1
|
Hajra D, Chakravortty D. Sirtuins as modulators of infection outcomes in the battle of host-pathogen dynamics. Phys Life Rev 2025; 53:225-235. [PMID: 40147071 DOI: 10.1016/j.plrev.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Sirtuins's central role in governing metabolic processes has been known for decades. However, over the past two decades, sirtuin functions have been linked to immune regulation and immunity. Sirtuins are NAD+ dependent protein deacylases involved in the regulation of several important biological processes ranging from energy homeostasis, metabolism, aging, apoptosis, autophagy, immunity, adipocyte, and muscle differentiation. Here, in this review, we discuss the role of sirtuins in several infectious diseases including viral, bacterial, and protozoan infections with detailed emphasis on bacterial-host interactions. We have aimed to explore both host and bacterial sirtuin functions contributing to the infection progression, host responses and their influence on the everlasting host-pathogen tug-of-war. In order to manipulate host pathways, pathogens such as intracellular bacteria have evolved parallelly and harbor bacterial sirtuins. The recent discoveries of bacterial sirtuins influencing the host-pathogen interaction outcomes pave the way for the discovery of potential therapeutic targets.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science
| | | |
Collapse
|
2
|
Tripathi M, Gauthier K, Sandireddy R, Zhou J, Gupta P, Sakthivel S, Jiemin N, Arul K, Tikno K, Park SH, Wu Y, Wang L, Bay BH, Ho L, Giguere V, Ghosh S, McDonnell DP, Yen PM, Singh BK. ESRRA (estrogen related receptor, alpha) induces ribosomal protein RPLP1-mediated adaptive hepatic translation during prolonged starvation. Autophagy 2025; 21:1283-1297. [PMID: 39936615 PMCID: PMC12087656 DOI: 10.1080/15548627.2025.2465183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Protein translation is an energy-intensive ribosome-driven process that is reduced during nutrient scarcity to conserve cellular resources. During prolonged starvation, cells selectively translate specific proteins to enhance their survival (adaptive translation); however, this process is poorly understood. Accordingly, we analyzed protein translation and mRNA transcription by multiple methods in vitro and in vivo to investigate adaptive hepatic translation during starvation. While acute starvation suppressed protein translation in general, proteomic analysis showed that prolonged starvation selectively induced translation of lysosome and autolysosome proteins. Significantly, the expression of the orphan nuclear receptor, ESRRA (estrogen related receptor, alpha) increased during prolonged starvation and served as a master regulator of this adaptive translation by transcriptionally stimulating Rplp1 (ribosomal protein lateral stalk subunit P1) gene expression. Overexpression or siRNA knockdown of Esrra in vitro or in vivo led to parallel changes in Rplp1 gene expression, lysosome and macroautophagy/autophagy protein translation, and autophagy activity. Remarkably, we have found that ESRRA had dual functions by not only regulating transcription but also controlling adaptive translation via the ESRRA-RPLP1-lysosome-autophagy pathway during prolonged starvation.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Karine Gauthier
- Département de Biologie, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Lyon, Cedex, France
| | - Reddemma Sandireddy
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Priyanka Gupta
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Suganya Sakthivel
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Nah Jiemin
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Kabilesh Arul
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Keziah Tikno
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Sung-Hee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Lijin Wang
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Lena Ho
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Vincent Giguere
- Goodman Cancer Research Centre, McGill University, Montreal, Québec, Canada
| | - Sujoy Ghosh
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
- Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| |
Collapse
|
3
|
Hong L, Liang H, Man W, Zhao Y, Guo P. Estrogen and bacterial infection. Front Immunol 2025; 16:1556683. [PMID: 40364840 PMCID: PMC12069284 DOI: 10.3389/fimmu.2025.1556683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Gender differences exist in the susceptibility, incidence, progression, and prognosis of bacterial infections in males and females, influenced by various factors including lifestyle and habits. Multiple reports have indicated that estrogen plays a crucial immunomodulatory role in many pathogenic microbial infections, highlighting a complex relationship between estrogen, its receptors, and bacterial infections. Estrogen and its receptors regulate host immune responses, affecting the host's ability to clear bacteria and thus influencing the likelihood and difficulty of infection eradication. Variations in estrogen levels may lead to differences in the occurrence and progression of bacterial infections, with estrogen playing varied roles in diseases caused by the same bacterial pathogens. The interaction between estrogen and bacterial infections represents a complex and crucial aspect of human physiology and clinical medicine. Understanding this interaction is essential for advancing infection prevention and treatment strategies. This article reviews the correlation and mechanisms between estrogen and bacterial infections, emphasizing the importance of further research in this field.
Collapse
Affiliation(s)
- Longyan Hong
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Liang
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqing Man
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yinghui Zhao
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Pengbo Guo
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
4
|
Tian N, Chu H, Li Q, Sun H, Zhang J, Chu N, Sun Z. Host-directed therapy for tuberculosis. Eur J Med Res 2025; 30:267. [PMID: 40211397 PMCID: PMC11987284 DOI: 10.1186/s40001-025-02443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/09/2025] [Indexed: 04/13/2025] Open
Abstract
Current TB treatment regimens are hindered by drug resistance, numerous adverse effects, and long treatment durations, highlighting the need for 'me-better' treatment regimens. Host-directed therapy (HDT) has gained recognition as a promising approach in TB treatment. It allows the repurposing of existing drugs approved for other conditions and aims to enhance the effectiveness of existing anti-TB therapies, minimize drug resistance, decrease treatment duration, and adverse effects. By modulating the host immune response, HDT ameliorates immunopathological damage and improves overall outcomes by promoting autophagy, antimicrobial peptide production, and other mechanisms. It holds promise for addressing the challenges posed by multiple and extensively drug-resistant Mycobacterium tuberculosis strains, which are increasingly difficult to treat using conventional therapies. This article reviews various HDT candidates, including repurposed drugs, explores their underlying mechanisms such as autophagy promotion and inflammation reduction, while emphasizing their potential to improve TB treatment outcomes and outlining future research directions.
Collapse
Affiliation(s)
- Na Tian
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Qi Li
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hong Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jingfang Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Naihui Chu
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
5
|
Mao X, Huang L, Liu X, Lin X, Wu Q, Wang X, Ren Y, Ma J, Zhang M, Lin Y, Ralser DJ, Mustea A, Chen G, Sun P. High glucose levels promote glycolysis and cholesterol synthesis via ERRα and suppress the autophagy-lysosomal pathway in endometrial cancer. Cell Death Dis 2025; 16:182. [PMID: 40097416 PMCID: PMC11914573 DOI: 10.1038/s41419-025-07499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Endometrial cancer (EC) patients with Diabetes Mellitus (DM) always have a poor prognosis. Estrogen-related receptor α (ERRα) is known as the metabolic-related prognostic factor for EC. However, the mechanism linking glycolipid metabolism dysfunction mediated by ERRα to poor prognosis of EC with DM is still unclear. In vitro, high-glucose (HG) levels showed enhancement of ERRα expression, cell proliferation, and inhibition of the autophagic lysosomes and apoptosis by flow cytometry analysis, transmission electron microscopy, and CCK-8 assays. Mechanistically, lose-and-gain function assay, DNA sequencing, and CO-IP revealed HG increased ERRα expression to promote the transcription of HK2 and HMGCS1, which were the key rate-limiting enzyme of glycolysis-cholesterol synthesis and their metabolites suppressed the autophagy-lysosomal pathway in an ERRα-dependent manner. Furthermore, CO-IP and molecular dynamics simulation uncovered the protein residues (ARG 769HK2 vs. ARG 313HMGCS1) of HK2 and HMGCS1 could bind to p62 to form stable protein complexes involved in the autophagy-lysosomal pathway. In EC tissue from patients with comorbid DM, ERRα was significantly higher expressed compared to EC tissue from patients without evidence for DM (p < 0.05). The 3D EC organoid model with HG stimulation showed that the cell viability of XCT790 + carboplatin treatment was similar to that of metformin+carboplatin treatment, while the obviously bigger volume of organoids was more visible in the metformin+carboplatin group, indicating the therapy of XCT790 + carboplatin had the better inhibition of EC organoids with the same carboplatin dose. Besides insights into the interaction of HG and the autophagy-lysosomal pathway via ERRα, our present study points out the potential benefit of targeting ERRα in patients with EC with dysregulation of glucose and cholesterol metabolism.
Collapse
Affiliation(s)
- Xiaodan Mao
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China
| | - Xianhua Liu
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China
- Pathology Department, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Xite Lin
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China
| | - Qibin Wu
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China
| | - Xinrui Wang
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, 350001, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350013, China
| | - Yuan Ren
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China
| | - Jincheng Ma
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China
| | - Maotong Zhang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China
| | - Damian J Ralser
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, 350001, Fujian, China.
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, 350001, Fujian, China.
| |
Collapse
|
6
|
Vemuri K, Iqbal J, Kumar S, Logerfo A, Ibrahim M, White E, Verzi MP. Diet-induced obesity mediated through estrogen-related receptor α is independent of intestinal function. J Biol Chem 2025; 301:108197. [PMID: 39826697 PMCID: PMC11849689 DOI: 10.1016/j.jbc.2025.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
Obesity has escalated to epidemic proportions, driving significant advances in therapeutic strategies aimed at combating this condition. The estrogen-related receptor α (ESRRA), a transcription factor, plays pivotal roles in energy metabolism across multiple tissues. Research has consistently shown that the absence of Esrra results in notable fat malabsorption and increased resistance to diet-induced obesity. However, existing studies primarily focusing on germline Esrra mutants fail to account for tissue-specific roles of ESRRA in obesity. Notably, Esrra exhibits high expression in the gastrointestinal tract relative to other tissues. Given the gastrointestinal tract's central role in dietary lipid absorption and metabolism, it is critical to investigate how ESRRA specifically affects this tissue. This study aims to fill this gap by employing advanced mouse genetics and genomics techniques to dissect the impact of ESRRA within the intestine. We also aim to elucidate ESRRA's specific contributions to diet-induced obesity and refine our understanding of how this transcription factor influences metabolic outcomes in the context of dietary intake.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Jahangir Iqbal
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Sneha Kumar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Maria Ibrahim
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey, USA; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, New Jersey, USA; NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI Piscataway, New Jersey, USA.
| |
Collapse
|
7
|
Feng C, Kong D, Tong B, Liang Y, Xu F, Yang Y, Wu Y, Chi X, Wei P, Yang Y, Zhang G, Tian G, Xu Z. Hypoxia-triggered ERRα acetylation enhanced its oncogenic role and promoted progression of renal cell carcinoma by coordinating autophagosome-lysosome fusion. Cell Death Dis 2025; 16:23. [PMID: 39820331 PMCID: PMC11739407 DOI: 10.1038/s41419-025-07345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Estrogen-related receptor α (ERRα) is dysregulated in many types of cancer and exhibits oncogenic activity by promoting tumorigenesis and metastasis of cancer cells. However, its defined role in renal cell carcinoma (RCC) has not been fully elucidated. To reveal the biological function of ERRα and determine the underlying regulatory mechanism in RCC, the quantitative proteomics analysis and mechanism investigation were conducted. The results demonstrated that ERRα promoted the proliferation and tumorigenesis of RCC cells by maintaining lysosome-dependent autophagy flux. ERRα inhibition impaired the transcriptional expression of LAMP2 and VAMP8 and blocked the fusion of autophagosomes with lysosomes, causing the impairment of the autophagy-lysosome pathway and tumor repression in RCC. Moreover, VHL mutant-induced hyperactive hypoxia signaling in RCC triggered p300/CBP-mediated acetylation at the DNA-binding domain of ERRα, and this acetylation promoted its affinity toward targeting DNA and Parkin-mediated ubiquitination and proteasome-dependent degradation. This regulatory model enhanced ERRα transactivation on the expression of LAMP2 and VAMP8, which then maintained autophagy flux and RCC progression. Pharmaceutical inhibition on ERRα acetylation-mediated autophagy-lysosome pathway led to growth repression and sunitinib sensitivity of RCC cells. Taken together, this study uncovered a novel regulatory mechanism of acetylation contributing to the transcriptional performance and the oncogenic role of ERRα in RCC progression by modulating the autophagy-lysosome pathway. These findings might provide a novel approach for the clinical diagnosis and resolution of sunitinib resistance of RCC.
Collapse
Affiliation(s)
- Chun Feng
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
- The Second Medical College, Binzhou Medical University, Yantai, China
| | - Demin Kong
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Binghua Tong
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yonghui Liang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yangyang Yang
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yingying Wu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaodong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Pengfei Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yang Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Guilong Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
| | - Zhaowei Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
| |
Collapse
|
8
|
Yang Q, Sun K, Gao T, Gao Y, Yang Y, Li Z, Zuo D. SIRT1 silencing promotes EMT and Crizotinib resistance by regulating autophagy through AMPK/mTOR/S6K signaling pathway in EML4-ALK L1196M and EML4-ALK G1202R mutant non-small cell lung cancer cells. Mol Carcinog 2024; 63:2133-2144. [PMID: 39078281 DOI: 10.1002/mc.23799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
Most EML4-ALK rearrangement non-small cell lung cancer (NSCLC) patients inevitably develop acquired drug resistance after treatment. The main mechanism of drug resistance is the acquired secondary mutation of ALK kinase domain. L1196M and G1202R are classical mutation sites. We urgently need to understand the underlying molecular mechanism of drug resistance to study the therapeutic targets of mutant drug-resistant NSCLC cells. The silent information regulator sirtuin1 (SIRT1) can regulate the normal energy metabolism of cells, but its role in cancer is still unclear. In our report, it was found that the SIRT1 in EML4-ALK G1202R and EML4-ALK L1196M mutant drug-resistant cells was downregulated compared with EML4-ALK NSCLC cells. The high expression of SIRT1 was related to the longer survival time of patients with lung cancer. Activation of SIRT1 induced autophagy and suppressed the invasion and migration of mutant cells. Further experiments indicated that the activation of SIRT1 inhibited the phosphorylation level of mTOR and S6K by upregulating the expression of AMPK, thus activating autophagy. SIRT1 can significantly enhanced the sensitivity of mutant cells to crizotinib, improved its ability to promote apoptosis of mutant cells, and inhibited cell proliferation. In conclusion, SIRT1 is a key regulator of drug resistant in EML4-ALK L1196M and G1202R mutant cells. SIRT1 may be a novel therapeutic target for EML4-ALK drug resistant NSCLC.
Collapse
Affiliation(s)
- Qian Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Keyan Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Tianyu Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Ying Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Yuying Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| |
Collapse
|
9
|
Tripathi M, Gauthier K, Sandireddy R, Zhou J, Guptta P, Sakthivel S, Teo WW, Naing YT, Arul K, Tikno K, Park SH, Wu Y, Wang L, Bay BH, Sun L, Giguere V, Chow PKH, Ghosh S, McDonnell DP, Yen PM, Singh BK. Esrra regulates Rplp1-mediated translation of lysosome proteins suppressed in metabolic dysfunction-associated steatohepatitis and reversed by alternate day fasting. Mol Metab 2024; 87:101997. [PMID: 39032642 PMCID: PMC11327444 DOI: 10.1016/j.molmet.2024.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE Currently, little is known about the mechanism(s) regulating global and specific protein translation during metabolic dysfunction-associated steatohepatitis (MASH; previously known as non-alcoholic steatohepatitis, NASH). METHODS Unbiased label-free quantitative proteome, puromycin-labelling and polysome profiling were used to understand protein translation activity in vitro and in vivo. RESULTS We observed a global decrease in protein translation during lipotoxicity in human primary hepatocytes, mouse hepatic AML12 cells, and livers from a dietary mouse model of MASH. Interestingly, proteomic analysis showed that Rplp1, which regulates ribosome and translation pathways, was one of the most downregulated proteins. Moreover, decreased Esrra expression and binding to the Rplp1 promoter, diminished Rplp1 gene expression during lipotoxicity. This, in turn, reduced global protein translation and Esrra/Rplp1-dependent translation of lysosome (Lamp2, Ctsd) and autophagy (sqstm1, Map1lc3b) proteins. Of note, Esrra did not increase its binding to these gene promoters or their gene transcription, confirming its regulation of their translation during lipotoxicity. Notably, hepatic Esrra-Rplp1-dependent translation of lysosomal and autophagy proteins also was impaired in MASH patients and liver-specific Esrra knockout mice. Remarkably, alternate day fasting induced Esrra-Rplp1-dependent expression of lysosomal proteins, restored autophagy, and reduced lipotoxicity, inflammation, and fibrosis in hepatic cell culture and in vivo models of MASH. CONCLUSIONS Esrra regulation of Rplp1-mediated translation of lysosome/autolysosome proteins was downregulated during MASH. Alternate day fasting activated this novel pathway and improved MASH, suggesting that Esrra and Rplp1 may serve as therapeutic targets for MASH. Our findings also provided the first example of a nuclear hormone receptor, Esrra, to not only regulate transcription but also protein translation, via induction of Rplp1.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie 69364 Lyon Cedex 07, France
| | - Reddemma Sandireddy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Priyanka Guptta
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Suganya Sakthivel
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Wei Wen Teo
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Yadanar Than Naing
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Kabilesh Arul
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Keziah Tikno
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sung-Hee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS 117594, Singapore
| | - Lijin Wang
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA 70808, USA
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS 117594, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Vincent Giguere
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Pierce K H Chow
- Dept of Surgery, Singapore General Hospital and Dept. of Surgical Oncology, National Cancer Centre 169608, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA 70808, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Duke Molecular Physiology Institute and Dept. of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| |
Collapse
|
10
|
Ge S, Wang L, Jin C, Xie H, Zheng G, Cui Z, Zhang C. Unveiling the neuroprotection effects of Volvalerenic acid A: Mitochondrial fusion induction via IDO1-mediated Stat3-Opa1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155555. [PMID: 38579641 DOI: 10.1016/j.phymed.2024.155555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Ischemic stroke is a leading cause of death and long-term disability worldwide. Studies have suggested that cerebral ischemia induces massive mitochondrial damage. Valerianic acid A (VaA) is the main active ingredient of valerianic acid with neuroprotective activity. PURPOSE This study aimed to investigate the neuroprotective effects of VaA with ischemic stroke and explore the underlying mechanisms. METHOD In this study, we established the oxygen-glucose deprivation and reperfusion (OGD/R) cell model and the middle cerebral artery occlusion and reperfusion (MCAO/R) animal model in vitro and in vivo. Neurological behavior score, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Hematoxylin and Eosin (HE) Staining were used to detect the neuroprotection of VaA in MCAO/R rats. Also, the levels of ROS, mitochondrial membrane potential (MMP), and activities of NAD+ were detected to reflect mitochondrial function. Mechanistically, gene knockout experiments, transfection experiments, immunofluorescence, DARTS, and molecular dynamics simulation experiments showed that VaA bound to IDO1 regulated the kynurenine pathway of tryptophan metabolism and prevented Stat3 dephosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. RESULTS We showed that VaA decreased the infarct volume in a dose-dependent manner and exerted neuroprotective effects against reperfusion injury. Furthermore, VaA promoted Opa1-related mitochondrial fusion and reversed neuronal mitochondrial damage and loss after reperfusion injury. In SH-SY5Y cells, VaA (5, 10, 20 μM) exerted similar protective effects against OGD/R-induced injury. We then examined the expression of significant enzymes regulating the kynurenine (Kyn) pathway of the ipsilateral brain tissue of the ischemic stroke rat model, and these enzymes may play essential roles in ischemic stroke. Furthermore, we found that VaA can bind to the initial rate-limiting enzyme IDO1 in the Kyn pathway and prevent Stat3 phosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. Using in vivo IDO1 knockdown and in vitro IDO1 overexpressing models, we demonstrated that the promoted mitochondrial fusion and neuroprotective effects of VaA were IDO1-dependent. CONCLUSION VaA administration improved neurological function by promoting mitochondrial fusion through the IDO1-mediated Stat3-Opa1 pathway, indicating its potential as a therapeutic drug for ischemic stroke.
Collapse
Affiliation(s)
- Shanchun Ge
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Lei Wang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Chang Jin
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Haifeng Xie
- Research and Development Department, Chengdu Biopurify Phytochemicals Ltd., Chengdu, China
| | - Guoping Zheng
- Nanjing Hospital of Chinese Medicine Affiliated of Nanjing University of Chinese Medicine, Nanjing, 21000, China
| | - Zhengguo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
11
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
12
|
Tripathi M, Gauthier K, Sandireddy R, Zhou J, Gupta P, Sakthivel S, Jiemin N, Arul K, Tikno K, Park SH, Wang L, Ho L, Giguere V, Ghosh S, McDonnell DP, Yen PM, Singh BK. Estrogen receptor-related receptor (Esrra) induces ribosomal protein Rplp1-mediated adaptive hepatic translation during prolonged starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574937. [PMID: 38260502 PMCID: PMC10802477 DOI: 10.1101/2024.01.09.574937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Protein translation is an energy-intensive ribosome-driven process that is reduced during nutrient scarcity to conserve cellular resources. During prolonged starvation, cells selectively translate specific proteins to enhance their survival (adaptive translation); however, this process is poorly understood. Accordingly, we analyzed protein translation and mRNA transcription by multiple methods in vitro and in vivo to investigate adaptive hepatic translation during starvation. While acute starvation suppressed protein translation in general, proteomic analysis showed that prolonged starvation selectively induced translation of lysosome and autolysosome proteins. Significantly, the expression of the orphan nuclear receptor, estrogen-related receptor alpha (Esrra) increased during prolonged starvation and served as a master regulator of this adaptive translation by transcriptionally stimulating 60S acidic ribosomal protein P1 (Rplp1) gene expression. Overexpression or siRNA knockdown of Esrra expression in vitro or in vivo led to parallel changes in Rplp1 gene expression, lysosome/autophagy protein translation, and autophagy. Remarkably, we have found that Esrra had dual functions by not only regulating transcription but also controling adaptive translation via the Esrra/Rplp1/lysosome/autophagy pathway during prolonged starvation.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Reddemma Sandireddy
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Priyanka Gupta
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Suganya Sakthivel
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Nah Jiemin
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Kabilesh Arul
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Keziah Tikno
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sung-Hee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Lijin Wang
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Lena Ho
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Vincent Giguere
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Sujoy Ghosh
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
- Duke Molecular Physiology Institute and Dept. of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| |
Collapse
|
13
|
Zhang X, Kumar A, Sathe AA, Mootha VV, Xing C. Transcriptomic meta-analysis reveals ERRα-mediated oxidative phosphorylation is downregulated in Fuchs' endothelial corneal dystrophy. PLoS One 2023; 18:e0295542. [PMID: 38096202 PMCID: PMC10721014 DOI: 10.1371/journal.pone.0295542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Late-onset Fuchs' endothelial corneal dystrophy (FECD) is a degenerative disease of cornea and the leading indication for corneal transplantation. Genetically, FECD patients can be categorized as with (RE+) or without (RE-) the CTG trinucleotide repeat expansion in the transcription factor 4 gene. The molecular mechanisms underlying FECD remain unclear, though there are plausible pathogenic models proposed for RE+ FECD. METHOD In this study, we performed a meta-analysis on RNA sequencing datasets of FECD corneal endothelium including 3 RE+ datasets and 2 RE- datasets, aiming to compare the transcriptomic profiles of RE+ and RE- FECD. Gene differential expression analysis, co-expression networks analysis, and pathway analysis were conducted. RESULTS There was a striking similarity between RE+ and RE- transcriptomes. There were 1,184 genes significantly upregulated and 1,018 genes significantly downregulated in both RE+ and RE- cases. Pathway analysis identified multiple biological processes significantly enriched in both-mitochondrial functions, energy-related processes, ER-nucleus signaling pathway, demethylation, and RNA splicing were negatively enriched, whereas small GTPase mediated signaling, actin-filament processes, extracellular matrix organization, stem cell differentiation, and neutrophil mediated immunity were positively enriched. The translational initiation process was downregulated in the RE+ transcriptomes. Gene co-expression analysis identified modules with relatively distinct biological processes enriched including downregulation of mitochondrial respiratory chain complex assembly. The majority of oxidative phosphorylation (OXPHOS) subunit genes, as well as their upstream regulator gene estrogen-related receptor alpha (ESRRA), encoding ERRα, were downregulated in both RE+ and RE- cases, and the expression level of ESRRA was correlated with that of OXPHOS subunit genes. CONCLUSION Meta-analysis increased the power of detecting differentially expressed genes. Integrating differential expression analysis with co-expression analysis helped understand the underlying molecular mechanisms. FECD RE+ and RE- transcriptomic profiles are much alike with the hallmark of downregulation of genes in pathways related to ERRα-mediated OXPHOS.
Collapse
Affiliation(s)
- Xunzhi Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Adwait A. Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - V. Vinod Mootha
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
14
|
Fu J, Luo X, Lin M, Xiao Z, Huang L, Wang J, Zhu Y, Liu Y, Tao H. Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage. Mar Drugs 2023; 21:616. [PMID: 38132937 PMCID: PMC10745037 DOI: 10.3390/md21120616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The Mycobacterium tuberculosis (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin (1), 12, 13-dihydroxy-fumitremorgin C (2), and helvolic acid (3) from the cultures of a deep-sea-derived fungus, Aspergillus sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.
Collapse
Affiliation(s)
- Jun Fu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zimin Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Lishan Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Jiaxi Wang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| |
Collapse
|
15
|
Harris RA, Bush AH, Eagar TN, Qian J, Greenwood MP, Opekun AR, Baldassano R, Guthery SL, Noe JD, Otley A, Rosh JR, Kugathasan S, Kellermayer R. Exome Sequencing Implicates DGKZ , ESRRA , and GXYLT1 for Modulating Granuloma Formation in Crohn Disease. J Pediatr Gastroenterol Nutr 2023; 77:354-357. [PMID: 37347142 PMCID: PMC10528115 DOI: 10.1097/mpg.0000000000003873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Non-caseating granulomas may indicate a more aggressive phenotype of Crohn disease (CD). Genetic associations of granulomatous CD (GCD) may help elucidate disease pathogenesis. Whole-exome sequencing was performed on peripheral blood-derived DNA from 17 pediatric patients with GCD and 19 with non-GCD (NGCD), and from an independent validation cohort of 44 GCD and 19 NGCD cases. PLINK (a tool set for whole-genome association and population-based linkage analyses) analysis was used to identify single nucleotide polymorphisms (SNPs) differentiating between groups, and subgroup allele frequencies were also compared to a public genomic database (gnomAD). The Combined Annotation Dependent Depletion scoring tool was used to predict deleteriousness of SNPs. Human leukocyte antigen (HLA) haplotype findings were compared to a control group (n = 8496). PLINK-based analysis between GCD and NGCD groups did not find consistently significant hits. gnomAD control comparisons, however, showed consistent subgroup associations with DGKZ , ESRRA , and GXYLT1 , genes that have been implicated in mammalian granulomatous inflammation. Our findings may guide future research and precision medicine.
Collapse
Affiliation(s)
- R. Alan Harris
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- contributed equally
| | - Allyson H Bush
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine/Texas Children’s Hospital, Houston, TX
- contributed equally
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Justin Qian
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine/Texas Children’s Hospital, Houston, TX
| | - Michael P Greenwood
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Antone R Opekun
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine/Texas Children’s Hospital, Houston, TX
| | - Robert Baldassano
- Division of Gastroenterology, Hepatology and Nutrition, University of Pennsylvania, Children’s Hospital of Philadelphia, PA
| | - Stephen L Guthery
- Department of Pediatrics, University of Utah and Intermountain Primary Children’s Hospital, Salt Lake City, UT
| | - Joshua D Noe
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | - Anthony Otley
- IWK Health/Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joel R. Rosh
- Goryeb Children’s Hospital/Atlantic Children’s Health, Morristown, NJ
| | - Subra Kugathasan
- Departments of Pediatrics and Human Genetics at Emory University School of Medicine, Atlanta, GA
| | - Richard Kellermayer
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine/Texas Children’s Hospital, Houston, TX
- Children’s Nutrition and Research Center, Houston, TX
| |
Collapse
|
16
|
Sopariwala DH, Hao NTT, Narkar VA. Estrogen-related Receptor Signaling in Skeletal Muscle Fitness. Int J Sports Med 2023; 44:609-617. [PMID: 36787804 PMCID: PMC11168301 DOI: 10.1055/a-2035-8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Skeletal muscle is a highly plastic tissue that can alter its metabolic and contractile features, as well as regenerative potential in response to exercise and other conditions. Multiple signaling factors including metabolites, kinases, receptors, and transcriptional factors have been studied in the regulation of skeletal muscle plasticity. Recently, estrogen-related receptors (ERRs) have emerged as a critical transcriptional hub in control of skeletal muscle homeostasis. ERRα and ERRγ - the two highly expressed ERR sub-types in the muscle respond to various extracellular cues such as exercise, hypoxia, fasting and dietary factors, in turn regulating gene expression in the skeletal muscle. On the other hand, conditions such as diabetes and muscular dystrophy suppress expression of ERRs in the skeletal muscle, likely contributing to disease progression. We highlight key functions of ERRs in the skeletal muscle including the regulation of fiber type, mitochondrial metabolism, vascularization, and regeneration. We also describe how ERRs are regulated in the skeletal muscle, and their interaction with important muscle regulators (e. g. AMPK and PGCs). Finally, we identify critical gaps in our understanding of ERR signaling in the skeletal muscle, and suggest future areas of investigation to advance ERRs as potential targets for function promoting therapeutics in muscle diseases.
Collapse
Affiliation(s)
- Danesh H. Sopariwala
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Nguyen Thi Thu Hao
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| |
Collapse
|
17
|
Xia W, Pan Z, Zhang H, Zhou Q, Liu Y. ERRα protects against sepsis-induced acute lung injury in rats. Mol Med 2023; 29:76. [PMID: 37340376 DOI: 10.1186/s10020-023-00670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Sepsis-induced acute lung injury (ALI) is associated with poor survival rates. The identification of potential therapeutic targets for preventing sepsis-induced ALI has clinical importance. This study aims to investigate the role of estrogen-related receptor alpha (ERRα) in sepsis-induced ALI. METHODS Lipopolysaccharide (LPS) was used to simulate sepsis-induced ALI model in rat pulmonary microvascular endothelial cells (PMVECs). The effects of ERRα overexpression and knockdown on LPS-induced endothelial permeability, apoptosis and autophagy were determined by horseradish peroxidase permeability assay, TdT-mediated dUTP Nick End Labeling (TUNEL) assay, flow cytometry, immunofluorescence staining, RT-PCR and Western Blotting. The rat model with sepsis-induced ALI was established by cecal ligation and puncture in anesthetized rats to verify the results of in vitro experiments. Animals were randomly assigned to receive intraperitoneal injection of vehicle or ERRα agonist. Lung vascular permeability, pathological injury, apoptosis and autophagy were examined. RESULTS Overexpression of ERRα ameliorated LPS-induced endothelial hyperpermeability, degradation of adherens junctional molecules, upregulation of bax, cleaved caspase 3 and cleaved caspase 9 levels, downregulation of anti-apoptotic protein Bcl-2 level, and promoted the formation of autophagic flux, while the knockdown of ERRα exacerbated LPS-induced apoptosis and inhibited the activation of autophagy. Administration of ERRα agonist alleviated the pathological damage of lung tissue, increased the levels of tight junction proteins and adherens junction proteins, and decreased the expression of apoptosis-related proteins. Promoting the expression of ERRα significantly enhanced the process of autophagy and reduced CLP-induced ALI. Mechanistically, ERRα is essential to regulate the balance between autophagy and apoptosis to maintain the adherens junctional integrity. CONCLUSION ERRα protects against sepsis-induced ALI through ERRα-mediated apoptosis and autophagy. Activation of ERRα provides a new therapeutic opportunity to prevent sepsis-induced ALI.
Collapse
Affiliation(s)
- Wenfang Xia
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhou Pan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huanming Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingshan Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
18
|
Sahu A, Wang X, Munson P, Klomp JP, Wang X, Gu SS, Han Y, Qian G, Nicol P, Zeng Z, Wang C, Tokheim C, Zhang W, Fu J, Wang J, Nair NU, Rens JA, Bourajjaj M, Jansen B, Leenders I, Lemmers J, Musters M, van Zanten S, van Zelst L, Worthington J, Liu JS, Juric D, Meyer CA, Oubrie A, Liu XS, Fisher DE, Flaherty KT. Discovery of Targets for Immune-Metabolic Antitumor Drugs Identifies Estrogen-Related Receptor Alpha. Cancer Discov 2023; 13:672-701. [PMID: 36745048 PMCID: PMC9975674 DOI: 10.1158/2159-8290.cd-22-0244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 02/07/2023]
Abstract
Drugs that kill tumors through multiple mechanisms have the potential for broad clinical benefits. Here, we first developed an in silico multiomics approach (BipotentR) to find cancer cell-specific regulators that simultaneously modulate tumor immunity and another oncogenic pathway and then used it to identify 38 candidate immune-metabolic regulators. We show the tumor activities of these regulators stratify patients with melanoma by their response to anti-PD-1 using machine learning and deep neural approaches, which improve the predictive power of current biomarkers. The topmost identified regulator, ESRRA, is activated in immunotherapy-resistant tumors. Its inhibition killed tumors by suppressing energy metabolism and activating two immune mechanisms: (i) cytokine induction, causing proinflammatory macrophage polarization, and (ii) antigen-presentation stimulation, recruiting CD8+ T cells into tumors. We also demonstrate a wide utility of BipotentR by applying it to angiogenesis and growth suppressor evasion pathways. BipotentR (http://bipotentr.dfci.harvard.edu/) provides a resource for evaluating patient response and discovering drug targets that act simultaneously through multiple mechanisms. SIGNIFICANCE BipotentR presents resources for evaluating patient response and identifying targets for drugs that can kill tumors through multiple mechanisms concurrently. Inhibition of the topmost candidate target killed tumors by suppressing energy metabolism and effects on two immune mechanisms. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Avinash Sahu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Xiaoman Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Phillip Munson
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Xiaoqing Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shengqing Stan Gu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ya Han
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gege Qian
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Phillip Nicol
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chenfei Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Collin Tokheim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wubing Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jingxin Fu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jin Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | - Bas Jansen
- Lead Pharma, Kloosterstraat, Oss, the Netherlands
| | | | - Jaap Lemmers
- Lead Pharma, Kloosterstraat, Oss, the Netherlands
| | - Mark Musters
- Lead Pharma, Kloosterstraat, Oss, the Netherlands
| | | | | | | | - Jun S. Liu
- Department of Statistics, Harvard University, Cambridge, Massachusetts
| | - Dejan Juric
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Clifford A. Meyer
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - X. Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David E. Fisher
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Keith T. Flaherty
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
19
|
Cerutti C, Shi JR, Vanacker JM. Multifaceted Transcriptional Network of Estrogen-Related Receptor Alpha in Health and Disease. Int J Mol Sci 2023; 24:ijms24054265. [PMID: 36901694 PMCID: PMC10002233 DOI: 10.3390/ijms24054265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Estrogen-related receptors (ERRα, β and γ in mammals) are orphan members of the nuclear receptor superfamily acting as transcription factors. ERRs are expressed in several cell types and they display various functions in normal and pathological contexts. Amongst others, they are notably involved in bone homeostasis, energy metabolism and cancer progression. In contrast to other nuclear receptors, the activities of the ERRs are apparently not controlled by a natural ligand but they rely on other means such as the availability of transcriptional co-regulators. Here we focus on ERRα and review the variety of co-regulators that have been identified by various means for this receptor and their reported target genes. ERRα cooperates with distinct co-regulators to control the expression of distinct sets of target genes. This exemplifies the combinatorial specificity of transcriptional regulation that induces discrete cellular phenotypes depending on the selected coregulator. We finally propose an integrated view of the ERRα transcriptional network.
Collapse
|
20
|
Seneviratne AMPB, Lidagoster S, Valbuena-Castor S, Lashley K, Saha S, Alimova A, Kreitzer G. Kinesins Modify ERR1-Dependent Transcription Using a Conserved Nuclear Receptor Box Motif. Int J Mol Sci 2023; 24:ijms24043795. [PMID: 36835206 PMCID: PMC9959666 DOI: 10.3390/ijms24043795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Kinesin family motors are microtubule (MT)-stimulated ATPases known best as transporters of cellular cargoes through the cytoplasm, regulators of MT dynamics, organizers of the mitotic spindle, and for insuring equal division of DNA during mitosis. Several kinesins have also been shown to regulate transcription by interacting with transcriptional cofactors and regulators, nuclear receptors, or with specific promotor elements on DNA. We previously showed that an LxxLL nuclear receptor box motif in the kinesin-2 family motor KIF17 mediates binding to the orphan nuclear receptor estrogen related receptor alpha (ERR1) and is responsible for the suppression of ERR1-dependent transcription by KIF17. Analysis of all kinesin family proteins revealed that multiple kinesins contain this LxxLL motif, raising the question as to whether additional kinesin motors contribute to the regulation of ERR1. In this study, we interrogate the effects of multiple kinesins with LxxLL motifs on ERR1-mediated transcription. We demonstrate that the kinesin-3 family motor KIF1B contains two LxxLL motifs, one of which binds to ERR1. In addition, we show that expression of a KIF1B fragment containing this LxxLL motif inhibits ERR1-dependent transcription by regulating nuclear entry of ERR1. We also provide evidence that the effects of expressing the KIF1B-LxxLL fragment on ERR1 activity are mediated by a mechanism distinct from that of KIF17. Since LxxLL domains are found in many kinesins, our data suggest an expanded role for kinesins in nuclear receptor mediated transcriptional regulation.
Collapse
Affiliation(s)
- A. M. Pramodh Bandara Seneviratne
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, City College of New York, New York, NY 10031, USA
- Correspondence: (A.M.P.B.S.); (G.K.)
| | - Sarah Lidagoster
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
| | | | - Kareena Lashley
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
| | - Sumit Saha
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
| | - Aleksandra Alimova
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, City College of New York, New York, NY 10031, USA
| | - Geri Kreitzer
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, City College of New York, New York, NY 10031, USA
- Correspondence: (A.M.P.B.S.); (G.K.)
| |
Collapse
|
21
|
Kim JK, Silwal P, Jo EK. Sirtuin 1 in Host Defense during Infection. Cells 2022; 11:cells11182921. [PMID: 36139497 PMCID: PMC9496836 DOI: 10.3390/cells11182921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Sirtuins (SIRTs) are members of the class III histone deacetylase family and epigenetically control multiple target genes to modulate diverse biological responses in cells. Among the SIRTs, SIRT1 is the most well-studied, with a role in the modulation of immune and inflammatory responses following infection. The functions of SIRT1 include orchestrating immune, inflammatory, metabolic, and autophagic responses, all of which are required in establishing and controlling host defenses during infection. In this review, we summarize recent information on the roles of SIRT1 and its regulatory mechanisms during bacterial, viral, and parasitic infections. We also discuss several SIRT1 modulators, as potential antimicrobial treatments. Understanding the function of SIRT1 in balancing immune homeostasis will contribute to the development of new therapeutics for the treatment of infection and inflammatory disease.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence:
| |
Collapse
|
22
|
Du A, Zhao F, Liu Y, Xu L, Chen K, Sun D, Han B. Genetic polymorphisms of PKLR gene and their associations with milk production traits in Chinese Holstein cows. Front Genet 2022; 13:1002706. [PMID: 36118870 PMCID: PMC9479125 DOI: 10.3389/fgene.2022.1002706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work had confirmed that pyruvate kinase L/R (PKLR) gene was expressed differently in different lactation periods of dairy cattle, and participated in lipid metabolism through insulin, PI3K-Akt, MAPK, AMPK, mTOR, and PPAR signaling pathways, suggesting that PKLR is a candidate gene to affect milk production traits in dairy cattle. Here, we verified whether this gene has significant genetic association with milk yield and composition traits in a Chinese Holstein cow population. In total, we identified 21 single nucleotide polymorphisms (SNPs) by resequencing the entire coding region and partial flanking region of PKLR gene, in which, two SNPs were located in 5′ promoter region, two in 5′ untranslated region (UTR), three in introns, five in exons, six in 3′ UTR and three in 3′ flanking region. The single marker association analysis displayed that all SNPs were significantly associated with milk yield, fat and protein yields or protein percentage (p ≤ 0.0497). The haplotype block containing all the SNPs, predicted by Haploview, had a significant association with fat yield and protein percentage (p ≤ 0.0145). Further, four SNPs in 5′ regulatory region and eight SNPs in UTR and exon regions were predicted to change the transcription factor binding sites (TFBSs) and mRNA secondary structure, respectively, thus affecting the expression of PKLR, leading to changes in milk production phenotypes, suggesting that these SNPs might be the potential functional mutations for milk production traits in dairy cattle. In conclusion, we demonstrated that PKLR had significant genetic effects on milk production traits, and the SNPs with significant genetic effects could be used as candidate genetic markers for genomic selection (GS) in dairy cattle.
Collapse
Affiliation(s)
- Aixia Du
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Yanan Liu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingna Xu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kewei Chen
- Yantai Institute, China Agricultural University, Yantai, China
| | - Dongxiao Sun
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Han
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Bo Han, /
| |
Collapse
|
23
|
Zhang Y, Hou M, Liu Y, Liu T, Chen X, Shi Q, Geng D, Yang H, He F, Zhu X. Recharge of chondrocyte mitochondria by sustained release of melatonin protects cartilage matrix homeostasis in osteoarthritis. J Pineal Res 2022; 73:e12815. [PMID: 35726138 DOI: 10.1111/jpi.12815] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Recent evidence indicates that the mitochondrial functions of chondrocytes are impaired in the pathogenesis of osteoarthritis (OA). Melatonin can attenuate cartilage degradation through its antioxidant functions. This study aims to investigate whether melatonin could rescue the impaired mitochondrial functions of OA chondrocytes and protect cartilage metabolism. OA chondrocytes showed a compromised matrix synthesis capacity associated with mitochondrial dysfunction and aberrant oxidative stress. In vitro treatments with melatonin promoted the expression of cartilage extracellular matrix (ECM) components, improved adenosine triphosphate production, and attenuated mitochondrial oxidative stress. Mechanistically, either silencing of SOD2 or inhibition of SIRT1 abolished the protective effects of melatonin on mitochondrial functions and ECM synthesis. To achieve a sustained release effect, a melatonin-laden drug delivery system (DDS) was developed and intra-articular injection with DDS successfully improved cartilage matrix degeneration in a posttraumatic rat OA model. These findings demonstrate that melatonin-mediated recharge of mitochondria to rescue the mitochondrial functions of chondrocytes represents a promising therapeutic strategy to protect cartilage from OA.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
24
|
Sopariwala DH, Rios AS, Park MK, Song MS, Kumar A, Narkar VA. Estrogen-related receptor alpha is an AMPK-regulated factor that promotes ischemic muscle revascularization and recovery in diet-induced obese mice. FASEB Bioadv 2022; 4:602-618. [PMID: 36089981 PMCID: PMC9447423 DOI: 10.1096/fba.2022-00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity and type II diabetes are leading causes of peripheral arterial disease (PAD), which is characterized by vascular insufficiency and ischemic damage in the limb skeletal muscle. Glycemic control is not sufficient to prevent progression of PAD, and molecular targets that can promote muscle neo-angiogenesis in obesity and diabetes remain poorly defined. Here, we have investigated whether nuclear receptor estrogen-related receptor alpha (ERRα) can promote ischemic revascularization in the skeletal muscles of diet-induced obese (DIO) mice. Using muscle-specific ERRα transgenic mice, we found that ERRα overexpression promotes revascularization, marked by increased capillary staining and muscle perfusion in DIO mice after hindlimb ischemic injury. Furthermore, ERRα facilitates repair and restoration of skeletal muscle myofiber size after limb ischemia in DIO mice. The ameliorative effects of ERRα overexpression did not involve the prevention of weight gain, hyperglycemia or glucose/insulin intolerance, suggesting a direct role for ERRα in promoting angiogenesis. Interestingly, levels of endogenous ERRα protein are suppressed in the skeletal muscles of DIO mice compared to lean controls, coinciding with the suppression of angiogenic gene expression, and reduced AMPK signaling in the DIO skeletal muscles. Upon further investigating the link between AMPK and ERRα, we found that AMPK activation increases the expression and recruitment of ERRα protein to specific angiogenic gene promoters in muscle cells. Further, the induction of angiogenic factors by AMPK activators in muscle cells is blocked by repressing ERRα. In summary, our results identify an AMPK/ERRα-dependent angiogenic gene program in the skeletal muscle, which is repressed by DIO, and demonstrate that forced ERRα activation can promote ischemic revascularization and muscle recovery in obesity.
Collapse
Affiliation(s)
- Danesh H. Sopariwala
- Center for Metabolic & Degenerative DiseasesInstitute of Molecular Medicine, UTHealth McGovern Medical SchoolHoustonTexasUSA
| | - Andrea S. Rios
- Center for Metabolic & Degenerative DiseasesInstitute of Molecular Medicine, UTHealth McGovern Medical SchoolHoustonTexasUSA
| | - Mi Kyung Park
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Min Sup Song
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical SciencesCollege of Pharmacy, University of HoustonHoustonTexasUSA
| | - Vihang A. Narkar
- Center for Metabolic & Degenerative DiseasesInstitute of Molecular Medicine, UTHealth McGovern Medical SchoolHoustonTexasUSA
| |
Collapse
|
25
|
Feng C, Xu Z, Tang X, Cao H, Zhang G, Tan J. Estrogen-Related Receptor α: A Significant Regulator and Promising Target in Bone Homeostasis and Bone Metastasis. Molecules 2022; 27:3976. [PMID: 35807221 PMCID: PMC9268386 DOI: 10.3390/molecules27133976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 01/23/2023] Open
Abstract
Bone homeostasis is maintained with the balance between bone formation and bone resorption, which is involved in the functional performance of osteoblast and osteoclast. Disruption of this equilibrium usually causes bone disorders including osteoporosis, osteoarthritis, and osteosclerosis. In addition, aberrant activity of bone also contributes to the bone metastasis that frequently occurs in the late stage of aggressive cancers. Orphan nuclear receptor estrogen-related receptor (ERRα) has been demonstrated to control the bone cell fate and the progression of tumor cells in bone through crosstalk with various molecules and signaling pathways. However, the defined function of this receptor in bone is inconsistent and controversial. Therefore, we summarized the latest research and conducted an overview to reveal the regulatory effect of ERRα on bone homeostasis and bone metastasis, this review may broaden the present understanding of the cellular and molecular model of ERRα and highlight its potential implication in clinical therapy.
Collapse
Affiliation(s)
- Chun Feng
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Zhaowei Xu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Xiaojie Tang
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Haifei Cao
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Jiangwei Tan
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| |
Collapse
|
26
|
Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol 2022; 23:750-770. [DOI: 10.1038/s41580-022-00486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
|
27
|
Ranhotra HS. Estrogen-related receptor alpha in select host functions and cancer: new frontiers. Mol Cell Biochem 2022; 477:1349-1359. [PMID: 35138514 DOI: 10.1007/s11010-022-04380-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 01/03/2023]
Abstract
Eukaryotic gene expression is under the tight control of transcription factors, which includes the estrogen-related receptor alpha (ERRα). The endogenous ligand(s) acting as ERRα agonist has not been identified and confirmed. ERRα is a prominent member of the nuclear receptors super-family with major roles in energy metabolism, including immunity, cell growth, proliferation and differentiation and a host of other functions in animals. The actions exerted by ERRα towards gene expression regulation are often in association with other transcriptional factors, receptors and signal mediators. Metabolic regulation by ERRα is known for some time that has tremendous impact on host biology like autophagy, angiogenesis, mitochondrial activity, including lipid metabolism. Cellular metabolism and cancer has intricate relationship. On account of the participation of ERRα in metabolism, it has been implicated in various types of cancer onset and progression. In a number of findings, ERRα has been demonstrated to influence several types of cancers, exhibiting as a negative prognostic marker for many. Such diverse role associated with ERRα is due to its interaction with numerous transcriptional factors and other signalling pathways that culminate in providing optimal gene regulation. These observations points to the crucial regulatory roles of ERRα in health and disease. In this article, some of the new findings on the influence of ERRα in host metabolism and biology including cancer, shall be reviewed that will provide a concise understanding of this receptor.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
28
|
Zheng L, Wei F, Li G. The crosstalk between bacteria and host autophagy: host defense or bacteria offense. J Microbiol 2022; 60:451-460. [DOI: 10.1007/s12275-022-2009-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022]
|
29
|
Transcriptional Regulation of Hepatic Autophagy by Nuclear Receptors. Cells 2022; 11:cells11040620. [PMID: 35203271 PMCID: PMC8869834 DOI: 10.3390/cells11040620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is an adaptive self-eating process involved in degradation of various cellular components such as carbohydrates, lipids, proteins, and organelles. Its activity plays an essential role in tissue homeostasis and systemic metabolism in response to diverse challenges, including nutrient depletion, pathogen invasion, and accumulations of toxic materials. Therefore, autophagy dysfunctions are intimately associated with many human diseases such as cancer, neurodegeneration, obesity, diabetes, infection, and aging. Although its acute post-translational regulation is well described, recent studies have also shown that autophagy can be controlled at the transcriptional and post-transcriptional levels. Nuclear receptors (NRs) are in general ligand-dependent transcription factors consisting of 48 members in humans. These receptors extensively control transcription of a variety of genes involved in development, metabolism, and inflammation. In this review, we discuss the roles and mechanisms of NRs in an aspect of transcriptional regulation of hepatic autophagy, and how the NR-driven autophagy pathway can be harnessed to treat various liver diseases.
Collapse
|
30
|
Zhou Y, Zhang F, Ding J. As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases. Immune Netw 2022; 22:e21. [PMID: 35799705 PMCID: PMC9250864 DOI: 10.4110/in.2022.22.e21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yunxin Zhou
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Fan Zhang
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
31
|
Fu Z, Liang X, Shi L, Tang L, Chen D, Liu A, Shao C. SYT8 promotes pancreatic cancer progression via the TNNI2/ERRα/SIRT1 signaling pathway. Cell Death Dis 2021; 7:390. [PMID: 34907162 PMCID: PMC8671424 DOI: 10.1038/s41420-021-00779-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022]
Abstract
Pancreatic cancer is a highly lethal malignancy due to failures of early detection and high metastasis in patients. While certain genetic mutations in tumors are associated with severity, the molecular mechanisms responsible for cancer progression are still poorly understood. Synaptotagmin-8 (SYT8) is a membrane protein that regulates hormone secretion and neurotransmission, and its expression is positively regulated by the promoter of the insulin gene in pancreatic islet cells. In this study, we identified a previously unknown role of SYT8 in altering tumor characteristics in pancreatic cancer. SYT8 levels were upregulated in patient tumors and contributed towards increased cell proliferation, migration, and invasion in vitro and in vivo. Increased SYT8 expression also promoted tumor metastasis in an in vivo tumor metastasis model. Furthermore, we showed that SYT8-mediated increase in tumorigenicity was regulated by SIRT1, a protein deacetylase previously known to alter cell metabolism in pancreatic lesions. SIRT1 expression was altered by orphan nuclear receptor ERRα and troponin-1 (TNNI2), resulting in cell proliferation and migration in an SYT8-dependent manner. Together, we identified SYT8 to be a central regulator of tumor progression involving signaling via the SIRT1, ERRα, and TNNI2 axis. This knowledge may provide the basis for the development of therapeutic strategies to restrict tumor metastasis in pancreatic cancer.
Collapse
Affiliation(s)
- Zhiping Fu
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xing Liang
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ligang Shi
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Liang Tang
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Danlei Chen
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Anan Liu
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chenghao Shao
- Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| |
Collapse
|
32
|
Chen X, Tong G, Fan J, Shen Y, Wang N, Gong W, Hu Z, Zhu K, Li X, Jin L, Cong W, Xiao J, Zhu Z. FGF21 promotes migration and differentiation of epidermal cells during wound healing via SIRT1-dependent autophagy. Br J Pharmacol 2021; 179:1102-1121. [PMID: 34608629 DOI: 10.1111/bph.15701] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Migration and differentiation of epidermal cells are essential for epidermal regeneration during wound healing. Fibroblast growth factor 21 (FGF21) plays key roles in mediating a variety of biological activities. However, its role in skin wound healing remains unknown. EXPERIMENTAL APPROACH Fgf21 knockout (Fgf21 KO) mice were used to determine the effect of FGF21 on wound healing. The source of FGF21 and its target cells were determined by immunohistochemistry, immunoblotting, and ELISA assay. Moreover, Sirt1flox/flox and Atg7flox/flox mice were constructed and injected with the epidermal-specific Cre virus to elucidate the underlying mechanisms. Migration and differentiation of keratinocytes were evaluated in vitro by cell scratch assays, immunofluorescence, and qRT-RCR. The effects were further assessed when SIRT1, ATG7, ATG5, BECN1, and P53 were silenced. Interactions between SIRT1 and autophagy-related genes were assessed using immunoprecipitation assays. KEY RESULTS FGF21 was active in fibroblasts and promoted migration and differentiation of keratinocytes following injury. After wounding, SIRT1 expression and autophagosome synthesis were lower in Fgf21 KO mice. Depletion of ATG7 in keratinocytes counteracted the FGF21-induced increases in migration and differentiation, suggesting that autophagy is required for the FGF21-mediated pro-healing effects. Furthermore, epithelial-specific Sirt1 knockout abolished the FGF21-mediated improvements of autophagy and wound healing. Silencing of SIRT1 in keratinocytes, which decreased deacetylation of p53 and autophagy-related proteins, revealed that FGF21-induced autophagy during wound healing was SIRT1-dependent. CONCLUSIONS AND IMPLICATIONS FGF21 is a key regulator of keratinocyte migration and differentiation during wound healing. FGF21 may be a novel therapeutic target to accelerate would healing.
Collapse
Affiliation(s)
- Xixi Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Nan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zijing Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Kunxuan Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Yin L, Lv M, Qiu X, Wang X, Zhang A, Yang K, Zhou H. IFN-γ Manipulates NOD1-Mediated Interaction of Autophagy and Edwardsiella piscicida to Augment Intracellular Clearance in Fish. THE JOURNAL OF IMMUNOLOGY 2021; 207:1087-1098. [PMID: 34341174 DOI: 10.4049/jimmunol.2100151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Edwardsiella piscicida is an intracellular pathogenic bacterium accounting for significant losses in farmed fish. Currently, cellular and molecular mechanisms underlying E. piscicida-host cross-talk remain obscure. In this study, we revealed that E. piscicida could increase microtubule-associated protein L chain 3 (LC3) puncta in grass carp (Ctenopharyngodon idella) monocytes/macrophages and a carp cell line, Epithelioma papulosum cyprini The autophagic response was confirmed by detecting the colocalization of E. piscicida with LC3-positive autophagosomes and LysoTracker-probed lysosomes in the cells. Moreover, we unveiled the autophagic machinery targeting E. piscicida by which the nucleotide-binding oligomerization domain receptor 1 (NOD1) functioned as an intracellular sensor to interact and recruit autophagy-related gene (ATG) 16L1 to the bacteria. Meanwhile, E. piscicida decreased the mRNA and protein levels of NOD1 and ATG16L1 in an estrogen-related receptor-α-dependent manner, suggesting a possible mechanism for this bacterium escaping autophagy. Subsequently, we examined the effects of various E. piscicida virulence factors on NOD1 expression and found that two of them, EVPC and ESCB, could reduce NOD1 protein expression via ubiquitin-dependent proteasomal degradation. Furthermore, an intrinsic regulator IFN-γ was found to enhance the colocalization of E. piscicida with NOD1 or autophagosomes, suggesting its involvement in the interaction between autophagy and E. piscicida Along this line, a short-time treatment of IFN-γ caused intracellular E. piscicida clearance through an autophagy-dependent mechanism. Collectively, our works demonstrated NOD1-mediated autophagy-E. piscicida dialogues and uncovered the molecular mechanism involving autophagy against intracellular bacteria in fish.
Collapse
Affiliation(s)
- Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
34
|
Wang L, Yang M, Jin H. PI3K/AKT phosphorylation activates ERRα by upregulating PGC‑1α and PGC‑1β in gallbladder cancer. Mol Med Rep 2021; 24:613. [PMID: 34184087 PMCID: PMC8258462 DOI: 10.3892/mmr.2021.12252&set/a 980722837+876073627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The nuclear estrogen‑related receptor‑α (ERRα) is an orphan receptor that has been identified as a transcriptional factor. Peroxisome proliferator‑activated receptor‑γ (PPARγ) coactivator‑1‑α (PGC‑1α) and PPARγ coactivator‑1‑β (PGC‑1β) act as the co‑activators of ERRα. Our previous study reported that activated ERRα promoted the invasion and proliferation of gallbladder cancer cells by promoting PI3K/AKT phosphorylation. Therefore, the aim of the current study was to investigate whether PI3K/AKT phosphorylation could enhance ERRα activity in a positive feedback loop. LY294002 and insulin‑like growth factor I (IGF‑I) were used to inhibit and promote PI3K/AKT phosphorylation, respectively. A 3X ERE‑TATA luciferase reporter was used to measure ERRα activity. The present study found that LY294002 inhibited PI3K/AKT phosphorylation, decreased the proliferation and invasion of NOZ cells and suppressed the activity of ERRα. Conversely, IGF‑I induced PI3K/AKT phosphorylation, promoted the proliferation and invasion of NOZ cells and enhanced the activity of ERRα. The protein expression levels of PGC‑1α and PGC‑1β were elevated and reduced by IGF‑I and LY294002, respectively. Moreover, knockdown of PGC‑1α and PGC‑1β antagonized ERRα activation, which was enhanced by PI3K/AKT phosphorylation. Taken together, the present study demonstrated that PI3K/AKT phosphorylation triggered ERRα by upregulating the expression levels of PGC‑1α and PGC‑1β in NOZ cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Hepatobiliary Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Mengmeng Yang
- Department of Malaria Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology (Jiangsu Institute of Parasitic Diseases), Wuxi, Jiangsu 214002, P.R. China
| | - Huihan Jin
- Department of Hepatobiliary Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
35
|
Wang L, Yang M, Jin H. PI3K/AKT phosphorylation activates ERRα by upregulating PGC‑1α and PGC‑1β in gallbladder cancer. Mol Med Rep 2021; 24:613. [PMID: 34184087 PMCID: PMC8258462 DOI: 10.3892/mmr.2021.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
The nuclear estrogen‑related receptor‑α (ERRα) is an orphan receptor that has been identified as a transcriptional factor. Peroxisome proliferator‑activated receptor‑γ (PPARγ) coactivator‑1‑α (PGC‑1α) and PPARγ coactivator‑1‑β (PGC‑1β) act as the co‑activators of ERRα. Our previous study reported that activated ERRα promoted the invasion and proliferation of gallbladder cancer cells by promoting PI3K/AKT phosphorylation. Therefore, the aim of the current study was to investigate whether PI3K/AKT phosphorylation could enhance ERRα activity in a positive feedback loop. LY294002 and insulin‑like growth factor I (IGF‑I) were used to inhibit and promote PI3K/AKT phosphorylation, respectively. A 3X ERE‑TATA luciferase reporter was used to measure ERRα activity. The present study found that LY294002 inhibited PI3K/AKT phosphorylation, decreased the proliferation and invasion of NOZ cells and suppressed the activity of ERRα. Conversely, IGF‑I induced PI3K/AKT phosphorylation, promoted the proliferation and invasion of NOZ cells and enhanced the activity of ERRα. The protein expression levels of PGC‑1α and PGC‑1β were elevated and reduced by IGF‑I and LY294002, respectively. Moreover, knockdown of PGC‑1α and PGC‑1β antagonized ERRα activation, which was enhanced by PI3K/AKT phosphorylation. Taken together, the present study demonstrated that PI3K/AKT phosphorylation triggered ERRα by upregulating the expression levels of PGC‑1α and PGC‑1β in NOZ cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Hepatobiliary Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Mengmeng Yang
- Department of Malaria Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology (Jiangsu Institute of Parasitic Diseases), Wuxi, Jiangsu 214002, P.R. China
| | - Huihan Jin
- Department of Hepatobiliary Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
36
|
Tran A, Scholtes C, Songane M, Champagne C, Galarneau L, Levasseur MP, Fodil N, Dufour CR, Giguère V, Saleh M. Estrogen-related receptor alpha (ERRα) is a key regulator of intestinal homeostasis and protects against colitis. Sci Rep 2021; 11:15073. [PMID: 34302001 PMCID: PMC8302669 DOI: 10.1038/s41598-021-94499-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The estrogen-related receptor alpha (ERRα) is a primary regulator of mitochondrial energy metabolism, function and dynamics, and has been implicated in autophagy and immune regulation. ERRα is abundantly expressed in the intestine and in cells of the immune system. However, its role in inflammatory bowel disease (IBD) remains unknown. Here, we report a protective role of ERRα in the intestine. We found that mice deficient in ERRα were susceptible to experimental colitis, exhibiting increased colon inflammation and tissue damage. This phenotype was mediated by impaired compensatory proliferation of intestinal epithelial cells (IEC) following injury, enhanced IEC apoptosis and necrosis and reduced mucus-producing goblet cell counts. Longitudinal analysis of the microbiota demonstrated that loss of ERRα lead to a reduction in microbiome α-diversity and depletion of healthy gut bacterial constituents. Mechanistically, ERRα mediated its protective effects by acting within the radio-resistant compartment of the intestine. It promoted disease tolerance through transcriptional control of key genes involved in intestinal tissue homeostasis and repair. These findings provide new insights on the role of ERRα in the gut and extends our current knowledge of nuclear receptors implicated in IBD.
Collapse
Affiliation(s)
- Allan Tran
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Charlotte Scholtes
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Mario Songane
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Claudia Champagne
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Luc Galarneau
- Cedars Cancer Centre, Medical Physics, McGill University Health Centre, Montreal, H4A 3J1, Canada
| | - Marie-Pier Levasseur
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Nassima Fodil
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | | | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Maya Saleh
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada.
- Department of Life Sciences and Health, CNRS, ImmunoConcEpT, UMR 5164, The University of Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
37
|
Kim YJ, Lee SH, Jeon SM, Silwal P, Seo JY, Hanh BTB, Park JW, Whang J, Lee MJ, Heo JY, Kim SH, Kim JM, Song GY, Jang J, Jo EK. Sirtuin 3 is essential for host defense against Mycobacterium abscessus infection through regulation of mitochondrial homeostasis. Virulence 2021; 11:1225-1239. [PMID: 32835604 PMCID: PMC7549921 DOI: 10.1080/21505594.2020.1809961] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The global incidence of Mycobacterium abscessus (Mabc), a rapidly growing nontuberculous mycobacterial strain that causes treatment-refractory pulmonary diseases, is increasing. Despite this, the host factors that allow for protection against infection are largely unknown. In this study, we found that sirtuin 3 (SIRT3), a mitochondrial protein deacetylase, plays a critical role in host defense against Mabc infection. Mabc decreased SIRT3 and upregulated mitochondrial oxidative stress in macrophages. SIRT3 deficiency led to increased bacterial loads, histopathological, and mitochondrial damage, and pathological inflammation during Mabc infection. Administration of scavengers of mitochondrial reactive oxygen species significantly decreased the in vivo Mabc burden and excessive inflammation, and induced SIRT3 expression in infected lungs. Notably, SIRT3 agonist (resveratrol) significantly decreased Mabc growth and attenuated inflammation in mice and zebrafishes, indicating the key role for SIRT3 in metazoan host defense. Collectively, these data strongly suggest that SIRT3 is a host-directed therapeutic target against Mabc infection by controlling mitochondrial homeostasis.
Collapse
Affiliation(s)
- Young Jae Kim
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute , Cheongju, Chungbuk, South Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea
| | - Ju-Young Seo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,College of Pharmacy, Chungnam National University , Daejeon, Republic of Korea
| | - Bui Thi Bich Hanh
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University , Jinju, Korea.,Division of Applied Life Science (Bk21plus Program), Gyeongsang National University , Jinju, Korea
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology , Jinju, Korea.,Human and Environmental Toxicology Program, Korea University of Science and Technology (UST) , Daejeon, Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC) & Basic Research Section, The Korean Institute of Tuberculosis (KIT) 168-5 , Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Min Joung Lee
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Biochemistry, Chungnam National University College of Medicine , Korea
| | - Jun Young Heo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Biochemistry, Chungnam National University College of Medicine , Korea.,Department of Medical Science, Chungnam National University College of Medicine , Daejeon, Korea
| | - Soon Ha Kim
- MitoImmune Therapeutics, Inc ., Ganhnam-gu, Seoul, Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Pathology; Chungnam National University College of Medicine , Korea
| | - Gyu Yong Song
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,College of Pharmacy, Chungnam National University , Daejeon, Republic of Korea
| | - Jichan Jang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University , Jinju, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Medical Science, Chungnam National University College of Medicine , Daejeon, Korea
| |
Collapse
|
38
|
Tanigawa K, Luo Y, Kawashima A, Kiriya M, Nakamura Y, Karasawa K, Suzuki K. Essential Roles of PPARs in Lipid Metabolism during Mycobacterial Infection. Int J Mol Sci 2021; 22:ijms22147597. [PMID: 34299217 PMCID: PMC8304230 DOI: 10.3390/ijms22147597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
The mycobacterial cell wall is composed of large amounts of lipids with varying moieties. Some mycobacteria species hijack host cells and promote lipid droplet accumulation to build the cellular environment essential for their intracellular survival. Thus, lipids are thought to be important for mycobacteria survival as well as for the invasion, parasitization, and proliferation within host cells. However, their physiological roles have not been fully elucidated. Recent studies have revealed that mycobacteria modulate the peroxisome proliferator-activated receptor (PPAR) signaling and utilize host-derived triacylglycerol (TAG) and cholesterol as both nutrient sources and evasion from the host immune system. In this review, we discuss recent findings that describe the activation of PPARs by mycobacterial infections and their role in determining the fate of bacilli by inducing lipid metabolism, anti-inflammatory function, and autophagy.
Collapse
Affiliation(s)
- Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Ken Karasawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
- Correspondence: ; Tel.: +81-3-3964-1211
| |
Collapse
|
39
|
PI3K/AKT phosphorylation activates ERRα by upregulating PGC‑1α and PGC‑1β in gallbladder cancer. Mol Med Rep 2021. [DOI: 10.3892/mmr.2021.12252
expr 848857195 + 844041643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
40
|
Sopariwala DH, Likhite N, Pei G, Haroon F, Lin L, Yadav V, Zhao Z, Narkar VA. Estrogen-related receptor α is involved in angiogenesis and skeletal muscle revascularization in hindlimb ischemia. FASEB J 2021; 35:e21480. [PMID: 33788962 PMCID: PMC11135633 DOI: 10.1096/fj.202001794rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle ischemia is a major consequence of peripheral arterial disease (PAD) or critical limb ischemia (CLI). Although therapeutic options for resolving muscle ischemia in PAD/CLI are limited, the issue is compounded by poor understanding of the mechanisms driving muscle vascularization. We found that nuclear receptor estrogen-related receptor alpha (ERRα) expression is induced in murine skeletal muscle by hindlimb ischemia (HLI), and in cultured myotubes by hypoxia, suggesting a potential role for ERRα in ischemic response. To test this, we generated skeletal muscle-specific ERRα transgenic (TG) mice. In these mice, ERRα drives myofiber type switch from glycolytic type IIB to oxidative type IIA/IIX myofibers, which are typically associated with more vascular supply in muscle. Indeed, RNA sequencing and functional enrichment analysis of TG muscle revealed that "paracrine angiogenesis" is the top-ranked transcriptional program activated by ERRα in the skeletal muscle. Immunohistochemistry and angiography showed that ERRα overexpression increases baseline capillarity, arterioles and non-leaky blood vessel formation in the skeletal muscles. Moreover, ERRα overexpression facilitates ischemic neo-angiogenesis and perfusion recovery in hindlimb musculature of mice subjected to HLI. Therefore, ERRα is a hypoxia inducible nuclear receptor that is involved in skeletal muscle angiogenesis and could be potentially targeted for treating PAD/CLI.
Collapse
Affiliation(s)
- Danesh H. Sopariwala
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Neah Likhite
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Gungsheng Pei
- Center for Precision Medicine, School of Biomedical Informatics, UTHealth, Houston, TX, USA
| | - Fnu Haroon
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Lisa Lin
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
- Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Vikas Yadav
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
- Current address: Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Zhongming Zhao
- Center for Precision Medicine, School of Biomedical Informatics, UTHealth, Houston, TX, USA
- Human Genetics Center, School of Public Health, UTHealth, Houston, TX, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
- Graduate School of Biomedical Sciences, UTHealth, TX, USA
| |
Collapse
|
41
|
Xu C, Chang TL. ERRγ, a new player in the type I IFN arena. J Leukoc Biol 2021; 109:857-859. [PMID: 33527528 PMCID: PMC8785230 DOI: 10.1002/jlb.2ce1120-733r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/01/2021] [Accepted: 01/13/2021] [Indexed: 11/12/2022] Open
Abstract
Discussion on how the nuclear orphan receptor ERRγ induces type I IFNs and impacts the estrogenic response in host defense and disease progression.
Collapse
Affiliation(s)
- Chuan Xu
- Public Health Research Institute, Rutgers, the State
University of New Jersey, Newark, New Jersey, USA
| | - Theresa L. Chang
- Public Health Research Institute, Rutgers, the State
University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular
Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey,
Newark, New Jersey, USA
| |
Collapse
|
42
|
Ghosh A, Som A. Decoding molecular markers and transcriptional circuitry of naive and primed states of human pluripotency. Stem Cell Res 2021; 53:102334. [PMID: 33862536 DOI: 10.1016/j.scr.2021.102334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs) have been observed to occur in two distinct states - naive and primed. Both naive and primed state PSCs can give rise to tissues of all the three germ layers in vitro but differ in their potential to generate germline chimera in vivo. Understanding the molecular mechanisms that govern these two states of pluripotency in human can open a plethora of opportunities for studying early embryonic development and in biomedical applications. In this work, we use weighted gene co-expression network analysis (WGCNA) to identify the key molecular makers and their interactions that define the two distinct pluripotency states. Signed hybrid network was reconstructed from transcriptomic data (RNA-seq) of naive and primed state pluripotent samples. Our analysis revealed two sets of genes that are involved in the establishment and maintenance of naive and primed states. The naive state genes were found to be enriched for biological processes and pathways related to metabolic processes while primed state genes were associated with system development. We further filtered these lists to identify the intra-modular hubs and the hub transcription factors (TFs) for each group. Validation of the identified TFs was carried out using independent microarray datasets and we finally present a list of 52 and 33 TFs as the set of core TFs that are responsible for the induction and maintenance of naive and primed states of pluripotency in human, respectively. Among these, the TFs ZNF275, ZNF232, SP4, and MSANTD3 could be of interest as they were not reported in previous studies.
Collapse
Affiliation(s)
- Arindam Ghosh
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj 211002, India; Institute of Biomedicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
43
|
Lamorte S, Shinde R, McGaha TL. Nuclear receptors, the aryl hydrocarbon receptor, and macrophage function. Mol Aspects Med 2021; 78:100942. [PMID: 33451803 PMCID: PMC7987878 DOI: 10.1016/j.mam.2021.100942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs) are key regulators of innate immune responses and tissue homeostasis. Evidence indicates that NRs significantly impact steady-state immune regulation, uptake and processing of apoptotic cells, tolerance induction, and control of inflammatory immunity. In this review, we describe our current understanding of the NR activity for balancing inflammation and tolerance, the signaling cascade inducing the NR activation and functional responses, and different mechanisms of the NR-driven immune effects in the context of autoimmune diseases. We further describe the ligand-activated transcription factor the aryl hydrocarbon receptor (AhR) that exhibits analogous functionality. Moreover, we will discuss the putative role of NRs and AhR in immune regulation and disease pathogenesis providing a rationale for therapeutic targeting as a unique opportunities in the clinical management of autoimmune diseases.
Collapse
Affiliation(s)
- Sara Lamorte
- Tumor Immunotherapy Program, The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rahul Shinde
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute Cancer Center, Philadelphia, PA, USA
| | - Tracy L McGaha
- Tumor Immunotherapy Program, The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; The Department of Immunology, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Yang Y, Li S, Li B, Li Y, Xia K, Aman S, Yang Y, Ahmad B, Zhao B, Wu H. FBXL10 promotes ERRα protein stability and proliferation of breast cancer cells by enhancing the mono-ubiquitylation of ERRα. Cancer Lett 2021; 502:108-119. [PMID: 33450359 DOI: 10.1016/j.canlet.2021.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 01/25/2023]
Abstract
The underlying mechanism of orphan nuclear receptor estrogen-related receptor α (ERRα) in breast cancer was investigated by identifying its interaction partners using mass spectrometry. F-box and leucine-rich repeat protein 10 (FBXL10), which modulates various physiological processes, may interact with ERRα in breast cancer. Here, we investigated the interaction between FBXL10 and ERRα, and their protein expression and correlation in breast cancer. Mechanical studies revealed that FBXL10 stabilized ERRα protein levels by reducing its poly-ubiquitylation and promoting its mono-ubiquitylation. The reporter gene assay and examination of ERRα target genes validated the increased transcriptional activity of ERRα due to its increased protein levels by FBXL10. FBXL10 also increased ERRα enrichment at the promoter region of its target genes. Functionally, FBXL10 facilitated the ERRα/peroxisome proliferator-activated receptor gamma coactivator 1 β (PGC1β)-mediated proliferation and tumorigenesis of breast cancer cells in vitro and in vivo. Our results uncovered a molecular mechanism linking the mono-ubiquitylation and protein stability of ERRα to functional interaction with FBXL10. Moreover, a novel regulatory axis of FBXL10 and ERRα regulating the proliferation and tumorigenesis of breast cancer cells was established.
Collapse
Affiliation(s)
- Yangyang Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Bowen Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Yanan Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Kangkai Xia
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Sattout Aman
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Bashir Ahmad
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China.
| |
Collapse
|
45
|
Yao Y, Cai X, Ren F, Ye Y, Wang F, Zheng C, Qian Y, Zhang M. The Macrophage-Osteoclast Axis in Osteoimmunity and Osteo-Related Diseases. Front Immunol 2021; 12:664871. [PMID: 33868316 PMCID: PMC8044404 DOI: 10.3389/fimmu.2021.664871] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoimmunity is involved in regulating the balance of bone remodeling and resorption, and is essential for maintaining normal bone morphology. The interaction between immune cells and osteoclasts in the bone marrow or joint cavity is the basis of osteoimmunity, in which the macrophage-osteoclast axis plays a vital role. Monocytes or tissue-specific macrophages (macrophages resident in tissues) are an important origin of osteoclasts in inflammatory and immune environment. Although there are many reports on macrophages and osteoclasts, there is still a lack of systematic reviews on the macrophage-osteoclast axis in osteoimmunity. Elucidating the role of the macrophage-osteoclast axis in osteoimmunity is of great significance for the research or treatment of bone damage caused by inflammation and immune diseases. In this article, we introduced in detail the concept of osteoimmunity and the mechanism and regulators of the differentiation of macrophages into osteoclasts. Furthermore, we described the role of the macrophage-osteoclast axis in typical bone damage caused by inflammation and immune diseases. These provide a clear knowledge framework for studying macrophages and osteoclasts in inflammatory and immune environments. And targeting the macrophage-osteoclast axis may be an effective strategy to treat bone damage caused by inflammation and immune diseases.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Ying Qian
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Han B, Jiang W, Cui P, Zheng K, Dang C, Wang J, Li H, Chen L, Zhang R, Wang QM, Ju Z, Hao J. Microglial PGC-1α protects against ischemic brain injury by suppressing neuroinflammation. Genome Med 2021; 13:47. [PMID: 33771213 PMCID: PMC8004413 DOI: 10.1186/s13073-021-00863-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/04/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Neuroinflammation and immune responses occurring minutes to hours after stroke are associated with brain injury after acute ischemic stroke (AIS). PPARγ coactivator-1α (PGC-1α), as a master coregulator of gene expression in mitochondrial biogenesis, was found to be transiently upregulated in microglia after AIS. However, the role of microglial PGC-1α in poststroke immune modulation remains unknown. METHODS PGC-1α expression in microglia from human and mouse brain samples following ischemic stroke was first determined. Subsequently, we employed transgenic mice with microglia-specific overexpression of PGC-1α for middle cerebral artery occlusion (MCAO). The morphology and gene expression profile of microglia with PGC-1α overexpression were evaluated. Downstream inflammatory cytokine production and NLRP3 activation were also determined. ChIP-Seq analysis was performed to detect PGC-1α-binding sites in microglia. Autophagic and mitophagic activity was further monitored by immunofluorescence staining. Unc-51-like autophagy activating kinase 1 (ULK1) expression was evaluated under the PGC-1α interaction with ERRα. Finally, pharmacological inhibition and genomic knockdown of ULK1 were performed to estimate the role of ULK1 in mediating mitophagic activity after ischemic stroke. RESULTS PGC-1α expression was shortly increased after ischemic stroke, not only in human brain samples but also in mouse brain samples. Microglia-specific PGC-1α overexpressing mice exhibited significantly decreased neurologic deficits after ischemic injury, with reduced NLRP3 activation and proinflammatory cytokine production. ChIP-Seq analysis and KEGG pathway analysis revealed that mitophagy was significantly enhanced. PGC-1α significantly promoted autophagic flux and induced autolysosome formation. More specifically, the autophagic clearance of mitochondria was enhanced by PGC-1α regulation, indicating the important role of mitophagy. Pharmacological inhibition or knockdown of ULK1 expression impaired autophagic/mitophagic activity, thus abolishing the neuroprotective effects of PGC-1α. CONCLUSIONS Mechanistically, in AIS, PGC-1α promotes autophagy and mitophagy through ULK1 and reduces NLRP3 activation. Our findings indicate that microglial PGC-1α may be a promising therapeutic target for AIS.
Collapse
Affiliation(s)
- Bin Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Pan Cui
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Kai Zheng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chun Dang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junjie Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - He Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lin Chen
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironments and Diseases of Educational Ministry, Tianjin Medical University, Tianjin, 300070, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, the teaching affiliate of Harvard Medical School Charlestown, Boston, MA, 02129, USA
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
47
|
Scholtes C, Giguère V. Transcriptional Regulation of ROS Homeostasis by the ERR Subfamily of Nuclear Receptors. Antioxidants (Basel) 2021; 10:antiox10030437. [PMID: 33809291 PMCID: PMC7999130 DOI: 10.3390/antiox10030437] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) such as superoxide anion (O2•-) and hydrogen peroxide (H2O2) are generated endogenously by processes such as mitochondrial oxidative phosphorylation, or they may arise from exogenous sources like bacterial invasion. ROS can be beneficial (oxidative eustress) as signaling molecules but also harmful (oxidative distress) to cells when ROS levels become unregulated in response to physiological, pathological or pharmacological insults. Indeed, abnormal ROS levels have been shown to contribute to the etiology of a wide variety of diseases. Transcriptional control of metabolic genes is a crucial mechanism to coordinate ROS homeostasis. Therefore, a better understanding of how ROS metabolism is regulated by specific transcription factors can contribute to uncovering new therapeutic strategies. A large body of work has positioned the estrogen-related receptors (ERRs), transcription factors belonging to the nuclear receptor superfamily, as not only master regulators of cellular energy metabolism but, most recently, of ROS metabolism. Herein, we will review the role played by the ERRs as transcriptional regulators of ROS generation and antioxidant mechanisms and also as ROS sensors. We will assess how the control of ROS homeostasis by the ERRs can be linked to physiology and disease and the possible contribution of manipulating ERR activity in redox medicine.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada;
| | - Vincent Giguère
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada;
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Correspondence:
| |
Collapse
|
48
|
Wang X, Wang B, Gao W, An Y, Dong G, Jia J, Yang Q. Helicobacter pylori inhibits autophagic flux and promotes its intracellular survival and colonization by down-regulating SIRT1. J Cell Mol Med 2021; 25:3348-3360. [PMID: 33641223 PMCID: PMC8034483 DOI: 10.1111/jcmm.16411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) is the strong risk factor for a series of gastric pathological changes. Persistent colonization of H. pylori leading to chronic infection is responsible for gastritis and malignancy. Autophagy is an evolutionary conserved process which can protect cells and organisms from bacterial infection. Here, we demonstrated that H. pylori infection induced autophagosome formation but inhibited autophagic flux. SIRT1, a class III histone deacetylase, was down-regulated at both mRNA and protein levels by H. pylori infection in gastric cells. Further investigation showed that the transcriptional factor RUNX3 accounted for down-regulation of SIRT1 in H. pylori-infected gastric cells. SIRT1 promoted autophagic flux in gastric cells and activation of SIRT1 restored the autophagic flux inhibited by H. pylori infection. Furthermore, SIRT1 exerted inhibitory effects on intracellular survival and colonization of H. pylori. And activation of autophagic flux in SIRT1-inhibited gastric cells could significantly reduce intracellular load of H. pylori. Moreover, the relationship between H. pylori infection and SIRT1 expression was identified in clinical specimen. Our findings define the importance of SIRT1 in compromised autophagy induced by H. pylori infection and bacterial intracellular colonization. These results provide evidence that SIRT1 can serve as a therapeutic target to eradicate H. pylori infection.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Wang
- Department of Traditional Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Gao
- Department of Pathology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yifei An
- Institute of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoying Dong
- Institute of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jihui Jia
- Institute of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Infection and Immunity, Shandong University, Jinan, China.,Karolinska Institute Collaborative Laboratory for Cancer research, Shandong University, Jinan, China
| | - Qing Yang
- Institute of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Infection and Immunity, Shandong University, Jinan, China.,Karolinska Institute Collaborative Laboratory for Cancer research, Shandong University, Jinan, China
| |
Collapse
|
49
|
Xu T, Song Q, Zhou L, Yang W, Wu X, Qian Q, Chai H, Han Q, Pan H, Dou X, Li S. Ferulic acid alleviates lipotoxicity-induced hepatocellular death through the SIRT1-regulated autophagy pathway and independently of AMPK and Akt in AML-12 hepatocytes. Nutr Metab (Lond) 2021; 18:13. [PMID: 33468182 PMCID: PMC7814733 DOI: 10.1186/s12986-021-00540-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Lipotoxicity-induced cell death plays a detrimental role in the pathogenesis of metabolic diseases. Ferulic acid, widespread in plant-based food, is a radical scavenger with multiple bioactivities. However, the benefits of ferulic acid against hepatic lipotoxicity are largely unclear. Here, we investigated the protective effect of ferulic acid against palmitate-induced lipotoxicity and clarified its potential mechanisms in AML-12 hepatocytes. Methods AML-12 mouse hepatocytes were exposed to palmitate to mimic lipotoxicity. Different doses (25, 50, and 100 μM) of ferulic acid were added 2 h before palmitate treatment. Cell viability was detected by measuring lactate dehydrogenase release, nuclear staining, and the expression of cleaved-caspase-3. Intracellular reactive oxygen species content and mitochondrial membrane potential were analysed by fluorescent probes. The potential mechanisms were explored by molecular biological methods, including Western blotting and quantitative real-time PCR, and were further verified by siRNA interference. Results Our data showed that ferulic acid significantly inhibited palmitate-induced cell death, rescued mitochondrial membrane potential, reduced reactive oxygen species accumulation, and decreased inflammatory factor activation, including IL-6 and IL-1beta. Ferulic acid significantly stimulated autophagy in hepatocytes, whereas autophagy suppression blocked the protective effect of ferulic acid against lipotoxicity. Ferulic acid-activated autophagy, which was triggered by SIRT1 upregulation, was mechanistically involved in its anti-lipotoxicity effects. SIRT1 silencing blocked most beneficial changes induced by ferulic acid. Conclusions We demonstrated that the phytochemical ferulic acid, which is found in plant-based food, protected against hepatic lipotoxicity, through the SIRT1/autophagy pathway. Increased intake of ferulic acid-enriched food is a potential strategy to prevent and/or improve metabolic diseases with lipotoxicity as a typical pathological feature.
Collapse
Affiliation(s)
- Tiantian Xu
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qing Song
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wenwen Yang
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiangyao Wu
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qianyu Qian
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui Chai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiang Han
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201399, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China. .,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Songtao Li
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China. .,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
50
|
Wang S, Huo X. Comprehensive Analysis of ESRRA in Endometrial Cancer. Technol Cancer Res Treat 2021; 20:1533033821992083. [PMID: 33525981 PMCID: PMC7871350 DOI: 10.1177/1533033821992083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Estrogen-related receptor alpha (ESRRA) was reported to play an important role in multiple biological processes of neoplastic diseases. The roles of ESRRA in endometrial cancer have not been fully investigated yet. METHODS Expression data and clinicopathological data of patients with uteri corpus endometrial carcinoma (UCEC) were obtained from The Cancer Genome Atlas (TCGA). Comprehensive bioinformatics analysis was performed, including receiver operating characteristics (ROC) curve analysis, Kaplan-Meier survival analysis, gene ontology (GO) enrichment analysis, and Gene Set Enrichment Analysis (GSEA). Immunohistochemistry was used to detect the protein expression level of ESRRA and CCK-8 assay was performed to evaluate the effect of ESRRA on the proliferation ability. RESULTS A total of 552 UCEC tissues and 35 normal tissues were obtained from the TCGA database. The mRNA and protein expression level of ESRRA was highly elevated in UCEC compared with normal tissues, and was closely associated with poor prognosis. ROC analysis indicated a very high diagnostic value of ESRRA for patients with UCEC. GO and GSEA functional analysis showed that ESRRA might be mainly involved in cellular metabolism processes, in turn, tumorigenesis and progression of UCEC. Knockdown of ESRRA inhibited the proliferation of UCEC cells in vitro. Further immune cell infiltration demonstrated that ESRRA enhanced the infiltration level of neutrophil cell and reduced that of T cell (CD4+ naïve), NK cell, and cancer associated fibroblast (CAF). The alteration of immune microenvironment will greatly help in developing immune checkpoint therapy for UCEC. CONCLUSIONS Our study comprehensively analyzed the expression level, clinical value, and possible mechanisms of action of ESRRA in UCEC. These findings showed that ESRRA might be a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Shufang Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health
Care Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xinlong Huo
- Department of Oncology, the First Hospital of Qinhuangdao City,
Qinhuangdao, China
| |
Collapse
|