GTPBP2 expression was ablated in CRC cells in vitro. GTPBP2 deficiency caused the following effects on CCSCs: 1) Significantly accelerating proliferation and increasing the proportions of cells at G1, S, and G2/M phase; 2) Impairing resistance to 5-Fluorouracil; 3) Weakening self-renewal but not impacting cell migration. In addition, GTPBP2 deficiency remarkably decreased β-catenin expression while increasing β-catenin phosphorylation in CCSCs. These effects of GTPBP2 were present in CCSCs but not in other CRC cell populations. The Wnt agonist SKL2001 completely abolished these changes in GTPBP2-deficient CCSCs. When GTPBP2-deficient CCSCs were implanted in nude mice, they exhibited consistent changes compared with GTPBP2-expressing CCSCs. Collectively, this study indicates that GTPBP2 positively modulates Wnt signaling to reinforce the quiescence, self-renewal, and chemoresistance of mouse CCSCs. Therefore, we disclose a novel mechanism underlying CCSC biology and GTPBP2 could be a therapeutic target in future CRC treatment.
Collapse
Affiliation(s)
- Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Tian Xia
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Xingwang Xie
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| |
Collapse
|
27
|
Luo R, Wan Y, Liu G, Chen J, Luo X, Li Z, Su D, Lu N, Luo Z. Engineering Self-Assembling Peptide Hydrogel to Enhance the Capacity of Dendritic Cells to Activate In Vivo T-Cell Immunity. Biomacromolecules 2024; 25:1408-1428. [PMID: 38236703 DOI: 10.1021/acs.biomac.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The efficacy of the dendritic cell (DC) has failed to meet expectations thus far, and crucial problems such as the immature state of DCs, low targeting efficiency, insufficient number of dendritic cells, and microenvironment are still the current focus. To address these problems, we developed two self-assembling peptides, RLDI and RQDT, that mimic extracellular matrix (ECM). These peptides can be self-assembled into highly ordered three-dimensional nanofiber scaffold structures, where RLDI can form gelation immediately. In addition, we found that RLDI and RQDT enhance the biological function of DCs, including releasing antigens sustainably, adhering to DCs, promoting the maturation of DCs, and increasing the ability of DC antigen presentation. Moreover, peptide hydrogel-based DC treatment significantly achieved prophylactic and treatment effects on colon cancer. These results have certain implications for the design of new broad-spectrum vaccines in the future.
Collapse
Affiliation(s)
- Ruyue Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Yuan Wan
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guicen Liu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Jialei Chen
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhaoxu Li
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Di Su
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Na Lu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
28
|
Benedict A, Suresh V, Selvamani M, Jayaraman S, Hussein MA. Merremia emarginata Extract Potentiates the Inhibition of Human Colon Cancer Cells (HT-29) via the Modulation of Caspase-3/Bcl-2-Mediated Pathways. Cureus 2024; 16:e56300. [PMID: 38629020 PMCID: PMC11019472 DOI: 10.7759/cureus.56300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/16/2024] [Indexed: 04/19/2024] Open
Abstract
Background This study investigates Merremia emarginata's curative effectiveness against colon cancer cells. M. emarginata, often known as Elika jemudu, is a Convolvulaceae family plant. The inhibitory ability of anticancer herbal extracts against cancer cell growth and mediators is tested. Aim This study aims to evaluate the potent anticancer activity of M. emarginata against colon cancer cell line (HT-29). Materials and methods M. emarginata leaves were gathered and processed using solvent extraction. Anticancer activity on colon cancer cells was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and cysteine aspartic acid protease-3 (caspase 3), B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma-extra large (Bcl-xL) mRNA expressions. The data was reported as the mean ± SD of three separate experiments done in triplicate. The statistical analysis was carried out using one-way analysis of variance (ANOVA), with a p-value less than 0.05 indicating statistical significance. Results The cell viability test showed a gradual decrease in cell growth and proliferation as the concentration increased. The ethanolic extract of M. emarginata was found to be cytotoxic against colon caller cell lines. The extract was able to induce apoptosis of cancer as revealed by Bcl-2, Bcl-xL, and caspase-3 (p<0.05 and p<0.001) signaling pathways. Conclusion M. emarginata extracts showed good anticancer activity against colon cancer cell lines. Further work is required to establish and identify the chemical constituent responsible for its anticancer activity.
Collapse
Affiliation(s)
- Andrew Benedict
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Vasugi Suresh
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Muthamizh Selvamani
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Selvaraj Jayaraman
- Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Mohammed Asif Hussein
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| |
Collapse
|
29
|
Li Y, Shi J, Liu Z, Lin Y, Xie A, Sun W, Liu J, Liang J. Regulation of the migration of colorectal cancer stem cells via the TLR4/MyD88 signaling pathway by the novel surface marker CD14 following LPS stimulation. Oncol Lett 2024; 27:60. [PMID: 38192670 PMCID: PMC10773188 DOI: 10.3892/ol.2023.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Cell surface markers are most widely used in the study of cancer stem cells (CSCs). However, cell surface markers that are safely and stably expressed in CSCs have yet to be identified. Colonic CSCs express leukocyte CD14. CD14 binding to the ligand lipopolysaccharide (LPS) is involved in the inflammatory response via the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway. TLR4 and MyD88 have been reported to promote the proliferation, metastasis and tumorigenicity of colon cancer cells, which is consistent with the characteristics of CSCs. In the present study, the proposed experimental method to detect cell proliferation, metastasis and tumorigenesis was used to confirm that, under LPS stimulation, CD14 promoted the proliferation, migration and tumorigenesis of colonic CSCs via the TLR4/MyD88 signaling pathway. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to assess the proliferation and migration of the cells. Colony formation and nude mouse xenograft assays were used to assess the capacity of cells to form tumors. Using western blotting and reverse transcription-quantitative PCR, the mRNA and protein levels of CD14, TLR4 and MyD88 were examined. It was confirmed that CD14 promoted the proliferation, metastasis and tumorigenesis of colon CSCs in response to LPS stimulation via the TLR4/MyD88 signaling pathway, and CD14+ colon cancer cells were successfully isolated and sorted. According to the results of proliferation assay, it was determined that CD14 regulated the LPS-induced proliferation of colon CSCs. CD14, TLR4 and MyD88 protein and mRNA expression was upregulated in colon CSCs in response to LPS stimulation. This indicates a potential novel target for colon CSC-related studies.
Collapse
Affiliation(s)
- Yufei Li
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jiayi Shi
- School of Life Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Zhixin Liu
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yonggang Lin
- Department of Extracorporeal Circulation, Mudanjiang Cardiovascular Disease Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - An Xie
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Wenxiu Sun
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jiaqi Liu
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jun Liang
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
30
|
Song Y, Li X, Wu H, Xu Y, Jin D, Ping S, Jia J, Han C. RNF183 Promotes Colon Cancer Cell Stemness through Fatty Acid Oxidation. Nutr Cancer 2024; 76:215-225. [PMID: 38044546 DOI: 10.1080/01635581.2023.2286700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Colon cancer (COAD) is a prevalent gastrointestinal tumor, composed of a few cancer stem cells (CSCs). High expression of RNF183 drives colorectal cancer metastasis, but its role in COAD cell stemness is still unclear. Bioinformatics analyzed expression and enriched pathway of RNF183 in COAD tissue. IHC analyzed RNF183 protein expression in tumor tissue. CD133 + CD44+ CSCs were sorted by flow cytometry, and RNF183 expression in COAD cells or CSCs was detected by qPCR, western blot and immunofluorescence. CCK-8 assay assessed cell viability, and sphere formation assay tested cell sphere-forming ability. Western blot measured protein expression of stem cell markers. qPCR assayed expression of fatty acid oxidation genes. The ability of fatty acid oxidation was analyzed by detecting fatty acid metabolism. RNF183 was highly expressed in COAD and CD133 + CD44+ CSCs, and was enriched in fatty acid metabolism pathway. RNF183 expression was positively correlated with enzymes involved in fatty acid oxidation. RNF183 could promote COAD stemness and fatty acid oxidation. Rescue experiments showed that Orlistat (a fatty acid oxidation inhibitor) reversed stimulative impact of RNF183 overexpression on COAD stemness. RNF183 promoted COAD stemness by affecting fatty acid oxidation, which may be a new therapeutic target for inhibiting COAD development.
Collapse
Affiliation(s)
- Yingming Song
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaolin Li
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, China
| | - Huiping Wu
- Department of Medical Oncology, Elderly Nursing Home YingKang, Changzhi, Shanxi, China
| | - Yanjun Xu
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Dayi Jin
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, China
| | - Shimin Ping
- Department of Medical Oncology, Elderly Nursing Home YingKang, Changzhi, Shanxi, China
| | - Junling Jia
- Department of Medical Oncology, Elderly Nursing Home YingKang, Changzhi, Shanxi, China
| | - Chao Han
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
31
|
Gui Y, Qian X, Ding Y, Chen Q, Fangyu Ye, Ye Y, Hou Y, Yu J, Zhao L. c-Fos regulated by TMPO/ERK axis promotes 5-FU resistance via inducing NANOG transcription in colon cancer. Cell Death Dis 2024; 15:61. [PMID: 38233377 PMCID: PMC10794174 DOI: 10.1038/s41419-024-06451-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Acquired drug resistance is one of the most common limitations for the clinical response of colon cancer to 5-Fluorouracil (5-FU)-based chemotherapy. The relevant molecular mechanisms might be diversity, but still not be elucidated clearly. In this study, we aimed to investigate the potential mechanisms of c-Fos, a subfamily of activator protein-1, in 5-FU chemoresistance. We determined that phosphorylated c-Fos promoted colon cancer cells resistance to 5-FU by facilitating the cancer stemness. Mechanically, 5-FU treatment induced autolysosome-dependent degradation of TMPO, which subsequently triggered ERK-mediated phosphorylation of c-Fos. Additionally, c-Fos was found to bind to the promoter of NANOG and phosphorylation of c-Fos at Ser 374 was required for its regulation of NANOG expression. NANOG ablation impaired c-Fos/p-c-Fos induced 5-FU resistance and stemness. Taken together, these findings revealed that TMPO-mediated phosphorylation of c-Fos conferred 5-FU resistance by regulating NANOG expression and promoting cell stemness in colon cancer cells. c-Fos could be as a therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Yanping Gui
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoping Qian
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University, Nanjing, 210008, China
| | - Qianqian Chen
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Fangyu Ye
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuting Ye
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingjian Hou
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Yu
- Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Li Zhao
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
32
|
Sun Y, Han L, Sun D. Comprehensive analysis of EML2 as a prognostic biomarker in colon cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:1-12. [PMID: 38322176 PMCID: PMC10839246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Echinoderm microtubule-associated protein-like 2 (EML2), a gene located on 19q13.32, is overexpressed in various cancers and has been identified as a prognostic factor. However, the function and carcinogenic mechanism of EML2 in colon cancer is yet to be explored. METHODS This study aimed to demonstrate the relationship between EML2 expression and colon cancer using The Cancer Genome Atlas (TCGA) database. The EML2 expression, including GSE33113 and GSE39923, was validated in colon cancer in the Gene Expression Omnibus (GEO) database. The Receiver Operating Characteristic (ROC) curves were used to assess the feasibility of EML2 as a distinguishing factor from the area under the curve (AUC) scores. In addition, Cox regression and logistic regression analyses were conducted to evaluate the factors linked to the prognosis of colon cancer. Moreover, the STRING tool was used to establish the EML2 binding protein network. The enrichment analysis cluster Profiler of the R package was utilized to investigate the function of EML2. The relationship between the immune infiltration and EML2 expression level in colon cancer was investigated by the R package Gene Set Variation Analysis (GSVA) and the single sample Gene Set Enrichment Analysis (ssGSEA) method in the Tumor Immune Estimation Resource (TIMER) database. RESULTS Pan-cancer data analysis revealed that EML2 expression was higher in most cancers, including colon cancer. This outcome was in line with the findings of the GEO database. The ROC curve demonstrated that EML2 can serve as a diagnostic biomarker for colon cancer (AUC = 0.738). High EML2 expression was associated with poorer overall survival (OS; P = 0.004). Moreover, the results of the enrichment and immune infiltration analysis revealed that high EML2 expression correlated with regulation of the infiltration level of GTPase binding and some immune cell types like NK cells and NK CD56 bright cells. CONCLUSION The findings revealed that colon cancer tissues had a higher EML2 expression than normal colon epithelial tissues. This phenomenon was significantly associated with poor prognosis and altered immune cell infiltration. Consequently, EML2 has shown the capacity to serve as a prognostic biomarker for patients diagnosed with colon cancer.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of General Surgery, The Armed Police Corps Hospital of Anhui Hefei, Anhui, China
| | - Lin Han
- Department of General Surgery, The Armed Police Corps Hospital of Anhui Hefei, Anhui, China
| | - Dengqun Sun
- Department of General Surgery, The Armed Police Corps Hospital of Anhui Hefei, Anhui, China
| |
Collapse
|
33
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
34
|
Omran MM, Fouda MS, Mekkawy SA, Tabll AA, Abdelaziz AG, Omran AM, Emran TM. Molecular Biomarkers and Signaling Pathways of Cancer Stem Cells in Colorectal Cancer. Technol Cancer Res Treat 2024; 23:15330338241254061. [PMID: 38794896 PMCID: PMC11128179 DOI: 10.1177/15330338241254061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/27/2018] [Indexed: 05/26/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequently found cancer in the world, and it is frequently discovered when it is already far along in its development. About 20% of cases of CRC are metastatic and incurable. There is more and more evidence that colorectal cancer stem cells (CCSCs), which are in charge of tumor growth, recurrence, and resistance to treatment, are what make CRC so different. Because we know more about stem cell biology, we quickly learned about the molecular processes and possible cross-talk between signaling pathways that affect the balance of cells in the gut and cancer. Wnt, Notch, TGF-β, and Hedgehog are examples of signaling pathway members whose genes may change to produce CCSCs. These genes control self-renewal and pluripotency in SCs and then decide the function and phenotype of CCSCs. However, in terms of their ability to create tumors and susceptibility to chemotherapeutic drugs, CSCs differ from normal stem cells and the bulk of tumor cells. This may be the reason for the higher rate of cancer recurrence in patients who underwent both surgery and chemotherapy treatment. Scientists have found that a group of uncontrolled miRNAs related to CCSCs affect stemness properties. These miRNAs control CCSC functions like changing the expression of cell cycle genes, metastasis, and drug resistance mechanisms. CCSC-related miRNAs mostly control signal pathways that are known to be important for CCSC biology. The biomarkers (CD markers and miRNA) for CCSCs and their diagnostic roles are the main topics of this review study.
Collapse
Affiliation(s)
- Mohamed M. Omran
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Manar S. Fouda
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Sara A. Mekkawy
- Molecular Biotechnology Program, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Ahmed G. Abdelaziz
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Azza M. Omran
- Clinical Pharma Program, Faculty of Pharmacy, Delta University, Dakahlia, Egypt
| | - Tarek M. Emran
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, New Damietta, Egypt
| |
Collapse
|
35
|
Thapa R, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Saleem S, Khan R, Altwaijry N, Dureja H, Singh SK, Dua K. A review of Glycogen Synthase Kinase-3 (GSK3) inhibitors for cancers therapies. Int J Biol Macromol 2023; 253:127375. [PMID: 37839597 DOI: 10.1016/j.ijbiomac.2023.127375] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The intricate molecular pathways governing cancer development and progression have spurred intensive investigations into novel therapeutic targets. Glycogen Synthase Kinase-3 (GSK3), a complex serine/threonine kinase, has emerged as a key player with intricate roles in various cellular processes, including cell proliferation, differentiation, apoptosis, and metabolism. Harnessing GSK3 inhibitors as potential candidates for cancer therapy has garnered significant interest due to their ability to modulate key signalling pathways that drive oncogenesis. The review encompasses a thorough examination of the molecular mechanisms underlying GSK3's involvement in cancer progression, shedding light on its interaction with critical pathways such as Wnt/β-catenin, PI3K/AKT, and NF-κB. Through these interactions, GSK3 exerts influence over tumour growth, invasion, angiogenesis, and metastasis, rendering it an attractive target for therapeutic intervention. The discussion includes preclinical and clinical studies, showcasing the inhibitors efficacy across a spectrum of cancer types, including pancreatic, ovarian, lung, and other malignancies. Insights from recent studies highlight the potential synergistic effects of combining GSK3 inhibitors with conventional chemotherapeutic agents or targeted therapies, opening avenues for innovative combinatorial approaches. This review provides a comprehensive overview of the current state of research surrounding GSK3 inhibitors as promising agents for cancer treatment.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
36
|
Han M, Sun H, Zhou Q, Liu J, Hu J, Yuan W, Sun Z. Effects of RNA methylation on Tumor angiogenesis and cancer progression. Mol Cancer 2023; 22:198. [PMID: 38053093 PMCID: PMC10698974 DOI: 10.1186/s12943-023-01879-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
Tumor angiogenesis plays vital roles in the growth and metastasis of cancer. RNA methylation is one of the most common modifications and is widely observed in eukaryotes and prokaryotes. Accumulating studies have revealed that RNA methylation affects the occurrence and development of various tumors. In recent years, RNA methylation has been shown to play an important role in regulating tumor angiogenesis. In this review, we mainly elucidate the mechanisms and functions of RNA methylation on angiogenesis and progression in several cancers. We then shed light on the role of RNA methylation-associated factors and pathways in tumor angiogenesis. Finally, we describe the role of RNA methylation as potential biomarker and novel therapeutic target.
Collapse
Affiliation(s)
- Mingyu Han
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
37
|
Chang Y, Chen L, Tang J, Chen G, Ji J, Xu M. USP7-mediated JUND suppresses RCAN2 transcription and elevates NFATC1 to enhance stem cell property in colorectal cancer. Cell Biol Toxicol 2023; 39:3121-3140. [PMID: 37535148 DOI: 10.1007/s10565-023-09822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Cancer stem cells (CSCs) encompass a subset of highly aggressive tumor cells that are involved in tumor initiation and progression. This study investigates the function of regulator of calcineurin 2 (RCAN2) in the stem cell property in colorectal cancer (CRC). By analyzing four GEO datasets, we obtained RCAN2 as a stemness-related gene in CRC. RCAN2 was poorly expressed in CRC tissues and cells, especially in CSCs. RCAN2 restoration reduced calcineurin activity and promoted phosphorylation and degradation of nuclear factor of activated T cells 1 (NFATC1) protein, leading to reduced stemness of CSCs. JunD proto-oncogene (JUND), whose protein level was increased in CRC samples and CRC stem cells, bound to RCAN2 and suppressed its transcription. The abundant ubiquitin specific peptidase 7 (USP7) in CSCs enhanced JUND protein stability through deubiquitination modification. Lentivirus-mediated knockdown of USP7 or JUND also blocked the calcineurin-NFATC1 signaling and reduced the protein levels of stemness-related proteins. Moreover, the USP7 knockdown weakened the colony/sphere formation ability as well as the tumorigenicity of CSCs, and it reduced the CSC content in xenograft tumors. However, further restoration of JUND rescued the stemness of the CSCs. Overall, this study demonstrates that USP7-mediated JUND suppresses RCAN2 transcription and activates NFATC1 to enhance stem cell property in CRC. 1. RCAN2 is poorly expressed in CRC tissues and cells and especially in CSCs. 2. RCAN2 reduces stemness of CSCs by blocking calcineurin-NFATC1 signal transduction. 3. JUND binds to RCAN2 promoter to suppresses RCAN2 transcription. 4. USP7 enhances JUND protein stability via deubiquitination modification. 5. Downregulation of USP7 or JUND restores RCAN2 level and suppresses stemness of CSCs.
Collapse
Affiliation(s)
- Yunli Chang
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China
| | - Lingling Chen
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China
| | - Jie Tang
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China
| | - Guoyu Chen
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China
| | - Jieru Ji
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China
| | - Ming Xu
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China.
| |
Collapse
|
38
|
Jalil AT, Abdulhadi MA, Al Jawadri AMH, Talib HA, Al-Azzawi AKJ, Zabibah RS, Ali A. Cancer Stem Cells in Colorectal Cancer: Implications for Targeted Immunotherapies. J Gastrointest Cancer 2023; 54:1046-1057. [PMID: 37247115 DOI: 10.1007/s12029-023-00945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE Colorectal cancers are composed of heterogeneous cell populations in the concepts of genetic and functional degrees that among them cancer stem cells are identified with their self-renewal and stemness capability mediating primary tumorigenesis, metastasize, therapeutic resistance, and tumor recurrence. Therefore, understanding the key mechanisms of stemness in colorectal cancer stem cells (CRCSCs) provides opportunities to discover new treatments or improve existing therapeutic regimens. METHODS We review the biological significance of stemness and the results of potential CRCSC-based targeted immunotherapies. Then, we pointed out the barriers to targeting CRCSCs in vivo and highlight new strategies based on synthetic and biogenic nanocarriers for the development of future anti-CRCSC trials. RESULTS The CSCs' surface markers, antigens, neoantigens, and signaling pathways supportive CRCSCs or immune cells that are interacted with CRCSCs could be targeted by immune monotherapy or in formulation with developed nanocarriers to overcome the resistant mechanisms in immune evader CRCSCs. CONCLUSION Identification molecular and cellular cues supporting stemness in CRCSCs and their targeting by nanoimmunotherpy can improve the efficacy of existed therapies or explore novel therapeutic options in future.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | | | - Hayder Abdullah Talib
- College of Agriculture, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Ali
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
39
|
Bhat AA, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Singh M, Rohilla S, Saini TK, Kukreti N, Meenakshi DU, Fuloria NK, Sekar M, Gupta G. Uncovering the complex role of interferon-gamma in suppressing type 2 immunity to cancer. Cytokine 2023; 171:156376. [PMID: 37748333 DOI: 10.1016/j.cyto.2023.156376] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Cancer involves cells' abnormal growth and ability to invade or metastasize to different body parts. Cancerous cells can divide uncontrollably and spread to other areas through the lymphatic or circulatory systems. Tumors form when malignant cells clump together in an uncontrolled manner. In this context, the cytokine interferon-gamma (IFN-γ) is crucial in regulating immunological responses, particularly malignancy. While IFN-γ is well-known for its potent anti-tumor effects by activating type 1 immunity, recent research has revealed its ability to suppress type 2 immunity, associated with allergy and inflammatory responses. This review aims to elucidate the intricate function of IFN-γ in inhibiting type 2 immune responses to cancer. We explore how IFN-γ influences the development and function of immune cells involved in type 2 immunity, such as mast cells, eosinophils, and T-helper 2 (Th2) cells. Additionally, we investigate the impact of IFN-mediated reduction of type 2 immunity on tumor development, metastasis, and the response to immunotherapeutic interventions. To develop successful cancer immunotherapies, it is crucial to comprehend the complex interplay between type 2 and type 1 immune response and the regulatory role of IFN-γ. This understanding holds tremendous promise for the development of innovative treatment approaches that harness the abilities of both immune response types to combat cancer. However, unraveling the intricate interplay between IFN-γ and type 2 immunity in the tumor microenvironment will be essential for achieving this goal.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334022, India
| | - Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Tarun Kumar Saini
- Dept. Of Neurosurgery ICU, Lok Nayak Hospital, New Delhi (Govt. Of NCT Of Delhi), New Delhi, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
40
|
Singh I, Das R, Kumar A. Network pharmacology-based anti-colorectal cancer activity of piperlonguminine in the ethanolic root extract of Piper longum L. Med Oncol 2023; 40:320. [PMID: 37796360 DOI: 10.1007/s12032-023-02185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Colorectal cancer (CRC) has the second highest incidence and fatality rates of any malignancy, at 10.2 and 9.2%, respectively. Plants and plants-based products for thousands of years have been utilized to treat cancer along with other associated health issues. Alkaloids are a valuable class of chemical compounds with great potential as new medicine possibilities. Piper longum Linn contains various types of alkaloids. In this research, the ethanolic root extract of P. longum (EREPL) is the subject of study based on network pharmacology. Two alkaloids were chosen from the gas chromatography mass spectrometry (GC-MS) analysis. However, only piperlonguminine received preference because it adhered to Lipinski's rule and depicted no toxicity. Web tools which are available online, like, Swiss ADME, pkCSMand ProTox-II were used to evaluate the pharmacokinetics and physiochemical properties of piperlonguminine. The database that SwissTargetPrediction and TCMSP maintain contains the targets for piperlonguminine. Using DisGeNET, GeneCards and Open Targets Platform databases, we were able to identify targets of CRC. The top four hub genes identified by Cytoscape are SRC, MTOR, EZH2, and MAPK3. The participation of hub genes in colorectal cancer-related pathways was examined using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The colorectal cancer pathway, the ErbB signaling pathway and the mTOR signaling pathway emerged to be important. Our findings show that the hub genes are involved in the aforementioned pathways for tumor growth, which calls for their downregulation. Additionally, piperlonguminine has the potential to become a successful medicine in the future for the treatment of CRC.
Collapse
Affiliation(s)
- Indrajeet Singh
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, G.T. Road, Mandhana, Kanpur, Uttar Pradesh, 209217, India
| | - Richa Das
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, 391760, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, G.T. Road, Mandhana, Kanpur, Uttar Pradesh, 209217, India.
| |
Collapse
|
41
|
Singh AK, Prajapati KS, Kumar S. Hesperidin potentially interacts with the catalytic site of gamma-secretase and modifies notch sensitive genes and cancer stemness marker expression in colon cancer cells and colonosphere. J Biomol Struct Dyn 2023; 41:8432-8444. [PMID: 36239003 DOI: 10.1080/07391102.2022.2134213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 10/17/2022]
Abstract
Gamma secretase (GS) produces Notch Intracellular Domain (NICD) by trans-membrane cleavage of notch receptor. The NICD enters the nucleus and activates the notch signaling pathway (NSP) by activating notch-responsive gene transcription. Hyperactivation of NSP is related to cancer aggressiveness, therapy resistance, and poor therapy outcome, and decreased overall disease-free survival in patients. Till date, none of the GS inhibitors (GSI) has been clinically approved due to their toxicity in patients. Thus in the present study, we explored the GS catalytic site binding potential of hesperidin (natural flavone glycoside) and its effect on notch responsive gene expression in HCT-116 cells. Molecular docking, MM-GBSA binding energy calculations, and molecular dynamics (MD) simulation experiments were performed to study the GS catalytic site binding potential of hesperidin. The compound showed better GS catalytic site binding potential at the active site compared to experimentally validated GSI, N-N-(3, 5-Difluorophenacetyl)-L-alanyl-S-phenylglycine t-butyl ester (DAPT) in molecular docking and MM-GBSA experiments. MD simulation results showed that hesperidin forms stable and energetically favorable complex with gamma secretase in comparison to standard inhibitor (DAPT)-GS complex. Further, in vitro experiments showed that hesperidin inhibited cell growth and sphere formation potential in HCT-116 cells. Further, hesperidin treatment altered notch responsive genes (Hes1, Hey1, and E-cad) and cancer stemness/self-renewal markers expression at transcription levels. In conclusion, hesperidin produces toxicity in HCT-116 cells and decreases colonosphere formation by inhibiting transcription of notch signaling pathway target genes and stemness markers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
42
|
Bakand A, Moghaddam SV, Naseroleslami M, André H, Mousavi-Niri N, Alizadeh E. Efficient targeting of HIF-1α mediated by YC-1 and PX-12 encapsulated niosomes: potential application in colon cancer therapy. J Biol Eng 2023; 17:58. [PMID: 37749603 PMCID: PMC10521571 DOI: 10.1186/s13036-023-00375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
A number of molecular biofactors have been documented in pathogenesis and poor prognosis of colorectal cancer (CRC). Among them, the Hypoxia-Inducible Factor (HIF-1a) is frequently reported to become over-expressed, and its targeting could restrict and control a variety of essential hallmarks of CRC. Niosomes are innovative drug delivery vehicles with the encapsulating capacity for co-loading both hydrophilic and hydrophobic drugs at the same time. Also, they can enhance the local accumulation while minimizing the dose and side effects of drugs. YC-1 and PX-12 are two inhibitors of HIF-1a. The purpose of this work was to synthesize dual-loaded YC-1 and PX-12 niosomes to efficiently target HIF-1α in CRC, HT-29 cells. The niosomes were prepared by the thin-film hydration method, then the niosomal formulation of YC-1 and PX-12 (NIO/PX-YC) was developed and optimized by the central composition method (CCD) using the Box-Behnken design in terms of size, polydispersity index (PDI), entrapment efficiency (EE). Also, they are characterized by DLS, FESEM, and TEM microscopy, as well as FTIR spectroscopy. Additionally, entrapment efficiency, in vitro drug release kinetics, and stability were assessed. Cytotoxicity, apoptosis, and cell cycle studies were performed after the treatment of HT-29 cells with NIO/PX-YC. The expression of HIF-1αat both mRNA and protein levels were studied after NIO/PX-YC treatment. The prepared NIO/PX-YC showed a mean particle size of 185 nm with a zeta potential of about-7.10 mv and a spherical morphology. Also, PX-12 and YC-1 represented the entrapment efficiency of about %78 and %91, respectively, with a sustainable and controllable release. The greater effect of NIO/PX-YC than the free state of PX-YC on the cell survival rate, cell apoptosis, and HIF-1α gene/protein expression were detected (p < 0.05). In conclusion, dual loading of niosomes with YC-1 and PX-12 enhanced the effect of drugs on HIF-1α inhibition, thus boosting their anticancer effects.
Collapse
Affiliation(s)
- Azar Bakand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institute, 11282, Stockholm, Sweden
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Jiang Y, Tang Y. SALL4 advances the proliferation and tumor cell stemness of colon cancer cells through the transcription and regulation of ROBO2. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:249-263. [PMID: 37660281 DOI: 10.1080/15257770.2023.2253279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
SALL4 is a transcription factor highly expressed in diverse cancers and is implicated in the development of cancer. SALL4 has been implied to play a cancer-promoting role in colon cancer (CC), but the molecular mechanism remains unclear. Chromatin immunoprecipitation assay and dual-luciferase assay were conducted to verify the binding relationship of SALL4 and ROBO2. qRT-PCR detected the mRNA expression levels of SALL4 and ROBO2, and the flow cytometry analyzed the cell cycle distribution. Western blot examined SALL4 expression, and cell cycle/cell stemness-related proteins. The impact of SALL4 and ROBO2 on the proliferation capacity of cells and tumor cell stemness was elucidated by MTT, colony formation, and sphere-forming assays. SALL4 and ROBO2 were up-regulated in CC, and SALL4 could activate the transcription of ROBO2. Down-regulated SALL4 was able to significantly restrain the proliferation capacity of CC cells and arrest the cell cycle in G0/G1 phase by repressing the expression of cyclin B, cyclin E, and cyclin D1. Besides, the rescue assay results indicated that up-regulated ROBO2 could reverse the repressive impact of down-regulated SALL4 on the proliferation of CC cells and accelerate the progression of the cell cycle, thus promoting the sphere-forming of tumor stem cells. SALL4 advanced the proliferation of CC and cell stemness through direct activation of ROBO2 expression, implied the novel mechanism of SALL4 in CC, and pointed out that SALL4/ROBO2 axis was likely to be a potential target for clinical treatment of CC.
Collapse
Affiliation(s)
- Yahui Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhao Tang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
44
|
Wang Y, Yang Z, Zhu W, Chen Y, He X, Li J, Han Z, Yang Y, Liu W, Zhang K. Dihydroartemisinin inhibited stem cell-like properties and enhanced oxaliplatin sensitivity of colorectal cancer via AKT/mTOR signaling. Drug Dev Res 2023; 84:988-998. [PMID: 37132439 DOI: 10.1002/ddr.22067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Colorectal cancer (CRC) is a common tumor with high morbidity and mortality. The use of oxaliplatin (L-OHP) as a first-line treatment for CRC is limited due to chemoresistance. Growing evidence have revealed that the existence of cancer stem-like cells (CSLCs) is one of the important reasons for drug resistance and recurrence of cancers. Dihydroartemisinin (DHA), a derivative of artemisinin, has showed anticancer effects on a variety of malignancies, in addition to its antimalarial effects. However, the effect and mechanism of DHA on CSLCs and chemosensitivity in CRC cells remains unclear. In this study, we found that DHA inhibited cell viability in HCT116 and SW620 cells. Moreover, DHA decreased cell clonogenicity, and improved L-OHP sensitivity. Furthermore, DHA treatment attenuated tumor sphere formation, and the expressions of stem cell surface marker (CD133 and CD44) and stemness-associated transcription factor (Nanog, c-Myc, and OCT4). Mechanistically, the present findings showed that DHA inhibited of AKT/mTOR signaling pathway. The activation of AKT/mTOR signaling reversed DHA-decreased cell viability, clonogenicity, L-OHP resistance, tumor sphere, and expressions of stemness-associated protein in CRC. The inhibitory effect of DHA on tumorigenicity of CRC cells has also been demonstrated in BALB/c nude mice. In conclusion, this study revealed that DHA inhibited CSLCs properties in CRC via AKT/mTOR signaling, suggesting that DHA may be used as a potential therapeutic agent for CRC.
Collapse
Affiliation(s)
- Yujun Wang
- School of Pharmacy, Chengdu Medical College, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Zhirong Yang
- Pathology Department, Deyang People's Hospital, Deyang, China
| | - Wanglong Zhu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Yuzhuo Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Xingqiang He
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Jiaofeng Li
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Zhengyu Han
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Yuhan Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Wei Liu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
45
|
Suman S, Hota SK, Misra P, Sahu N, Sahu S. Immunohistochemical Expression of the Stem Cell Marker CD133 in Colorectal Carcinoma. Cureus 2023; 15:e41242. [PMID: 37529823 PMCID: PMC10387822 DOI: 10.7759/cureus.41242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Background Colorectal carcinoma (CRC) is the second-leading cause of cancer-related death. Despite the combined (surgery, chemotherapy, radiotherapy, and immunotherapy) modalities of treatment, the prognosis remains poor, mostly because of recurrence and distant metastasis. Cancer stem cells (CSC) are thought to be responsible for the development and spread of tumors. Hence, targeted therapy against these cells hopes to reduce the chance of recurrence and metastasis and improve the prognosis. Many immune markers have been identified to detect CSC in CRC. Here, we tried to assess the immunohistochemical expression of the stem cell marker CD133 in colorectal carcinoma and its correlation with various pathological parameters. Methodology A total of 51 cases of CRC were analyzed. Immunohistochemistry for CD133 was done after standardization in our laboratory. Expression status was decided based on the total score obtained by multiplying the intensity score by the percentage score. CD133 expression was correlated with the age and gender of the patient, tumor location, histological grade, extent of invasion, lymphovascular invasion (LVI), perineural invasion (PNI), and nodal status. Results High CD133 expression was seen in 21 (41.17%) cases. There was no significant association between CD133 expression and the pathological parameters except the tumor site. CD133 expression was significantly higher as we moved from the proximal colon to the rectum. Conclusions CD133 expression was significantly higher in the distal part of the large intestine as compared to the proximal part. But there was no linear correlation between CD133 expression and histological grade, extent of invasion, or nodal status.
Collapse
Affiliation(s)
- Sweta Suman
- Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | | | - Pranati Misra
- Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Nageswar Sahu
- Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Subrat Sahu
- Surgery, Kalinga Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| |
Collapse
|
46
|
Zhang T, Liu Z, Lin Q. Clinical effect and safety of targeted therapy combined with chemotherapy in the treatment of patients with advanced colon cancer. Pak J Med Sci 2023; 39:1074-1079. [PMID: 37492316 PMCID: PMC10364270 DOI: 10.12669/pjms.39.4.7105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 07/27/2023] Open
Abstract
Objective To evaluate the clinical effect and safety of immunotherapy combined with chemotherapy in patients with advanced colon cancer. Methods This is a retrospective study. The subjects of this study were 120 patients with advanced colon cancer who were admitted to The No.2 Hospital of Baoding from November 30, 2019 to November 30, 2021. The enrolled patients were randomly divided into two groups, with 60 cases in each group. Patients in the control group were given F0LF0X4 regimen, while those in the study group were provided with Bevacizumab therapy on the basis of the method in the control group. All patients were evaluated after two cycles of treatment. The comparison of outcome measures included the curative effects, adverse drug reactions, improvement of quality-of-life scores and changes in tumor markers between the two groups. Results The total effective rate of the study group was significantly better than that of the control group. There was no significant difference in the incidence of adverse drug reactions between the two groups. After treatment, the study group had a significantly higher rate of improved quality of life score, while the obviously lower rate of the aggravated score than those in the control group. The levels of CEA, CA19-9 and CA125 in the study group were significantly lower than those in the control group after treatment. Conclusion Targeted therapy combined with chemotherapy is a safe and effective therapeutic option that has a definite curative effect in the treatment of patients with advanced colon cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Tao Zhang, Department of General Surgery, The No.2 Hospital of Baoding, Baoding 071051, Hebei, P.R. China
| | - Zhi Liu
- Zhi Liu, Department of General Surgery, The No.2 Hospital of Baoding, Baoding 071051, Hebei, P.R. China
| | - Qian Lin
- Qian Lin, Department of Nursing, The No.2 Hospital of Baoding, Baoding 071051, Hebei, P.R. China
| |
Collapse
|
47
|
Liu W, Xie A, Xiong J, Li S, Yang L, Liu W. WDR3 promotes stem cell-like properties in prostate cancer by inhibiting USF2-mediated transcription of RASSF1A. J Gene Med 2023; 25:e3498. [PMID: 36905106 DOI: 10.1002/jgm.3498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/01/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND WD repeat domain 3 (WDR3) is involved in tumor growth and proliferation, but its role in the pathological mechanism of prostate cancer (PCa) is still unclear. METHODS WDR3 gene expression levels were obtained by analyzing databases and our clinical specimens. The expression levels of genes and proteins were determined by a real-time polymerase chain reaction, western blotting and immunohistochemistry, respectively. Cell-counting kit-8 assays were used to measure the proliferation of PCa cells. Cell transfection was used to investigate the role of WDR3 and USF2 in PCa. Fluorescence reporter and chromatin immunoprecipitation assays were used to detect USF2 binding to the promoter region of RASSF1A. Mouse experiments were used to confirm the mechanism in vivo. RESULTS By analyzing the database and our clinical specimens, we found that WDR3 expression was significantly increased in PCa tissues. Overexpression of WDR3 enhanced PCa cell proliferation, decreased cell apoptosis rate, increased spherical cell number and increased indicators of stem cell-like properties. However, these effects were reversed by WDR3 knockdown. WDR3 was negatively correlated with USF2, which was degraded by promoting ubiquitination of USF2, and USF2 interacted with promoter region-binding elements of RASSF1A to depress PCa stemness and growth. In vivo studies showed that WDR3 knockdown reduced tumor size and weight, reduced cell proliferation and enhanced cell apoptosis. CONCLUSIONS WDR3 ubiquitinated USF2 and inhibited its stability, whereas USF2 interacted with promoter region-binding elements of RASSF1A. USF2 transcriptionally activated RASSF1A, which inhibited the carcinogenic effect of WDR3 overexpression.
Collapse
Affiliation(s)
- Weijing Liu
- Department of Reproductive Medicine, Hexian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - An Xie
- Jiangxi Institute of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Sheng Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weipeng Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
48
|
Ponomarev AS, Gilazieva ZE, Solovyova VV, Rizvanov AA. Molecular Mechanisms of Tumor Cell Stemness Modulation during Formation of Spheroids. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:979-994. [PMID: 37751868 DOI: 10.1134/s0006297923070106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 09/28/2023]
Abstract
Cancer stem cells (CSCs), their properties and interaction with microenvironment are of interest in modern medicine and biology. There are many studies on the emergence of CSCs and their involvement in tumor pathogenesis. The most important property inherent to CSCs is their stemness. Stemness combines ability of the cell to maintain its pluripotency, give rise to differentiated cells, and interact with environment to maintain a balance between dormancy, proliferation, and regeneration. While adult stem cells exhibit these properties by participating in tissue homeostasis, CSCs behave as their malignant equivalents. High tumor resistance to therapy, ability to differentiate, activate angiogenesis and metastasis arise precisely due to the stemness of CSCs. These cells can be used as a target for therapy of different types of cancer. Laboratory models are needed to study cancer biology and find new therapeutic strategies. A promising direction is three-dimensional tumor models or spheroids. Such models exhibit properties resembling stemness in a natural tumor. By modifying spheroids, it becomes possible to investigate the effect of therapy on CSCs, thus contributing to the development of anti-tumor drug test systems. The review examines the niche of CSCs, the possibility of their study using three-dimensional spheroids, and existing markers for assessing stemness of CSCs.
Collapse
Affiliation(s)
- Aleksei S Ponomarev
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Zarema E Gilazieva
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Valeriya V Solovyova
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Albert A Rizvanov
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia.
| |
Collapse
|
49
|
Słoka J, Madej M, Strzalka-Mrozik B. Molecular Mechanisms of the Antitumor Effects of Mesalazine and Its Preventive Potential in Colorectal Cancer. Molecules 2023; 28:5081. [PMID: 37446747 DOI: 10.3390/molecules28135081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chemoprevention is one of the ways to fight colorectal cancer, which is a huge challenge in oncology. Numerous pieces of evidence indicate that chronic inflammation in the course of Crohn's disease or ulcerative colitis (UC) is a significant cancer risk factor. Epidemiologic studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs), including mesalazine, has beneficial effects on colitis-associated colorectal cancer. Mesalazine is a first-line therapy for UC and is also widely used for maintaining remission in UC. Data showed that mesalazine has antiproliferative properties associated with cyclooxygenase (COX) inhibition but can also act through COX-independent pathways. This review summarizes knowledge about mesalazine's molecular mechanisms of action and chemopreventive effect by which it could interfere with colorectal cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Joanna Słoka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
50
|
Chen P, Li Z, Liang Y, Wei M, Jiang H, Chen S, Zhao Z. Identification of Hypoxia-Associated Signature in Colon Cancer to Assess Tumor Immune Microenvironment and Predict Prognosis Based on 14 Hypoxia-Associated Genes. Int J Gen Med 2023; 16:2503-2518. [PMID: 37346810 PMCID: PMC10281280 DOI: 10.2147/ijgm.s407005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Purpose Colon cancer is the main malignant tumor of the digestive tract. Hypoxia is highly related to the occurrence, progression and tumor immune microenvironment (TIME) of cancer. The aim of this study was to identify a hypoxia-associated signature with high accuracy for predicting the prognosis and TIME of colon cancer. Methods Download colon cancer data from the GEO and TCGA databases. A novel hypoxia risk model was identified to predict the prognosis of colon cancer patients. Subsequently, GSEA, TIME and mutation analysis were performed in the hypoxia high and low risk score groups. Finally, the signature gene ANKZF1 was selected for functional verification at the cellular level. Results A novel hypoxia risk model was identified. The risk score was significantly associated with poorer overall survival in colon cancer, and could be used as an independent prognostic factor for colon cancer. GSEA analysis found that the processes related to stimulate tumor proliferation and anti-apoptosis were significantly enriched in the hypoxia high risk score group. The expression of immunosuppressive cells and most immune checkpoints in the high risk score group was significantly higher than that in the low risk score group. In vitro cell experiments showed that knockdown the expression of ANKZF1 could inhibit the proliferation, migration and invasion of colon cancer cells. Conclusion Hypoxia plays an important role in evaluating the TIME and predicting the prognosis of colon cancer.
Collapse
Affiliation(s)
- Peng Chen
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Zhongxin Li
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Yulong Liang
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Ming Wei
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Haibo Jiang
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Shihao Chen
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Zengren Zhao
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| |
Collapse
|