1
|
Xiu C, Zhang L, Zhang C, Zhang Y, Luo X, Zhang Z, Zhao H, Ji K, Chen Z, He G, Chen J. Pharmacologically targeting fatty acid synthase-mediated de novo lipogenesis alleviates osteolytic bone loss by directly inhibiting osteoclastogenesis through suppression of STAT3 palmitoylation and ROS signaling. Metabolism 2025; 167:156186. [PMID: 40081616 DOI: 10.1016/j.metabol.2025.156186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Aberrant increases in osteoclast formation and/or activity are the underlying cause of bone loss in a variety of osteolytic diseases. Fatty acid synthase (Fasn)-mediated de novo lipogenesis (DNL) is one of the major lipid metabolic pathways and has been shown to play critical roles in diverse physiological and pathological processes. However, little is known about its role in osteoclastogenesis. Here, we investigate the direct role of DNL in osteoclastogenesis and its therapeutic potential in osteolytic diseases. We found that Fasn expression and DNL levels are upregulated during receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. Inhibition of Fasn by shRNA knockdown or its pharmacological inhibitors (ASC40 and trans-C75) impairs osteoclast differentiation in vitro. Mechanistically, pharmacological inhibition of Fasn suppresses RANKL-induced c-Fos/NFATc1 expression and thus osteoclastogenesis partly by disrupting STAT3 palmitoylation, while promoting ROS scavenging to impair mitogen-activated protein kinase (MAPK) signaling. Finally, the therapeutic potential of ASC40 for the treatment of osteolytic bone loss is tested in two mouse models of osteolytic diseases, i.e. ovariectomy (OVX)-induced osteoporosis and titanium nanoparticle-induced calvarial osteolysis. The results show that ASC40 significantly attenuates bone loss and osteoclastogenesis in both models. In conclusion, our results demonstrate that Fasn-mediated DNL is a novel positive regulator of osteoclastogenesis and may serve as a promising therapeutic target for the treatment of osteoclast-driven osteolytic bone diseases.
Collapse
Affiliation(s)
- Chunmei Xiu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Lei Zhang
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chenxi Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yuannan Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xi Luo
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Ziyi Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hangkai Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Kaizhong Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhiyuan Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Guangxu He
- Department of Orthopedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jianquan Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Chen Y, Ying R, Ai L, Dai F, Zhang Q, Wang P, Chen F. UBE2N modulates osteoclast differentiation via BTK-PLCγ2-Ca 2+ signaling pathway to promote osteoporosis. Exp Gerontol 2025; 204:112751. [PMID: 40220977 DOI: 10.1016/j.exger.2025.112751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Osteoporosis is a prevalent public health issue and the underlying mechanism is an imbalance in bone remodeling. Excessive bone resorption caused by upregulation of osteoclast activity is a key factor in the pathogenesis of osteoporosis. Studies have shown that RNA binding protein (RBP) may play an important role in mechanism of OP through interaction with RNA. It has been reported that ubiquitin conjugating enzyme 2 N (UBE2N), as an RBP, is highly expressed in the clinical samples of osteoporotic patients. However, the role and mechanism of action of UBE2N in the regulation of osteoclast differentiation remain unclear. The aim of this study is to evaluate the effects and mechanisms of UBE2N in promoting osteoclastogenesis. In this study, we demonstrated that UBE2N is notably elevated in patients with osteoporosis. Furthermore, our findings revealed that the interference of UBE2N significantly improves osteoporosis of mice, and impedes osteoclast differentiation and bone resorption both in vitro and in vivo. To investigate the molecular mechanisms by which UBE2N influences osteoclast differentiation and bone resorption, we employed RNA sequencing to investigate its downstream related molecules and established that UBE2N regulated the expression of bruton tyrosine kinase (BTK). More importantly, we found that UBE2N may affect osteoclast differentiation and bone resorption by enhancing the expression of the p-BTK gene, which activates the phospholipase Cγ2 (PLCγ2)-Ca2+ signaling pathway. Based on these findings, our study highlights the potential of UBE2N as a promising therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yiqing Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Street, Hefei 230022, China
| | - Ruixue Ying
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Street, Hefei 230022, China
| | - Liya Ai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Street, Hefei 230022, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Street, Hefei 230022, China
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Street, Hefei 230022, China
| | - Ping Wang
- Department of Endocrinology, Anhui No.2 Provincial People's Hospital, 1868 Dangshan Street, Hefei 230041, China.
| | - Fuhua Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Street, Hefei 230022, China.
| |
Collapse
|
3
|
Wang X, Zhang Y, Lin Z, Wang H, Xu G, Ma X. The role of palmitoylation modifications in the regulation of bone cell function, bone homeostasis, and osteoporosis. Bone Joint Res 2025; 14:420-433. [PMID: 40341006 PMCID: PMC12061513 DOI: 10.1302/2046-3758.145.bjr-2024-0259.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
Osteoporosis a is a metabolic bone disease caused by an imbalance in bone homeostasis, which is regulated by osteoblasts and osteoclasts. Protein palmitoylation modification is a post-translational modification that affects protein function, localization, and targeting by attaching palmitoyl groups to specific amino acid residues of proteins. Recent studies have shown that protein palmitoylation is involved in the regulation of osteoclast overproduction, osteoblast migration, osteogenic differentiation, dysfunctional autophagy, and endocrine hormone membrane receptors in osteoporosis. Exactly to what extent palmitoylation modifications can regulate osteoporosis, and whether palmitoylation inhibition can delay osteoporosis, is a key question that needs to be investigated urgently. In this review, we observed that palmitoylation modifications act mainly through two target cells - osteoblasts and osteoclasts - and that the targets of palmitoylation modifications are focused on plasma membrane proteins or cytosolic proteins of the target cells, which tend to assume the role of receiving extracellular signals. We also noted that different palmitoyl transferases acting on different substrate proteins exert conflicting regulation of osteoblast function. We concluded that the regulation of osteocyte function, bone homeostasis, and osteoporosis by palmitoylation modifications is multidimensional, diverse, and interconnected. Perfecting the palmitoylation modification network can enhance our ability to utilize post-translational modifications to resist osteoporosis and lay the foundation for targeting palmitoyl transferases to treat osteoporosis in the future.
Collapse
Affiliation(s)
- Ximeng Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhidi Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zhao X, Zhao B, Li H, Liu Y, Wang B, Li A, Zeng T, Hui HX, Sun J, Cikes D, Gheldof N, Hager J, Mi J, Laybutt DR, Deng Y, Shi Y, Neely GG, Wang Q. MTCH2 Suppresses Thermogenesis by Regulating Autophagy in Adipose Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416598. [PMID: 40051328 PMCID: PMC12061245 DOI: 10.1002/advs.202416598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/17/2025] [Indexed: 05/10/2025]
Abstract
Stimulating adipose tissue thermogenesis has emerged as a promising strategy for combating obesity, with uncoupling protein 1 (UCP1) playing a central role in this process. However, the mechanisms that suppress adipose thermogenesis and energy dissipation in obesity are not fully understood. This study identifies mitochondrial carrier homolog 2 (MTCH2), an obesity susceptibility gene, as a negative regulator of energy homeostasis across flies, rodents, and humans. Notably, adipose-specific MTCH2 depletion in mice protects against high-fat-diet (HFD)-induced obesity and metabolic disorders. Mechanistically, MTCH2 deficiency promotes energy expenditure by stimulating thermogenesis in brown adipose tissue (BAT) and browning of subcutaneous white adipose tissue (scWAT), accompanied by upregulated UCP1 protein expression, enhanced mitochondrial biogenesis, and increased lipolysis in BAT and scWAT. Using integrated RNA sequencing and proteomic analyses, this study demonstrates that MTCH2 is a key suppressor of thermogenesis by negatively regulating autophagy via Bcl-2-dependent mechanism. These findings highlight MTCH2's critical role in energy homeostasis and reveal a previously unrecognized link between MTCH2, thermogenesis, and autophagy in adipose tissue biology, positioning MTCH2 as a promising therapeutic target for obesity and related metabolic disorders. This study provides new opportunities to develop treatments that enhance energy expenditure.
Collapse
Affiliation(s)
- Xin‐Yuan Zhao
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Ben‐Chi Zhao
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Hui‐Lin Li
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Ying Liu
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Bei Wang
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - An‐Qi Li
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Tian‐Shu Zeng
- Wuhan Union HospitalHuazhong University of Science and TechnologyWuhan430022China
| | - Hannah Xiaoyan Hui
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jia Sun
- Department of EndocrinologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Domagoj Cikes
- Institute of Physiology and PathophysiologyJohannes Kepler University LinzLinz4020Austria
| | - Nele Gheldof
- Ecole Polytechnique de Lausanne (EPFL)LausanneCH‐1015Switzerland
| | - Jorg Hager
- Nestlé Institute of Health SciencesLausanneCH‐1015Switzerland
| | - Jian‐Xun Mi
- Key Laboratory of Big Data Intelligent ComputingChongqing University of Posts and TelecommunicationsChongqing400065China
- Chongqing Key Laboratory of Image CognitionChongqing University of Posts and TelecommunicationsChongqing400065China
- College of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqing400065China
| | - D. Ross Laybutt
- Garvan Institute of Medical ResearchSt Vincent's Clinical SchoolUNSW SydneyDarlinghurstSydneyNSW2010Australia
| | - Yin‐Yue Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Yan‐Chuan Shi
- Neuroendocrinology GroupGarvan Institute of Medical ResearchDarlinghurstSydneyNSW2010Australia
- St Vincent's Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNSW2010Australia
| | - G. Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional GenomicsCharles Perkins Centre and School of Life & Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Qiao‐Ping Wang
- Laboratory of Metabolism and AgingSchool of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Guangdong Provincial Key Laboratory of DiabetologyGuangzhou Key Laboratory of Mechanistic and Translational Obesity ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- State Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| |
Collapse
|
5
|
Wang Q, Peng X, Gao X, Qin Y, Li W, Wu Z, Lao Z, Gao A, Mao Z, Xu Y, Chu PK, Zhao X, Geng D, Wang H. Peptide-Oligonucleotide Nanohybrids Designed for Precise Gene Therapy of Rheumatoid Arthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500883. [PMID: 40103484 DOI: 10.1002/adma.202500883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by excessive inflammation, pathological bone resorption, and systemic osteoporosis. It lacks effective treatment due to the complex pathogenesis. Gene therapy, especially targeted oligonucleotide (ON) delivery therapy, offers a new prospect for the precise treatment of RA. Nevertheless, the clinical application of ON delivery therapy still faces various challenges such as the rapid enzymolysis by RNAse, the lack of tissue targeting ability, difficulty in cell membrane penetration, and the incapability of endolysosomal escape. To address these issues, a novel kind of engineered peptide and oligonucleotide (PON) nanohybrids are designed and fabricated, which provide various advantages including good biosafety, inflammatory region-targeted delivery, cell membrane penetration, reactive oxygen species (ROS) scavenging, and endolysosomal escape. The PON nanohybrids produce promising effects in suppressing inflammatory responses and osteoclastogenesis of macrophages via multiple signaling pathways. In vivo administration of PON nanohybrids not only ameliorates local joint bone destruction and systemic osteoporosis in the pathological state, but also demonstrates good prophylactic effects against the rapid progression of RA disease. In conclusion, the study presents a promising strategy for precise RA treatment and broadens the biomedical applications of gene therapy based on delivery system.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoting Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Qin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zebin Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhiqi Lao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziyan Mao
- United World College of the Atlantic, St Donat's Castle Vale of Glamorgan, Llantwit Major, CF61 1WF, UK
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China
- State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, 518055, China
| |
Collapse
|
6
|
Wang H, Yuan X, Han J, Wu Z, Ma Z, Shi F, Luo Z, Chen Z, Guo C, Yuan G, He X, Ling Z, Meng L, Shen R, Huang J, Xu R. RO5126766 attenuates osteoarthritis by inhibiting osteoclastogenesis and protecting chondrocytes through mediating the ERK pathway. J Orthop Translat 2025; 52:27-39. [PMID: 40231159 PMCID: PMC11995706 DOI: 10.1016/j.jot.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/09/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease that remains challenging to treat due to lack of complete understanding of its pathogenesis. Previous studies have identified RO5126766 (RO) as a small molecule compound that inhibited RAF/MEK-ERK pathway and garnered much interest for its anti-cancer properties. But its role in the treatment of OA remains unclear. Methods This study employed the anterior cruciate ligament transection (ACLT) procedure to create an OA model in mice. The effects of RO on pathological changes in articular cartilage and subchondral bone were assessed using micro-CT and histological staining. Mice received peritoneal injections of RO at 1 mg/kg and 5 mg/kg biweekly for 4 weeks after ACLT, while control mice received saline. In vitro, bone marrow-derived macrophages were cultured to examine the effects of RO on osteoclast activation using immunofluorescence, TRAP staining, and bone resorption assays. The inflammatory degeneration of chondrocytes and gene expression levels were evaluated using staining and RT-qPCR. Western blot and immunohistochemistry were used to analyze MAPK signaling and autophagy-related protein expression, investigating RO's molecular mechanism in OA treatment. Human single-cell data were also analyzed to identify genes and pathways upregulated in OA tissues. Results Our findings showed that RO protects subchondral bone by inhibiting osteoclast formation in the ACLT mouse model of OA. In vitro, RO was shown to inhibit osteoclast differentiation and reduce inflammatory degeneration of chondrocytes. Mechanistically, RO counteracted subchondral osteoclast hyperactivation by suppressing the ERK/c-fos/NFATc1 signaling pathway. Additionally, RO inhibited LPS-induced inflammatory degeneration of chondrocytes and enhanced autophagy via the ERK pathway. Single-cell analysis further confirmed significant upregulation of the ERK signaling pathway in human OA tissues. Conclusions Overall, our findings suggested that RO inhibited osteoclast differentiation and protected articular cartilage, suggesting its potential as a novel treatment for OA. Translational potential of this article In this study, we have, for the first time, substantiated the therapeutic potential of RO in the treatment of OA. By demonstrating its ability to inhibit osteoclast differentiation and protect articular cartilage, RO could offer a new avenue for disease-modifying treatments in OA. Thus, this paper provides valuable insights into understanding the molecular mechanisms and treatment of OA.
Collapse
Affiliation(s)
- Han Wang
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xiwen Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jie Han
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zuoxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zheru Ma
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Fan Shi
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zhengqiong Luo
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zihan Chen
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Chenyang Guo
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xuemei He
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lin Meng
- Department of Electronic and Computer Engineering, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Rong Shen
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jianming Huang
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ren Xu
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| |
Collapse
|
7
|
Jiang Z, Zhao J, Liang Y, Gao Z, Sun Y, Hu Y, Pan J, Long X, Zhang J. IGF2BP2 Drives Subchondral Bone Damage in Temporomandibular Joint Osteoarthritis through PPARγ/C-FOS-regulated Dual Pathways: NFATC1 Signaling and ATG16L2-Mediated Autophagy. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00149-X. [PMID: 40316216 DOI: 10.1016/j.ajpath.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025]
Abstract
Overactivated osteoclastogenesis leading to abnormal subchondral bone loss is the main feature of temporomandibular joint osteoarthritis (TMJOA) deterioration. The role of N6-methyladenosine (m6A) in osteoclast-mediated subchondral bone loss in TMJOA remains unknown. Here, we found that an m6A reader IGF2BP2 was essential for mature osteoclasts induction. In TMJ tissues of TMJOA patients, the expression of IGF2BP2 was increased. Moreover, IGF2BP2 was augmented in subchondral bone of monosodium iodoacetate (MIA)-induced TMJOA mice. Igf2bp2 deficiency attenuated MIA-induced subchondral bone loss and suppressed osteoclast function. Mechanistically, IGF2BP2 directly stabilized Pparg and Fos mRNA to enhance the NFATC1 signaling, thereby inducing osteoclast maturation. Furthermore, the stabilized PPARγ promoted the transcription of Fos, resulting in a further amplified signaling of NFATC1. In Igf2bp2-deficient cells, overexpression of PPARγ and C-FOS rescued the function of osteoclasts through restoring reduced levels of NFATC1. On the other hand, IGF2BP2/PPARγ/C-FOS axis facilitated the formation of osteoclasts by restoring the inhibited autophagy levels through the downregulation of ATG16L2. Using an IGF2BP2 inhibitor CWI1-2 hindered osteoclast formation and mitigated synovial inflammation, cartilage degeneration, and bone destruction in MIA-induced TMJOA mice. In summary, IGF2BP2 may be as a novel regulator of osteoclastogenesis of TMJOA pathogenesis, and aggravates TMJOA pathology via stabilizing Pparg and Fos mRNA, which promoting NFATC1-mediated osteoclast signaling and ATG16L2-mediated autophagy.
Collapse
Affiliation(s)
- Ziyan Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of oral pathology, School of Stomatology, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Youde Liang
- The department of stomatology center, The People's Hospital of Baoan Shenzhen
| | - Zhao Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of oral pathology, School of Stomatology, Wuhan University, Wuhan, China
| | - Yanan Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of oral pathology, School of Stomatology, Wuhan University, Wuhan, China
| | - Yaying Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of oral pathology, School of Stomatology, Wuhan University, Wuhan, China
| | - Junchen Pan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of oral pathology, School of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiali Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of oral pathology, School of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Gao S, Zhang H, Li N, Zhang L, Zhu Z, Xu C. Pterostilbene: A natural neuroprotective stilbene with anti-Alzheimer's disease properties. J Pharm Anal 2025; 15:101043. [PMID: 40291020 PMCID: PMC12032911 DOI: 10.1016/j.jpha.2024.101043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 04/30/2025] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, and no effective treatment has been developed for it thus far. Recently, the use of natural compounds in the treatment of neurodegenerative diseases has garnered significant attention owing to their minimal adverse reactions. Accordingly, the potential therapeutic effect of pterostilbene (PTS) on AD has been demonstrated in multiple in vivo and in vitro experiments. In this study, we systematically reviewed and summarized the results of these studies investigating the use of PTS for treating AD. Analysis of the literature revealed that PTS may play a role in AD treatment through various mechanisms, including anti-oxidative damage, anti-neuroinflammation, anti-apoptosis, cholinesterase activity inhibition, attenuation of β-amyloid deposition, and tau protein hyperphosphorylation. Moreover, PTS interferes with the progression of AD by regulating the activities of peroxisome proliferator-activated receptor alpha (PPAR-α), monoamine oxidase B (MAO-B), silent information regulator sirtuin 1 (SIRT1), and phosphodiesterase 4A (PDE4A). Furthermore, to further elucidate the potential therapeutic mechanisms of PTS in AD, we employed network pharmacology and molecular docking technology to perform molecular docking of related proteins, and the obtained binding energies ranged from -2.83 to -5.14 kJ/mol, indicating that these proteins exhibit good binding ability with PTS. Network pharmacology analysis revealed multiple potential mechanisms of action for PTS in AD. In summary, by systematically collating and summarizing the relevant studies on the role of PTS in treatment of AD, it is anticipated that this will serve as a reference for the precise targeted prevention and treatment of AD, either using PTS or other developed drug interventions.
Collapse
Affiliation(s)
- Songlan Gao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Honglei Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Na Li
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Zhe Zhu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Changlu Xu
- Departments of Cardiology, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| |
Collapse
|
9
|
Zhang W, Li W, Du J, Yang C, Yu L, Yang P, Zhang H, Wu Z, Ge G, Yang H, Geng D. Dnmt3a-mediated hypermethylation of FoxO3 promotes redox imbalance during osteoclastogenesis. Proc Natl Acad Sci U S A 2025; 122:e2418023122. [PMID: 40106360 PMCID: PMC11962505 DOI: 10.1073/pnas.2418023122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Redox imbalance contributes to aberrant osteoclastogenesis and osteoporotic bone loss. In this study, we observed lower Forkhead box protein O3 (FoxO3), a transcription factor associated with cellular oxidative stress, enhanced osteoclastogenesis in osteoporosis (OP). Single-cell RNA sequencing (scRNA-seq) analysis on the human femoral head indicated that FoxO3 is widely expressed in macrophages. Furthermore, Lysm-Cre;FoxO3f/f OVX mice showed increased reactive oxygen species (ROS), enhanced osteoclastogenesis, and more bone loss than normal OVX mice. Mechanistically, we identified FoxO3 promoter methylation as a crucial factor contributing to decreased FoxO3, thereby influencing osteoclastogenesis and OC function. Intriguingly, we observed that Dnmt3a, highly expressed during osteoclastogenesis, played a pivotal role in regulating the methylation of the FoxO3 promoter. Knockdown of Dnmt3a promoted FoxO3 expression, inhibiting osteoclastogenesis and mitigating OP. Interestingly, we observed that Dnmt3a alleviated osteoclastogenesis by suppressing ROS via upregulating FoxO3 rather than inducing the dissociation of RANK and TRAF6. Collectively, this study elucidates the role and mechanism of FoxO3 in osteoclastogenesis and OP, providing a epigenetic target for the treatment of OP.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Jun Du
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Chen Yang
- Department of Orthopaedics, Huaian Hospital Affiliated to Yangzhou University, Huaian, Jiangsu223300, China
| | - Lei Yu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Peng Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Haifeng Zhang
- Department of Orthopaedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, China
| | - Zebin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| |
Collapse
|
10
|
Xu C, Qiu S, Yuan Z, Qiu C, Xu W, Guo J, Wen G, Liu S, Yan W, Xu H, Hou H, Yang D. Biomimetic Microstructured Scaffold with Release of Re-Modified Teriparatide for Osteoporotic Tendon-to-Bone Regeneration via Balancing Bone Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500144. [PMID: 40091692 DOI: 10.1002/advs.202500144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Indexed: 03/19/2025]
Abstract
Osteoporotic tendon-to-bone interface healing is challenging, with a high surgical repair failure rate of up to 68%. Conventional tissue engineering approaches have primarily focused on promoting interface healing by stimulating regeneration in either the tendon or bone. However, these methods often fall short of achieving optimal therapeutic outcomes due to their neglect of balancing bone homeostasis and remodeling the microstructure at the osteoporotic tendon-to-bone interface. Herein, a series of site-specific functional modifications are carried out on teriparatide to develop recombinant human parathyroid hormone (R-PTH). A biomimetic microstructured reconstruction scaffold (BMRP) is constructed using a decalcified mussel shell scaffold, pre-gel, and R-PTH. The BMRP mimics the microstructures of the native tendon-to-bone interface and restores the original structure of the interface tissue by repairing injured cells, balancing bone homeostasis, and remodeling the microstructure of the osteoporotic tendon-to-bone interface. In an osteoporotic rotator cuff tear model, BMRP is in situ implanted at the injured site, resulting in structural reconstruction and functional recovery. The BMRP demonstrates excellent repair effects, representing a novel therapeutical alternative for treating osteoporotic tendon-to-bone injury potential for clinical application.
Collapse
Affiliation(s)
- Chengzhong Xu
- Department of Orthopaedics-Spine Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Sijie Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhigen Yuan
- Department of Orthopaedics-Spine Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Chongyin Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Wenyu Xu
- Department of Orthopaedics-Spine Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Jialiang Guo
- Department of Orthopaedics-Spine Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Gen Wen
- Department of Orthopaedics-Spine Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Haibing Xu
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Dehong Yang
- Department of Orthopaedics-Spine Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| |
Collapse
|
11
|
Gou H, Wang T, Chen Y, Zhou Y, Li J, Xu Y. Role of Pink1 in Regulating Osteoclast Differentiation during Periodontitis. J Dent Res 2025:220345251315723. [PMID: 40075549 DOI: 10.1177/00220345251315723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Periodontitis has recently been recognized as an inflammatory disease caused by oxidative stress, with mitochondrial dysfunction being a key factor leading to oxidative stress. PTEN-induced kinase 1 (PINK1) is an essential protein for mitochondrial quality control, which protects cells from oxidative stress by inducing mitophagy to degrade damaged mitochondria, but its role in periodontitis has not been elucidated. This study aimed to explore the contribution and underlying mechanisms of Pink1 in regulating the differentiation and function of osteoclasts during periodontitis. Here we observed a significant downregulation of PINK1 expression in periodontitis-affected tissues. Then we constructed a periodontitis model in mice with fluorescently labeled mononuclear/macrophages, and the results showed that as the modeling time extended, the alveolar bone destruction gradually worsened and was accompanied by gradually decreased Pink1 expression in osteoclasts and a significantly increased osteoclast number. In vitro experiments further demonstrated a negative correlation between Pink1 and osteoclast differentiation. In addition, alveolar bone destruction in the Pink1 knockout mice was significantly more advanced than that in the littermate wild type mice after ligature-induced periodontitis and enhanced osteoclastogenesis and bone-resorptive capacity in vitro. RNA-sequencing analysis and in vitro validation revealed that the absence of Pink1 led to a decrease in oxidative phosphorylation levels and an enhancement of calcium-mediated signaling, specifically the calcineurin-NFATc1 pathway, via an intracellular calcium source. Further mechanistic studies found that the deficiency of Pink1 inhibited mitophagy but strengthened mitochondrial-endoplasmic reticulum coupling, which, by promoting the interaction of Mfn2-IP3R-VDAC1 proteins, increased the concentration of mitochondrial calcium ions, thereby triggering more active osteoclast differentiation. The aforementioned process can be reversed by the IP3R channel inhibitor Bcl-XL. These findings unveiled that Pink1 was involved in osteoclast differentiation by regulating mitochondrial calcium transport mediated by mitochondria-associated endoplasmic reticulum membranes, providing a new theoretical basis for the pathogenesis and treatment of periodontitis.
Collapse
Affiliation(s)
- H Gou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - T Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Y Chen
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Y Zhou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - J Li
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Y Xu
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
12
|
Yao Y, Cai X, Chen Y, Zhang M, Zheng C. Estrogen deficiency-mediated osteoimmunity in postmenopausal osteoporosis. Med Res Rev 2025; 45:561-575. [PMID: 39234932 DOI: 10.1002/med.22081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/03/2023] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Postmenopausal osteoporosis (PMO) is a common disease associated with aging, and estrogen deficiency is considered to be the main cause of PMO. Recently, however, osteoimmunology has been revealed to be closely related to PMO. On the one hand, estrogen deficiency directly affects the activity of bone cells (osteoblasts, osteoclasts, osteocytes). On the other hand, estrogen deficiency-mediated osteoimmunity also plays a crucial role in bone loss in PMO. In this review, we systematically describe the progress of the mechanisms of bone loss in PMO, estrogen deficiency-mediated osteoimmunity, the differences between PMO patients and postmenopausal populations without osteoporosis, and estrogen deficiency-mediated immune cells (T cells, B cells, macrophages, neutrophils, dendritic cells, and mast cells) activity. The comprehensive summary of this paper provides a clear knowledge context for future research on the mechanism of PMO bone loss.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Yu Z, Fan C, Mao Y, Wu X, Mao H. Autophagy activation alleviates annulus fibrosus degeneration via the miR-2355-5p/mTOR pathway. J Orthop Surg Res 2025; 20:86. [PMID: 39849546 PMCID: PMC11755947 DOI: 10.1186/s13018-025-05492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Intervertebral disc degeneration disease (IVDD) is a major cause of disability and reduced work productivity worldwide. Annulus fibrosus degeneration is a key contributor to IVDD, yet its mechanisms remain poorly understood. Autophagy, a vital process for cellular homeostasis, involves the lysosomal degradation of cytoplasmic proteins and organelles. This study aimed to investigate the role of autophagy in IVDD using a hydrogen peroxide (H2O2)-induced model of rat annulus fibrosus cells (AFCs). METHODS AFCs were exposed to H2O2 to model oxidative stress-induced degeneration. Protein expression levels of collagen I, collagen II, MMP3, and MMP13 were quantified. GEO database analysis identified alterations in miR-2355-5p expression, and its regulatory role on the mTOR pathway and autophagy was assessed. Statistical tests were used to evaluate changes in protein expression and pathway activation. RESULTS H2O2 exposure reduced collagen I and collagen II expression to approximately 50% of baseline levels, while MMP3 and MMP13 expression increased twofold. Activation of autophagy restored collagen I and II expression and decreased MMP3 and MMP13 levels. GEO analysis revealed significant alterations in miR-2355-5p expression, confirming its role in regulating the mTOR pathway and autophagy. CONCLUSIONS Autophagy, mediated by the miR-2355-5p/mTOR pathway, plays a protective role in AFCs degeneration. These findings suggest a potential therapeutic target for mitigating IVDD progression.
Collapse
Affiliation(s)
- Zilin Yu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214026, Jiangsu, China
| | - Chunyang Fan
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yubo Mao
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214026, Jiangsu, China.
| | - Xiexing Wu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Haiqing Mao
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
14
|
Zhang Y, Zhou L, Fu Q, Liu Z. FOXG1 promotes osteogenesis of bone marrow-derived mesenchymal stem cells by activating autophagy through regulating USP14. Commun Biol 2025; 8:59. [PMID: 39814826 PMCID: PMC11735862 DOI: 10.1038/s42003-024-07429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
The osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is key for bone formation, and its imbalance leads to osteoporosis. Forkhead Box Protein G1 (FOXG1) is associated with osteogenesis, however, the effect of FOXG1 on osteogenesis of BMSCs and ovariectomy (OVX)-induced bone loss is unknown. In our study, FOXG1 expression in BMSCs increases after osteogenic induction. FOXG1 overexpression significantly increases osteoblast marker expression ALP activity, and calcium deposition, while the opposite results are observed in FOXG1 knockdown BMSCs, suggesting that FOXG1 promotes osteogenic differentiation. Additionally, autophagy promotes the differentiation process in BMSCs. We find that FOXG1 induces autophagy, and osteogenic differentiation is blocked via inhibiting FOXG1-caused autophagy, indicating that FOXG1 accelerates osteogenic differentiation via inducing autophagy. Eight-week-old female C57BL/6J mice are used in OVX models, FOXG1 overexpression decreases bone loss by increasing bone formation. Moreover, FOXG1 overexpression suppresses osteoclast differentiation. Mechanically, FOXG1 transcriptionally represses ubiquitin-specific protease14 (USP14) via binding to the USP14 promoter. USP14 overexpression prevents the promoting effect of FOXG1 on osteogenic differentiation in BMSCs. Therefore, our findings suggest that FOXG1 promotes BMSC osteogenic differentiation and inhibits osteoclast differentiation, eventually blocking OVX-induced bone loss, which may provide a promising approach for osteoporosis treatment.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
15
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
16
|
Sun C, He W, Wang L, Hao T, Yang X, Feng W, Wu Y, Meng C, Wang Z, Chen X, Sun M, Zheng F, Zhang B. Studies on the Role of MAP4K2, SPI1, and CTSD in Osteoporosis. Cell Biochem Biophys 2024:10.1007/s12013-024-01621-1. [PMID: 39586961 DOI: 10.1007/s12013-024-01621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Osteoporosis (OP) is a prevalent skeletal disorder characterized by an imbalance between bone resorption and bone formation, resulting in a significant global burden. Previous research utilizing bioinformatics analysis has identified MAP4K2, SPI1, and CTSD as hub genes associated with OP. In this current investigation, we have successfully established a differential expression system of MAP4K2, SPI1, and CTSD in rat bone marrow mesenchymal stem cells (BMSCs) through transfection techniques. Additionally, the CCK-8 assay was employed to assess cell proliferation, while the alkaline phosphatase (ALP) activity assay and ALP staining assay were utilized to evaluate osteogenic differentiation. Alizarin red staining was employed to detect mineralization of BMSCs. Furthermore, the expression of relevant genes and molecules associated with the MAPK signaling pathway, autophagy, and apoptosis in the sera of rat BMSCs were examined using quantitative real-time polymerase chain reaction (qRT-PCR). The purpose of this study was to preliminarily investigate whether MAP4K2, SPI1, and CTSD have an effect on the osteogenic capacity of rat BMSCs and whether these genes, when differentially expressed, affect the expression of related genes in the MAPK, autophagy, and apoptosis signaling pathways and thus the osteogenic function of BMSCs. In summary, the findings of this study indicate that MAP4K2 and CTSD exert significant influence on the proliferation, osteogenic differentiation, and mineralization processes of rat BMSCs cells. Furthermore, these proteins may contribute to the development of OP through their involvement in the regulation of autophagy and apoptosis. Conversely, our investigation did not reveal any discernible impact of SPI1 on OP-related phenotypes. Consequently, this research serves as a fundamental basis for further exploration of potential therapeutic targets for the treatment of OP.
Collapse
Affiliation(s)
- Chao Sun
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Wanxiong He
- Inner Mongolia Medical University, Hohhot, China
| | - Leipeng Wang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Ting Hao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Xiaolong Yang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Wei Feng
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | | | - Chenyang Meng
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Zhi Wang
- Bayannur hospital, Bayannur, China
| | - Xiaofeng Chen
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Mingqi Sun
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
- Inner Mongolia Medical University, Hohhot, China.
| | - Feng Zheng
- Department of Hepatic Hydatidosis, Qinghai Provincial People's Hospital, Xining, Qinghai, China.
| | - Baoxin Zhang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
- Inner Mongolia Medical University, Hohhot, China.
- Tianjin Hospital, Tianjin University, Hexi District, Tianjin, China.
| |
Collapse
|
17
|
Kong X, Shan Z, Zhao Y, Tao S, Chen J, Ji Z, Jin J, Liu J, Lin W, Wang XJ, Wang J, Zhao F, Huang B, Chen J. NDR2 is critical for osteoclastogenesis by regulating ULK1-mediated mitophagy. JCI Insight 2024; 10:e180409. [PMID: 39561008 PMCID: PMC11721311 DOI: 10.1172/jci.insight.180409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
Bone homeostasis primarily stems from the balance between osteoblasts and osteoclasts, wherein an augmented number or heightened activity of osteoclasts is a prevalent etiological factor in the development of bone loss. Nuclear Dbf2-related kinase (NDR2), also known as STK38L, is a member of the Hippo family with serine/threonine kinase activity. We unveiled an upregulation of NDR2 expression during osteoclast differentiation. Manipulation of NDR2 levels through knockdown or overexpression facilitated or hindered osteoclast differentiation, respectively, indicating a negative feedback role for NDR2 in the osteoclastogenesis. Myeloid NDR2-dificient mice (Lysm+NDR2fl/fl) showed lower bone mass and further exacerbated ovariectomy-induced or aging-related bone loss. Mechanically, NDR2 enhanced autophagy and mitophagy through mediating ULK1 instability. In addition, ULK1 inhibitor (ULK1-IN2) ameliorated NDR2 conditional KO-induced bone loss. Finally, we clarified a significant inverse association between NDR2 expression and the occurrence of osteoporosis in patients. The NDR2/ULK1/mitophagy axis is a potential innovative therapeutic target for the prevention and management of bone loss.
Collapse
Affiliation(s)
- Xiangxi Kong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yihao Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jingyun Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongyin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiayan Jin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Wenlong Lin
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-jian Wang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wang
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Qian JK, Ma Y, Huang X, Li XR, Xu YF, Liu ZY, Gu Y, Shen K, Tian LJ, Wang YT, Cheng NN, Yang BS, Huang KY, Chai Y, Liu GQ, Cui NQ, Deng SY, Jiang N, Xu DR, Yu B. The CD163/TWEAK/Fn14 axis: A potential therapeutic target for alleviating inflammatory bone loss. J Orthop Translat 2024; 49:82-95. [PMID: 39430128 PMCID: PMC11488420 DOI: 10.1016/j.jot.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 10/22/2024] Open
Abstract
Objective Osteoclast (OC) over-activation is an important cause of bone loss that is strongly correlated with inflammation. Although the CD163/TWEAK/Fn14 axis has been implicated in several inflammatory pathologies, its contributions to inflammatory bone loss remain poorly understood. This study aimed to evaluate the interaction of the CD163/TWEAK/Fn14 axis with OC in inflammatory bone loss. Methods To assess the role of CD163 in bone homeostasis, we characterized the bone phenotypes of CD163-deficient mice and their wild-type littermates. CD163 and TWEAK levels were evaluated in the bone marrow of mice with LPS-induced bone loss and individuals with rheumatoid arthritis (RA). Bone mass changes were assessed using uCT and histology following supplementation with recombinant mouse CD163 protein (rCD163) or blockade of TWEAK/Fn14 signaling in CD163-deficient mice and mice with LPS-induced bone loss. The impact of CD163/TWEAK on OC differentiation and bone resorption capacity was analyzed in vitro. Results CD163 deficiency caused decreased bone mass and increased OC abundance. Lower CD163 expression and higher TWEAK expression were observed in the bone marrow of mice with LPS-induced bone loss and individuals with RA. TWEAK, mainly derived from CD68+ macrophages, was responsible for bone loss, and supplementing rCD163 or blocking TWEAK/Fn14 signaling contributed to rescue bone loss. TWEAK/Fn14 synergistically promoted RANKL-dependent OC differentiation and bone resorption capability through downstream mitogen-activated protein kinases (MAPK) signaling, while the pro-osteoclastic effect of TWEAK was suppressed by CD163. Conclusion Our findings suggest that the CD163/TWEAK/Fn14 axis is a potential therapeutic target for inflammatory bone loss by regulating osteoclastogenesis.
Collapse
Affiliation(s)
- Ji-kun Qian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, The Seventh Affiliated Hospital, Southern Medical University, Foshan, 528200, China
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuan Ma
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Huang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-ran Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ya-fei Xu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, The Seventh Affiliated Hospital, Southern Medical University, Foshan, 528200, China
| | - Zi-ying Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuan Gu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ke Shen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Liang-jie Tian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu-tian Wang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ning-ning Cheng
- Department of Obstetrics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bing-sheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kui-yuan Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Yu Chai
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guan-qiao Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nai-qian Cui
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Song-yun Deng
- Department of Orthopaedics and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dao-rong Xu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
19
|
He Y, Fan Y, Ahmadpoor X, Wang Y, Li ZA, Zhu W, Lin H. Targeting lysosomal quality control as a therapeutic strategy against aging and diseases. Med Res Rev 2024; 44:2472-2509. [PMID: 38711187 DOI: 10.1002/med.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
Previously, lysosomes were primarily referred to as the digestive organelles and recycling centers within cells. Recent discoveries have expanded the lysosomal functional scope and revealed their critical roles in nutrient sensing, epigenetic regulation, plasma membrane repair, lipid transport, ion homeostasis, and cellular stress response. Lysosomal dysfunction is also found to be associated with aging and several diseases. Therefore, function of macroautophagy, a lysosome-dependent intracellular degradation system, has been identified as one of the updated twelve hallmarks of aging. In this review, we begin by introducing the concept of lysosomal quality control (LQC), which is a cellular machinery that maintains the number, morphology, and function of lysosomes through different processes such as lysosomal biogenesis, reformation, fission, fusion, turnover, lysophagy, exocytosis, and membrane permeabilization and repair. Next, we summarize the results from studies reporting the association between LQC dysregulation and aging/various disorders. Subsequently, we explore the emerging therapeutic strategies that target distinct aspects of LQC for treating diseases and combatting aging. Lastly, we underscore the existing knowledge gap and propose potential avenues for future research.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xenab Ahmadpoor
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Zhou L, Mu S, Zhang Y, Song H. USP10-mediated deubiquitination of NR3C1 regulates bone homeostasis by controlling CST3 expression. Biochem Pharmacol 2024; 229:116519. [PMID: 39236936 DOI: 10.1016/j.bcp.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Dysregulated bone homeostasis contributes to multiple diseases including osteoporosis (OP). In this study, osteoporotic mice were successfully generated using ovariectomy to investigate the role of nuclear receptor subfamily 3 group C member 1 (NR3C1) in OP. NR3C1, identified as a significantly upregulated gene in OP using bioinformatic tools, was artificially downregulated in osteoporotic mice. NR3C1 expression was significantly elevated in the femoral tissues of osteoporotic patients, and downregulation of NR3C1 alleviated bone loss and restored bone homeostasis in osteoporotic mice, as manifested by increased ALP- and OCN-positive cells and reduced RANKL/OPG ratio. Downregulation of NR3C1 inhibited osteoclastic differentiation of RAW264.7 cells and mouse bone marrow-derived macrophages (BMDM) and promoted osteogenic differentiation of MC3T3-E1 cells. The transcription factor NR3C1 bound to the cystatin-3 (CST3) promoter to repress its transcription in both RAW264.7 and MC3T3-E1 cells. The downregulation of CST3 reversed the protective effect of NR3C1 downregulation against OP. Ubiquitin-specific-processing protease 10 (USP10)-mediated deubiquitination of NR3C1 improved NR3C1 stability. Downregulation of USP10 inhibited osteoclastic differentiation of RAW264.7 cells and BMDM while promoting osteogenic differentiation of MC3T3-E1 cells. Taken together, USP10-mediated deubiquitination of NR3C1 regulates bone homeostasis by controlling CST3 transcription, providing an attractive therapeutic strategy to alleviate OP.
Collapse
Affiliation(s)
- Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Shuai Mu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Hanyi Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China.
| |
Collapse
|
21
|
Lin Y, Chen M, Guo W, Qiu S, Chen L, Liu W. Zoledronic acid relieves steroid-induced avascular necrosis of femoral head via inhibiting FOXD3 mediated ANXA2 transcriptional activation. Bone 2024; 188:117222. [PMID: 39102974 DOI: 10.1016/j.bone.2024.117222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Zoledronic acid (ZOL) is a type of bisphosphonate with good therapeutic effects on orthopaedic diseases. However, the pharmacological functions of ZOL on steroid-induced avascular necrosis of femoral head (SANFH) and the underlying mechanism remain unclear, which deserve further research. METHODS SANFH models both in vivo and in vitro were established by dexamethasone (Dex) stimulation. Osteoclastogenesis was examined by TRAP staining. Immunofluorescence was employed to examine autophagy marker (LC3) level. Cell apoptosis was analyzed by TUNEL staining. The interaction between Foxhead box D3 protein (FOXD3) and Annexin A2 (ANXA2) promoter was analyzed using ChIP and dual luciferase reporter gene assays. RESULTS Dex aggravated osteoclastogenesis and induced osteoclast differentiation and autophagy in vitro, which was abrogated by ZOL treatment. PI3K inhibitor LY294002 abolished the inhibitory effect of ZOL on Dex-induced osteoclast differentiation and autophagy. FOXD3 overexpression neutralized the downregulation effects of ZOL on Dex-induced osteoclasts by transcriptionally activating ANXA2. ANXA2 knockdown reversed the effect of FOXD3 overexpression on ZOL-mediated biological effects in Dex-treated osteoclasts. In addition, ZOL improved SANFH symptoms in rats. CONCLUSION ZOL alleviated SANFH through regulating FOXD3 mediated ANXA2 transcriptional activity and then promoting PI3K/AKT/mTOR pathway, revealing that FOXD3 might be a target for ZOL in SANFH treatment.
Collapse
Affiliation(s)
- Yu Lin
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou 350000, Fujian Province, PR China; Department of Orthopedics, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou 350400, Fujian Province, PR China
| | - Min Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou 350000, Fujian Province, PR China
| | - Wenbin Guo
- Department of Pathology, Pingtan Comprehensive Experimental Area Hospital, Fuzhou 350400, Fujian Province, PR China
| | - Shengliang Qiu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350000, Fujian Province, PR China
| | - Lihui Chen
- Laboratory Medicine, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou 350400, Fujian Province, PR China.
| | - Wenge Liu
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou 350000, Fujian Province, PR China.
| |
Collapse
|
22
|
Tao Z, Yang M, Shen CL. Tauroursodeoxycholic acid combined with selenium accelerates bone regeneration in ovariectomized rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:64. [PMID: 39404912 PMCID: PMC11480188 DOI: 10.1007/s10856-024-06803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/20/2024] [Indexed: 10/19/2024]
Abstract
More recently, increased studies have revealed that antioxidants can cure osteoporosis by inhibiting oxidative stress. Tauroursodeoxycholic acid (TUDCA) and Selenium (Se) have been confirmed to possess potent anti-oxidative effects and accelerate bone regeneration. In addition, very little is currently known about the effects of a combination with Se and TUDCA on bone defects in osteoporotic states. We, therefore, aimed to assess the protective effect of combination with Se and TUDCA on bone regeneration and investigate the effect and underlying mechanisms. When MC3T3-E1 was cultured in the presence of H2H2, Se, TUDCA and Se/TUDCA therapy could increase the matrix mineralization and promote expression of anti-oxidative stress markers in MC3T3-E1, while reducing intracellular reactive oxygen species (ROS) and mitochondrial ROS levels. Meanwhile, silent information regulator type 1 (SIRT1) was upregulated in response to Se, TUDCA and Se/TUDCA exposures in H2H2 treated-MC3T3-E1. In the OVX rat model, Se, TUDCA and Se/TUDCA showed a clear positive effect against impaired bone repair in osteoporosis. The results above demonstrate that Se/TUDCA exhibits superior efficacy in both cellular and animal experiments, as compared to Se and TUDCA. In conclusion, combination with Se and TUDCA stimulates bone regeneration and is a promising candidate for promoting bone repair in osteoporosis.
Collapse
Affiliation(s)
- ZhouShan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China.
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
23
|
Liu J, Zhou J, Wang J, Huang X, Qu M, Liao Y, Sun G, Zhong P, Tan J, Sun Z. Electroacupuncture ameliorates senile osteoporosis by promoting bone remodeling and regulating autophagy. Acupunct Med 2024; 42:260-267. [PMID: 39068547 DOI: 10.1177/09645284241265872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
OBJECTIVES Osteoporosis is widely regarded as a typical aged-related disease caused by impaired bone remodeling. This research was designed to explore the protective effects of electroacupuncture (EA) on senile osteoporosis in a rat model and investigate the underlying mechanisms. METHODS Three-month-old rats were randomly selected as the youth group, and 24-month-old rats were randomly assigned to the elderly and EA groups. Rats in the EA group received 30 min of EA at bilateral SP10, ST36, K13 and GB34 daily, 5 days a week for 8 weeks. Bone mineral density (BMD), microstructure of the bone tissue, bone turnover biomarkers and expression level of autophagy-related proteins were detected. RESULTS Compared with the elderly group, EA treatment significantly increased BMD of the femur and ameliorated the microstructure. EA treatment increased trabecular bone volume ratio (= bone volume / total volume [BV/TV]) and trabecular number (Tb.N) and decreased trabecular separation (Tb.Sp) in senile osteoporosis rats. Compared with the elderly group, the serum N-terminal telopeptide of type I collagen (NTX1) level in the EA group was lower, and the serum procollagen type I N-terminal propeptide (PINP) concentration was higher. In addition, the expression of Beclin 1, microtubule-associated protein I light chain 3 (LC3B) and P62 was inhibited in the senile osteoporosis rats after EA treatment. CONCLUSIONS EA can effectively alleviate aging-related bone loss and improve the microstructure of bone tissue in senile osteoporosis rats, and the regulation of autophagy might be one of the important mechanisms.
Collapse
Affiliation(s)
- Jing Liu
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Zhou
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinlin Wang
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiarong Huang
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Mengjian Qu
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Ying Liao
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Guanghua Sun
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Peirui Zhong
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinqu Tan
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhilu Sun
- The First Affiliated Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
24
|
Wu Z, Duan S, Li M, Zhang A, Yang H, Luo J, Cheng R, Hu T. Autophagy regulates bone loss via the RANKL/RANK/OPG axis in an experimental rat apical periodontitis model. Int Endod J 2024; 57:1315-1325. [PMID: 38923421 DOI: 10.1111/iej.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
AIM Autophagy is involved in human apical periodontitis (AP). However, it is not clear whether autophagy is protective or destructive in bone loss via the receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin (OPG) axis. This study aimed to investigate the involvement of autophagy via the RANKL/RANK/OPG axis during the development of AP in an experimental rat model. METHODOLOGY Twenty-four female Sprague-Dawley rats were divided into control, experimental AP (EAP) + saline, and EAP + 3-methyladenine (An autophagy inhibitor, 3-MA) groups. The control group did not receive any treatment. The EAP + saline group and the EAP + 3-MA group received intraperitoneal injections of saline and 3-MA, respectively, starting 1 week after the pulp was exposed. Specimens were collected for microcomputed tomography (micro-CT) scanning, histological processing, and immunostaining to examine the expression of light chain 3 beta (LC3B), RANK, RANKL, and OPG. Data were analysed using one-way analysis of variance (p < .05). RESULTS Micro-CT showed greater bone loss in the EAP + 3-MA group than in the EAP + saline group, indicated by an elevated trabecular space (Tb.Sp) (p < .05). Inflammatory cell infiltration was observed in the EAP + saline and EAP + 3-MA groups. Compared with EAP + saline group, the EAP + 3-MA group showed weaker expression of LC3B (p < .01) and OPG (p < .05), more intense expression of RANK (p < .01) and RANKL (p < .01), and a higher RANKL/OPG ratio (p < .05). CONCLUSION Autophagy may exert a protective effect against AP by regulating the RANKL/RANK/OPG axis, thereby inhibiting excessive bone loss.
Collapse
Affiliation(s)
- Zhiwu Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shaoying Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingming Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aopeng Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Xiao D, Huang S, Tang Z, Liu M, Di D, Ma Y, Li Y, Duan JA, Lu C, Zhao M. Mijiao formula regulates NAT10-mediated Runx2 mRNA ac4C modification to promote bone marrow mesenchymal stem cell osteogenic differentiation and improve osteoporosis in ovariectomized rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118191. [PMID: 38621468 DOI: 10.1016/j.jep.2024.118191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Mijiao (MJ) formula, a traditional herbal remedy, incorporates antlers as its primary constituent. It can effectively treat osteoporosis (OP), anti-aging, enhance immune activity, and change depression-like behavior. In this study, we investigated that MJ formula is a comprehensive treatment strategy, and may provide a potential approach for the clinical treatment of postmenopausal osteoporosis. AIM OF THE STUDY The purpose of this study was to determine whether MJ formula promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and improved osteoporosis in ovariectomized rats by regulating the NAT10-mediated Runx2 mRNA ac4C modification. MATERIALS AND METHODS Female Sprague-Dawley (SD) rats were used to investigate the potential therapeutic effect of MJ formula on OP by creating an ovariectomized (OVX) rat model. The expression of osteogenic differentiation related proteins in BMSCs was detected in vivo, indicating their role in promoting bone formation. In addition, the potential mechanism of its bone protective effect was explored via in vitro experiments. RESULTS Our study showed that MJ formula significantly mitigated bone mass loss in the OVX rat model, highlighting its potential as an OP therapeutic agent. We found that the possible mechanism of action was the ability of this formulation to stabilize Runx2 mRNA through NAT10-mediated ac4C acetylation, which promoted osteogenic differentiation of BMSCs and contributed to the enhancement of bone formation. CONCLUSIONS MJ formula can treat estrogen deficiency OP by stabilizing Runx2 mRNA, promoting osteogenic differentiation and protecting bone mass. Conceivably, MJ formulation could be a safe and promising strategy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dong Xiao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Sirui Huang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Zhuqian Tang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Mengqiu Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Di Di
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Yingrun Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Yunjuan Li
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Cai Lu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Ming Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
26
|
Jiang J, Ren R, Fang W, Miao J, Wen Z, Wang X, Xu J, Jin H. Lysosomal biogenesis and function in osteoclasts: a comprehensive review. Front Cell Dev Biol 2024; 12:1431566. [PMID: 39170917 PMCID: PMC11335558 DOI: 10.3389/fcell.2024.1431566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Lysosomes serve as catabolic centers and signaling hubs in cells, regulating a multitude of cellular processes such as intracellular environment homeostasis, macromolecule degradation, intracellular vesicle trafficking and autophagy. Alterations in lysosomal level and function are crucial for cellular adaptation to external stimuli, with lysosome dysfunction being implicated in the pathogenesis of numerous diseases. Osteoclasts (OCs), as multinucleated cells responsible for bone resorption and maintaining bone homeostasis, have a complex relationship with lysosomes that is not fully understood. Dysregulated function of OCs can disrupt bone homeostasis leading to the development of various bone disorders. The regulation of OC differentiation and bone resorption for the treatment of bone disease have received considerable attention in recent years, yet the role and regulation of lysosomes in OCs, as well as the potential therapeutic implications of intervening in lysosomal biologic behavior for the treatment of bone diseases, remain relatively understudied. This review aims to elucidate the mechanisms involved in lysosomal biogenesis and to discuss the functions of lysosomes in OCs, specifically in relation to differentiation, bone resorption, and autophagy. Finally, we explore the potential therapeutic implication of targeting lysosomes in the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Junchen Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Rufeng Ren
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyuan Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zijun Wen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Huang S. Analysis of environmental pollutant Bisphenol F elicited prostate injury targets and underlying mechanisms through network toxicology, molecular docking, and multi-level bioinformatics data integration. Toxicology 2024; 506:153847. [PMID: 38830480 DOI: 10.1016/j.tox.2024.153847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Abstract
Bisphenol F (BPF) has gained prominence as an alternative to bisphenol A (BPA) in various manufacturing applications, yet being detected in diverse environments and posed potential public health risk. This research aims to elucidate the putative toxic targets and underlying molecular mechanisms of prostate injury induced by exposure to BPF through multi-level bioinformatics data, integrating network toxicology and molecular docking. Systematically leveraging multilevel databases, we determined 276 targets related to BPF and prostate injury. Subsequent screenings through STRING and Cytoscape tool highlighted 27 key targets, including BCL2, HSP90AA1, MAPK3, ESR1, and CASP3. GO and KEGG enrichment analyses demonstrated enrichment of targets involved in apoptosis, abnormal hormonal activities, as well as cancer-related signal transduction cascades, ligand-receptor interaction networks, and endocrine system signaling pathways. Molecular docking simulations conducted via Autodock corroborated high-affinity binding interaction between BPF and key targets. The results indicate that BPF exposure can contribute to the initiation and progression of prostate cancer and prostatic hyperplastic by modulating apoptosis and proliferation, altering nerve function in blood vessel endothelial cells, and disrupting androgen metabolism. This study offers theoretical underpinnings for comprehending the molecular mechanisms implicated in BPF-elicited prostatic toxicity, while concomitantly establishing foundational framework for the development of prophylactic and therapeutic strategies for prostatic injuries related to polycarbonate and epoxy resin plastics incorporated with BPF, as well as environments afflicted by elevated levels of these compounds.
Collapse
Affiliation(s)
- Shujun Huang
- West China School of Public Health, West China Medical Center, Sichuan University, China.
| |
Collapse
|
28
|
Chu M, Chen G, Chen K, Zhu P, Wang Z, Qian Z, Tao H, Xu Y, Geng D. Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis. J Zhejiang Univ Sci B 2024; 25:513-528. [PMID: 38910496 PMCID: PMC11199094 DOI: 10.1631/jzus.b2300303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/09/2023] [Indexed: 06/25/2024]
Abstract
Osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However, the specific mechanism of osteoclast differentiation in OA remains unclear. In our study, gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carcinogenesis, reactive oxygen species (ROS), and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore, fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene, heme oxygenase 1 (HMOX1), was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of HMOX1. Carnosol was revealed to inhibit osteoclastogenesis by targeting HMOX1 and upregulating the expression of antioxidant protein in vitro. Meanwhile, carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting HMOX1 in subchondral osteoclasts may offer novel insights for the treatment of early OA.
Collapse
Affiliation(s)
- Miao Chu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, China
| | - Guangdong Chen
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Kai Chen
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, Hai'an People's Hospital, Hai'an 226600, China
| | - Pengfei Zhu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhen Wang
- Department of Orthopedics, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215028, China
| | - Zhonglai Qian
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huaqiang Tao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China. ,
| | - Yaozeng Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Dechun Geng
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
29
|
Li S, Lu X, Chai Q, Huang B, Dai S, Wang P, Liu J, Zhao Z, Li X, Liu B, Zuo K, Man Z, Li N, Li W. Engineered Niobium Carbide MXenzyme-Integrated Self-Adaptive Coatings Inhibiting Periprosthetic Osteolysis by Orchestrating Osteogenesis-Osteoclastogenesis Balance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29805-29822. [PMID: 38830200 DOI: 10.1021/acsami.4c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Periprosthetic osteolysis induced by the ultrahigh-molecular-weight polyethylene (UHMWPE) wear particles is a major complication associated with the sustained service of artificial joint prostheses and often necessitates revision surgery. Therefore, a smart implant with direct prevention and repair abilities is urgently developed to avoid painful revision surgery. Herein, we fabricate a phosphatidylserine- and polyethylenimine-engineered niobium carbide (Nb2C) MXenzyme-coated micro/nanostructured titanium implant (PPN@MNTi) that inhibits UHMWPE particle-induced periprosthetic osteolysis. The specific mechanism by which PPN@MNTi operates involves the bioresponsive release of nanosheets from the MNTi substrate within an osteolysis microenvironment, initiated by the cleavage of a thioketal-dopamine molecule sensitive to reactive oxygen species (ROS). Subsequently, functionalized Nb2C MXenzyme could target macrophages and escape from lysosomes, effectively scavenging intracellular ROS through its antioxidant nanozyme-mimicking activities. This further achieves the suppression of osteoclastogenesis by inhibiting NF-κB/MAPK and autophagy signaling pathways. Simultaneously, based on the synergistic effect of MXenzyme-integrated coatings and micro/nanostructured topography, the designed implant promotes the osteogenic differentiation of bone mesenchymal stem cells to regulate bone homeostasis, further achieving advanced osseointegration and alleviable periprosthetic osteolysis in vivo. This study provides a precise prevention and repair strategy of periprosthetic osteolysis, offering a paradigm for the development of smart orthopedic implants.
Collapse
Affiliation(s)
- Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Qihao Chai
- Department of Orthopedic Surgery, The 903rd Hospital of PLA, Hangzhou, Zhejiang Province 310009, P. R. China
| | - Benzhao Huang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
| | - Jianing Liu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
| | - Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
| | - Xiao Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
| | - Bing Liu
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Kangqing Zuo
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
- Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Ji'nan, Shandong Province 250062, P. R. China
| | - Ningbo Li
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| |
Collapse
|
30
|
Wu Z, Deng W, Ye Y, Xu J, Han D, Zheng Y, Zheng Q. Liraglutide, a glucagon-like peptide-1 receptor agonist, inhibits bone loss in an animal model of osteoporosis with or without diabetes. Front Endocrinol (Lausanne) 2024; 15:1378291. [PMID: 38868747 PMCID: PMC11167098 DOI: 10.3389/fendo.2024.1378291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Liraglutide (Lrg), a novel anti-diabetic drug that mimics the endogenous glucagon-like peptide-1 to potentiate insulin secretion, is observed to be capable of partially reversing osteopenia. The aim of the present study is to further investigate the efficacy and potential anti-osteoporosis mechanisms of Lrg for improving bone pathology, bone- related parameters under imageology, and serum bone metabolism indexes in an animal model of osteoporosis with or without diabetes. Methods Eight databases were searched from their inception dates to April 27, 2024. The risk of bias and data on outcome measures were analyzed by the CAMARADES 10-item checklist and Rev-Man 5.3 software separately. Results Seventeen eligible studies were ultimately included in this review. The number of criteria met in each study varied from 4/10 to 8/10 with an average of 5.47. The aspects of blinded induction of the model, blinding assessment of outcome and sample size calculation need to be strengthened with emphasis. The pre-clinical evidence reveals that Lrg is capable of partially improving bone related parameters under imageology, bone pathology, and bone maximum load, increasing serum osteocalcin, N-terminal propeptide of type I procollagen, and reducing serum c-terminal cross-linked telopeptide of type I collagen (P<0.05). Lrg reverses osteopenia likely by activating osteoblast proliferation through promoting the Wnt signal pathway, p-AMPK/PGC1α signal pathway, and inhibiting the activation of osteoclasts by inhibiting the OPG/RANKL/RANK signal pathway through anti-inflammatory, antioxidant and anti-autophagic pathways. Furthermore, the present study recommends that more reasonable usage methods of streptozotocin, including dosage and injection methods, as well as other types of osteoporosis models, be attempted in future studies. Discussion Based on the results, this finding may help to improve the priority of Lrg in the treatment of diabetes patients with osteoporosis.
Collapse
Affiliation(s)
- Zongyi Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Deng
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiming Ye
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Xu
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Deyu Han
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zheng
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Zheng
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Xiao HX, Yu L, Xia Y, Chen K, Li WM, Ge GR, Zhang W, Zhang Q, Zhang HT, Geng DC. Sinomenine increases osteogenesis in mice with ovariectomy-induced bone loss by modulating autophagy. World J Stem Cells 2024; 16:486-498. [PMID: 38817333 PMCID: PMC11135257 DOI: 10.4252/wjsc.v16.i5.486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/01/2024] [Accepted: 04/07/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND A decreased autophagic capacity of bone marrow mesenchymal stromal cells (BMSCs) has been suggested to be an important cause of decreased osteogenic differentiation. A pharmacological increase in autophagy of BMSCs is a potential therapeutic option to increase osteoblast viability and ameliorate osteoporosis. AIM To explore the effects of sinomenine (SIN) on the osteogenic differentiation of BMSCs and the underlying mechanisms. METHODS For in vitro experiments, BMSCs were extracted from sham-treated mice and ovariectomized mice, and the levels of autophagy markers and osteogenic differentiation were examined after treatment with the appropriate concentrations of SIN and the autophagy inhibitor 3-methyladenine. In vivo, the therapeutic effect of SIN was verified by establishing an ovariectomy-induced mouse model and by morphological and histological assays of the mouse femur. RESULTS SIN reduced the levels of AKT and mammalian target of the rapamycin (mTOR) phosphorylation in the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway, inhibited mTOR activity, and increased autophagy ability of BMSCs, thereby promoting the osteogenic differentiation of BMSCs and effectively alleviating bone loss in ovariectomized mice in vivo. CONCLUSION The Chinese medicine SIN has potential for the treatment of various types of osteoporosis, bone homeostasis disorders, and autophagy-related diseases.
Collapse
Affiliation(s)
- Hai-Xiang Xiao
- Department of Orthopedics, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Centre of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Orthopedics, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu Province, China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Kai Chen
- Department of Orthopedics, Hai'an People's Hospital, Hai'an 226600, Jiangsu Province, China
| | - Wen-Ming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Gao-Ran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Qing Zhang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Xuzhou 223002, Jiangsu Province, China
| | - Hong-Tao Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - De-Chun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
32
|
Lin L, Qiang Z, Chen K, Huo Y, Liu W, Yang J. DEC1 deficiency protects against bone loss induced by ovariectomy through inhibiting inflammation. J Biomed Res 2024; 38:1-16. [PMID: 38807374 PMCID: PMC11629160 DOI: 10.7555/jbr.38.20240069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
Previous studies have shown that differentiated embryo-chondrocyte expressed gene 1 (DEC1) promotes osteoblast osteogenesis. To investigate the role of DEC1 in postmenopausal osteoporosis (PMOP), we utilized the two types (DEC1 +/+, DEC1 -/-) mice to establish an ovariectomy (OVX) model and found that the bone loss in DEC1 -/- OVX mice were much less than that in DEC1 +/+ OVX mice. The expression levels of RUNX2 and OSX significantly increased in DEC1 -/- OVX mice compared with those in DEC1 +/+ OVX mice. Whereas, NFATc1, c-Fos, CTSK and RANKL/OPG significantly decreased in DEC1 -/- OVX mice compared with those in DEC1 +/+ OVX mice. Likewise, DEC1 deficiency suppressed IL-6 and IL-1β. Further study showed Runx2, Osx, Alp, and Ocn significantly increased in DEC1 -/- OVX BMSCs compared with those in DEC1 +/+ OVX BMSCs. And the mRNA levels of IL-1β, IL-6, Tnf-α and Ifn-γ increased significantly in DEC1 +/+ OVX BMMs compared with those in DEC1 +/+ sham BMMs, but not in DEC1 -/- OVX BMMs compared with those in DEC1 -/- sham BMMs. Furthermore, the p-IκBα and p-P65 significantly increased in DEC1 +/+ OVX BMMs compared with those in DEC1 +/+ sham BMMs, but did not increase in DEC1 -/- OVX BMMs compared with those in DEC1 -/- sham BMMs. Taken together, DEC1 deficiency inhibits the NF-κB pathway induced by OVX, thereby decreasing cytokines, and subsequently, inhibits the decrease of osteogenesis and the increase of osteoclastogenesis caused by OVX. The findings provide a novel understanding of postmenopausal osteoporosis development, which offers potential avenues for the intervention strategies.
Collapse
Affiliation(s)
- Lan Lin
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhiyi Qiang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Kaiao Chen
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Huo
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
33
|
Jia M, Dong Z, Dong W, Yang B, He Y, Wang Y, Wang J. DDIT3 deficiency accelerates bone remodeling during bone healing by enhancing osteoblast and osteoclast differentiation through ULK1-mediated autophagy. Bone 2024; 182:117058. [PMID: 38408589 DOI: 10.1016/j.bone.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The coordination of osteoblasts and osteoclasts is essential for bone remodeling. DNA damage inducible script 3 (DDIT3) is an important regulator of bone and participates in cell differentiation, proliferation, autophagy, and apoptosis. However, its role in bone remodeling remains unexplored. Here, we found that Ddit3 knockout (Ddit3-KO) enhanced both bone formation and resorption. The increased new bone formation and woven bone resorption, i.e., enhanced bone remodeling capacity, was found to accelerate bone defect healing in Ddit3-KO mice. In vitro experiments showed that DDIT3 inhibited both osteoblast differentiation and Raw264.7 cell differentiation by regulating autophagy. Cell coculture assay showed that Ddit3-KO decreased the ratio of receptor activator of nuclear factor-κβ ligand (RANKL) to osteoprotegerin (OPG) in osteoblasts, and Ddit3-KO osteoblasts inhibited osteoclast differentiation. Meanwhile, DDIT3 knockdown (DDIT3-sh) increased receptor activator of nuclear factor-κβ (RANK) expression in Raw264.7 cells, and DDIT3-sh Raw264.7 cells promoted osteoblast differentiation, whereas, DDIT3 overexpression had the opposite effect. Mechanistically, DDIT3 promoted autophagy partly by increasing ULK1 phosphorylation at serine555 (pULK1-S555) and decreasing ULK1 phosphorylation at serine757 (pULK1-S757) in osteoblasts, thereby inhibiting osteoblast differentiation. DDIT3 inhibited autophagy partly by decreasing pULK1-S555 in Raw264.7 cells, thereby suppressing osteoclastic differentiation. Taken together, our data indicate that DDIT3 is one of the elements regulating bone remodeling and bone healing, which may become a potential target in bone defect treatment.
Collapse
Affiliation(s)
- Meie Jia
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Ying He
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
34
|
Lian WS, Wu RW, Lin YH, Chen YS, Jahr H, Wang FS. Tricarboxylic Acid Cycle Regulation of Metabolic Program, Redox System, and Epigenetic Remodeling for Bone Health and Disease. Antioxidants (Basel) 2024; 13:470. [PMID: 38671918 PMCID: PMC11047415 DOI: 10.3390/antiox13040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yu-Han Lin
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| |
Collapse
|
35
|
Wang H, Yuan T, Wang Y, Liu C, Li D, Li Z, Sun S. Osteoclasts and osteoarthritis: Novel intervention targets and therapeutic potentials during aging. Aging Cell 2024; 23:e14092. [PMID: 38287696 PMCID: PMC11019147 DOI: 10.1111/acel.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is highly prevalent among the aging population, and often leads to joint pain, disability, and a diminished quality of life. Although considerable research has been conducted, the precise molecular mechanisms propelling OA pathogenesis continue to be elusive, thereby impeding the development of effective therapeutics. Notably, recent studies have revealed subchondral bone lesions precede cartilage degeneration in the early stage of OA. This development is marked by escalated osteoclast-mediated bone resorption, subsequent imbalances in bone metabolism, accelerated bone turnover, and a decrease in bone volume, thereby contributing significantly to the pathological changes. While the role of aging hallmarks in OA has been extensively elucidated from the perspective of chondrocytes, their connection with osteoclasts is not yet fully understood. There is compelling evidence to suggest that age-related abnormalities such as epigenetic alterations, proteostasis network disruption, cellular senescence, and mitochondrial dysfunction, can stimulate osteoclast activity. This review intends to systematically discuss how aging hallmarks contribute to OA pathogenesis, placing particular emphasis on the age-induced shifts in osteoclast activity. It also aims to stimulate future studies probing into the pathological mechanisms and therapeutic approaches targeting osteoclasts in OA during aging.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Dengju Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
36
|
Wu J, Niu L, Yang K, Xu J, Zhang D, Ling J, Xia P, Wu Y, Liu X, Liu J, Zhang J, Yu P. The role and mechanism of RNA-binding proteins in bone metabolism and osteoporosis. Ageing Res Rev 2024; 96:102234. [PMID: 38367813 DOI: 10.1016/j.arr.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis is a prevalent chronic metabolic bone disease that poses a significant risk of fractures or mortality in elderly individuals. Its pathophysiological basis is often attributed to postmenopausal estrogen deficiency and natural aging, making the progression of primary osteoporosis among elderly people, especially older women, seemingly inevitable. The treatment and prevention of osteoporosis progression have been extensively discussed. Recently, as researchers delve deeper into the molecular biological mechanisms of bone remodeling, they have come to realize the crucial role of posttranscriptional gene control in bone metabolism homeostasis. RNA-binding proteins, as essential actors in posttranscriptional activities, may exert influence on osteoporosis progression by regulating the RNA life cycle. This review compiles recent findings on the involvement of RNA-binding proteins in abnormal bone metabolism in osteoporosis and describes the impact of some key RNA-binding proteins on bone metabolism regulation. Additionally, we explore the potential and rationale for modulating RNA-binding proteins as a means of treating osteoporosis, with an overview of drugs that target these proteins.
Collapse
Affiliation(s)
- Jiaqiang Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Liyan Niu
- HuanKui College of Nanchang University, Nanchang 330006, China
| | - Kangping Yang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jingdong Xu
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Jing Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Peng Yu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China.
| |
Collapse
|
37
|
Luo L, Zeng Z, Li T, Liu X, Cui Y, Tao Y, Li Y, Chen Y. TET2 stabilized by deubiquitinase USP21 ameliorates cigarette smoke-induced apoptosis in airway epithelial cells. iScience 2024; 27:109252. [PMID: 38439981 PMCID: PMC10910280 DOI: 10.1016/j.isci.2024.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
DNA demethylase TET2 was related with lung function. However, the precise role of TET2 in cigarette smoke (CS)-induced apoptosis of airway epithelium cells, and the mechanisms involved, have yet to be elucidated. Here, we showed that CS decreased TET2 protein levels but had no significant effect on its mRNA levels in lung tissues of chronic obstructive pulmonary disease (COPD) patients and CS-induced COPD mice model and even in airway epithelial cell lines. TET2 could inhibit CS-induced apoptosis of airway epithelial cell in vivo and in vitro. Moreover, we identified ubiquitin-specific protease 21 (USP21) as a deubiquitinase of TET2 in airway epithelial cells. USP21 interacted with TET2 and inhibited CSE-induced TET2 degradation. USP21 downregulated decreased TET2 abundance and further reduced the anti-apoptosis effect of TET2. Thus, we draw a conclusion that the USP21/TET2 axis is involved in CS-induced apoptosis of airway epithelial cells.
Collapse
Affiliation(s)
- Lijuan Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Zihang Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Tiao Li
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangming Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Yanan Cui
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yi Li
- Department of Infectious Disease Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| |
Collapse
|
38
|
Peng X, Wang T, Wang Q, Zhao Y, Xu H, Yang H, Gu Y, Tao Y, Yan B, Xu Y, Geng D. Pan-histone deacetylase inhibitor vorinostat suppresses osteoclastic bone resorption through modulation of RANKL-evoked signaling and ameliorates ovariectomy-induced bone loss. Cell Commun Signal 2024; 22:160. [PMID: 38439009 PMCID: PMC10913587 DOI: 10.1186/s12964-024-01525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/11/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Estrogen deficiency-mediated hyperactive osteoclast represents the leading role during the onset of postmenopausal osteoporosis. The activation of a series of signaling cascades triggered by RANKL-RANK interaction is crucial mechanism underlying osteoclastogenesis. Vorinostat (SAHA) is a broad-spectrum pan-histone deacetylase inhibitor (HDACi) and its effect on osteoporosis remains elusive. METHODS The effects of SAHA on osteoclast maturation and bone resorptive activity were evaluated using in vitro osteoclastogenesis assay. To investigate the effect of SAHA on the osteoclast gene networks during osteoclast differentiation, we performed high-throughput transcriptome sequencing. Molecular docking and the assessment of RANKL-induced signaling cascades were conducted to confirm the underlying regulatory mechanism of SAHA on the action of RANKL-activated osteoclasts. Finally, we took advantage of a mouse model of estrogen-deficient osteoporosis to explore the clinical potential of SAHA. RESULTS We showed here that SAHA suppressed RANKL-induced osteoclast differentiation concentration-dependently and disrupted osteoclastic bone resorption in vitro. Mechanistically, SAHA specifically bound to the predicted binding site of RANKL and blunt the interaction between RANKL and RANK. Then, by interfering with downstream NF-κB and MAPK signaling pathway activation, SAHA negatively regulated the activity of NFATc1, thus resulting in a significant reduction of osteoclast-specific gene transcripts and functional osteoclast-related protein expression. Moreover, we found a significant anti-osteoporotic role of SAHA in ovariectomized mice, which was probably realized through the inhibition of osteoclast formation and hyperactivation. CONCLUSION These data reveal a high affinity between SAHA and RANKL, which results in blockade of RANKL-RANK interaction and thereby interferes with RANKL-induced signaling cascades and osteoclastic bone resorption, supporting a novel strategy for SAHA application as a promising therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Tianhao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214000, Jiangsu, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Ye Gu
- Department of Orthopedics, Changshu First People's Hospital Affiliated to Soochow University, Changshu, 215500, Jiangsu, China
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Bangsheng Yan
- Department of Orthopedics, Huishan Second People's Hospital, Wuxi, 214174, China.
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
39
|
Tao L, Qin Z, Lin L, Guo H, Liang Z, Wang T, Xu J, Xu M, Hua F, Su X. Long noncoding RNA lncPostn links TGF-β and p53 signaling pathways to transcriptional regulation of cardiac fibrosis. Am J Physiol Cell Physiol 2024; 326:C457-C472. [PMID: 38145299 DOI: 10.1152/ajpcell.00515.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Cardiac fibroblasts are essential for the homeostasis of the extracellular matrix, whose remodeling in many cardiovascular diseases leads to fibrosis. Long noncoding RNAs (lncRNAs) are associated with cardiac pathologies, but their functions in cardiac fibroblasts and contributions to cardiac fibrosis remain unclear. Here, we aimed to identify fibroblast-enriched lncRNAs essential in myocardial infarction (MI)-induced fibrosis and explore the molecular mechanisms responsible for their functions. Global lncRNA profiling was performed in post-MI mouse heart ventricles and transforming growth factor-β (TGF-β)-treated primary cardiac fibroblasts and confirmed in published data sets. We identified the cardiac fibroblast-enriched lncPostn, whose expression is stimulated in cardiac fibrosis induced by MI and the extracellular growth factor TGF-β. The promoter of lncPostn contains a functional TGF-β response element, and lncPostn knockdown suppresses TGF-β-stimulated cardiac fibroblast activation and improves cardiac functions post-MI. LncPostn stabilizes and recruits EP300 to the profibrotic periostin's promoter, representing a major mechanism for its transcriptional activation. Moreover, both MI and TGF-β enhance lncPostn expression while suppressing the cellular growth gatekeeper p53. TGF-β and p53 knockdown-induced profibrotic gene expression and fibrosis occur mainly through lncPostn and show additive effects. Finally, levels of serum lncPostn are significantly increased in patients' postacute MI and show a strong correlation with fibrosis markers, revealing a potential biomarker of cardiac fibrosis. Our findings identify the fibroblast-enriched lncPostn as a potent profibrotic factor, providing a transcriptional link between TGF-β and p53 signaling pathways to regulate fibrosis in cardiac fibroblasts.NEW & NOTEWORTHY Cardiac fibroblasts are essential for the homeostasis of the extracellular matrix, whose remodeling in many cardiovascular diseases leads to fibrosis. Long noncoding RNAs are functional and contribute to the biological processes of cardiovascular development and disorders. Our findings identify the fibroblast-enriched lncPostn as a potent profibrotic factor and demonstrate that serum lncPostn level may serve as a potential biomarker of human cardiac fibrosis postacute myocardial infarction.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Zihan Qin
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Lin Lin
- Department of Biochemistry and Molecular Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
| | - Haoran Guo
- Department of Biochemistry and Molecular Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
| | - Zi Liang
- Department of Biochemistry and Molecular Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
| | - Tingting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Jiani Xu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Min Xu
- Department of Echocardiography, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
40
|
Ghanbari M, Khosroshahi NS, Alamdar M, Abdi A, Aghazadeh A, Feizi MAH, Haghi M. An Updated Review on the Significance of DNA and Protein Methyltransferases and De-methylases in Human Diseases: From Molecular Mechanism to Novel Therapeutic Approaches. Curr Med Chem 2024; 31:3550-3587. [PMID: 37287285 DOI: 10.2174/0929867330666230607124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Epigenetic mechanisms are crucial in regulating gene expression. These mechanisms include DNA methylation and histone modifications, like methylation, acetylation, and phosphorylation. DNA methylation is associated with gene expression suppression; however, histone methylation can stimulate or repress gene expression depending on the methylation pattern of lysine or arginine residues on histones. These modifications are key factors in mediating the environmental effect on gene expression regulation. Therefore, their aberrant activity is associated with the development of various diseases. The current study aimed to review the significance of DNA and histone methyltransferases and demethylases in developing various conditions, like cardiovascular diseases, myopathies, diabetes, obesity, osteoporosis, cancer, aging, and central nervous system conditions. A better understanding of the epigenetic roles in developing diseases can pave the way for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Alamdar
- Department of Genetics Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adel Abdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
41
|
Liu K, Wang Z, Liu J, Zhao W, Qiao F, He Q, Shi J, Meng Q, Wei J, Cheng L. Atsttrin regulates osteoblastogenesis and osteoclastogenesis through the TNFR pathway. Commun Biol 2023; 6:1251. [PMID: 38081906 PMCID: PMC10713527 DOI: 10.1038/s42003-023-05635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoporosis is a systemic metabolic bone disorder for which inflammatory cytokines play an important role. To develop new osteoporosis treatments, strategies for improving the microenvironment for osteoblast and osteoclast balance are needed. Tumor necrosis factor-α (TNF-α) plays an important role in the initiation and development of osteoporosis. Atsttrin is an engineered protein derived from the growth factor, progranulin (PGRN). The present study investigates whether Atsttrin affects osteoclast formation and osteoblast formation. Here we show Atsttrin inhibits TNF-α-induced osteoclastogenesis and inflammation. Further mechanistic investigation indicates Atsttrin inhibits TNF-α-induced osteoclastogenesis through the TNFR1 signaling pathway. Moreover, Atsttrin rescues TNF-α-mediated inhibition of osteoblastogenesis via the TNFR1 pathway. Importantly, the present study indicates that while Atsttrin cannot directly induce osteoblastogenesis, it can significantly enhance osteoblastogenesis through TNFR2-Akt-Erk1/2 signaling. These results suggest that Atsttrin treatment could potentially be a strategy for maintaining proper bone homeostasis by regulating the osteoclast/osteoblast balance. Additionally, these results provide new insights for other bone metabolism-related diseases.
Collapse
Affiliation(s)
- Kaiwen Liu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zihao Wang
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jinbo Liu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Wei Zhao
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Fei Qiao
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Department of Pediatric Orthopedic, Dalian Women and Children's Medical Center(group), Dalian, Liaoning, 116012, China
| | - Qiting He
- Department of Orthopedics, Honghui Hospital, Xian Jiaotong University, Xian, Shanxi, 710054, China
| | - Jie Shi
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Qunbo Meng
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jianlu Wei
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| | - Lei Cheng
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
42
|
Yan B, Li Z, Su H, Xue H, Qiu D, Xu Z, Tan G. Regulatory mechanisms of autophagy-related ncRNAs in bone metabolic diseases. Front Pharmacol 2023; 14:1178310. [PMID: 38146458 PMCID: PMC10749346 DOI: 10.3389/fphar.2023.1178310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Bone metabolic diseases have been tormented and are plaguing people worldwide due to the lack of effective and thorough medical interventions and the poor understanding of their pathogenesis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that cannot encode the proteins but can affect the expressions of other genes. Autophagy is a fundamental mechanism for keeping cell viability, recycling cellular contents through the lysosomal pathway, and maintaining the homeostasis of the intracellular environment. There is growing evidence that ncRNAs, autophagy, and crosstalk between ncRNAs and autophagy play complex roles in progression of metabolic bone disease. This review investigated the complex mechanisms by which ncRNAs, mainly micro RNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate autophagic pathway to assist in treating bone metabolism disorders. It aimed at identifying the autophagy role in bone metabolism disorders and understanding the role, potential, and challenges of crosstalk between ncRNAs and autophagy for bone metabolism disorders treatment.
Collapse
Affiliation(s)
- Binghan Yan
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhichao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Su
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Daodi Qiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
43
|
Sun X, Qian M, Li H, Wang L, Zhao Y, Yin M, Dai L, Bao H. FKBP5 activates mitophagy by ablating PPAR-γ to shape a benign remyelination environment. Cell Death Dis 2023; 14:736. [PMID: 37952053 PMCID: PMC10640650 DOI: 10.1038/s41419-023-06260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease of the central nervous system (CNS) that is characterized by myelin damage, followed by axonal and ultimately neuronal loss, which has been found to be associated with mitophagy. The etiology and pathology of MS remain elusive. However, the role of FK506 binding protein 5 (FKBP5, also called FKBP51), a newly identified gene associated with MS, in the progression of the disease has not been well defined. Here, we observed that the progress of myelin loss and regeneration in Fkbp5ko mice treated with demyelination for the same amount of time was significantly slower than that in wild-type mice, and that mitophagy plays an important regulatory role in this process. To investigate the mechanism, we discovered that the levels of FKBP5 protein were greatly enhanced in the CNS of cuprizone (CPZ) mice and the myelin-denuded environment stimulates significant activation of the PINK1/Parkin-mediated mitophagy, in which the important regulator, PPAR-γ, is critically regulated by FKBP5. This study reveals the role of FKBP5 in regulating a dynamic pathway of natural restorative regulation of mitophagy through PPAR-γ in pathological demyelinating settings, which may provide potential targets for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Xingzong Sun
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Menghan Qian
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Hongliang Li
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Lei Wang
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Yunjie Zhao
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Min Yin
- School of Medicine, Yunnan University, Kunming, 650091, China.
| | - Lili Dai
- School of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
| | - Hongkun Bao
- School of Medicine, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
44
|
Liu C, Liu W, Qi B, Fan L, Liu S, Yang Q, Yang Y, Yang S, Zhang Y, Wei X, Zhu L. Bone Homeostasis Modulating Orthopedic Adhesive for the Closed-Loop Management of Osteoporotic Fractures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302704. [PMID: 37605327 DOI: 10.1002/smll.202302704] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Patients with osteoporotic fractures often require effective fixation and subsequent bone repair. However, currently available materials are often limited functionally, failing to improve this cohort's outcomes. Herein, kaempferol-loaded mesoporous bioactive glass nanoparticles (MBGNs)-doped orthopedic adhesives are prepared to assist osteoporotic fracture fixation and restore dysregulated bone homeostasis, including promoting osteoblast formation while inhibiting osteoclastic bone-resorbing activity to synergistically promote osteoporotic fracture healing. The injectability, reversible adhesiveness and malleable properties endowed the orthopedic adhesives with high flexibility and hemostatic performance to adapt to complex clinical scenarios. Moreover, Ca2+ and SiO4 4- ions released from MBGNs can accelerate osteogenesis via the PI3K/AKT pathway, while kaempferol mediated osteoclastogenesis inhibition and can slow down the bone resorption process through NF-κB pathway, which regulated bone regeneration and remodeling. Importantly, implementing the orthopedic adhesive is validated as an effective closed-loop management approach in restoring the dysregulated bone homeostasis of osteoporotic fractures.
Collapse
Affiliation(s)
- Can Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Weilu Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| |
Collapse
|
45
|
Ma L, Zhang L, Liao Z, Xiu C, Luo X, Luo N, Zhang L, He G, Chen J. Pharmacological inhibition of protein S-palmitoylation suppresses osteoclastogenesis and ameliorates ovariectomy-induced bone loss. J Orthop Translat 2023; 42:1-14. [PMID: 37521493 PMCID: PMC10372326 DOI: 10.1016/j.jot.2023.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background Excessive osteoclast formation disrupts bone homeostasis, thereby significantly contributing to pathological bone loss associated with a variety of diseases. Protein S-palmitoylation is a reversible post-translational lipid modification catalyzed by ZDHHC family of palmitoyl acyltransferases, which plays an important role in various physiological and pathological processes. However, the role of palmitoylation in osteoclastogenesis has never been explored. Consequently, it is unclear whether this process can be targeted to treat osteolytic bone diseases that are mainly caused by excessive osteoclast formation. Materials and methods In this study, we employed acyl-biotin exchange (ABE) assay to reveal protein S-palmitoylation in differentiating osteoclasts (OCs). We utilized 2-bromopalmitic acid (2-BP), a pharmacological inhibitor of protein S-palmitoylation, to inhibit protein palmitoylation in mouse bone marrow-derived macrophages (BMMs), and tested its effect on receptor activator of nuclear factor κβ ligand (RANKL)-induced osteoclast differentiation and activity by TRAP staining, phalloidin staining, qPCR analyses, and pit formation assays. We also evaluated the protective effect of 2-BP against estrogen deficiency-induced bone loss and bone resorption in ovariectomized (OVX) mice using μCT, H&E staining, TRAP staining, and ELISA assay. Furthermore, we performed western blot analyses to explore the molecular mechanism underlying the inhibitory effect of 2-BP on osteoclastogenesis. Results We found that many proteins were palmitoylated in differentiating OCs and that pharmacological inhibition of palmitoylation impeded RANKL-induced osteoclastogenesis, osteoclast-specific gene expression, F-actin ring formation and osteoclastic bone resorption in vitro, and to a lesser extent, osteoblast formation from MC3T3-E1 cells. Furthermore, we demonstrated that administration of 2-BP protected mice from ovariectomy-induced osteoporosis and bone resorption in vivo. Mechanistically, we showed that 2-BP treatment inhibited osteoclastogenesis partly by downregulating the expression of c-Fos and NFATc1 without overtly affecting RANKL-induced activation of osteoclastogenic AKT, MAPK, and NF-κB pathways. Conclusion Pharmacological inhibition of palmitoylation potently suppresses RANKL-mediated osteoclast differentiation in vitro and protects mice against OVX-induced osteoporosis in vivo. Mechanistically, palmitoylation regulates osteoclast differentiation partly by promoting the expression of c-Fos and NFATc1. Thus, palmitoylation plays a key role in promoting osteoclast differentiation and activity, and could serve as a potential therapeutic target for the treatment of osteoporosis and other osteoclast-related diseases. The translational potential of this article The translation potential of this article is that we first revealed palmitoylation as a key mechanism regulating osteoclast differentiation, and therefore provided a potential therapeutic target for treating osteolytic bone diseases.
Collapse
Affiliation(s)
- Linghui Ma
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Liwei Zhang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, Zhejiang, China
| | - Zirui Liao
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunmei Xiu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xi Luo
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Na Luo
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianquan Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
46
|
Ge J, Yu YJ, Li JY, Li MY, Xia SM, Xue K, Wang SY, Yang C. Activating Wnt/β-catenin signaling by autophagic degradation of APC contributes to the osteoblast differentiation effect of soy isoflavone on osteoporotic mesenchymal stem cells. Acta Pharmacol Sin 2023; 44:1841-1855. [PMID: 36973541 PMCID: PMC10462682 DOI: 10.1038/s41401-023-01066-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023]
Abstract
The functional role of autophagy in regulating differentiation of bone marrow mesenchymal stem cells (MSCs) has been studied extensively, but the underlying mechanism remains largely unknown. The Wnt/β-catenin signaling pathway plays a pivotal role in the initiation of osteoblast differentiation of mesenchymal progenitor cells, and the stability of core protein β-catenin is tightly controlled by the APC/Axin/GSK-3β/Ck1α complex. Here we showed that genistein, a predominant soy isoflavone, stimulated osteoblast differentiation of MSCs in vivo and in vitro. Female rats were subjected to bilateral ovariectomy (OVX); four weeks after surgery the rats were orally administered genistein (50 mg·kg-1·d-1) for 8 weeks. The results showed that genistein administration significantly suppressed the bone loss and bone-fat imbalance, and stimulated bone formation in OVX rats. In vitro, genistein (10 nM) markedly activated autophagy and Wnt/β-catenin signaling pathway, and stimulated osteoblast differentiation in OVX-MSCs. Furthermore, we found that genistein promoted autophagic degradation of adenomatous polyposis coli (APC), thus initiated β-catenin-driven osteoblast differentiation. Notably, genistein activated autophagy through transcription factor EB (TFEB) rather than mammalian target of rapamycin (mTOR). These findings unveil the mechanism of how autophagy regulates osteogenesis in OVX-MSCs, which expands our understanding that such interplay could be employed as a useful therapeutic strategy for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jing Ge
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Ye-Jia Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Jia-Yi Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Meng-Yu Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Si-Mo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China
| | - Ke Xue
- Department of Pastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Shao-Yi Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China.
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200001, China.
| |
Collapse
|
47
|
Zhuang Q, Chen S, Zhang W, Gu M, Xiao L, Li Y, Yang Y, Feng C, Li H, Geng D, Wang Z. Avicularin Alleviates Osteoporosis in Ovariectomized Mice by Inhibiting Osteoclastogenesis through NF-κB Pathway Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:411-420. [PMID: 36540936 PMCID: PMC9838558 DOI: 10.1021/acs.jafc.2c05954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Osteoporosis (OP) is mainly manifested by bone loss and bone degeneration. OP is considered a risk factor for pathological fractures, as well as impacts the health of middle-aged and elderly individuals. Drug therapy remains the main treatment scheme for OP; however, its efficacy is limited and has been associated with serious side effects. Therefore, it is important to develop new, effective, and safe treatment methods for OP. Avicularin (AL) is a flavonoid and quercetin derivative from various plants. Our study showed that AL disrupts osteoclast activation and resorptive function via inhibition of the RANKL-induced osteoclast differentiation together with the resorption capacity of bone marrow-derived macrophages (BMMs). Hence, AL prevents the activation and resorptive activity of osteoclasts. The results of qPCR showed that genes related to osteoclasts exhibited downregulated expression after AL treatment. Furthermore, AL inhibited RANKL-induced phosphorylation as well as degradation of the inhibitor IκBα of the NF-κB pathway, together with P65 phosphorylation in BMMs. We used an OP mouse model that was established by ovariectomy (OVX). Relative to untreated OP mice, mice that received AL treatment showed a significant increase in bone mineral density; however, the expression of TRAP, NFATC1, mmp9, and CTX-1 was significantly reduced. These results indicate that AL disrupts osteoclastogenesis via inhibition of the NF-κB pathway, which in turn improves OVX-induced OP.
Collapse
Affiliation(s)
- Qi Zhuang
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Shuangshuang Chen
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Wei Zhang
- Department
of Orthopedics, The First Affiliated Hospital
of Soochow University, Suzhou 215006, China
| | - Minhui Gu
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Long Xiao
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department
of Orthopedics, The First Affiliated Hospital
of Soochow University, Suzhou 215006, China
- Department
of Orthopedics, Zhangjiagang TCM Hospital
Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Yajun Li
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department
of Orthopedics, Zhangjiagang TCM Hospital
Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Yunshang Yang
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department
of Orthopedics, Zhangjiagang TCM Hospital
Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Chengcheng Feng
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Hong Li
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Dechun Geng
- Department
of Orthopedics, The First Affiliated Hospital
of Soochow University, Suzhou 215006, China
| | - Zhirong Wang
- Translational
Medical Innovation Center, Zhangjiagang
TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department
of Orthopedics, Zhangjiagang TCM Hospital
Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| |
Collapse
|
48
|
Zhang M, Chen M, Li Y, Rao M, Wang D, Wang Z, Zhang L, Yin P, Tang P. Delayed denervation-induced muscle atrophy in Opg knockout mice. Front Physiol 2023; 14:1127474. [PMID: 36909232 PMCID: PMC9992212 DOI: 10.3389/fphys.2023.1127474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Recent evidence has shown a crucial role for the osteoprotegerin/receptor activator of nuclear factor κ-B ligand/RANK (OPG/RANKL/RANK) signaling axis not only in bone but also in muscle tissue; however, there is still a lack of understanding of its effects on muscle atrophy. Here, we found that denervated Opg knockout mice displayed better functional recovery and delayed muscle atrophy, especially in a specific type IIB fiber. Moreover, OPG deficiency promoted milder activation of the ubiquitin-proteasome pathway, which further verified the protective role of Opg knockout in denervated muscle damage. Furthermore, transcriptome sequencing indicated that Opg knockout upregulated the expression of Inpp5k, Rbm3, and Tet2 and downregulated that of Deptor in denervated muscle. In vitro experiments revealed that satellite cells derived from Opg knockout mice displayed a better differentiation ability than those acquired from wild-type littermates. Higher expression levels of Tet2 were also observed in satellite cells derived from Opg knockout mice, which provided a possible mechanistic basis for the protective effects of Opg knockout on muscle atrophy. Taken together, our findings uncover the novel role of Opg in muscle atrophy process and extend the current understanding in the OPG/RANKL/RANK signaling axis.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Man Rao
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Duanyang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhongqi Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
49
|
Li Z, Li D, Su H, Xue H, Tan G, Xu Z. Autophagy: An important target for natural products in the treatment of bone metabolic diseases. Front Pharmacol 2022; 13:999017. [PMID: 36467069 PMCID: PMC9716086 DOI: 10.3389/fphar.2022.999017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 12/28/2024] Open
Abstract
Bone homeostasis depends on a precise dynamic balance between bone resorption and bone formation, involving a series of complex and highly regulated steps. Any imbalance in this process can cause disturbances in bone metabolism and lead to the development of many associated bone diseases. Autophagy, one of the fundamental pathways for the degradation and recycling of proteins and organelles, is a fundamental process that regulates cellular and organismal homeostasis. Importantly, basic levels of autophagy are present in all types of bone-associated cells. Due to the cyclic nature of autophagy and the ongoing bone metabolism processes, autophagy is considered a new participant in bone maintenance. Novel therapeutic targets have emerged as a result of new mechanisms, and bone metabolism can be controlled by interfering with autophagy by focusing on certain regulatory molecules in autophagy. In parallel, several studies have reported that various natural products exhibit a good potential to mediate autophagy for the treatment of metabolic bone diseases. Therefore, we briefly described the process of autophagy, emphasizing its function in different cell types involved in bone development and metabolism (including bone marrow mesenchymal stem cells, osteoblasts, osteocytes, chondrocytes, and osteoclasts), and also summarized research advances in natural product-mediated autophagy for the treatment of metabolic bone disease caused by dysfunction of these cells (including osteoporosis, rheumatoid joints, osteoarthritis, fracture nonunion/delayed union). The objective of the study was to identify the function that autophagy serves in metabolic bone disease and the effects, potential, and challenges of natural products for the treatment of these diseases by targeting autophagy.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hui Su
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
50
|
Wang X, Pei Z, Hao T, Ariben J, Li S, He W, Kong X, Chang J, Zhao Z, Zhang B. Prognostic analysis and validation of diagnostic marker genes in patients with osteoporosis. Front Immunol 2022; 13:987937. [PMID: 36311708 PMCID: PMC9610549 DOI: 10.3389/fimmu.2022.987937] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Backgrounds As a systemic skeletal dysfunction, osteoporosis (OP) is characterized by low bone mass and bone microarchitectural damage. The global incidences of OP are high. Methods Data were retrieved from databases like Gene Expression Omnibus (GEO), GeneCards, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Gene Expression Profiling Interactive Analysis (GEPIA2), and other databases. R software (version 4.1.1) was used to identify differentially expressed genes (DEGs) and perform functional analysis. The Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression and random forest algorithm were combined and used for screening diagnostic markers for OP. The diagnostic value was assessed by the receiver operating characteristic (ROC) curve. Molecular signature subtypes were identified using a consensus clustering approach, and prognostic analysis was performed. The level of immune cell infiltration was assessed by the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm. The hub gene was identified using the CytoHubba algorithm. Real-time fluorescence quantitative PCR (RT-qPCR) was performed on the plasma of osteoporosis patients and control samples. The interaction network was constructed between the hub genes and miRNAs, transcription factors, RNA binding proteins, and drugs. Results A total of 40 DEGs, eight OP-related differential genes, six OP diagnostic marker genes, four OP key diagnostic marker genes, and ten hub genes (TNF, RARRES2, FLNA, STXBP2, EGR2, MAP4K2, NFKBIA, JUNB, SPI1, CTSD) were identified. RT-qPCR results revealed a total of eight genes had significant differential expression between osteoporosis patients and control samples. Enrichment analysis showed these genes were mainly related to MAPK signaling pathways, TNF signaling pathway, apoptosis, and Salmonella infection. RT-qPCR also revealed that the MAPK signaling pathway (p38, TRAF6) and NF-kappa B signaling pathway (c-FLIP, MIP1β) were significantly different between osteoporosis patients and control samples. The analysis of immune cell infiltration revealed that monocytes, activated CD4 memory T cells, and memory and naïve B cells may be related to the occurrence and development of OP. Conclusions We identified six novel OP diagnostic marker genes and ten OP-hub genes. These genes can be used to improve the prognostic of OP and to identify potential relationships between the immune microenvironment and OP. Our research will provide insights into the potential therapeutic targets and pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Xing Wang
- Bayannur Hospital, Bayannur City, China
| | - Zhiwei Pei
- Inner Mongolia Medical University, Hohhot, China
| | - Ting Hao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | | | - Siqin Li
- Bayannur Hospital, Bayannur City, China
| | - Wanxiong He
- Inner Mongolia Medical University, Hohhot, China
| | - Xiangyu Kong
- Inner Mongolia Medical University, Hohhot, China
| | - Jiale Chang
- Inner Mongolia Medical University, Hohhot, China
| | - Zhenqun Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Baoxin Zhang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|