1
|
Zhang R, Liang J, Liu Z, Chang J, Zhang J, Zhang Z, Li R, Zhao W, Deng Y, Xiao H. MeRIP-seq data analysis and validation reveal the regulatory role of m 6A modified circRNAs in the apoptosis of secondary hair follicle cells in Inner Mongolia cashmere goats. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101419. [PMID: 39837064 DOI: 10.1016/j.cbd.2025.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
As a widely epigenetic modification, m6A (N6-methyladenosine, m6A) can regulate the degradation, translation, and other biological functions of circRNAs through dynamic reversible processes. It plays an important role in regulating the life activities of biological organisms, particularly in cell differentiation, apoptosis, embryonic development, stress response, and innate immunity. In this study, bioinformatics analysis, qRT-PCR identification, FISH subcellular localization, and ceRNA network construction were performed on m6A modified circRNAs regulating the apoptosis of secondary hair follicle cells of Inner Mongolia Albas white cashmere goats based on the skin m6A sequencing data of secondary hair follicles in anagen and catagen. The results showed that 8 m6A modified circRNAs regulating the cell apoptosis of secondary hair follicles, namely circRNA_2130, circRNA_0013, circRNA_1203, circRNA_1462, circRNA_1242, circRNA_2308, circRNA_2654 and circRNA_1442 were identified, and they are respectively derived from ANGEL2, APP, GKAP1, HNRNPC, PTBP3, NUCB1, SNRK and ZNF609 genes. Among them, circRNA_0013, circRNA_1442 and circRNA_1462 were located in the cytoplasm of the secondary hair follicle papilla, while circRNA_1203, circRNA_1242, circRNA_2130, circRNA_2308 and circRNA_2654 were located in the nucleus. There are complex and diverse regulatory relationships among 8 circRNAs, with each circRNA targeting one or more miRNAs, revealing that each m6A circRNA can exert regulatory effects through multiple potential miRNA-mRNA axes, to regulate the apoptosis of secondary hair follicle cells of cashmere goats during the growth cycles. This result provides a direction for further elucidating the regulatory mechanism of m6A modified circRNAs in cashmere growth and exploring biomarkers.
Collapse
Affiliation(s)
- Ru Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Jiayue Liang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaomin Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Jiale Chang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Junjie Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Zhanxiong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Rui Li
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Wei Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Yongyuan Deng
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Hongmei Xiao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China.
| |
Collapse
|
2
|
Mojumder A, Shahrear S, Md. Khademul Islam ABM. Deciphering the Role of Putative Novel miRNAs Encoded From the Newly Found Genomic Regions of T2T-CHM13 in the Progression of Collecting Duct Renal Cell Carcinoma. Cancer Med 2025; 14:e70925. [PMID: 40304310 PMCID: PMC12042112 DOI: 10.1002/cam4.70925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Collecting duct renal cell carcinoma (cdRCC) is a rare and aggressive renal cancer subtype. The molecular mechanisms underlying cdRCC remain poorly understood, which presents a significant challenge for the development of effective treatment strategies. Advances in genome sequencing, particularly the discovery of new genomic regions in the T2T-CHM13 reference genome, have provided an opportunity to expand our understanding of this disease. AIMS Our study specifically aims to investigate the role of miRNAs encoded by these regions, proposing them as potential epigenetic regulators in the pathogenesis of cdRCC. METHODS We used bioinformatic pipelines and small RNA-seq data analysis to predict novel miRNAs from the newly discovered genomic regions of T2T-CHM13. RNA-seq analysis of cdRCC tumors was performed to identify differentially expressed genes, and target prediction tools were used to find miRNA-mRNA interactions. Functional enrichment analyses were conducted to characterize the biological pathways affected. RESULTS AND DISCUSSION Using computational approaches, we predicted 156 novel miRNAs from T2T-CHM13's newly resolved sequences. RNA-seq and miRNA-mRNA interaction analyses identified 345 downregulated genes targeted by novel miRNAs and 395 downregulated genes targeted by known miRNAs. A comprehensive functional enrichment analysis of these perturbed genes revealed distinctive pathways, including cGMP-PKG signaling, calcium signaling, adipocytokine signaling, PPAR signaling, and apelin signaling, all of which are implicated in tumorigenesis. Furthermore, Gene Ontology analysis linked miRNA-targeted genes to disrupted cell-cell junctions and adhesion, providing a mechanistic explanation for aggressive invasion and metastasis in cdRCC. Additionally, a significant number of the target genes involved in metabolic and ion transport pathways were perturbed, explaining metabolic alterations in the cancer cells. We also identified 15 tumor suppressor genes downregulated by novel miRNAs, 6 of which were uniquely targeted, highlighting the potential of these miRNAs as cdRCC-specific biomarkers. CONCLUSION In conclusion, our study offers valuable insights into cdRCC biology from an epigenetic perspective, laying the groundwork for future research aimed at developing targeted therapies.
Collapse
Affiliation(s)
- Anik Mojumder
- Department of Genetic Engineering and BiotechnologyUniversity of DhakaDhakaBangladesh
| | - Sazzad Shahrear
- Department of Genetic Engineering and BiotechnologyUniversity of DhakaDhakaBangladesh
| | | |
Collapse
|
3
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Wang X, Wang J, Zhao X, Zhang J, Zhang Y. The adipokines in oral cancer pathogenesis and its potential as a new therapeutic approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03939-w. [PMID: 40056203 DOI: 10.1007/s00210-025-03939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/16/2025] [Indexed: 03/10/2025]
Abstract
The involvement of adipose tissue in the development of cancer is currently the subject of an increasing number of research due to the growing relevance of lipid metabolism in tumor growth. Obesity influences the tumor immune microenvironment (TME) in oral cancer. Visceral white adipose tissue (WAT) consists of adipocytes, connective tissue, immune cells, and stromovascular cells. The metabolic processes of immune cells within the adipose tissue of individuals with obesity predominantly depend on oxidative phosphorylation (intrinsically) and are characterized by elevated levels of M2 macrophages, Treg cells, Th2 cells, and eosinophils from an extrinsic perspective. The adipokines secreted by adipocytes facilitate communication with adjacent tissues to regulate glucose and lipid metabolism. Obesity influences cancer progression through the dysregulation of adipocytokines, characterized by an augmented synthesis of the oncogenic adipokine leptin, coupled with a reduced secretion of adiponectin. Under standard physiological settings, these adipokines fulfill essential roles in sustaining homeostasis. This review analyzed the influence of adipocytes on oral cancer by detailing the mediators released by adipocytes. Comprehending the molecular foundations of the protumor roles of adipokines in oral cancers might provide novel treatment targets.
Collapse
Affiliation(s)
- Xue Wang
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Jiapeng Wang
- Department of Orthopedics, Jilin Province FAW General Hospital, Jilin, 130000, China.
| | - Xuemei Zhao
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Jiayin Zhang
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Yan Zhang
- Medical Department, Changchun Sci-Tech University, Changchun, 130000, China
| |
Collapse
|
5
|
Ciferri MC, Tasso R. Extracellular vesicle-mediated chemoresistance in breast cancer: focus on miRNA cargo. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:112-127. [PMID: 40206797 PMCID: PMC11977373 DOI: 10.20517/evcna.2024.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 02/05/2025] [Indexed: 04/11/2025]
Abstract
The role of extracellular vesicles (EVs) in mediating chemoresistance has gained significant attention due to their ability to transfer bioactive molecules between drug-resistant and drug-sensitive cells. In particular, they have been demonstrated to play an active part in breast cancer chemoresistance by the horizontal transfer of genetic and protein material. This review highlights the role of EVs, particularly their miRNA cargo, in driving drug resistance in breast cancer. EVs derived from chemoresistant cells carry miRNAs and lncRNAs, which are known to modulate gene networks involved in cell proliferation and survival. These cargo molecules suppress apoptosis by targeting pro-apoptotic genes like PTEN and BIM, promote epithelial-mesenchymal transition (EMT) through the regulation of pathways such as TGF-β and Wnt/b-catenin, and contribute to tumor growth and resistance by enhancing angiogenesis and modulating the tumor microenvironment. Beyond RNA-mediated effects, EVs also transfer functional proteins, including P-glycoprotein and Hsp70, which impact cellular metabolism and survival pathways. Our findings underscore the significance of EVs in breast cancer chemoresistance, suggesting their potential involvement as possible prognostic factors to predict therapy response and as therapeutic targets in combination with usual therapy.
Collapse
Affiliation(s)
- Maria Chiara Ciferri
- Department of Experimental Medicine (DIMES), University of Genova, Genova 16132, Italy
| | - Roberta Tasso
- Department of Experimental Medicine (DIMES), University of Genova, Genova 16132, Italy
- Dipartimento della Ricerca, IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy
| |
Collapse
|
6
|
Liu Y, Ma X, Lei L, Wang L, Deng Q, Lu H, Li H, Tian S, Qin X, Zhang W, Sun Y. Smooth Muscle Cell-Specific LKB1 Protects Against Sugen 5416/Hypoxia-induced Pulmonary Hypertension through Inhibition of BMP4. Am J Respir Cell Mol Biol 2025; 72:169-180. [PMID: 39236291 DOI: 10.1165/rcmb.2023-0430oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening syndrome associated with hyperproliferation of pulmonary artery smooth muscle cells (PASMCs), which exhibit features similar to those of cancer cells. Currently, there is no curative treatment for PH. LKB1 is known as a tumor suppressor gene with an antiproliferative effect on cancer cells. However, its role and mechanism in the development of PH remain unclear. Gain- and loss-of-function strategies were used to elucidate the mechanisms of LKB1 in regulating the occurrence and progression of PH. Sugen 5416/hypoxia (SuHx) PH model was utilized for in vivo study. We observed a decreased expression of LKB1 not only in the lung vessels of the SuHx mouse model but also in human PASMCs (HPASMCs) exposed to hypoxia. Smooth muscle-specific LKB1 knockout significantly aggravated SuHx-induced PH in mice. RNA-sequencing analysis revealed a substantial increase in bone morphogenetic protein 4 (BMP4) in the aortas of LKB1SMKO mice compared with controls, identifying BMP4 as a novel target of LKB1. LKB1 knockdown in HPASMCs cultured under hypoxic conditions increased BMP4 protein level and HPASMC proliferation and migration. The coimmunoprecipitation analysis revealed that LKB1 directly modulates BMP4 protein degradation through phosphorylation. Therapeutically, suppressing BMP4 expression in smooth muscle cells alleviates PH in LKB1SMKO mice. Our findings demonstrate that LKB1 attenuates PH by enhancing the lysosomal degradation of BMP4, thus suppressing the proliferation and migration of HPASMCs. Modulating the LKB1-BMP4 axis in smooth muscle cells could be a promising therapeutic strategy of PH.
Collapse
MESH Headings
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/prevention & control
- Humans
- Bone Morphogenetic Protein 4/metabolism
- Bone Morphogenetic Protein 4/antagonists & inhibitors
- Bone Morphogenetic Protein 4/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Mice
- AMP-Activated Protein Kinase Kinases
- Mice, Knockout
- Hypoxia/complications
- Hypoxia/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/metabolism
- Mice, Inbred C57BL
- Cell Proliferation
- Male
- Muscle, Smooth, Vascular/metabolism
- Cell Hypoxia
- Disease Models, Animal
- AMP-Activated Protein Kinases
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoping Ma
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, China
| | - Lingli Lei
- School of Clinical Medical Sciences, Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; and
| | - Lin Wang
- Department of Cardiology, Jinan Central Hospital, Jinan, China
| | - Qiming Deng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hanlin Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hongxuan Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuhui Tian
- School of Clinical Medical Sciences, Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; and
| | - Xiaoteng Qin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuanyuan Sun
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Mahdei Nasir Mahalleh N, Hemmati M, Biyabani A, Pirouz F. The Interplay Between Obesity and Aging in Breast Cancer and Regulatory Function of MicroRNAs in This Pathway. DNA Cell Biol 2025; 44:55-81. [PMID: 39653363 DOI: 10.1089/dna.2024.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Breast cancer (BC) is a significant contributor to cancer-related deaths in women, and it has complex connections with obesity and aging. This review explores the interaction between obesity and aging in relation to the development and progression of BC, focusing on the controlling role of microRNAs (miRNAs). Obesity, characterized by excess adipose tissue, contributes to a proinflammatory environment and metabolic dysregulation, which are important in tumor development. Aging, associated with cellular senescence and systemic changes, further exacerbates these conditions. miRNAs, small noncoding RNAs that regulate gene expression, play key roles in these processes, impacting pathways involved in cell proliferation, apoptosis, and cancer metastasis, either as tumor suppressors or oncogenes. Importantly, specific miRNAs are implicated in mediating the impact of obesity and aging on BC. Exploring the regulatory networks controlled by miRNAs provides valuable information on new targets for therapy and predictive markers, demonstrating the potential for using miRNA-based interventions to treat BC in obese and elderly individuals. This review emphasizes the importance of integrated research strategies to understand the complex connections between obesity, aging, and miRNA regulation in BC.
Collapse
Affiliation(s)
- Nima Mahdei Nasir Mahalleh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Pirouz
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Yang S, Sun Y, Guo Y, Zhao Z, Hu F, Cong L. The glycolysis-related AMPK/ULK signaling pathway mediates the inhibitory effect of adiponectin in prostate cancer cells. Mol Cell Endocrinol 2024; 593:112338. [PMID: 39127402 DOI: 10.1016/j.mce.2024.112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE Reduced adiponectin (ADPN) levels have been implicated in the pathogenesis of prostate cancer (PCa). The role of glycolysis in cancer development and treatment has attracted increasing attention. The present study aimed to elucidate its impact on PCa and to explore the mechanistic involvement of glycolysis. METHODS An RM-1 cell xenograft model of Adpn-knockout mice was used to corroborate the effects of glycolysis, AMP-activated protein kinase (AMPK) signaling, and autophagy on tumor xenograft progression. The effect of ADPN on PCa cells was evaluated using the Cell Counting Kit-8 (CCK-8), lactate levels, and flow cytometry. The expression of glycolysis-related genes was detected using real-time RT-PCR in LNCaP and PC-3 cells after incubation with ADPN. Autophagic flux after ADPN treatment was quantified by chloroquine intervention and confocal analysis of mRFP-GFP-LC3. Alterations in the levels of adiponectin receptor 1 (AdipoR1), AMPK, Unc-51-like kinase 1 (ULK1), autophagy-related protein 7 (ATG7), p62, and microtubule-associated protein 1 light chain 3 beta (LC3B) were assessed after incubation of LNCaP cells with ADPN. RESULTS Proteomic analysis of xenograft tumors demonstrated significant upregulation of glycolysis in Adpn-/- mice. Lower levels of ADPN accelerated tumor xenograft growth, diminished p-AMPKα/AMPKα ratio and LC3B II/I ratio, and elevated levels of proliferating cell nuclear antigen (PCNA) within the tumor microenvironment. ADPN inhibited proliferation and glycolysis and potentiated apoptosis in both cell lines. Expression of glycolysis-related genes decreased after ADPN treatment. Autophagic flux was elevated, as evidenced by changes in autophagy-related proteins and confocal microscopy analysis of mRFP-GFP-LC3. It led to the suppression of p62 while inducing phosphorylation of AMPKα and upregulating AdipoR1, ULK1, ATG7, and LC3B II/I ratio. CONCLUSION ADPN inhibited the proliferation and progression of PCa cell-derived tumor xenografts by inhibiting glycolysis. Specifically, ADPN effectively inhibits glycolysis and activates the downstream AMPK/ULK1 signaling pathway to suppress proliferation of PCa cells.
Collapse
Affiliation(s)
- Simin Yang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong, 519000, China
| | - Ying Sun
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong, 519000, China
| | - Yifan Guo
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong, 519000, China
| | - Zhi Zhao
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong, 519000, China
| | - Fang Hu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong, 519000, China.
| | - Li Cong
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
9
|
Cullinane C, Connolly RM, Corrigan M, Redmond HP, Foley C. Perioperative systemic IL-6 and immune-adipose- metabolism transcription in tumour and tumour adjacent breast cancer. Eur J Immunol 2024; 54:e2451049. [PMID: 39219238 DOI: 10.1002/eji.202451049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Surgical resection is the primary treatment approach for patients with breast cancer. Despite optimal multimodal treatment, metastatic recurrence remains a risk. Surgery-mediated systemic inflammation and local tissue inflammation generate an immunosuppressive and wound-healing environment that may accelerate cancer recurrence and metastasis post-operatively. Investigating the impact of surgery on local and systemic inflammation may provide knowledge for improvement of patient prognosis and treatment opportunities. Systemic cytokines were quantified in the blood plasma of patients with breast cancer pre-operatively, early post-operatively, and late post-operatively. Early post-operative levels of IL-6 were significantly elevated in patients who underwent mastectomy compared with wide local excision. Post-operative IL-6 levels correlate with clinicopathological features (age and BMI). The transcriptomes of local matched tumour and normal tumour adjacent (normal) breast tissue, from patients with breast cancer, were analysed by RNA-Seq. Elevated gene expressions of IL6, ADIPOQ, FABP4, LPL, PPARG, and CD36 in normal tissue were associated with worse overall survival of patients with ER-positive breast cancer. In tissue with higher expression of IL6 and ADIPOQ, a higher abundance of M2-like macrophage gene expression was identified. This study revealed perioperative systemic dynamics of inflammatory mediators and identified local immune-adipose-metabolism gene expression in tumour-adjacent tissue associated with pro-tumour function.
Collapse
Affiliation(s)
- Carolyn Cullinane
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
| | - Roisin M Connolly
- Cork University Hospital, Wilton, Cork, Ireland
- Cancer Research @UCC, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mark Corrigan
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Henry P Redmond
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
| | - Cathriona Foley
- Department of Surgery, School of Medicine, University College Cork, Cork, Ireland
- Cork University Hospital, Wilton, Cork, Ireland
| |
Collapse
|
10
|
Asiri A, Al Qarni A, Bakillah A. The Interlinking Metabolic Association between Type 2 Diabetes Mellitus and Cancer: Molecular Mechanisms and Therapeutic Insights. Diagnostics (Basel) 2024; 14:2132. [PMID: 39410536 PMCID: PMC11475808 DOI: 10.3390/diagnostics14192132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer share common risk factors including obesity, inflammation, hyperglycemia, and hyperinsulinemia. High insulin levels activate the PI3K/Akt/mTOR signaling pathway promoting cancer cell growth, survival, proliferation, metastasis, and anti-apoptosis. The inhibition of the PI3K/Akt/mTOR signaling pathway for cancer remains a promising therapy; however, drug resistance poses a major problem in clinical settings resulting in limited efficacy of agents; thus, combination treatments with therapeutic inhibitors may solve the resistance to such agents. Understanding the metabolic link between diabetes and cancer can assist in improving the therapeutic strategies used for the management of cancer patients with diabetes and vice versa. This review provides an overview of shared molecular mechanisms between diabetes and cancer as well as discusses established and emerging therapeutic anti-cancer agents targeting the PI3K/Akt/mTOR pathway in cancer management.
Collapse
Affiliation(s)
- Abutaleb Asiri
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ali Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| |
Collapse
|
11
|
Sun F, Wang J, Meng L, Zhou Z, Xu Y, Yang M, Li Y, Jiang T, Liu B, Yan H. AdipoRon promotes amyloid-β clearance through enhancing autophagy via nuclear GAPDH-induced sirtuin 1 activation in Alzheimer's disease. Br J Pharmacol 2024; 181:3039-3063. [PMID: 38679474 DOI: 10.1111/bph.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Amyloid-β (Aβ) peptide is one of the more important pathological markers in Alzheimer's disease (AD). The development of AD impairs autophagy, which results in an imbalanced clearance of Aβ. Our previous research demonstrated that AdipoRon, an agonist of adiponectin receptors, decreased the deposition of Aβ and enhanced cognitive function in AD. However, the exact mechanisms by which AdipoRon affects Aβ clearance remain unclear. EXPERIMENTAL APPROACH We studied how AdipoRon affects autophagy in HT22 cells and APP/PS1 transgenic mice. We also investigated the signalling pathway involved and used pharmacological inhibitors to examine the role of autophagy in this process. KEY RESULTS AdipoRon promotes Aβ clearance by activating neuronal autophagy in the APP/PS1 transgenic mice. Interestingly, we found that AdipoRon induces the nuclear translocation of GAPDH, where it interacts with the SIRT1/DBC1 complex. This interaction then leads to the release of DBC1 and the activation of SIRT1, which in turn activates autophagy. Importantly, we found that inhibiting either GAPDH or SIRT1 to suppress the activity of SIRT1 counteracts the elevated autophagy and decreased Aβ deposition caused by AdipoRon. This suggests that SIRT1 plays a critical role in the effect of AdipoRon on autophagic induction in AD. CONCLUSION AND IMPLICATIONS AdipoRon promotes the clearance of Aβ by enhancing autophagy through the AdipoR1/AMPK-dependent nuclear translocation of GAPDH and subsequent activation of SIRT1. This novel molecular pathway sheds light on the modulation of autophagy in AD and may lead to the development of new therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Jiangong Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Lingbin Meng
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Zhenyu Zhou
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yong Xu
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yixin Li
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Tianrui Jiang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Bin Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
12
|
Han J, Zhao B, Han X, Sun T, Yue M, Hou M, Wu J, Tu M, An Y. Comprehensive Analysis of a Six-Gene Signature Predicting Survival and Immune Infiltration of Liposarcoma Patients and Deciphering Its Therapeutic Significance. Int J Mol Sci 2024; 25:7792. [PMID: 39063036 PMCID: PMC11277418 DOI: 10.3390/ijms25147792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND As a common soft tissue sarcoma, liposarcoma (LPS) is a heterogeneous malignant tumor derived from adipose tissue. Due to the high risk of metastasis and recurrence, the prognosis of LPS remains unfavorable. To improve clinical treatment, a robust risk prediction model is essential to evaluate the prognosis of LPS patients. METHODS By comprehensive analysis of data derived from GEO datasets, differentially expressed genes (DEGs) were obtained. Univariate and Lasso Cox regressions were subsequently employed to reveal distant recurrence-free survival (DRFS)-associated DEGs and develop a prognostic gene signature, which was assessed by Kaplan-Meier survival and ROC curve. GSEA and immune infiltration analyses were conducted to illuminate molecular mechanisms and immune correlations of this model in LPS progression. Furthermore, a correlation analysis was involved to decipher the therapeutic significance of this model for LPS. RESULTS A six-gene signature was developed to predict DRFS of LPS patients and showed higher precision performance in more aggressive LPS subtypes. Then, a nomogram was further established for clinical application based on this risk model. Via GSEA, the high-risk group was significantly enriched in cell cycle-related pathways. In the LPS microenvironment, neutrophils, memory B cells and resting mast cells exhibited significant differences in cell abundance between high-risk and low-risk patients. Moreover, this model was significantly correlated with therapeutic targets. CONCLUSION A prognostic six-gene signature was developed and significantly associated with cell cycle pathways and therapeutic target genes, which could provide new insights into risk assessment of LPS progression and therapeutic strategies for LPS patients to improve their prognosis.
Collapse
Affiliation(s)
- Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jialin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| |
Collapse
|
13
|
Cheng HY, Su GL, Wu YX, Chen G, Yu ZL. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects. J Pharm Anal 2024; 14:100920. [PMID: 39104866 PMCID: PMC11298875 DOI: 10.1016/j.jpha.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 08/07/2024] Open
Abstract
Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy. Prior research has illuminated reasons behind drug resistance, including increased drug efflux, alterations in drug targets, and abnormal activation of oncogenic pathways. However, there's a need for deeper investigation into the impact of drug-resistant cells on parental tumor cells and intricate crosstalk between tumor cells and the malignant tumor microenvironment (TME). Recent studies on extracellular vesicles (EVs) have provided valuable insights. EVs are membrane-bound particles secreted by all cells, mediating cell-to-cell communication. They contain functional cargoes like DNA, RNA, lipids, proteins, and metabolites from mother cells, delivered to other cells. Notably, EVs are increasingly recognized as regulators in the resistance to anti-cancer drugs. This review aims to summarize the mechanisms of EV-mediated anti-tumor drug resistance, covering therapeutic approaches like chemotherapy, targeted therapy, immunotherapy and even radiotherapy. Detecting EV-based biomarkers to predict drug resistance assists in bypassing anti-tumor drug resistance. Additionally, targeted inhibition of EV biogenesis and secretion emerges as a promising approach to counter drug resistance. We highlight the importance of conducting in-depth mechanistic research on EVs, their cargoes, and functional approaches specifically focusing on EV subpopulations. These efforts will significantly advance the development of strategies to overcome drug resistance in anti-tumor therapy.
Collapse
Affiliation(s)
- Hao-Yang Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Xuan Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
14
|
Liu D, Zhao Q, Tu Z, Zhang S, Deng S, Xiong Z, Zeng J, Wu F, Zhang X, Xing B. Inhibitory effects of black phosphorus nanosheets on tumor cell proliferation through downregulation of ADIPOQ and downstream signaling pathways. Chem Biol Interact 2024; 395:110994. [PMID: 38582339 DOI: 10.1016/j.cbi.2024.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Exposure to environmental pollutants, including nanomaterials, has a significant impact on tumor progression. The increased demand for black phosphorus nanosheets (BPNSs), driven by their exceptional properties, raises concerns about potential environmental contamination. Assessing their toxicity on tumor growth is essential. Herein, we employed a range of biological techniques, including cytotoxicity measurement, bioinformatics tools, proteomics, target gene overexpression, Western blot analysis, and apoptosis detection, to investigate the toxicity of BPNSs across A549, HepG-2, MCF-7, and Caco-2 cell lines. Our results demonstrated that BPNSs downregulated the expression of ADIPOQ and its associated downstream pathways, such as AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (Nrf2), and other unidentified pathways. These downregulated pathways ultimately led to mitochondria-dependent apoptosis. Notably, the specific downstream pathways involved varied depending on the type of tumors. These insightful findings not only confirm the consistent inhibitory effects of BPNSs across different tumor cells, but also elucidate the cytotoxicity mechanisms of BPNSs in different tumors, providing valuable information for their safe application and health risk assessment.
Collapse
Affiliation(s)
- Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhaoxu Tu
- Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Xiong
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 0100, USA
| |
Collapse
|
15
|
Chang X, Li Z, Tian M, Deng Z, Zhu L, Li G. Rotenone activates the LKB1-AMPK-ULK1 signaling pathway to induce autophagy and apoptosis in rat thoracic aortic endothelial cells. BMC Pharmacol Toxicol 2024; 25:33. [PMID: 38783387 PMCID: PMC11118107 DOI: 10.1186/s40360-024-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The specific mechanism by which rotenone impacts thoracic aortic autophagy and apoptosis is unknown. We aimed to investigate the regulatory effects of rotenone on autophagy and apoptosis in rat thoracic aortic endothelial cells (RTAEC) via activation of the LKB1-AMPK-ULK1 signaling pathway and to elucidate the molecular mechanisms of rotenone on autophagy and apoptosis in vascular endothelial cells. METHODS In vivo, 60 male SD rats were randomly selected and divided into 5 groups: control (Con), DMSO, 1, 2, and 4 mg/kg groups, respectively. After 28 days of treatment, histopathological and ultrastructural changes in each group were observed using HE and transmission electron microscopy; Autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related proteins were detected by Western blot; Apoptosis levels in the thoracic aorta were detected by TUNEL. In vitro, RTAEC were cultured and divided into control (Con), DMSO, 20, 100, 500, and 1000 nM groups. After 24 h of intervention, autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related factors were detected by Western blot and qRT-PCR; Flow cytometry to detect apoptosis levels; Autophagy was inhibited with 3-MA and CQ to detect apoptosis levels, and changes in autophagy, apoptosis, and downstream factors were detected by the AMPK inhibitor CC intervention. RESULTS Gavage in SD rats for 28 days, some degree of damage was observed in the thoracic aorta and heart of the rotenone group, as well as the appearance of autophagic vesicles was observed in the thoracic aorta. TUNEL analysis revealed higher apoptosis in the rotenone group's thoracic aorta; RTAEC cultured in vitro, after 24 h of rotenone intervention, showed increased ROS production and significantly decreased ATP production. The flow cytometry data suggested an increase in the number of apoptotic RTAEC. The thoracic aorta and RTAEC in the rotenone group displayed elevated levels of autophagy and apoptosis, and the LKB1-AMPK-ULK1 pathway proteins were activated and expressed at higher levels. Apoptosis and autophagy were both suppressed by the autophagy inhibitors 3-MA and CQ. The AMPK inhibitor CC reduced autophagy and apoptosis in RTAEC and suppressed the production of the AMPK downstream factors ULK1 and P-ULK1. CONCLUSIONS Rotenone may promote autophagy in the thoracic aorta and RTAEC by activating the LKB1-AMPK-ULK1 signaling pathway, thereby inducing apoptosis.
Collapse
Affiliation(s)
- Xiaoyu Chang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Zeyuan Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Mi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziwei Deng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Lingqin Zhu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China.
| | - Guanghua Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
16
|
Shi Z, Hu C, Zheng X, Sun C, Li Q. Feedback loop between hypoxia and energy metabolic reprogramming aggravates the radioresistance of cancer cells. Exp Hematol Oncol 2024; 13:55. [PMID: 38778409 PMCID: PMC11110349 DOI: 10.1186/s40164-024-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Radiotherapy is one of the mainstream approaches for cancer treatment, although the clinical outcomes are limited due to the radioresistance of tumor cells. Hypoxia and metabolic reprogramming are the hallmarks of tumor initiation and progression and are closely linked to radioresistance. Inside a tumor, the rate of angiogenesis lags behind cell proliferation, and the underdevelopment and abnormal functions of blood vessels in some loci result in oxygen deficiency in cancer cells, i.e., hypoxia. This prevents radiation from effectively eliminating the hypoxic cancer cells. Cancer cells switch to glycolysis as the main source of energy, a phenomenon known as the Warburg effect, to sustain their rapid proliferation rates. Therefore, pathways involved in metabolic reprogramming and hypoxia-induced radioresistance are promising intervention targets for cancer treatment. In this review, we discussed the mechanisms and pathways underlying radioresistance due to hypoxia and metabolic reprogramming in detail, including DNA repair, role of cancer stem cells, oxidative stress relief, autophagy regulation, angiogenesis and immune escape. In addition, we proposed the existence of a feedback loop between energy metabolic reprogramming and hypoxia, which is associated with the development and exacerbation of radioresistance in tumors. Simultaneous blockade of this feedback loop and other tumor-specific targets can be an effective approach to overcome radioresistance of cancer cells. This comprehensive overview provides new insights into the mechanisms underlying tumor radiosensitivity and progression.
Collapse
Affiliation(s)
- Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Zhao YQ, Ren YF, Li BB, Wei C, Yu B. The mysterious association between adiponectin and endometriosis. Front Pharmacol 2024; 15:1396616. [PMID: 38813109 PMCID: PMC11133721 DOI: 10.3389/fphar.2024.1396616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Adiponectin is a pleiotropic cytokine predominantly derived from adipose tissue. In addition to its role in regulating energy metabolism, adiponectin may also be related to estrogen-dependent diseases, and many studies have confirmed its involvement in mediating diverse biological processes, including apoptosis, autophagy, inflammation, angiogenesis, and fibrosis, all of which are related to the pathogenesis of endometriosis. Although many researchers have reported low levels of adiponectin in patients with endometriosis and suggested that it may serve as a protective factor against the development of the disease. Therefore, the purpose of this review was to provide an up-to-date summary of the roles of adiponectin and its downstream cytokines and signaling pathways in the aforementioned biological processes. Further systematic studies on the molecular and cellular mechanisms of action of adiponectin may provide novel insights into the pathophysiology of endometriosis as well as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Bing-Bing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, China
| | | | | |
Collapse
|
18
|
Shen W, Yang M, Chen H, He C, Li H, Yang X, Zhuo J, Lin Z, Hu Z, Lu D, Xu X. FGF21-mediated autophagy: Remodeling the homeostasis in response to stress in liver diseases. Genes Dis 2024; 11:101027. [PMID: 38292187 PMCID: PMC10825283 DOI: 10.1016/j.gendis.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 02/01/2024] Open
Abstract
Liver diseases are worldwide problems closely associated with various stresses, such as endoplasmic reticulum stress. The exact interplay between stress and liver diseases remains unclear. Autophagy plays an essential role in maintaining homeostasis, and recent studies indicate tight crosstalk between stress and autophagy in liver diseases. Once the balance between damage and autophagy is broken, autophagy can no longer resist injury or maintain homeostasis. In recent years, FGF21 (fibroblast growth factor 21)-induced autophagy has attracted much attention. FGF21 is regarded as a stress hormone and can be up-regulated by an abundance of signaling pathways in response to stress. Also, increased FGF21 activates autophagy by a complicated signaling network in which mTOR plays a pivotal role. This review summarizes the mechanism of FGF21-mediated autophagy and its derived application in the defense of stress in liver diseases and offers a glimpse into its promising prospect in future clinical practice.
Collapse
Affiliation(s)
- Wei Shen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Modan Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xinyu Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianyong Zhuo
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zuyuan Lin
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Di Lu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
19
|
Liu Y, Li X, Yang J, Chen S, Zhu C, Shi Y, Dang S, Zhang W, Li W. Pan-cancer analysis of SLC2A family genes as prognostic biomarkers and therapeutic targets. Heliyon 2024; 10:e29655. [PMID: 38655365 PMCID: PMC11036058 DOI: 10.1016/j.heliyon.2024.e29655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Background The major facilitator superfamily glucose transporters (GLUTs), encoded by solute carrier 2A (SLC2A) genes, mediate the transmembrane movement and uptake of glucose. To satisfy the improved energy demands, glycolysis flux is increased in cancers compared with healthy tissues. Multiple diseases, including cancer, have been associated with GLUTs. Nevertheless, not much research has been done on the functions of SLC2As in pan-cancer prognosis or their clinical treatment potential. Methods The SLC2A family genes' level of expression and prognostic values were analyzed in relation to pan-cancer. We then examined the association among SLC2As expression and TME, Stemness score, clinical characteristics, immune subtypes, and drug sensitivity. We merged bioinformatics analysis techniques with up-to-date public databases. Additionally, SLC2As from the KOBAS database were subjected to enrichment analysis. Results We discovered that SLC2As' gene expression differed significantly between normal tissues and many malignancies. A number of tumors from various databases demonstrate a relationship between prognosis and SLC2A family gene expression. For instance, SLC2A2 and SLC2A5 were associated with the overall survival (OS) of hepatocellular carcinoma. SLC2A1 was associated with the OS of lung adenocarcinoma and pancreatic adenocarcinoma. Moreover, the SLC2A family gene expression is significantly correlated with the pan-cancer stromal and immune scores, and the RNA and DNA stemness scores. Furthermore, we found that the majority of SLC2As had a strong correlation with the tumor stages in KIRC. The immunological subtypes and all members of the SLC2A gene family exhibited a substantial correlation. Moreover, pathways containing insulin resistance and adipocytokine signaling pathway may influence the progression of some cancers. Finally, there is a significant positive or negative connection between drug sensitivity and SLC2A1 expression. Conclusion Our research highlights the significant promise of SLC2As as prognostic indicators and offers insightful approaches for upcoming exploration of SLC2As as putative therapeutic targets in malignancies.
Collapse
Affiliation(s)
- Yating Liu
- Department of Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xinyu Li
- Department of Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Yang
- Department of Pediatric Dentistry, Peking University School of Stomatology, Beijing, China
| | - Shanshan Chen
- Department of Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Changyu Zhu
- Department of Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yijun Shi
- Department of Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shoutao Dang
- Department of Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Weitao Zhang
- Department of Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
21
|
Tang W, Hu Y, Tu K, Gong Z, Zhu M, Yang T, Sarwar A, Dai B, Zhang D, Zhan Y, Zhang Y. Targeting Trop2 by Bruceine D suppresses breast cancer metastasis by blocking Trop2/β-catenin positive feedback loop. J Adv Res 2024; 58:193-210. [PMID: 37271476 PMCID: PMC10982870 DOI: 10.1016/j.jare.2023.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023] Open
Abstract
INTRODUCTION Tumor-associated calcium signal transducer 2 (Trop2) has been used as a transport gate for cytotoxic agents into cells in antibody-drug conjugate designs because of its expression in a wide range of solid tumors. However, the specific role of Trop2 itself in breast cancer progression remains unclear and small molecules targeting Trop2 have not yet been reported. OBJECTIVES To screen small molecules targeting Trop2, and to reveal its pharmacological effects and the molecular mechanisms of action. METHODS Small molecule targeting Trop2 was identified by cell membrane chromatography, and validated by cellular thermal shift assay and point mutation analyses. We investigated the pharmacological effects of Trop2 inhibitor using RNA-seq, human foreskin fibroblast (HFF)-derived extracellular matrix (ECM), Matrigel drop invasion assays, colony-forming assay, xenograft tumor model, 4T1 orthotopic metastasis model and 4T1 experimental metastasis model. The molecular mechanism was determined using immunoprecipitation, mass spectrometry, immunofluorescence, immunohistochemistry and Western blotting. RESULTS Here we identified Bruceine D (BD) as the inhibitor of Trop2, and demonstrated anti-metastasis effects of BD in breast cancer. Notably, Lys307 and Glu310 residues of Trop2 acted as critical sites for BD binding. Mechanistically, BD suppressed Trop2-induced cancer metastasis by blocking the formation of Trop2/β-catenin positive loop, in which the Trop2/β-catenin complex prevented β-catenin from being degraded via the ubiquitin-proteosome pathway. Destabilized β-catenin caused by BD reduced nucleus translocation, leading to the reduction of transcription of Trop2, the reversal of epithelial-mesenchymal transition (EMT) process, and the inhibition of ECM remodeling, further inhibiting cancer metastasis. Additionally, the inhibitory effects of BD on lung metastatic colonization and the beneficial effects of BD on prolongation of survival were validated in 4T1 experimental metastasis model. CONCLUSIONS These results support the tumor-promoting role of Trop2 in breast cancer by stabilizing β-catenin in Trop2/β-catenin positive loop, and suggest Bruceine D as a promising candidate for Trop2 inhibition.
Collapse
Affiliation(s)
- Wenjuan Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Yu Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Kaihui Tu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Zhengyan Gong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Ammar Sarwar
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Yingzhuan Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China.
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China.
| |
Collapse
|
22
|
Sun C, Zhan J, Li Y, Zhou C, Huang S, Zhu X, Huang K. Non-apoptotic regulated cell death mediates reprogramming of the tumour immune microenvironment by macrophages. J Cell Mol Med 2024; 28:e18348. [PMID: 38652105 PMCID: PMC11037416 DOI: 10.1111/jcmm.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Tumour immune microenvironment (TIME) plays an indispensable role in tumour progression, and tumour-associated macrophages (TAMs) are the most abundant immune cells in TIME. Non-apoptotic regulated cell death (RCD) can avoid the influence of tumour apoptosis resistance on anti-tumour immune response. Specifically, autophagy, ferroptosis, pyroptosis and necroptosis mediate the crosstalk between TAMs and tumour cells in TIME, thus reprogram TIME and affect the progress of tumour. In addition, although some achievements have been made in immune checkpoint inhibitors (ICIs), there is still defect that ICIs are only effective for some people because non-apoptotic RCD can bypass the apoptosis resistance of tumour. As a result, ICIs combined with targeting non-apoptotic RCD may be a promising solution. In this paper, the basic molecular mechanism of non-apoptotic RCD, the way in which non-apoptotic RCD mediates crosstalk between TAMs and tumour cells to reprogram TIME, and the latest research progress in targeting non-apoptotic RCD and ICIs are reviewed.
Collapse
Affiliation(s)
- Chengpeng Sun
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Yao Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Chulin Zhou
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Shuo Huang
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Xingen Zhu
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| | - Kai Huang
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| |
Collapse
|
23
|
Guo Y, Tong Z, Huang Y, Tang J, Xue X, Yang D, Yao C. Dynamic Assembly of DNA Nanostructures in Cancer Cells Enables the Coupling of Autophagy Activating and Real-Time Tracking. NANO LETTERS 2024; 24:3532-3540. [PMID: 38457281 DOI: 10.1021/acs.nanolett.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Developing dynamic nanostructures for in situ regulation of biological processes inside living cells is of great importance in biomedical research. Herein we report the cascaded assembly of Y-shaped branched DNA nanostructure (YDN) during intracellular autophagy. YDN contains one arm with semi-i-motif sequence and Cy3-BHQ2, and another arm with an apurinic/apyrimidinic (AP) site and Cy5-BHQ3. Upon uptake by cancer cells, intermolecular i-motif structures are formed in response to lysosomal H+, causing the formation of YDN-dimer and the recovery of Cy3 fluorescence; when escapes occur from the lysosome to the cytoplasm, the YDN-dimer responds to the overexpressed APE1, leading to the assembly of YDN into the DNA network and the fluorescence recovery of Cy5. Simultaneously, the cascaded assembly activates autophagy, and thus the process of assembly of YDN and autophagy flux can be spatiotemporally coupled. This work illustrates the potential of DNA nanostructures for the in situ regulation of intracellular dynamic events with spatiotemporal control.
Collapse
Affiliation(s)
- Yanfei Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Zhaobin Tong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Yan Huang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
24
|
Salehi M, Kamali MJ, Arab D, Safaeian N, Ashuori Z, Maddahi M, Latifi N, Jahromi AM. Exosomal microRNAs in regulation of tumor cells resistance to apoptosis. Biochem Biophys Rep 2024; 37:101644. [PMID: 38298209 PMCID: PMC10827597 DOI: 10.1016/j.bbrep.2024.101644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Exosomes are a type of extracellular vesicle that contains bioactive molecules that can be secreted by most cells. Nevertheless, the content of these cells differs depending on the cell from which they originate. The exosome plays a crucial role in modulating intercellular communication by conveying molecular messages to neighboring or distant cells. Cancer-derived exosomes can transfer several types of molecules into the tumor microenvironment, including high levels of microRNA (miRNA). These miRNAs significantly affect cell proliferation, angiogenesis, apoptosis resistance, metastasis, and immune evasion. Increasing evidence indicates that exosomal miRNAs (exomiRs) are crucial to regulating cancer resistance to apoptosis. In cancer cells, exomiRs orchestrate communication channels between them and their surrounding microenvironment, modulating gene expression and controlling apoptosis signaling pathways. This review presents an outline of present-day knowledge of the mechanisms that affect target cells and drive cancer resistance to apoptosis. Also, our study looks at the regulatory role of exomiRs in mediating intercellular communication between tumor cells and surrounding microenvironmental cells, specifically stromal and immune cells, to evade therapy-induced apoptosis.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Daniyal Arab
- Department of Human Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naghme Safaeian
- Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Ashuori
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Moein Maddahi
- Faculty of Dentistry, Yeditepe University, Istanbul, Turkey
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Amir Moein Jahromi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Higashi T, Saigo C, Chikaishi W, Hayashi H, Hanamatsu Y, Futamura M, Matsuhashi N, Takeuchi T. Implication of IZUMO2 in the cell-in-cell phenomenon: A potential therapeutic target for triple-negative breast cancer. Thorac Cancer 2024; 15:513-518. [PMID: 38258402 PMCID: PMC10912533 DOI: 10.1111/1759-7714.15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized by the loss of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The aggressive clinicopathological features and resistance to currently available therapeutics of the disease warrant an urgent need for the development of novel alternate therapeutic options. We have previously reported adiponectin-expressing regulatory T cells (A-Tregs), which can induce apoptosis in TNBC through the cell-in-cell phenomenon. In this study, we aimed to elucidate the molecule that allows TNBC cells to engulf A-Tregs. METHODS A monoclonal antibody, which repressed the engulfment of A-Tregs by TNBC cells, was developed. Immunoprecipitation followed by mass spectrometry and small interfering RNAs-mediated gene silencing was performed to characterize the antigen. RESULTS We successfully generated a monoclonal antibody, designated G1D7, which abrogated the engulfment of A-Tregs by TNBC and subsequent A-Treg-mediated apoptosis. G1D7 detected the immunoglobulin-like type I membrane protein IZUMO2, a molecule related to IZUMO1 that is essential for cell-cell membrane binding and fusion of sperm to oocyte. CONCLUSION The findings highlight the importance of IZUMO2 on TNBC cells in facilitating the cell-in-cell phenomenon by A-Tregs.
Collapse
Affiliation(s)
- Toshiya Higashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Chiemi Saigo
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- The United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| | - Wakana Chikaishi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Hirokatsu Hayashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Yuki Hanamatsu
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| | - Manabu Futamura
- Department of Breast SurgeryGifu University HospitalGifuJapan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| |
Collapse
|
26
|
Egashira K, Kajiya H, Tsutsumi T, Taniguchi Y, Kakura K, Ohno J, Kido H. AMPK activation enhances osteoblast differentiation on a titanium disc via autophagy. Int J Implant Dent 2024; 10:2. [PMID: 38286943 PMCID: PMC10825085 DOI: 10.1186/s40729-024-00525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024] Open
Abstract
PURPOSE The acquisition of osseointegration during implant therapy is slower and poorer in patients with diabetes compared with healthy persons. The serum concentration of adiponectin in patients with type II diabetes is lower than that of healthy persons via the suppression of AMP-activated protein kinase (AMPK). Therefore, we hypothesized that the AMPK activation enhances bone formation around implants, resulting in the improved acquisition of osseointegration. The purpose of this study was to evaluate the impact of AMPK activation on osteoblast differentiation and its mechanism of downstream signaling on titanium disc (Ti). METHODS Confluent mouse pre-osteoblasts (MC3T3-E1) cells (1 × 105 cells/well) were cultured with BMP-2 for osteoblast differentiation, in the presence or absence AICAR, an AMPK activator. We examined the effects of AMPK activation on osteoblast differentiation and the underlying mechanism on a Ti using a CCK8 assay, a luciferase assay, quantitative RT-PCR, and western blotting. RESULTS Although the proliferation rate of osteoblasts was not different between a Ti and a tissue culture polystyrene dish, the addition of AICAR, AMPK activator slightly enhanced osteoblast proliferation on the Ti. AICAR enhanced the BMP-2-dependent transcriptional activity on the Ti, leading to upregulation in the expression of osteogenesis-associated molecules. AICAR simultaneously upregulated the expression of autophagy-associated molecules on the Ti, especially LC3-II. AdipoRon, an adiponectin receptor type1/type2 activator activated AMPK, and upregulated osteogenesis-associated molecules on Ti. CONCLUSIONS AMPK activation enhances osteoblast differentiation on a Ti via autophagy, suggesting that it promotes the acquisition of osseointegration during implant therapy.
Collapse
Affiliation(s)
- Kei Egashira
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 814-0193, Japan.
| | - Takashi Tsutsumi
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Yusuke Taniguchi
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Kae Kakura
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Ohno
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Hirofumi Kido
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
27
|
Sui Y, Liu Q, Xu C, Ganesan K, Ye Z, Li Y, Wu J, Du B, Gao F, Song C, Chen J. Non-alcoholic fatty liver disease promotes breast cancer progression through upregulated hepatic fibroblast growth factor 21. Cell Death Dis 2024; 15:67. [PMID: 38238320 PMCID: PMC10796330 DOI: 10.1038/s41419-023-06386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been shown to influence breast cancer progression, but the underlying mechanisms remain unclear. In this study, we investigated the impact of NAFLD on breast cancer tumor growth and cell viability through the potential mediator, hepatic fibroblast growth factor 21 (FGF21). Both peritumoral and systemic administration of FGF21 promoted breast cancer tumor growth, while FGF21 knockout attenuated the tumor-promoting effects of the high-fat diet. Mechanistically, exogenous FGF21 treatment enhanced the anti-apoptotic ability of breast cancer cells through STAT3 and Akt/FoXO1 signaling pathways, and mitigated doxorubicin-induced cell death. Furthermore, we observed overexpression of FGF21 in tumor tissues from breast cancer patients, which was associated with poor prognosis. These findings suggest a novel role for FGF21 as an upregulated mediator in the context of NAFLD, promoting breast cancer development and highlighting its potential as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yue Sui
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qingqing Liu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Cong Xu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kumar Ganesan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhen Ye
- Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Yan Li
- Xiamen University, 361005, Xiamen, China
| | - Jianmin Wu
- School of Pharmacy, Southwest Medical University, 646000, Luzhou, China
| | - Bing Du
- South China Agricultural University, 510000, Guangzhou, China
| | - Fei Gao
- Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Cailu Song
- Sun Yat-Sen University Cancer Center, 510000, Guangzhou, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, 518000, Shenzhen, China.
| |
Collapse
|
28
|
Li H, Pei X, Yu H, Wang W, Mao D. Autophagic and apoptotic proteins in goat corpus luteum and the effect of Adiponectin/AdipoRon on luteal cell autophagy and apoptosis. Theriogenology 2024; 214:245-256. [PMID: 37944429 DOI: 10.1016/j.theriogenology.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The most abundant adipokine Adiponectin (APN) is present in ovaries. AdipoRon is a small molecule oral APN receptor agonist that binds and activates APN receptors. However, the function of APN/AdipoRon in regulation of luteal cell processes has not been elucidated. To investigate autophagic and apoptotic proteins in goat CLs and effects of APN/AdipoRon on goat luteal autophagy and apoptosis, goat CLs were collected during the early, mid and late luteal stages of the estrous cycle to evaluate autophagic and apoptotic protein patterns. LC3B, Beclin 1, Caspase-3 and Bax/Bcl-2 as well as p-AMPK were differentially abundant at different stages of CL development. All these proteins were primarily localized in large and small luteal steroidogenic cells. Then, isolated luteal steroidogenic cells were evaluated to ascertain the functions and mechanism of APN/AdipoRon in luteal autophagy and apoptosis. Treatment with AdipoRon (25 and 50 μM) and APN (1 μg/mL) for 48 h resulted in a decrease in cell viability and P4 level, increased autophagic and apoptotic proteins. Treatment with AdipoRon (25 μM) led to rapid and transient p-AMPK activation, with p-AMPK elevated at 30 min to 1 h with there being a return to a basal concentration at 2 h post-treatment. Moreover, treatment with AdipoRon led to an increase in autophagy by activating AMPK, which was markedly reduced with treatment with an AMPK inhibitor Compound C and siAMPK, however, abundances of apoptotic proteins were not affected by these treatments. In conclusion, autophagy and apoptosis are involved in the structural regression of goat CL. APN/AdipoRon led to a lesser cell viability and P4 concentration, and activated autophagy through induction of the AMPK while there was induction of apoptosis through an AMPK - independent pathway in goat luteal cells.
Collapse
Affiliation(s)
- Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
29
|
Hu M, Ying X, Zheng M, Wang C, Li Q, Gu L, Zhang X. Therapeutic potential of natural products against Alzheimer's disease via autophagic removal of Aβ. Brain Res Bull 2024; 206:110835. [PMID: 38043648 DOI: 10.1016/j.brainresbull.2023.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
The pathological features of Alzheimer's disease (AD), a progressive neurodegenerative disorder, include the deposition of extracellular amyloid beta (Aβ) plaques and intracellular tau neurofibrillary tangles. A decline in cognitive ability is related to the accumulation of Aβ in patients with AD. Autophagy, which is a primary intracellular mechanism for degrading aggregated proteins and damaged organelles, plays a crucial role in AD. In this review, we summarize the most recent research progress regarding the process of autophagy and the effect of autophagy on Aβ. We further discuss some typical monomers of natural products that contribute to the clearance of Aβ by autophagy, which can alleviate AD. This provides a new perspective for the application of autophagy modulation in natural product therapy for AD.
Collapse
Affiliation(s)
- Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Xinyi Ying
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
30
|
Engin AB, Engin A. Next-Cell Hypothesis: Mechanism of Obesity-Associated Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:727-766. [PMID: 39287871 DOI: 10.1007/978-3-031-63657-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Higher body fat content is related to a higher risk of mortality, and obesity-related cancer represents approximately 40% of all cancer patients diagnosed each year. Furthermore, epigenetic mechanisms are involved in cellular metabolic memory and can determine one's predisposition to being overweight. Low-grade chronic inflammation, a well-established characteristic of obesity, is a central component of tumor development and progression. Cancer-associated adipocytes (CAA), which enhance inflammation- and metastasis-related gene sets within the cancer microenvironment, have pro-tumoral effects. Adipose tissue is a major source of the exosomal micro ribonucleic acids (miRNAs), which modulate pathways involved in the development of obesity and obesity-related comorbidities. Owing to their composition of cargo, exosomes can activate receptors at the target cell or transfer molecules to the target cells and thereby change the phenotype of these cells. Exosomes that are released into the extracellular environment are internalized with their cargo by neighboring cells. The tumor-secreted exosomes promote organ-specific metastasis of tumor cells that normally lack the capacity to metastasize to a specific organ. Therefore, the communication between neighboring cells via exosomes is defined as the "next-cell hypothesis." The reciprocal interaction between the adipocyte and tumor cell is realized through the adipocyte-derived exosomal miRNAs and tumor cell-derived oncogenic miRNAs. The cargo molecules of adipocyte-derived exosomes are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. RNA-induced silencing regulates gene expression through various mechanisms. Destabilization of DICER enzyme, which catalyzes the conversion of primary miRNA (pri-miRNA) to precursor miRNA (pre-miRNA), is an important checkpoint in cancer development and progression. Interestingly, adipose tissue in obesity and tumors share similar pathogenic features, and the local hypoxia progress in both. While hypoxia in obesity leads to the adipocyte dysfunction and metabolic abnormalities, in obesity-related cancer cases, it is associated with worsened prognosis, increased metastatic potential, and resistance to chemotherapy. Notch-interleukin-1 (IL-1)-Leptin crosstalk outcome is referred to as "NILCO effect." In this chapter, obesity-related cancer development is discussed in the context of "next-cell hypothesis," miRNA biogenesis, and "NILCO effect."
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
31
|
Rajabi S, Shakib H, Safari-Alighiarloo N, Maresca M, Hamzeloo-Moghadam M. Targeting autophagy for breast cancer prevention and therapy: From classical methods to phytochemical agents. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1475-1491. [PMID: 39539439 PMCID: PMC11556757 DOI: 10.22038/ijbms.2024.79405.17201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/02/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer is a heterogeneous illness comprising diverse biological subtypes, each of which differs in incidence, response to therapies, and prognosis. Despite the presence of novel medications that effectively target vital cellular signaling pathways and their application in clinical practice, breast cancer can still develop resistance to therapies by various mechanisms. Autophagy is a conserved catabolic cellular process that maintains intracellular metabolic homeostasis by removing dysfunctional or unnecessary cellular materials to recycle cytosolic components. This process serves as an adaptive survival response to diverse stress stimuli, thereby contributing to tumor initiation, progression, and drug resistance, leading to restriction of the effectiveness of chemotherapeutic treatments. Regarding this potential role of autophagy, molecular regulation and signal transduction of this process represent an attractive approach to combat cancer development and drug resistance. Among various therapeutic agents, bioactive plant-derived compounds have received significant interest as promising anticancer drugs. A plethora of evidence has shown that phytochemicals with the capacity to modulate autophagy may have the potential to be used as inhibitors of breast cancer growth. In this review, we describe recent findings on autophagy targeting along with conventional methods for breast cancer therapy. Subsequently, we introduce phytochemical compounds with the capacity to modulate autophagy for breast cancer treatment.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Li D, Ju F, Wang H, Fan C, Jacob JC, Gul S, Zaliani A, Wartmann T, Polidori MC, Bruns CJ, Zhao Y. Combination of the biomarkers for aging and cancer? - Challenges and current status. Transl Oncol 2023; 38:101783. [PMID: 37716258 PMCID: PMC10514562 DOI: 10.1016/j.tranon.2023.101783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The proportion of patients diagnosed with cancer has been shown to rise with the increasing aging global population. Advanced age is a major risk factor for morbidity and mortality in older adults. As individuals experience varying health statuses, particularly with age, it poses a challenge for medical professionals in the cancer field to obtain standardized treatment outcomes. Hence, relying solely on chronological age and disease-related parameters is inadequate for clinical decision-making for elderly patients. With functional, multimorbidity-related, and psychosocial changes that occur with aging, oncologic diseases may develop and be treated differently from younger patients, leading to unique challenges in treatment efficacy and tolerance. To overcome this challenge, personalized therapy using biomarkers has emerged as a promising solution. Various categories of biomarkers, including inflammatory, hematological, metabolic, endocrine, and DNA modification-related indicators, may display features related to both cancer and aging, aiding in the development of innovative therapeutic approaches for patients with cancer in old age. Furthermore, physical functional measurements as non-molecular phenotypic biomarkers are being investigated for their potential complementary role in structured multidomain strategies to combat age-related diseases such as cancer. This review provides insight into the current developments, recent discoveries, and significant challenges in cancer and aging biomarkers, with a specific focus on their application in advanced age.
Collapse
Affiliation(s)
- Dai Li
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Feng Ju
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Han Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chunfu Fan
- Medical faculty, University of Cologne, Germany
| | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Thomas Wartmann
- Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress-Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne Germany
| | - Christiane J Bruns
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology (CIO) Aachen, Bonn, Cologne and Düsseldorf, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| |
Collapse
|
33
|
Wang H, Liu F, Xue J, Liu Y, Gao W, Yang S, Mi Y, Zhang X, Gao S, Geng C. The investigation of circRNA profiling reveals the regulatory role of the hsa_circ_0000375/miR-7706 pathway in breast cancer. Mol Biol Rep 2023; 50:9993-10004. [PMID: 37904009 DOI: 10.1007/s11033-023-08798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) take an effect on tumorigenesis and progression. However, circRNAs have not been systematically identified in breast cancer (BC) as crucial regulators in multitudinous biological processes. This study is conducted to explore novel circRNAs in BC and the corresponding mechanisms of their action. METHODS The circRNA expression profile and RNA-sequencing data about BC were respectively downloaded from public database. Differentially expressed circRNAs, miRNAs, and mRNAs were identified by fold change filtering. The competing endogenous RNAs (ceRNAs) network was established based on the relationship between circular RNAs, miRNAs and mRNAs. GO and KEGG enrichment analysis of the overlapped genes were carried out to predict the potential functions and mechanisms of circRNAs in BC. The CytoHubba plugin in Cytoscape was applied to identify the hub genes from the PPI regulatory network. Kaplan-Meier plotter was used to perform survival analysis of these hub genes further. Real-time PCR was performed to test the expression of circRNA in BC tissues. Cell function studies including transwell analysis and CCK-8 analysis were used to investigate circRNAs' biological functions. RESULTS A total of seven circRNAs exhibiting differential expression were identified in this study. After the intersection between the predicted target miRNA and the down-regulated differential miRNAs (DEmiRNAs), circRNA-miRNA interactions involving 3 circRNAs and 4 miRNAs were identified. Venn diagram was utilized to intersect the predicted target genes of the 4 miRNAs and the down-regulated differential genes in BC, and 149 overlapped genes were screened out ulteriorly. Additionally, we built a protein-protein interaction (PPI) network and selected six hub genes. Moreover, the survival data of BC patients suggested that low expression of ADIPOQ, LPL and LEP were significantly correlated with poor prognosis. Results from real-time PCR indicated that hsa_circ_0000375 was significantly down-regulated in breast cancer tissues. Functional in vitro experiments showed that over-expression of hsa_circ_0000375 can restrain proliferation, migration and invasion abilities of breast cancer cells. Further verification indicated that hsa_circ_0000375 exerted its anti-oncogene effect via sponge of miR-7706. CONCLUSIONS This study constructed and analyzed a circRNA-associated ceRNA regulatory network and uncovered that hsa_circ_0000375 exerted its anti-oncogene effect via sponge of miR-7706.
Collapse
Affiliation(s)
- Haoqi Wang
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Fei Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Jing Xue
- Radiology Department, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Yaping Liu
- Medical insurance center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Wei Gao
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Shan Yang
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Yunzhe Mi
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Xi Zhang
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Shan Gao
- Gland Surgery, the Hebei Province People's Hospital, Shijiazhuang, 050000, Hebei, P.R. China.
| | - Cuizhi Geng
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China.
| |
Collapse
|
34
|
Capuozzo M, Celotto V, Landi L, Ferrara F, Sabbatino F, Perri F, Cascella M, Granata V, Santorsola M, Ottaiano A. Beyond Body Size: Adiponectin as a Key Player in Obesity-Driven Cancers. Nutr Cancer 2023; 75:1848-1862. [PMID: 37873648 DOI: 10.1080/01635581.2023.2272343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023]
Abstract
Obesity, a complex and multifactorial disease influenced by genetic, environmental, and psychological factors, has reached epidemic proportions globally, posing a significant health challenge. In addition to its established association with cardiovascular disease and type II diabetes, obesity has been implicated as a risk factor for various cancers. However, the precise biological mechanisms linking obesity and cancer remain largely understood. Adipose tissue, an active endocrine organ, produces numerous hormones and bioactive molecules known as adipokines, which play a crucial role in metabolism, immune responses, and systemic inflammation. Notably, adiponectin (APN), the principal adipocyte secretory protein, exhibits reduced expression levels in obesity. In this scoping review, we explore and discuss the role of APN in influencing cancer in common malignancies, including lung, breast, colorectal, prostate, gastric, and endometrial cancers. Our review aims to emphasize the critical significance of investigating this field, as it holds great potential for the development of innovative treatment strategies that specifically target obesity-related malignancies. Furthermore, the implementation of more rigorous and comprehensive prevention and treatment policies for obesity is imperative in order to effectively mitigate the risk of associated diseases, such as cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | | | | |
Collapse
|
35
|
Ulaganathan K, Puranam K, Mukta S, Hanumanth SR. Expression profiling of luminal B breast tumor in Indian women. J Cancer Res Clin Oncol 2023; 149:13645-13664. [PMID: 37516983 DOI: 10.1007/s00432-023-05195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE In this study, we aimed at profiling of luminal B breast cancer specific gene expression pattern in Indian women using mRNA-seq and validation based on TCGA expression data. METHODS RNA isolated from luminal B tumor and adjacent normal tissues was used for library construction and sequencing. Reference-based assemblies of these reads were used for differential gene expression analysis using DeSeq2. The DEGs were evaluated using TCGA expression data. Kaplan-Meier survival method was used to evaluate association between genes showing luminal B specific differential expression pattern and breast cancer prognosis and statistical significance was assessed using log-rank test. Alternate splicing analysis was done using rmats. RESULTS Differential expression analysis identified 2371 differentially expressed genes (DEGs) in luminal B breast tumors in comparison with adjacent normal tissues of Indian Women. Of them, 1692 DEGs were validated using TCGA luminal B paired samples. Integration of this data with the DEGs obtained by comparative analysis of unpaired luminal B with luminal A unpaired samples from TCGA resulted in 291 DEGs showing luminal B specific expression pattern. Further, 26 genes of prognostic value were identified. Differential splicing analysis between luminal B tumors and adjacent normal tissues in our cohort led to the identification of 687 genes showing significant differential alternate splicing events. CONCLUSION This study profiled gene expression pattern of luminal B tumors of Indian women and identified 26 key genes of prognostic value for luminal B breast cancer. This study also profiled differential alternate splicing and identified important alternate splicing events in luminal B breast cancer.
Collapse
Affiliation(s)
| | - Kaushik Puranam
- Department of Genetics, Osmania University, Hyderabad, Telangana, 500007, India
| | - Srinivasulu Mukta
- Department of Surgical Oncology, MNJ Institute of Oncology and RCC, Hyderabad, Telangana, India
| | | |
Collapse
|
36
|
Liu W, Zeng Y, Hao X, Wang X, Liu J, Gao T, Wang M, Zhang J, Huo M, Hu T, Ma T, Zhang D, Teng X, Yu H, Zhang M, Yuan B, Huang W, Yang Y, Wang Y. JARID2 coordinates with the NuRD complex to facilitate breast tumorigenesis through response to adipocyte-derived leptin. Cancer Commun (Lond) 2023; 43:1117-1142. [PMID: 37658635 PMCID: PMC10565380 DOI: 10.1002/cac2.12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/21/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Proteins containing the Jumonji C (JmjC) domain participated in tumorigenesis and cancer progression. However, the mechanisms underlying this effect are still poorly understood. Our objective was to investigate the role of Jumonji and the AT-rich interaction domain-containing 2 (JARID2) - a JmjC family protein - in breast cancer, as well as its latent association with obesity. METHODS Immunohistochemistry, The Cancer Genome Atlas, Gene Expression Omnibus, and other databases were used to analyze the expression of JARID2 in breast cancer cells. Growth curve, 5-ethynyl-2-deoxyuridine (EdU), colony formation, and cell invasion experiments were used to detect whether JARID2 affected breast cancer cell proliferation and invasion. Spheroidization-based experiments and xenotumor transplantation in NOD/SCID mice were used to examine the association between JARID2 and breast cancer stemness. RNA-sequencing, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis were used to identify the cell processes in which JARID2 participates. Immunoaffinity purification and silver staining mass spectrometry were conducted to search for proteins that might interact with JARID2. The results were further verified using co-immunoprecipitation and glutathione S-transferase (GST) pull-down experiments. Using chromatin immunoprecipitation (ChIP) sequencing, we sought the target genes that JARID2 and metastasis-associated protein 1 (MTA1) jointly regulated; the results were validated by ChIP-PCR, quantitative ChIP (qChIP) and ChIP-reChIP assays. A coculture experiment was used to explore the interactions between breast cancer cells and adipocytes. RESULTS In this study, we found that JARID2 was highly expressed in multiple types of cancer including breast cancer. JARID2 promoted glycolysis, lipid metabolism, proliferation, invasion, and stemness of breast cancer cells. Furthermore, JARID2 physically interacted with the nucleosome remodeling and deacetylase (NuRD) complex, transcriptionally repressing a series of tumor suppressor genes such as BRCA2 DNA repair associated (BRCA2), RB transcriptional corepressor 1 (RB1), and inositol polyphosphate-4-phosphatase type II B (INPP4B). Additionally, JARID2 expression was regulated by the obesity-associated adipokine leptin via Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in the breast cancer microenvironment. Analysis of various online databases also indicated that JARID2/MTA1 was associated with a poor prognosis of breast cancer. CONCLUSION Our data indicated that JARID2 promoted breast tumorigenesis and development, confirming JARID2 as a target for cancer treatment.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinP. R. China
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Yi Zeng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinP. R. China
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceSouthwest Medical UniversityLuzhouSichuanP. R. China
| | - Xinhui Hao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinP. R. China
| | - Xin Wang
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Jiaxiang Liu
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Tianyang Gao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinP. R. China
| | - Mengdi Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinP. R. China
| | - Jingyao Zhang
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Miaomiao Huo
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Ting Hu
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Tianyu Ma
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Die Zhang
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijingP. R. China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijingP. R. China
| | - Min Zhang
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Baowen Yuan
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijingP. R. China
| | - Yunkai Yang
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Yan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinP. R. China
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| |
Collapse
|
37
|
Yuan W, Fang W, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Therapeutic strategies targeting AMPK-dependent autophagy in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119537. [PMID: 37463638 DOI: 10.1016/j.bbamcr.2023.119537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
Macroautophagy is a health-modifying process of engulfing misfolded or aggregated proteins or damaged organelles, coating these proteins or organelles into vesicles, fusion of vesicles with lysosomes to form autophagic lysosomes, and degradation of the encapsulated contents. It is also a self-rescue strategy in response to harsh environments and plays an essential role in cancer cells. AMP-activated protein kinase (AMPK) is the central pathway that regulates autophagy initiation and autophagosome formation by phosphorylating targets such as mTORC1 and unc-51 like activating kinase 1 (ULK1). AMPK is an evolutionarily conserved serine/threonine protein kinase that acts as an energy sensor in cells and regulates various metabolic processes, including those involved in cancer. The regulatory network of AMPK is complicated and can be regulated by multiple upstream factors, such as LKB1, AKT, PPAR, SIRT1, or noncoding RNAs. Currently, AMPK is being investigated as a novel target for anticancer therapies based on its role in macroautophagy regulation. Herein, we review the effects of AMPK-dependent autophagy on tumor cell survival and treatment strategies targeting AMPK.
Collapse
Affiliation(s)
- Wenbin Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Wanyi Fang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
38
|
Chikaishi W, Higashi T, Hayashi H, Hanamatsu Y, Futamura M, Matsuhashi N, Saigo C, Takeuchi T. Adiponectin-expressing Treg-containing T cell fraction inhibits tumor growth in orthotopically implanted triple-negative breast cancer. Thorac Cancer 2023; 14:3058-3062. [PMID: 37674354 PMCID: PMC10599968 DOI: 10.1111/1759-7714.15102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND In our previous study, we identified a population of adiponectin expressing regulatory T cells (Tregs) residing within thymic nurse cell complexes, which were capable of inhibiting the development of breast cancer in vitro. Triple-negative breast cancer (TNBC) with no proper treatment at present is characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2. In this study, we aimed to investigate the potential of a cultured T cell fraction comprising adiponectin-expressing Tregs, referred to as A-TregTF (adiponectin-expressing Treg-containing T cell fraction), in inhibiting the progression of TNBC in vivo. METHODS The efficacy of a spontaneously expanding T cell fraction comprising adiponectin-expressing Treg in inhibiting tumor growth was analyzed in a murine orthotopic 4 T1-Luc TNBC model. RESULTS The treatment with T cell fraction containing adiponectin-expressing Tregs significantly inhibited the growth and metastasis of orthotopically transplanted 4 T1-Luc tumor cells. Histopathological examination further revealed that the adiponectin-expressing Tregs infiltrated the tumor tissue via a cell-in-cell mechanism and were found to be specifically localized around the necrotic areas. CONCLUSIONS Based on our findings, the T cell fraction comprising adiponectin-expressing Tregs, represents a potential candidate for adoptive cell therapy against TNBC.
Collapse
Affiliation(s)
- Wakana Chikaishi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Toshiya Higashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Hirokatsu Hayashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Yuki Hanamatsu
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
| | - Manabu Futamura
- Department of Breast SurgeryGifu University HospitalGifuJapan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Chiemi Saigo
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- The United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| |
Collapse
|
39
|
Bankov K, Schulze F, Gretser S, Reis H, Abedin N, Finkelmeier F, Trojan J, Zeuzem S, Schnitzbauer AA, Walter D, Wild PJ, Kinzler MN. Active Autophagy Is Associated with Favorable Outcome in Patients with Surgically Resected Cholangiocarcinoma. Cancers (Basel) 2023; 15:4322. [PMID: 37686598 PMCID: PMC10486413 DOI: 10.3390/cancers15174322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Data on the impact of autophagy in primary cholangiocarcinoma (CCA) remain scarce. Here, we therefore investigated the role of active autophagy and its impact on survival in CCA patients. All CCA patients who underwent surgical resection with curative intent between 08/2005 and 12/2021 at University Hospital Frankfurt were evaluated. Autophagic key proteins were studied by immunohistochemistry. iCCA processed for gene expression profiling of immune-exhaustion gene sets was used for an autophagy approach in silico. Active autophagy was present in 23.3% of the 172 CCA patients. Kaplan-Meier curves revealed median OS of 68.4 months (95% CI = 46.9-89.9 months) and 32.7 months (95% CI = 23.6-41.8 months) for active and non-active autophagy, respectively (p ≤ 0.001). In multivariate analysis, absence of active autophagy (HR = 2, 95% CI = 1.1-3.5, p = 0.015) was an independent risk factor for OS. Differential-expression profiling revealed significantly upregulated histone deacetylases (HDAC) mRNA in patients showing non-active autophagy. In line with this, pan-acetylated lysine was significantly more prominent in CCA patients with ongoing autophagy (p = 0.005). Our findings strengthen the role of active autophagy as a prognostically relevant marker and a potential therapeutic target.
Collapse
Affiliation(s)
- Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Falko Schulze
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Steffen Gretser
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Nada Abedin
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Fabian Finkelmeier
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Jörg Trojan
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas A. Schnitzbauer
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dirk Walter
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Peter J. Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), 60438 Frankfurt am Main, Germany
| | - Maximilian N. Kinzler
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
40
|
Tang XE, Cheng YQ, Tang CK. Protein tyrosine phosphatase non-receptor type 2 as the therapeutic target of atherosclerotic diseases: past, present and future. Front Pharmacol 2023; 14:1219690. [PMID: 37670950 PMCID: PMC10475599 DOI: 10.3389/fphar.2023.1219690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important member of the protein tyrosine phosphatase family, can regulate various signaling pathways and biological processes by dephosphorylating receptor protein tyrosine kinases. Accumulating evidence has demonstrated that PTPN2 is involved in the occurrence and development of atherosclerotic cardiovascular disease. Recently, it has been reported that PTPN2 exerts an anti-atherosclerotic effect by regulating vascular endothelial injury, monocyte proliferation and migration, macrophage polarization, T cell polarization, autophagy, pyroptosis, and insulin resistance. In this review, we summarize the latest findings on the role of PTPN2 in the pathogenesis of atherosclerosis to provide a rationale for better future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xiao-Er Tang
- Department of Pathophysiology, Shaoyang University, Shaoyang, Hunan, China
| | - Ya-Qiong Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| |
Collapse
|
41
|
Liu SQ, Chen DY, Li B, Gao ZJ, Feng HF, Yu X, Liu Z, Wang Y, Li WG, Sun S, Sun SR, Wu Q. Single-cell analysis of white adipose tissue reveals the tumor-promoting adipocyte subtypes. J Transl Med 2023; 21:470. [PMID: 37454080 PMCID: PMC10349475 DOI: 10.1186/s12967-023-04256-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND The tumor-adipose microenvironment (TAME) is characterized by the enrichment of adipocytes, and is considered a special ecosystem that supports cancer progression. However, the heterogeneity and diversity of adipocytes in TAME remains poorly understood. METHODS We conducted a single-cell RNA sequencing analysis of adipocytes in mouse and human white adipose tissue (WAT). We analyzed several adipocyte subtypes to evaluate their relationship and potential as prognostic factors for overall survival (OS). The potential drugs are screened by using bioinformatics methods. The tumor-promoting effects of a typical adipocyte subtype in breast cancer are validated by performing in vitro functional assays and immunohistochemistry (IHC) in clinical samples. RESULTS We profiled a comprehensive single-cell atlas of adipocyte in mouse and human WAT and described their characteristics, origins, development, functions and interactions with immune cells. Several cancer-associated adipocyte subtypes, namely DPP4+ adipocytes in visceral adipose and ADIPOQ+ adipocytes in subcutaneous adipose, are identified. We found that high levels of these subtypes are associated with unfavorable outcomes in four typical adipose-associated cancers. Some potential drugs including Trametinib, Selumetinib and Ulixertinib are discovered. Emphatically, knockdown of adiponectin receptor 1 (AdipoR1) and AdipoR2 impaired the proliferation and invasion of breast cancer cells. Patients with AdipoR2-high breast cancer display significantly shorter relapse-free survival (RFS) than those with AdipoR2-low breast cancer. CONCLUSION Our results provide a novel understanding of TAME at the single-cell level. Based on our findings, several adipocyte subtypes have negative impact on prognosis. These cancer-associated adipocytes may serve as key prognostic predictor and potential targets for treatment in the future.
Collapse
Affiliation(s)
- Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ding-Yuan Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Jie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Hong-Fang Feng
- Department of Breast and Thyroid Surgery, Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, Hubei, People's Republic of China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuan Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wen-Ge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, People's Republic of China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
42
|
Dong H, Kong X, Wang X, Liu Q, Fang Y, Wang J. The Causal Effect of Dietary Composition on the Risk of Breast Cancer: A Mendelian Randomization Study. Nutrients 2023; 15:nu15112586. [PMID: 37299548 DOI: 10.3390/nu15112586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Breast cancer has become the most common malignancy among women, posing a severe health risk to women worldwide and creating a heavy social burden. Based on current observational studies, the dietary factor may have a causal relationship with breast cancer. Therefore, exploring how dietary composition affects breast cancer incidence will provide nutrition strategies for clinicians and women. We performed a two-sample Mendelian randomization (MR) analysis to find the causal effect of four kinds of relative macronutrient intake (protein, carbohydrate, sugar, and fat) on the risk of breast cancer and its subtypes [Luminal A, Luminal B, Luminal B HER2-negative, HER2-positive, Triple-negative, Estrogen receptor (ER) positive, and ER-negative breast cancer]. The Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test, MR-Egger intercept test, Cochran's Q statistic, funnel plot, and leave-one-out (Loo) analysis were all used in a sensitivity analysis to test the robustness of MR. Genetically, a higher relative protein intake was found as a protective factor for Luminal A and overall breast cancer, which was inconsistent with recent findings. A higher relative sugar intake could genetically promote the risk of Luminal B and HER2-positive breast cancer. Conclusions: A higher protein proportion in diet genetically reduces the risk of breast cancer, while higher relative sugar intake does the opposite.
Collapse
Affiliation(s)
- Hao Dong
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiangyi Kong
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiangyu Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yi Fang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
43
|
Chikaishi W, Higashi T, Hayashi H, Hanamatsu Y, Kito Y, Futamura M, Matsuhashi N, Saigo C, Takeuchi T. Potential activity of adiponectin-expressing regulatory T cells against triple-negative breast cancer cells through the cell-in-cell phenomenon. Thorac Cancer 2023. [PMID: 37220892 DOI: 10.1111/1759-7714.14940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND A population of regulatory T cells (Treg), which reside within thymic nurse cell complexes, express adiponectin and abrogate breast cancer development in transgenic mice. In this study, we examined whether adiponectin-expressing Treg could impair triple-negative breast cancer, which is defined by a lack of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor-2. METHODS CD4- and CD25-positive cells were sorted from cultured T lymphocytes of a previously characterized experimental thymic tumor model composed of thymic nurse cells and abundant lymphoid stroma. These sorted cells were examined for FOXP3 and adiponectin immunoreactivity and subsequently exposed to triple-negative breast cancer MDA-MB-157 and -231 cells. RESULTS Adiponectin-expressing Treg were obtained by CD4- and CD25-positive sorting and cell death was induced in triple-negative breast cancer cells through the cell-in-cell phenomenon. CONCLUSIONS Adiponectin-expressing Treg may be candidates for adoptive cell therapy against triple-negative breast cancer.
Collapse
Affiliation(s)
- Wakana Chikaishi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiya Higashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirokatsu Hayashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuki Hanamatsu
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Manabu Futamura
- Department of Breast Surgery, Gifu University Hospital, Gifu, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
44
|
Peng WZ, Liu X, Li CF, Zhao J. Genetic alterations in LEP and ADIPOQ genes and risk for breast cancer: a meta-analysis. Front Oncol 2023; 13:1125189. [PMID: 37274250 PMCID: PMC10237157 DOI: 10.3389/fonc.2023.1125189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Breast cancer has a strong genetic predisposition, and its genetic architecture is not fully understood thus far. In this study, we aimed to perform a meta-analysis to evaluate the association of genetic alterations in LEP and ADIPOQ genes, as well as their receptor-encoded genes with risk for breast cancer. Methods Only published studies conducted in humans and written in English were identified by searching PubMed, SCOPUS, CINAHIL and Embase from their inception to October 2022. Eligibility assessment and data collection were completed independently by two researchers. Statistical analyses were done using the STATA software. Results After literature search, 33 publications were eligible for inclusion. Overall, LEP gene rs7799039-G allele (odds ratio [OR]: 0.78, 95% confidence interval [CI]: 0.62 to 0.98) and ADIPOQ gene rs1501299-T allele (OR: 1.41, 95% CI: 1.06 to 1.88) were associated with the significant risk of breast cancer. In subgroup analyses, differences in menopausal status, obesity, race, study design, diagnosis of breast cancer, genotyping method and sample size might account for the divergent observations of individual studies. Circulating leptin levels were comparable across genotypes of LEP gene rs7799039, as well as that of LEPR gene rs1137101 (P>0.05). Begg's funnel plots seemed symmetrical, with the exception of LEPR gene rs1137100 and ADIPOQ gene rs1501299. Discussion Taken together, we found, in this meta-analysis, that LEP gene rs7799039 and ADIPOQ gene rs1501299 were two promising candidate loci in predisposition to breast cancer risk.
Collapse
|
45
|
Pei Y, Lv S, Shi Y, Jia J, Ma M, Han H, Zhang R, Tan J, Zhang X. RAB21 controls autophagy and cellular energy homeostasis by regulating retromer-mediated recycling of SLC2A1/GLUT1. Autophagy 2023; 19:1070-1086. [PMID: 35993307 PMCID: PMC10012929 DOI: 10.1080/15548627.2022.2114271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 12/09/2022] Open
Abstract
The endosomal system maintains cellular homeostasis by coordinating multiple vesicular trafficking events, and the retromer complex plays a critical role in endosomal cargo recognition and sorting. Here, we demonstrate an essential role for the small GTPase RAB21 in regulating retromer-mediated recycling of the glucose transporter SLC2A1/GLUT1 and macroautophagy/autophagy. RAB21 depletion mis-sorts SLC2A1 to lysosomes and affects glucose uptake, thereby activating the AMPK-ULK1 pathway to increase autophagic flux. RAB21 depletion also increases lysosome function. Notably, RAB21 depletion does not overtly affect retrograde transport of IGF2R/CI-M6PR or WLS from endosomes to the trans-Golgi network. We speculate that RAB21 regulates fission of retromer-decorated endosomal tubules, as RAB21 depletion causes accumulation of the SNX27-containing retromer complex on enlarged endosomes at the perinuclear region. Functionally, RAB21 depletion sensitizes cancer cells to energy stress and inhibits tumor growth in vivo, suggesting an oncogenic role for RAB21. Overall, our study illuminates the role of RAB21 in regulating endosomal dynamics and maintaining cellular energy homeostasis and suggests RAB21 as a potential metabolic target for cancer therapy.
Collapse
Affiliation(s)
- Yifei Pei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shuning Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mengru Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hailong Han
- Department of Neuroscience, Postdoctoral Station for Basic Medicine, Hengyang School of Medicine, University of South China, Hengyang, China
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
47
|
CAI X, CAO Z, PAN J, ZHENG H. Transcription factor NFIC activates STK11 transcription to repress the proliferation, migration, and invasion of lung adenocarcinoma cells. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
48
|
Hou T, Wang Y, Dan W, Wei Y, Liu B, Que T, Lei Y, Yu B, Zeng J, Fan Y, Li L. β-Ionone represses renal cell carcinoma progression through activating LKB1/AMPK-triggered autophagy. J Biochem Mol Toxicol 2023:e23331. [PMID: 36843289 DOI: 10.1002/jbt.23331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 02/28/2023]
Abstract
β-Ionone, the end ring analog of β-carotenoids, has been proven to have an antitumor effect in a variety of cancers. In this study, we investigated the impact of β-ionone on renal cell carcinoma (RCC) cell lines (786-O and ACHN) using colony formation assays, flow cytometry analysis, and western blot analysis. We found that β-ionone effectively inhibited the proliferation of RCC cells in vitro, which was also confirmed in a xenograft model. Moreover, we found that β-ionone could induce autophagy, as indicated by LC3 puncta in 786-O and ACHN cell lines and the expression of LC3 in β-ionone-treated RCC cells. To further explore the underlying mechanism, we assessed liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) signaling pathway activity, and the results showed that β-ionone inhibited the proliferation of RCC cells by inducing autophagy via the LKB1/AMPK signaling pathway. In summary, our findings provide a new therapeutic strategy of β-ionone-induced autophagy in RCC.
Collapse
Affiliation(s)
- Tao Hou
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuzhao Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weichao Dan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Wei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Taotao Que
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuzeshi Lei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bixin Yu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
49
|
Song N, Xu H, Wu S, Luo S, Xu J, Zhao Q, Wang R, Jiang X. Synergistic activation of AMPK by AdipoR1/2 agonist and inhibitor of EDPs-EBP interaction recover NAFLD through enhancing mitochondrial function in mice. Acta Pharm Sin B 2023; 13:542-558. [PMID: 36873175 PMCID: PMC9978995 DOI: 10.1016/j.apsb.2022.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially nonalcoholic steatohepatitis (NASH), is a common hepatic manifestation of metabolic syndrome. However, there are no effective therapy to treat this devastating disease. Accumulating evidence suggests that the generation of elastin-derived peptides (EDPs) and the inhibition of adiponectin receptors (AdipoR)1/2 plays essential roles in hepatic lipid metabolism and liver fibrosis. We recently reported that the AdipoR1/2 dual agonist JT003 significantly degraded the extracellular matrix (ECM) and ameliorated liver fibrosis. However, the degradation of the ECM lead to the generation of EDPs, which could further alter liver homeostasis negatively. Thus, in this study, we successfully combined AdipoR1/2 agonist JT003 with V14, which acted as an inhibitor of EDPs-EBP interaction to overcome the defect of ECM degradation. We found that combination of JT003 and V14 possessed excellent synergistic benefits on ameliorating NASH and liver fibrosis than either alone since they compensate the shortage of each other. These effects are induced by the enhancement of the mitochondrial antioxidant capacity, mitophagy, and mitochondrial biogenesis via AMPK pathway. Furthermore, specific suppression of AMPK could block the effects of the combination of JT003 and V14 on reduced oxidative stress, increased mitophagy and mitochondrial biogenesis. These positive results suggested that this administration of combination of AdipoR1/2 dual agonist and inhibitor of EDPs-EBP interaction can be recommended alternatively for an effective and promising therapeutic strategy for the treatment of NAFLD and NASH related fibrosis.
Collapse
Affiliation(s)
- Nazi Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| | - Hongjiao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| | - Shuohan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| | - Suijia Luo
- Shenzhen Turier Biotech. Co., Ltd., Shenzhen 518118, China
| | - Jingyao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Lanzhou University, Lanzhou 730000, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China
| |
Collapse
|
50
|
Cancer-Associated Adipocytes and Breast Cancer: Intertwining in the Tumor Microenvironment and Challenges for Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030726. [PMID: 36765683 PMCID: PMC9913307 DOI: 10.3390/cancers15030726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Adipocytes are the main components in breast tissue, and cancer-associated adipocytes (CAAs) are one of the most important components in the tumor microenvironment of breast cancer (BC). Bidirectional regulation was found between CAAs and BC cells. BC facilitates the dedifferentiation of adjacent adipocytes to form CAAs with morphological and biological changes. CAAs increase the secretion of multiple cytokines and adipokines to promote the tumorigenesis, progression, and metastasis of BC by remodeling the extracellular matrix, changing aromatase expression, and metabolic reprogramming, and shaping the tumor immune microenvironment. CAAs are also associated with the therapeutic response of BC and provide potential targets in BC therapy. The present review provides a comprehensive description of the crosstalk between CAAs and BC and discusses the potential strategies to target CAAs to overcome BC treatment resistance.
Collapse
|