1
|
Temperini C, Kemppainen M, Moya M, Greco M, Pardo A, Pose G. Mycotoxigenic fungi, OTA and fumonisin B2 production by Aspergillus section Nigri isolated from wine grapes and natural occurrence of OTA in wines of Northern Argentinean Patagonia. Int J Food Microbiol 2025; 433:111135. [PMID: 40020540 DOI: 10.1016/j.ijfoodmicro.2025.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The Northern Argentinean Patagonia is the southernmost producing region of wine grapes and wine in Argentina. Their wines possess distinctive features due to the wide variety of red and white grapes and weather conditions, achieving great acceptance in local and international markets. The aims of the present study were to determine and characterize the mycobiota present in wine grapes from Northern Patagonia, to analyse the ability of the isolates to produce mycotoxins, and to determine the natural occurrence of OTA and monitoring its presence in wine over time. A wide diversity of fungal contamination was found on grape berries surface. The most abundant genera isolated were: Alternaria (55.8 %), Aspergillus (12.7 %), Trichoderma (6.5 %), Penicillium (5.3 %), Fusarium (4.4 %), Epiccocum (4.2 %), Acremonium (2.6 %) and Botrytis (2.5 %). Alternaria was the predominant genus with the highest proportion during the three years of study and A. tenuissima was the most frequent species isolated. In contrast, a low incidence of Aspergillus section Nigri was found. Isolates identified belonged to Aspergillus niger aggregate and, more specifically, to A. tubingensis species. No Aspergillus carbonarius isolates were found. A low percentage of A. tubingensis isolates were ochratoxin A producers (4.7 %) in the range of 14.6-233.3 μg/Kg and FB2 producers (3.7 %) in the range of 79.7-277.8 μg/Kg. None of the OTA producer isolates were able to produce FB2 and vice versa. Analysis of OTA content in wine samples from Northern Patagonia showed negative results: OTA was not detected in any of the samples analysed. Our findings suggest a low risk of wine contamination with OTA.
Collapse
Affiliation(s)
- Carolina Temperini
- Centro de Investigaciones y Transferencia de Río Negro, Universidad Nacional de Río Negro (UNRN), Mitre 331, 8336 Villa Regina, Río Negro, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Minna Kemppainen
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Mónica Moya
- Universidad Nacional de Río Negro, Mitre 331, 8336 Villa Regina, Río Negro, Argentina
| | - Mariana Greco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Buenos Aires, Argentina
| | - Alejandro Pardo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Buenos Aires, Argentina
| | - Graciela Pose
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Buenos Aires, Argentina; Instituto Tecnológico de Chascomús (CONICET-UNSAM) - Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Provincia de Buenos Aires, Argentina
| |
Collapse
|
2
|
Liang M, Hu Q, Yu J, Zhang H, Liu S, Huang J, Sun Y. Baicalein combined with azoles against fungi in vitro. Front Microbiol 2025; 16:1537229. [PMID: 40182279 PMCID: PMC11966473 DOI: 10.3389/fmicb.2025.1537229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Background Invasive fungal infections (IFIs) constitute a significant health challenge, particularly among immunocompromised individuals, characterized by a high prevalence and associated mortality rates. The synergistic administration of Baicalein (BE) with azole antifungal agents could potentially herald a novel therapeutic paradigm. Materials and methods 54 Aspergillus strains and 23 strains of dematiaceous fungi were selected. The standard M38-A2 microbroth dilution method was used to test the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI) of fungi when BE combined with itraconazole (ITC), voriconazole (VRC), posaconazole (POS) and Isavuconazole (ISV). Results BE shows synergistic effects with POS and ITC, with 89.61% and 25.97% of fungal strains. The BE/POS regimen exerted synergistic effects in 87.04% of Aspergillus and an impressive 95.65% of dematiaceous fungi. In comparison, the BE/ITC combination showed significantly lower synergy, affecting 33.33% of Aspergillus and a mere 8.70% of dematiaceous strains. Antagonistic interactions were sporadically observed with BE in combination with ITC, VRC, POS and ISV. Within the azole class, the BE/POS pairing stood out for its frequent synergistic activity, in contrast to the absence of such effects when BE was paired with VRC or ISV. Highlighting the potential of BE/POS as a notably effective antifungal strategy. Conclusion In vitro, BE/POS combination emerged as the most effective antifungal strategy, exhibiting synergistic effects in the majority of Aspergillus and dematiaceous fungi strains, whereas BE/ITC showed significantly less synergy, and BE with VRC or ISV displayed no synergistic activity.
Collapse
Affiliation(s)
- Mengmin Liang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Qingwen Hu
- Department of Clinical Medicine, Yangtze University, Jingzhou, China
| | - Junhao Yu
- Department of Clinical Medicine, Yangtze University, Jingzhou, China
| | - Heng Zhang
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, China
| | - Sijie Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jiangrong Huang
- Endocrinology Department, The Third Clinical College of Yangtze University, Traditional Chinese Medicine of Jingzhou Hospital, Jingzhou, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, China
| |
Collapse
|
3
|
El Ghalid M, Chiarelli A, Brisse S, Betsou F, Garcia-Hermoso D. Stability and Qualification of a Legacy Fungal Collection. Biopreserv Biobank 2024; 22:586-596. [PMID: 38686572 PMCID: PMC11656122 DOI: 10.1089/bio.2023.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Background: Microbial culture collections are valuable repositories for qualified and diverse microorganisms, playing a pivotal role in research, education, innovation, as well as in our response to current and emerging public health and societal challenges. However, such precious holdings, when not integrated in professional biobank infrastructures, may be vulnerable to major risks such as staff retirement, changes in the institutional strategy, or natural disasters. The process of preserving and rescuing "historical" collections can be long and treacherous with a loss of a part of the collection. At the Biological Resource Center of Institut Pasteur, we undertook the challenge of rescuing the dormant legacy fungal collection. Materials and Methods: A total of 64 freeze-dried strains, including yeasts and filamentous fungi, were characterized by using a polyphasic approach combining morphological features and molecular data. We assessed the viability, purity, and authenticity of selected strains isolated from multiple sources and stored for more than 20 years. Results: Our preliminary results show long-term stability of the selected strains and successful qualification in terms of purity and authentication. Moreover, based on the most recent taxonomic revisions, we updated and revised the nomenclature, where applicable. Conclusion: Our findings demonstrated the potential value of reviving historical microbial collections for biobanking and research activities and reassure us about the collection's future reopening.
Collapse
Affiliation(s)
- Mennat El Ghalid
- Institut Pasteur, Université Paris Cité, Biological Resource Center of the Institut Pasteur, Paris, France
| | - Adriana Chiarelli
- Institut Pasteur, Université Paris Cité, Biological Resource Center of the Institut Pasteur, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biological Resource Center of the Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Fay Betsou
- Institut Pasteur, Université Paris Cité, Biological Resource Center of the Institut Pasteur, Paris, France
| | - Dea Garcia-Hermoso
- Institut Pasteur, Université Paris Cité, Biological Resource Center of the Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Paris, France
| |
Collapse
|
4
|
Visagie CM, Meyer H, Yilmaz N. Maize-Fusarium associations and their mycotoxins: Insights from South Africa. Fungal Biol 2024; 128:2408-2421. [PMID: 39653488 DOI: 10.1016/j.funbio.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 01/05/2025]
Abstract
For maize, a staple food in South Africa, there is a lack of comprehensive knowledge on the mycotoxin-producing fungal diversity. In this study, a fungal community profile was established using culture-dependent methods for 56 maize seed samples that were also analysed for 13 mycotoxins. The fungal isolates were identified by morphology and DNA sequencing. A total of 723 fungal isolates from 21 genera and 99 species were obtained and characterised. Fusarium was the most common genus (isolated from 52 samples), followed by Cladosporium (n = 45), Aspergillus (n = 41), Talaromyces (n = 40), and Penicillium (n = 38). Fusarium communities were dominated by the Fusarium fujikuroi species complex, which includes species such as Fusarium verticillioides and Fusarium temperatum, while Fusarium awaxy and Fusarium mirum are reported here for the first time from South Africa. As for the deoxynivalenol (DON) producing species, only Fusarium boothii and Fusarium graminearum were isolated to a lesser extent. DON (n = 37), fumonisins (FUM) (n = 32), and zearalenone (ZEA) (n = 6) were detected. The presence of a particular species did not guarantee the presence of the corresponding mycotoxins, while the inverse was also true. The occurrence of DON and/or FUM in South African maize remains a health concern, so continuous monitoring of both fungal species and their mycotoxins is important.
Collapse
Affiliation(s)
- Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Hannalien Meyer
- Southern African Grain Laboratory (SAGL), Grain Building-Agri Hub Office Park, 477 Witherite Street, The Willows, Pretoria, 0040, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Melo AM, Poester VR, Trápaga MR, Faria FA, Aquino V, Severo CB, Stevens DA, Veríssimo C, Sabino R, Xavier MO. Aspergillus fumigatus sensu stricto genetic diversity from cystic fibrosis patients. Int J Med Microbiol 2024; 317:151639. [PMID: 39490213 DOI: 10.1016/j.ijmm.2024.151639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
We aimed to access the genetic diversity of Apergillus fumigatus strains obtained from cystic fibrosis (CF) patients from southern Brazil. A. fumigatus sensu stricto isolates from respiratory clinical specimens were genotyped by microsatellite markers and azole resistance was evaluated by azole-agar screening. Twenty-seven isolates from twenty-seven patients showed a high genetic diversity, with the differentiation of 25 different genotypes (25 unique and one common to two isolates). All isolates were susceptible to the azoles tested. We believe that prospectively monitoring A. fumigatus genetic diversity is essential to identify interpatient transmission and outbreaks, as is the identification of resistant strains.
Collapse
Affiliation(s)
- Aryse Martins Melo
- One Health Disease Control Lab Group, Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | - Vanice Rodrigues Poester
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Mariana Rodrigues Trápaga
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Fernando Azevedo Faria
- Laboratório de Aves Aquáticas e Tartarugas Marinhas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - Valério Aquino
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - David A Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, USA
| | - Cristina Veríssimo
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases National Institute of Health, Dr. Ricardo Jorge, Lisbon, Portugal
| | - Raquel Sabino
- Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Medicina, Instituto de Saúde Ambiental, Universidade de Lisboa, Lisbon, Portugal; Laboratório Associado TERRA-Laboratório para o Uso Sustentável da Terra e dos Serviços dos Ecossistemas, Instituto Superior de Agronomia, Lisbon, Portugal
| | - Melissa Orzechowski Xavier
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Araújo KS, Alves JL, Pereira OL, de Queiroz MV. Five new species of endophytic Penicillium from rubber trees in the Brazilian Amazon. Braz J Microbiol 2024; 55:3051-3074. [PMID: 39384703 PMCID: PMC11711848 DOI: 10.1007/s42770-024-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/28/2024] [Indexed: 10/11/2024] Open
Abstract
The Amazon rainforest is the world's most diverse ecosystem, full of fauna and flora. Among the trees that make up the forest are the rubber trees of the genus Hevea (H. brasiliensis and H. guianensis), which stand out for the industrial use of latex. It was previously shown that endophytic fungi colonize the leaves, stems, and roots of Hevea spp. In this study, 47 Penicillium spp. and three Talaromyces spp. isolates were analyzed using specific DNA barcodes: internal transcribed spacers region (ITS), β-tubulin (BenA), calmodulin (CaM), and the DNA-dependent RNA polymerase II second largest subunit (RPB2) genes and additionally, for species delimitation, the genealogical concordance phylogenetic species recognition (GCPSR) criteria were applied. The phylogenetic analyses placed the Penicillium isolates into four sections Lanata-Divaricata, Sclerotiora, Citrina, and Fasciculata. The morphological and molecular characteristics resulted in the discovery of five new species (P. heveae sp. nov., P. acrean sp. nov., P. aquiri sp. nov., P. amazonense sp. nov., and P. pseudomellis sp. nov.). The five new species were also compared to closely related species, with observations on morphologically distinguishing features and colony appearances. Bayesian inference and maximum likelihood analysis have supported the placement of P. heveae sp. nov. as a sister group to P. globosum; P. acrean sp. nov. and P. aquiri sp. nov. as sister groups to P. sumatrense; P. amazonense sp. nov. closely related to isolates of P. rolfsii, and P. pseudomellis sp. nov. closely related to P. mellis. The study of endophytic Penicillium species of rubber trees and the description of five new taxa of Penicillium sect. Citrina, Lanata-Divaricata, and Sclerotiora as endophytes add to the fungal biodiversity knowledge in native rubber trees. Reports of fungi in native tropical plants may reveal taxonomic novelties, potential pathogen control agents, and producers of molecular bioactive compounds of medical and agronomic interest.
Collapse
Affiliation(s)
- Kaliane Sírio Araújo
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Janaina Lana Alves
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Olinto Liparini Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
7
|
Wang R, Zhang H, Zhang Q, Xi J, Jiang K, Li J, Xue H, Bi Y. Isolation, Identification, and Analyzing the Biological Characteristics of Pathogens Causing Stem Rot of Lanzhou Onion During Postharvest Storage and Studying the Influence of Pathogen Infection on the Active Components of Lanzhou Onion. J Fungi (Basel) 2024; 10:789. [PMID: 39590708 PMCID: PMC11595477 DOI: 10.3390/jof10110789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
This study was conducted in order to explore the pathogens that cause stem rot of fresh onions during postharvest storage, identify the incidence of stem rot, investigate the influence of pathogen infection on the active components of onion, and provide a theoretical basis for disease control during the postharvest storage of fresh onions. The pathogens were isolated and purified from the junction between the rotten and healthy tissues of onion stem rot that occurred naturally during storage at room temperature by tissue separation; then, the pathogens were identified by morphological and molecular biological techniques, the biological characteristics of the pathogens were analyzed, and finally, the influence of pathogen infection on the active ingredients of onion was studied. The results suggested that the main pathogens causing stem rot of fresh onions during postharvest storage were Talaromyces pinophilus, Trichoderma simmonsii, and Talaromyces minioluteus. The optimum colony growth conditions for T. pinophilus were as follows: a temperature of 30 °C, a pH of 7, light for 24 h, maltose as a carbon source, and peptone as a nitrogen source; the lethal temperature was 65 °C for 15 min. For T. simmonsii, the lethal temperature was 60 °C for 15 min, and the optimum sporulation conditions were a temperature of 25 °C, a pH of 5-7, light for 24 h, a carbon source of sucrose, and a nitrogen source of yeast powder. For T. minioluteus, the lethal condition was 65 °C for 15 min; the optimum colony growth conditions were a temperature of 25 °C, a pH of 8-9, 24 h of darkness, a carbon source of maltose, and a nitrogen source of peptone. The relative content of sulfur compounds, as the active components of onions, was much lower in the infected onions than in the healthy onions due to infection by the pathogens T. pinophilus, T.simmonsii, and T.minioluteus. This study will provide a theoretical basis for further effective control of the occurrence of postharvest stem rot diseases of onions.
Collapse
Affiliation(s)
- Ruoxing Wang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Hui Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Qingru Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Jihui Xi
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Kunhao Jiang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Jinzhu Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Olszak-Przybyś H, Korbecka-Glinka G. The Diversity of Seed-Borne Fungi Associated with Soybean Grown in Southern Poland. Pathogens 2024; 13:769. [PMID: 39338960 PMCID: PMC11434997 DOI: 10.3390/pathogens13090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Fungi have the potential to colonize soybean seeds in the field, during their maturation in the pods and after harvest, during storage. The aim of this study was to identify fungi inhabiting soybean seeds after storage with varying germination capacity and to evaluate their chemical composition. The research material consisted of twelve soybean seed lots collected from the fields in southern Poland and stored over winter. The germination percentage of these lots ranged between 20.67% and 81.33%. The seeds were subjected to analyses of the main chemical components and mycological analysis. Fungal isolates were subjected to taxonomic identification using microscopic methods and DNA sequencing (using internal transcribed spacer region and secondary barcoding regions). A total number of 355 fungal isolates from 16 genera were identified, with Aspergillus, Alternaria, and Fusarium being the most common. Species were successfully identified in 94% of isolates. Twelve examined seed lots varied significantly in the number of isolated fungal species (from 1 to 17). Moreover, they also differed in the isolated species composition. Highly significant positive correlation was found between the number of Aspergillus psedudoglaucus isolates and the content of free fatty acids. In turn, the number of Fusarium spp. isolates correlated negatively with protein and nitrogen content. Similarly, highly significant negative correlation was found between the number of all fungal isolates and the 1000-seed weight, indicating that smaller seeds are more vulnerable to fungal infection. The results obtained in this study identify species of fungi which may be responsible for lowering quality of the seeds obtained in southern Poland.
Collapse
Affiliation(s)
- Hanna Olszak-Przybyś
- Department of Biotechnology and Plant Breeding, Institute of Soil Science and Plant Cultivation–State Research Institute, ul. Czartoryskich 8, 24-100 Puławy, Poland;
| | | |
Collapse
|
9
|
Murakami M, Akashi Y, Park YT, Oatelaar GS, Anzawa K. Successful Treatment of Sino-Orbital Aspergillus udagawae Infection Using Oral Posaconazole in a Cat. J Am Anim Hosp Assoc 2024; 60:193-197. [PMID: 39235780 DOI: 10.5326/jaaha-ms-7425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 09/06/2024]
Abstract
A 10 yr old spayed female ragdoll cat presented with sudden onset of sneezing, nasal discharge, and stertor. There was no improvement in clinical signs despite treatment with antibiotics, feline interferon, and nebulization. A computed tomography (CT) scan revealed findings consistent with chronic rhinitis, and a tissue biopsy obtained by rhinoscopy led to a histopathologic diagnosis of sinonasal aspergillosis. Polymerase chain reaction amplification identified the causative agent as Aspergillus udagawae. Oral itraconazole therapy was initiated. However, the cat's clinical signs progressed to include left exophthalmos, nictitating membrane protrusion, and lacrimation. A second CT scan revealed a soft-tissue attenuating structure extending into the left retrobulbar space, confirming progression to sino-orbital aspergillosis (SOA). The oral medication was changed to posaconazole and continued for 5 mo, resulting in resolution of the clinical signs. The cat has remained asymptomatic over 24 mo since initial diagnosis. This case represents the first successful treatment of feline SOA caused by A udagawae infection with posaconazole. A udagawae is the second most common cause of SOA and is known to be intractable because of its low susceptibility to antifungal agents and poor response to topical clotrimazole. Posaconazole may be a valuable treatment option for SOA caused by A udagawae.
Collapse
Affiliation(s)
- Masahiro Murakami
- From the Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, Indiana (M.M., G.S.O.)
| | - Yoriko Akashi
- Jiyugaoka Animal Medical Center, Tokyo, Japan (Y.A.,Y.T.P.)
| | - Young Tae Park
- Jiyugaoka Animal Medical Center, Tokyo, Japan (Y.A.,Y.T.P.)
| | - Garrett S Oatelaar
- From the Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, Indiana (M.M., G.S.O.)
- VCA Canada CARE Centre, Calgary, Alberta, Canada (G.S.O); and
| | - Kazushi Anzawa
- Department of Dermatology, Kanazawa Medical University, Ishikawa, Japan (K.A.)
| |
Collapse
|
10
|
Singh P, Jaime R, Puckett RD, Lake J, Papagelis A, Gabri VM, Michailides TJ. Ochratoxin A Contamination of California Pistachios and Identification of Causal Agents. PLANT DISEASE 2024; 108:1591-1601. [PMID: 38115568 DOI: 10.1094/pdis-06-23-1233-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ochratoxin A (OTA) is a potent mycotoxin produced by Aspergillus and Penicillium spp., which contaminates many crops, including pistachios. Pistachios contaminated with OTA may be subjected to border rejections resulting in significant economic losses to the United States agricultural revenues. The current study examined prevalence of OTA in California-grown pistachios and identified its causal agents. OTA was detected in 20% of samples from 2018 to 2021 (n = 809), with 18% of samples exceeding the European Union regulatory limit of 5 μg/kg. Fungi potentially responsible for OTA contamination were isolated from leaves, nuts, and soil collected from 14 pistachio orchards across California. A total of 1,882 isolates of Aspergillus section Nigri and 85 isolates of section Circumdati were recovered. Within section Nigri, 216 (11.5%) isolates were identified as potential OTA producers using a boscalid-resistance assay. Phylogenetic analyses of partial gene sequences for β-tubulin and calmodulin genes resolved section Circumdati into four species: A. ochraceus (33%), A. melleus (28%), A. bridgeri (21%), and A. westerdijkiae (19%). A. westerdijkiae produced the highest levels of OTA in inoculated pistachios (47 μg/g), followed by A. ochraceus (9.6 μg/g) and A. melleus (3.3 μg/g). A. bridgeri did not produce OTA. OTA production by section Circumdati was optimal from 20 to 30°C. All 216 boscalid-resistant isolates from section Nigri were identified as A. tubingensis, and representative isolates (n = 130) produced 3.8 μg/kg OTA in inoculated pistachios. This is the first detailed report on OTA contamination and causal fungi in California pistachios and will be helpful in devising effective management strategies.
Collapse
Affiliation(s)
- Pummi Singh
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Ramon Jaime
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Ryan D Puckett
- University of California Agricultural and Natural Resources, Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - John Lake
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Apostolos Papagelis
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Victor M Gabri
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Themis J Michailides
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| |
Collapse
|
11
|
Zhao W, Hong SY, Kim JY, Om AS. Effects of temperature, pH, and relative humidity on the growth of Penicillium paneum OM1 isolated from pears and its patulin production. Fungal Biol 2024; 128:1885-1897. [PMID: 38876541 DOI: 10.1016/j.funbio.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Patulin is a mycotoxin produced by several species of Penicillium sp., Aspergillus sp., and Byssochlamys sp. on apples and pears. Most studies have been focused on Penicillium expansum, a common postharvest pathogen, but little is known about the characteristics of Penicillium paneum. In the present study, we evaluated the effects of temperature, pH, and relative humidity (RH) on the growth of P. paneum OM1, which was isolated from pears, and its patulin production. The fungal strain showed the highest growth rate at 25 °C and pH 4.5 on pear puree agar medium (PPAM) under 97 % RH, while it produced the highest amount of patulin at 20 °C and pH 4.5 on PPAM under 97 % RH. Moreover, RT-qPCR analysis of relative expression levels of 5 patulin biosynthetic genes (patA, patE, patK, patL, and patN) in P. paneum OM1 exhibited that the expression of the 4 patulin biosynthetic genes except patL was up-regulated in YES medium (patulin conducive), while it was not in PDB medium (patulin non-conducive). Our data demonstrated that the 3 major environmental parameters had significant impact on the growth of P. paneum OM1 and its patulin production. These results could be exploited to prevent patulin contamination by P. paneum OM1 during pear storage.
Collapse
Affiliation(s)
- Wencai Zhao
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Sung-Yong Hong
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ju-Yeon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ae-Son Om
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
12
|
Rodríguez CL, Strub C, Fontana A, Verheecke-Vaessen C, Durand N, Beugré C, Guehi T, Medina A, Schorr-Galindo S. Biocontrol activities of yeasts or lactic acid bacteria isolated from Robusta coffee against Aspergillus carbonarius growth and ochratoxin A production in vitro. Int J Food Microbiol 2024; 415:110638. [PMID: 38430685 DOI: 10.1016/j.ijfoodmicro.2024.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Biocontrol Agents (BCAs) can be an eco-friendly alternative to fungicides to reduce the contamination with mycotoxigenic fungi on coffee. In the present study, different strains of bacteria and yeasts were isolated from Ivorian Robusta coffee. Their ability to reduce fungal growth and Ochratoxin A (OTA) production during their confrontation against Aspergillus carbonarius was screened on solid media. Some strains were able to reduce growth and OTA production by 85 % and 90 % and were molecularly identified as two yeasts, Rhodosporidiobolus ruineniae and Meyerozyma caribbica. Subsequent tests on liquid media with A. carbonarius or solely with OTA revealed adhesion of R. ruineniae to the mycelium of A. carbonarius through Scanning Electron Microscopy, and an OTA adsorption efficiency of 50 %. For M. caribbica potential degradation of OTA after 24 h incubation was observed. Both yeasts could be potential BCAs good candidates for Ivorian Robusta coffee protection against A. carbonarius and OTA contamination.
Collapse
Affiliation(s)
- Claudia López Rodríguez
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France; Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Caroline Strub
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France.
| | - Angélique Fontana
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France
| | | | - Noël Durand
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France; CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Corinne Beugré
- Laboratory of Microbiology and Molecular Biology, Department of Food Science and Technology, University of Nangui Abrogoua, Abidjan, Cote d'Ivoire
| | - Tagro Guehi
- Laboratory of Microbiology and Molecular Biology, Department of Food Science and Technology, University of Nangui Abrogoua, Abidjan, Cote d'Ivoire
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France
| |
Collapse
|
13
|
Uehara S, Takahashi Y, Iwakoshi K, Nishino Y, Wada K, Ono A, Hagiwara D, Chiba T, Yokoyama K, Sadamasu K. Isolation of azole-resistant Aspergillus spp. from food products. Med Mycol 2024; 62:myae026. [PMID: 38490745 DOI: 10.1093/mmy/myae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024] Open
Abstract
The prevalence of azole-resistant Aspergillus fumigatus is increasing worldwide and is speculated to be related to the use of azole pesticides. Aspergillus spp., the causative agent of aspergillosis, could be brought into domestic dwellings through food. However, studies on azole-resistant Aspergillus spp. in food products are limited. Therefore, we aimed to isolate Aspergillus spp. from processed foods and commercial agricultural products and performed drug susceptibility tests for azoles. Among 692 food samples, we isolated 99 strains of Aspergillus spp. from 50 food samples, including vegetables (22.9%), citrus fruits (26.3%), cereals (25.5%), and processed foods (1.8%). The isolates belonged to 18 species across eight sections: Aspergillus, Candidi, Clavati, Flavi, Fumigati, Nidulantes, Nigri, and Terrei. The most frequently isolated section was Fumigati with 39 strains, followed by Nigri with 28 strains. Aspergillus fumigatus and A. welwitschiae were the predominant species. Ten A. fumigatus and four cryptic strains, four A. niger cryptic strains, two A. flavus, and four A. terreus strains exceeded epidemiological cutoff values for azoles. Aspergillus tubingensis, A. pseudoviridinutans, A. lentulus, A. terreus, and N. hiratsukae showed low susceptibility to multi-azoles. Foods containing agricultural products were found to be contaminated with Aspergillus spp., with 65.3% of isolates having minimal inhibitory concentrations below epidemiological cutoff values. Additionally, some samples harbored azole-resistant strains of Aspergillus spp. Our study serves as a basis for elucidating the relationship between food, environment, and clinically important Aspergillus spp.
Collapse
Affiliation(s)
- Satomi Uehara
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Yumi Takahashi
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Keiko Iwakoshi
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health, Japan
| | - Yukari Nishino
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Kotono Wada
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Asuka Ono
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba MiCS, University of Tsukuba, Japan
| | - Takashi Chiba
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Keiko Yokoyama
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Insitute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku,Tokyo, Japan
| |
Collapse
|
14
|
Zhou S, Ismail MAI, Aimanianda V, de Hoog GS, Kang Y, Ahmed SA. Aflatoxin profiles of Aspergillus flavus isolates in Sudanese fungal rhinosinusitis. Med Mycol 2024; 62:myae034. [PMID: 38578660 PMCID: PMC11040519 DOI: 10.1093/mmy/myae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
Aspergillus flavus is a commonly encountered pathogen responsible for fungal rhinosinusitis (FRS) in arid regions. The species is known to produce aflatoxins, posing a significant risk to human health. This study aimed to investigate the aflatoxin profiles of A. flavus isolates causing FRS in Sudan. A total of 93 clinical and 34 environmental A. flavus isolates were studied. Aflatoxin profiles were evaluated by phenotypic (thin-layer and high-performance chromatography) and genotypic methods at various temperatures and substrates. Gene expression of aflD and aflR was also analyzed. A total of 42/93 (45%) isolates were positive for aflatoxin B1 and AFB2 by HPLC. When the incubation temperature changed from 28°C to 36°C, the number of positive isolates decreased to 41% (38/93). Genetic analysis revealed that 85% (79/93) of clinical isolates possessed all seven aflatoxin biosynthesis-associated genes, while 27% (14/51) of non-producing isolates lacked specific genes (aflD/aflR/aflS). Mutations were observed in aflS and aflR genes across both aflatoxin-producers and non-producers. Gene expression of aflD and aflR showed the highest expression between the 4th and 6th days of incubation on the Sabouraud medium and on the 9th day of incubation on the RPMI (Roswell Park Memorial Institute) medium. Aspergillus flavus clinical isolates demonstrated aflatoxigenic capabilities, influenced by incubation temperature and substrate. Dynamic aflD and aflR gene expression patterns over time enriched our understanding of aflatoxin production regulation. The overall findings underscored the health risks of Sudanese patients infected by this species, emphasizing the importance of monitoring aflatoxin exposure.
Collapse
Affiliation(s)
- Shaoqin Zhou
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, 561113, Guiyang, China
- Radboudumc-CWZ Centre of Expertise for Mycology, 6525 GA, Nijmegen, The Netherlands
| | - Mawahib A I Ismail
- Mycology Reference Laboratory, University of Khartoum, 11115, Khartoum, Sudan
| | - Vishukumar Aimanianda
- Immunobiology of Aspergillus, Institut Pasteur, Universite ´ Paris Cite ´ 75015, Paris, France
| | - G Sybren de Hoog
- Radboudumc-CWZ Centre of Expertise for Mycology, 6525 GA, Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214 GP, Hilversum, The Netherlands
| | - Yingqian Kang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, 561113, Guiyang, China
| | - Sarah A Ahmed
- Radboudumc-CWZ Centre of Expertise for Mycology, 6525 GA, Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214 GP, Hilversum, The Netherlands
| |
Collapse
|
15
|
Garcia-Bustos V, Acosta-Hernández B, Cabañero-Navalón MD, Ruiz-Gaitán AC, Pemán J, Rosario Medina I. Potential Fungal Zoonotic Pathogens in Cetaceans: An Emerging Concern. Microorganisms 2024; 12:554. [PMID: 38543604 PMCID: PMC10972490 DOI: 10.3390/microorganisms12030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/12/2024] Open
Abstract
Over 60% of emerging infectious diseases in humans are zoonotic, often originating from wild animals. This long-standing ecological phenomenon has accelerated due to human-induced environmental changes. Recent data show a significant increase in fungal infections, with 6.5 million cases annually leading to 3.7 million deaths, indicating their growing impact on global health. Despite the vast diversity of fungal species, only a few are known to infect humans and marine mammals. Fungal zoonoses, especially those involving marine mammals like cetaceans, are of global public health concern. Increased human-cetacean interactions, in both professional and recreational settings, pose risks for zoonotic disease transmission. This review focuses on the epidemiology, clinical manifestations, and zoonotic potential of major fungal pathogens shared in humans and cetaceans, highlighting their interspecies transmission capability and the challenges posed by antifungal resistance and environmental changes. It underscores the need for enhanced awareness and preventative measures in high-risk settings to protect public health and marine ecosystems.
Collapse
Affiliation(s)
- Victor Garcia-Bustos
- University Institute of Animal Health and Food Security (ULPGC-IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain;
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (M.D.C.-N.); (A.C.R.-G.); (J.P.)
| | - Begoña Acosta-Hernández
- University Institute of Animal Health and Food Security (ULPGC-IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain;
| | - Marta Dafne Cabañero-Navalón
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (M.D.C.-N.); (A.C.R.-G.); (J.P.)
| | - Alba Cecilia Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (M.D.C.-N.); (A.C.R.-G.); (J.P.)
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (M.D.C.-N.); (A.C.R.-G.); (J.P.)
| | - Inmaculada Rosario Medina
- University Institute of Animal Health and Food Security (ULPGC-IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain;
| |
Collapse
|
16
|
Birnie JD, Ahmed T, Kidd SE, Westall GP, Snell GI, Peleg AY, Morrissey CO. Multi-Locus Microsatellite Typing of Colonising and Invasive Aspergillus fumigatus Isolates from Patients Post Lung Transplantation and with Chronic Lung Disease. J Fungi (Basel) 2024; 10:95. [PMID: 38392766 PMCID: PMC10889758 DOI: 10.3390/jof10020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Aspergillus fumigatus can cause different clinical manifestations/phenotypes in lung transplant (LTx) recipients and patients with chronic respiratory diseases. It can also precipitate chronic lung allograft dysfunction (CLAD) in LTx recipients. Many host factors have been linked with the severity of A. fumigatus infection, but little is known about the contribution of different A. fumigatus strains to the development of different phenotypes and CLAD. We used multi-locus microsatellite typing (MLMT) to determine if there is a relationship between strain (i.e., genotype) and phenotype in 60 patients post LTx or with chronic respiratory disease across two time periods (1 November 2006-31 March 2009 and 1 November 2015-30 June 2017). The MLMT (STRAf) assay was highly discriminatory (Simpson's diversity index of 0.9819-0.9942) with no dominant strain detected. No specific genotype-phenotype link was detected, but several clusters and related strains were associated with invasive aspergillosis (IA) and colonisation in the absence of CLAD. Host factors were linked to clinical phenotypes, with prior lymphopenia significantly more common in IA cases as compared with A. fumigatus-colonised patients (12/16 [75%] vs. 13/36 [36.1%]; p = 0.01), and prior Staphylococcus aureus infection was a significant risk factor for the development of IA (odds ratio 13.8; 95% confidence interval [2.01-279.23]). A trend toward a greater incidence of CMV reactivation post-A. fumigatus isolation was observed (0 vs. 5; p = 0.06) in LTx recipients. Further research is required to determine the pathogenicity and immunogenicity of specific A. fumigatus strains.
Collapse
Affiliation(s)
- Joshua D Birnie
- University Hospital Geelong, Barwon Health, Geelong, VIC 3220, Australia
| | - Tanveer Ahmed
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, SA 5000, Australia
| | - Glen P Westall
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Gregory I Snell
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
| | - Catherine Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
17
|
Gao L, Xia X, Gong X, Zhang H, Sun Y. In vitro interactions of proton pump inhibitors and azoles against pathogenic fungi. Front Cell Infect Microbiol 2024; 14:1296151. [PMID: 38304196 PMCID: PMC10831725 DOI: 10.3389/fcimb.2024.1296151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction Azole resistance has been increasingly reported and become an issue for clinical managements of invasive mycoses. New strategy with combination therapy arises as a valuable and promising alternative option. The aim of the present study is to investigate the in vitro combinational effect of proton pump inhibitors (PPIs) and azoles against pathogenic fungi. Methods In vitro interactions of PPIs including omeprazole (OME), lansoprazole (LAN), pantoprazole (PAN), and rabeprazole (RAB), and commonly used azoles including itraconazole (ITC), posaconazole (POS), voriconazole (VRC) and fluconazole (FLC), were investigated via broth microdilution chequerboard procedure adapted from the CLSI M27-A3 and M38-A2. A total of 67 clinically isolated strains, namely 27 strains of Aspergillus spp., 16 strains of Candida spp., and 24 strains of dematiaceous fungi, were studied. C. parapsilosis (ATCC 22019) and A. flavus (ATCC 204304) was included to ensure quality control. Results PPIs individually did not exert any significant antifungal activity. The combination of OME with ITC, POS, or VRC showed synergism against 77.6%, 86.6%, and 4% strains of tested pathogenic fungi, respectively, while synergism of OME/FLC was observed in 50% strains of Candida spp. Synergism between PAN and ITC, POS, or VRC was observed against 47.8%, 77.6% and 1.5% strains of tested fungi, respectively, while synergism of PNA/FLC was observed in 50% strains of Candida spp. Synergism of LAN with ITC, POS, or VRC was observed against 86.6%, 86.6%, and 3% of tested strains, respectively, while synergism of LAN/FLC was observed in 31.3% strains of Candida spp. Synergy of the combination of RAB with ITC, POS, or VRC was observed against 25.4%, 64.2%, and 4.5% of tested strains, respectively, while synergism of RAB/FLC was observed in 12.5% of Candida spp.. Among PPIs, synergism was least observed between RAB and triazoles, while among triazoles, synergism was least observed between VRC and PPIs. Among species, synergy was much more frequently observed in Aspergillus spp. and dematiaceous fungi as compared to Candida spp. Antagonism between PPIs with ITC or VRC was occasionally observed in Aspergillus spp. and dematiaceous fungi. It is notable that PPIs combined with azoles showed synergy against azole resistant A. fumigatus, and resulted in category change of susceptibility of ITC and POS against Candida spp. Discussion The results suggested that PPIs combined with azoles has the potential to enhance the susceptibilities of azoles against multiple pathogenic fungi and could be a promising strategy to overcome azole resistance issues. However, further investigations are warranted to study the combinational efficacy in more isolates and more species, to investigate the underlying mechanism of interaction and to evaluate the potential for concomitant use of these agents in human.
Collapse
Affiliation(s)
- Lujuan Gao
- Department of Dermatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuqiong Xia
- Department of Dermatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Gong
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Heng Zhang
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
18
|
Álvarez Duarte E, Cepeda N, Miranda J. Azole resistance in a clinical isolate of Aspergillus fumigatus from Chile. Rev Iberoam Micol 2024; 41:7-12. [PMID: 39304433 DOI: 10.1016/j.riam.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 04/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Aspergillus fumigatus is a ubiquitous opportunistic pathogen. This fungus can acquire resistance to azole antifungals due to different mutations in the cyp51A gene. Azole resistance has been observed in several continents and appears to be a globally distributed phenomenon. Specific mutations in cyp51A that lead to azole resistance, such as the TR34/L98H modification, have been reported. AIMS To evaluate the azole resistance in clinically isolated A. fumigatus strains. METHODS As a result of our passive surveillance strategy, a total of 23 A. fumigatus isolates from clinical origins were identified through a phylogenetic analysis using the ITS region and β-tubulin gene fragments, and typed with the CSP microsatellite. Azole susceptibility profiles were performed by disk diffusion and microdilution broth methodologies according to CLSI guidelines. RESULTS Here we describe, for the first time, the detection of azole-resistant A. fumigatus isolates from clinical origins in Chile with mutations in the cyp51A gene. In addition to the TR34/L98H mutation, one isolate exhibited an F46Y/M172V/E427K-type mutation. Furthermore, microsatellite typing based on cell surface protein (CSP) was performed, showing the t02 (TR34/L98H), t15 (F46Y/M172V/E427K) and t01 (susceptible clinical isolates) genotypes. CONCLUSIONS Our study demonstrates the presence of mutations related to azole resistance in A. fumigatus strains isolated from clinical samples in Chile. In order to obtain information that may help to tackle the spread of antifungal resistance among A. fumigatus populations, and to ensure the efficacy of future treatments against aspergillosis, a further research is necessary.
Collapse
Affiliation(s)
| | - Nicolás Cepeda
- Clinical Chemistry and Hematology, Hospital del Salvador, Chile
| | - Jean Miranda
- Laboratorio Micología, ICBM - F. de Medicina, Universidad de Chile, Chile
| |
Collapse
|
19
|
Lee JW, Lee W, Perera RH, Lim YW. Long-Term Investigation of Marine-Derived Aspergillus Diversity in the Republic of Korea. MYCOBIOLOGY 2023; 51:436-444. [PMID: 38179120 PMCID: PMC10763834 DOI: 10.1080/12298093.2023.2279342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 01/06/2024]
Abstract
Aspergillus species play a crucial role in terrestrial environments as degraders and are well known for producing various secondary metabolites. Recently, Aspergillus species have been discovered in marine environments, exhibiting adaptability to high salinity and producing diverse secondary metabolites with valuable properties. However, limited research has focused on their marine diversity, leading to inaccurate species identification. The current study addresses this gap by investigating diverse marine habitats in the Republic of Korea, including sediment, seawater, seaweed, and marine animals. From three coasts of the Korean Peninsula, 472 Aspergillus strains were isolated from the various marine habitats. A total of 41 species were accurately identified using multigenetic markers: internal transcribed spacer, calmodulin, and β-tubulin. The findings underscore the importance of accurate identification and provide a basis for elucidating the functional role of marine-derived Aspergillus species in marine ecosystems.
Collapse
Affiliation(s)
- Jun Won Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Wonjun Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Rekhani Hansika Perera
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| |
Collapse
|
20
|
Pyrri I, Stamatelopoulou A, Pardali D, Maggos T. The air and dust invisible mycobiome of urban domestic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166228. [PMID: 37591388 DOI: 10.1016/j.scitotenv.2023.166228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Air and dust harbor a dynamic fungal biome that interacts with residential environment inhabitants usually with negative implications for human health. Fungal air and dust synthesis were investigated in houses across the Athens Metropolitan area. Active and passive culture dependent methods were employed to sample airborne and dustborne fungi for two sampling periods, one in winter and the other in summer. A core mycobiome was revealed both in air and dust constituted of the dominant Penicillium, Cladosporium, Aspergillus, Alternaria and yeasts and accompanied by several common and rare components. Penicillium and Aspergillus diversity included 22 cosmopolitan species, except the rarely found Penicillium citreonigrum, P. corylophilum, P. pagulum and Talaromyces albobiverticillius which are reported for the first time from Greece. Fungal concentrations were significantly higher during summer for both air and dust. Excessive levels of inhalable aerosol constituted mainly by certain Penicillium species were associated with indoor emission sources as these species are household molds related to food commodities rot. The ambient air fungal profile is a determinant factor of indoor fungal aerosol which subsequently shapes dustborne mycobiota. Indoor fungi can be useful bioindicators for indoor environment quality and at the same time provide insight to indoor fungal ecology.
Collapse
Affiliation(s)
- Ioanna Pyrri
- National and Kapodistrian University of Athens, Department of Biology, Section of Ecology and Systematics, Panepistimioupoli, 15784 Athens, Greece.
| | - Asimina Stamatelopoulou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, Atmospheric Chemistry and Innovative Technology Laboratory, NCSR Demokritos, Athens, Greece
| | - Dimitra Pardali
- National and Kapodistrian University of Athens, Department of Physics, Section of Applied Physics, Panepistimioupoli, 15784 Athens, Greece
| | - Thomas Maggos
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, Atmospheric Chemistry and Innovative Technology Laboratory, NCSR Demokritos, Athens, Greece
| |
Collapse
|
21
|
Ważny R, Jędrzejczyk RJ, Domka A, Pliszko A, Kosowicz W, Githae D, Rozpądek P. How does metal soil pollution change the plant mycobiome? Environ Microbiol 2023; 25:2913-2930. [PMID: 37127295 DOI: 10.1111/1462-2920.16392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms play a key role in plant adaptation to the environment. The aim of this study was to evaluate the effect of toxic metals present in the soil on the biodiversity of plant-related, endophytic mycobiota. The mycobiome of plants and soil from a Zn-Pb heap and a metal-free ruderal area were compared via Illumina sequencing of the ITS1 rDNA. The biodiversity of plants and fungi inhabiting mine dump substrate was lower than that of the metal free site. In the endosphere of Arabidopsis arenosa from the mine dump the number of endophytic fungal taxa was comparable to that in the reference population, but the community structure significantly differed. Agaricomycetes was the most notably limited class of fungi. The results of plant mycobiota evaluation from the field study were verified in terms of the role of toxic metals in plant endophytic fungi community assembly in a reconstruction experiment. The results presented in this study indicate that metal toxicity affects the structure of the plant mycobiota not by changing the pool of microorganisms available in the soil from which the fungal symbionts are recruited but most likely by altering plant and fungi behaviour and the organisms' preferences towards associating in symbiotic relationships.
Collapse
Affiliation(s)
- Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Agnieszka Domka
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- W. Szafer Institute of Botany Polish Academy of Sciences, Kraków, Poland
| | - Artur Pliszko
- Institute of Botany, Jagiellonian University in Kraków, Kraków, Poland
| | - Weronika Kosowicz
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Kraków, Poland
| | - Dedan Githae
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Kraków, Poland
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
22
|
Álvarez-Pérez S, García ME, Martínez-Nevado E, Blanco JL. Presence of Aspergillus fumigatus with the TR 34/L98H Cyp51A mutation and other azole-resistant aspergilli in the air of a zoological park. Res Vet Sci 2023; 164:104993. [PMID: 37657393 DOI: 10.1016/j.rvsc.2023.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Antifungal-resistant fungi, including Aspergillus fumigatus and other Aspergillus species, pose an urgent threat to human and animal health. Furthermore, the environmental route of azole resistance selection due to the widespread use of azole fungicides in crop protection and other applications is a major public health issue. Although environmental surveillance of fungi is frequently performed in many zoological parks and wildlife rehabilitation centers, the antifungal susceptibility of recovered isolates is only rarely analyzed, which precludes a clear assessment of the threat posed by these fungi to captive animals. In this study, we assessed the presence of airborne azole-resistant Aspergillus spp., including the so-called 'cryptic species' (i.e., species which are phenotypically similar to more well-known aspergilli but clearly constitute different phylogenetic lineages) in a zoological park located in the city of Madrid, Spain. In general, our results revealed a low prevalence A. fumigatus and cryptic aspergilli with decreased susceptibility to azoles. However, we detected an A. fumigatus isolate with the TR34/L98H mutation in the gene encoding the lanosterol 14α-demethylase (Cyp51A), consisting of a tandem repeat of 34 base pairs in the promoter region and a lysine to histidine substitution at codon 98. Notably, this TR34/L98H mutation has been linked to the environmental route of azole resistance selection, thus highlighting the 'One Health' dimension of the emerging problem of antifungal resistance. In this context, continuous environmental surveillance of azole-resistant aspergilli in zoological parks and other similar animal facilities is recommended.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain.
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | | | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| |
Collapse
|
23
|
Trápaga MR, Poester VR, Mousquer MA, de Souza RP, Rafael LA, Bonel J, Melo AM, Reis AG, de Faria RO, Stevens DA, Nogueira CEW, Xavier MO. Systemic aspergillosis associated with acute enterocolitis in foals. J Mycol Med 2023; 33:101433. [PMID: 37708695 DOI: 10.1016/j.mycmed.2023.101433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/12/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Aspergillosis is an uncommon disease in horses, but it can be fatal. We report two cases of systemic aspergillosis in foals that occurred in a short period in the same region of southern Brazil. In addition, a literature review of similar cases was also performed. Risk factors were attributed to an immunodepression by primary enterocolitis and corticosteroid treatment, the damage in the epithelium, and multiple antibacterial treatments, which allowed local fungal proliferation, tissue invasion and spread of infection, leading to death. Since the antemortem diagnosis of aspergillosis in foals is difficult, our report alerts equine veterinarians regarding the importance of suspecting and investigating fungal co-infections in complicated cases of enterocolitis.
Collapse
Affiliation(s)
- Mariana Rodrigues Trápaga
- Laboratory of Mycology, Faculty of Medicine, Federal University of Rio Grande, 96200-400 Rio Grande, RS, Brazil; Post-graduate Program in Health Sciences, Federal University of Rio Grande 96200-400 Rio Grande, RS, Brazil
| | - Vanice Rodrigues Poester
- Laboratory of Mycology, Faculty of Medicine, Federal University of Rio Grande, 96200-400 Rio Grande, RS, Brazil; Post-graduate Program in Health Sciences, Federal University of Rio Grande 96200-400 Rio Grande, RS, Brazil
| | - Mariana Andrade Mousquer
- Hospital of Veterinary Clinics, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Rafaela Pinto de Souza
- Hospital of Veterinary Clinics, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Leandro Américo Rafael
- Hospital of Veterinary Clinics, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Josiane Bonel
- Hospital of Veterinary Clinics, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Angelita Gomes Reis
- Hospital of Veterinary Clinics, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Renata Osorio de Faria
- Hospital of Veterinary Clinics, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - David A Stevens
- California Institute for Medical Research, San Jose, California, United States; Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, California, United States
| | | | - Melissa Orzechowski Xavier
- Laboratory of Mycology, Faculty of Medicine, Federal University of Rio Grande, 96200-400 Rio Grande, RS, Brazil; Post-graduate Program in Health Sciences, Federal University of Rio Grande 96200-400 Rio Grande, RS, Brazil.
| |
Collapse
|
24
|
Djenontin E, Costa JM, Mousavi B, Nguyen LDN, Guillot J, Delhaes L, Botterel F, Dannaoui E. The Molecular Identification and Antifungal Susceptibility of Clinical Isolates of Aspergillus Section Flavi from Three French Hospitals. Microorganisms 2023; 11:2429. [PMID: 37894087 PMCID: PMC10609271 DOI: 10.3390/microorganisms11102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Aspergillus flavus is a cosmopolitan mold with medical, veterinary, and agronomic concerns. Its morphological similarity to other cryptic species of the Flavi section requires molecular identification techniques that are not routinely performed. For clinical isolates of Aspergillus section Flavi, we present the molecular identification, susceptibility to six antifungal agents, and clinical context of source patients. (2) Methods: One hundred forty fungal clinical isolates were included in the study. These isolates, recovered over a 15-year period (2001-2015), were identified based on their morphological characteristics as belonging to section Flavi. After the subculture, sequencing of a part of the β-tubulin and calmodulin genes was performed, and resistance to azole antifungals was screened on agar plates containing itraconazole and voriconazole. Minimum inhibitory concentrations were determined for 120 isolates by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution method. (3) Results: Partial β-tubulin and calmodulin sequences analysis showed that 138/140 isolates were A. flavus sensu stricto, 1 isolate was A. parasiticus/sojae, and 1 was A. nomiae. Many of the isolates came from samples collected in the context of respiratory tract colonization. Among probable or proven aspergillosis, respiratory infections were the most frequent, followed by ENT infections. Antifungal susceptibility testing was available for isolates (n = 120, all A. flavus ss) from one hospital. The MIC range (geometric mean MIC) in mg/L was 0.5-8 (0.77), 0.5-8 (1.03), 0.125-2 (0.25), 0.03-2 (0.22), 0.25-8 (1.91), and 0.03-0.125 (0.061) for voriconazole, isavuconazole, itraconazole, posaconazole, amphotericin B, and caspofungin, respectively. Two (1.67%) isolates showed resistance to isavuconazole according to current EUCAST breakpoints with MICs at 8 mg/L for isavuconazole and voriconazole. One of these two isolates was also resistant to itraconazole with MIC at 2 mg/L. (4) Conclusions: The present characterization of a large collection of Aspergillus belonging to the Flavi section confirmed that A. flavus ss is the predominant species. It is mainly implicated in respiratory and ENT infections. The emergence of resistance highlights the need to perform susceptibility tests on section Flavi isolates.
Collapse
Affiliation(s)
- Elie Djenontin
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
- Service de Parasitologie-Mycologie, Hôpital Universitaire Mondor, AP-HP, 8 Rue du Général Sarrail, 94010 Créteil, France
| | - Jean-Marc Costa
- Laboratoire CERBA, 11 Rue de l’Équerre, 95310 Saint-Ouen-l’Aumône, France;
| | - Bita Mousavi
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
| | | | - Jacques Guillot
- Unité pédagogique de Dermatologie, Parasitologie, Mycologie, Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation Nantes Atlantique, Oniris, 44300 Nantes, France;
| | - Laurence Delhaes
- Laboratoire de Parasitologie-Mycologie, CNR des Aspergilloses Chroniques—CHU de Bordeaux, INSERM U1045—Univ. Bordeaux, 33000 Bordeaux, France;
| | - Françoise Botterel
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
- Service de Parasitologie-Mycologie, Hôpital Universitaire Mondor, AP-HP, 8 Rue du Général Sarrail, 94010 Créteil, France
| | - Eric Dannaoui
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
- Faculté de Médecine, Université Paris Cité, 75006 Paris, France
- Unité de Parasitologie-Mycologie, Hôpital Necker Enfants Malades, AP-HP, 149 Rue de Sèvres, 75015 Paris, France
| |
Collapse
|
25
|
Brito Devoto T, Hermida-Alva K, Posse G, Finquelievich JL, García-Effrón G, Cuestas ML. Antifungal susceptibility patterns for Aspergillus, Scedosporium, and Exophiala isolates recovered from cystic fibrosis patients against amphotericin B, and three triazoles and their impact after long-term therapies. Med Mycol 2023; 61:myad089. [PMID: 37591630 DOI: 10.1093/mmy/myad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023] Open
Abstract
In cystic fibrosis (CF) patients, fungal colonization of the respiratory tract is frequently found. Aspergillus fumigatus, Scedosporium genus, and Exophiala dermatitidis are the most commonly isolated moulds from the respiratory tract secretions of CF patients. The aim of this 5-year surveillance study was to identify trends in species distribution and susceptibility patterns of 212 mould strains identified as Aspergillus spp., Scedosporium spp., and Exophiala spp., isolated from sputum of 63 CF patients who received long-term therapy with itraconazole (ITR) and/or voriconazole (VRC). The Aspergillus isolates were identified as members of the sections Fumigati (n = 130), Flavi (n = 22), Terrei (n = 20), Nigri (n = 8), Nidulantes (n = 1), and Usti (n = 1). Among the 16 species of the genus Scedosporium, 9 were S. apiospermum, 3 S. aurantiacum, and 4 S. boydii. Among the 14 Exophiala species, all were molecularly identified as E. dermatitidis. Overall, 94% (15/16) of Scedosporium spp., 50% (7/14) of E. dermatitidis, and 7.7% (14/182) of Aspergillus spp. strains showed high MIC values (≥8 µg/ml) for at least one antifungal. Particularly, 8.9% (19/212) of isolates showed high MIC values for amphotericin B, 11.7% (25/212) for ITR, 4.2% (9/212) for VRC, and 3.3% (7/212) for posaconazole. In some cases, such as some A. fumigatus and E. dermatitidis isolates recovered from the same patient, susceptibility to antifungal azoles decreased over time. We show that the use of azoles for a long time in CF patients causes the selection/isolation of mould strains with higher MIC values.
Collapse
Affiliation(s)
- Tomás Brito Devoto
- Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Katherine Hermida-Alva
- Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Gladys Posse
- Laboratorio de Micología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Jorge L Finquelievich
- Centro de Micología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo García-Effrón
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina
| | - María L Cuestas
- Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
26
|
Moura-Mendes J, Cazal-Martínez CC, Rojas C, Ferreira F, Pérez-Estigarribia P, Dias N, Godoy P, Costa J, Santos C, Arrua A. Species Identification and Mycotoxigenic Potential of Aspergillus Section Flavi Isolated from Maize Marketed in the Metropolitan Region of Asunción, Paraguay. Microorganisms 2023; 11:1879. [PMID: 37630439 PMCID: PMC10458825 DOI: 10.3390/microorganisms11081879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Zea mays var. amylacea and Zea mays var. indurata are maize ecotypes from Paraguay. Aspergillus section Flavi is the main spoilage fungus of maize under storage conditions. Due to its large intraspecific genetic variability, the accurate identification of this fungal taxonomic group is difficult. In the present study, potential mycotoxigenic strains of Aspergillus section Flavi isolated from Z. mays var. indurata and Z. mays var. amylacea that are marketed in the metropolitan region of Asunción were identified by a polyphasic approach. Based on morphological characters, 211 isolates were confirmed to belong to Aspergillus section Flavi. A subset of 92 strains was identified as Aspergillus flavus by mass spectrometry MALDI-TOF and the strains were classified by MALDI-TOF MS into chemotypes based on their aflatoxins and cyclopiazonic acid production. According to the partial sequencing of ITS and CaM genes, a representative subset of 38 A. flavus strains was confirmed. Overall, 75 A. flavus strains (86%) were characterized as producers of aflatoxins. The co-occurrence of at least two mycotoxins (AF/ZEA, FUM/ZEA, and AF/ZEA/FUM) was detected for five of the Z. mays samples (63%). Considering the high mycological bioburden and mycotoxin contamination, maize marketed in the metropolitan region of Asunción constitutes a potential risk to food safety and public health and requires control measures.
Collapse
Affiliation(s)
- Juliana Moura-Mendes
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
| | - Cinthia C. Cazal-Martínez
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Cinthia Rojas
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Francisco Ferreira
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Pastor Pérez-Estigarribia
- Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
- Facultad de Medicina, Universidad Sudamericana, Pedro Juan Caballero 130112, Paraguay
| | - Nathalia Dias
- BIOREN-UFRO Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Patrício Godoy
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Jéssica Costa
- Departamento de Biologia, Instituto de Ciências Biológicas-ICB, Universidade Federal do Amazonas, Av. Rodrigo Otávio Jordão Ramos 3000, Bloco 01, Manaus 69077-000, Brazil;
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile
| | - Andrea Arrua
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| |
Collapse
|
27
|
Salehi Z, Sharifynia S, Jamzivar F, Shams-Ghahfarokhi M, Poorabdollah M, Abtahian Z, Nasiri N, Marjani M, Moniri A, Salehi M, Tabarsi P, Razzaghi-Abyaneh M. Clinical epidemiology of pulmonary aspergillosis in hospitalized patients and contribution of Cyp51A, Yap1, and Cdr1B mutations to voriconazole resistance in etiologic Aspergillus species. Eur J Clin Microbiol Infect Dis 2023:10.1007/s10096-023-04608-7. [PMID: 37142789 DOI: 10.1007/s10096-023-04608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Pulmonary aspergillosis is a life-threatening fungal infection with worldwide distribution. In the present study, clinical epidemiology of pulmonary aspergillosis and antifungal susceptibility of etiologic Aspergillus species were evaluated in one-hundred fifty patients with special focus on the frequency of voriconazole resistance. All the cases were confirmed by the clinical pictures, laboratory findings, and isolation of etiologic Aspergillus species which belonged to two major species, i.e., A. flavus and A. fumigatus. Seventeen isolates displayed voriconazole MIC greater than or equal to the epidemiological cutoff value. Expression of cyp51A, Cdr1B, and Yap1 genes was analyzed in voriconazole-intermediate/resistant isolates. In A. flavus, Cyp51A protein sequencing showed the substitutions T335A and D282E. In the Yap1 gene, A78C replacement led to Q26H amino acid substitution that was not reported previously in A. flavus resistant to voriconazole. No mutations associated with voriconazole resistance were found in the three genes of A. fumigatus. The expression of Yap1 was higher than that of two other genes in both A. flavus and A. fumigatus. Overall, voriconazole-resistant strains of both A. fumigatus and A. flavus demonstrated overexpression of Cdr1B, Cyp51A, and Yap1 genes compared to voriconazole-susceptible strains. Although there are still ambiguous points about the mechanisms of azole resistance, our results showed that mutations were not present in majority of resistant and intermediate isolates, while all of these isolates showed overexpression in all three genes studied. As a conclusion, it seems that the main reason of the emergence of mutation in voriconazole-resistant isolates of A. flavus and A. fumigatus is previous or prolonged exposure to azoles.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Mycology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Somayeh Sharifynia
- Clinical Tuberculosis and Epidemiology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Mihan Poorabdollah
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Abtahian
- Clinical Tuberculosis and Epidemiology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naser Nasiri
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moniri
- Clinical Tuberculosis and Epidemiology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Research Center for Antibiotic Stewardship & Antimicrobial Resistance, Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
28
|
Vásquez-Ocmín PG, Marti G, Gadea A, Cabanac G, Vásquez-Briones JA, Casavilca-Zambrano S, Ponts N, Jargeat P, Haddad M, Bertani S. Metabotyping of Andean pseudocereals and characterization of emerging mycotoxins. Food Chem 2023; 407:135134. [PMID: 36527946 DOI: 10.1016/j.foodchem.2022.135134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Pseudocereals are best known for three crops derived from the Andes: quinoa (Chenopodium quinoa), canihua (C. pallidicaule), and kiwicha (Amaranthus caudatus). Their grains are recognized for their nutritional benefits; however, there is a higher level of polyphenism. Meanwhile, the chemical food safety of pseudocereals remains poorly documented. Here, we applied untargeted and targeted metabolomics approaches by LC-MS to achieve both: i) a comprehensive chemical mapping of pseudocereal samples collected in the Andes; and ii) a quantification of their contents in emerging mycotoxins. An inventory of the fungal community was also realized to better know the fungi present in these grains. Metabotyping permitted to add new insights into the chemotaxonomy of pseudocereals, confirming the previously established phylotranscriptomic clades. Sixteen samples from Peru (out of 27) and one from France (out of one) were contaminated with Beauvericin, an emerging mycotoxin. Several mycotoxigenic fungi were detected, including Aspergillus sp., Penicillium sp., and Alternaria sp.
Collapse
Affiliation(s)
- Pedro G Vásquez-Ocmín
- UMR 152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France; International Joint Laboratory of Molecular Anthropological Oncology, IRD, INEN, Lima, Peru.
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales (UMR 5546), CNRS, Université de Toulouse, Toulouse, France; MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Alice Gadea
- UMR 152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | - Guillaume Cabanac
- UMR 5505 IRIT, CNRS, INP, UPS, Université de Toulouse, Toulouse 31400, France
| | | | - Sandro Casavilca-Zambrano
- International Joint Laboratory of Molecular Anthropological Oncology, IRD, INEN, Lima, Peru; Faculdad de Ciencias de la Salud, Universidad de Huánuco, Huánuco, Peru; Banco de Tejidos Tumorales, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Nadia Ponts
- International Joint Laboratory of Molecular Anthropological Oncology, IRD, INEN, Lima, Peru; UR 1264 MYCSA, INRAE, Villenave d'Ornon, France
| | - Patricia Jargeat
- UMR 5174 EDB, CNRS, IRD, UPS, Université de Toulouse, 31062 Toulouse, France
| | - Mohamed Haddad
- UMR 152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France; International Joint Laboratory of Molecular Anthropological Oncology, IRD, INEN, Lima, Peru
| | - Stéphane Bertani
- UMR 152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France; International Joint Laboratory of Molecular Anthropological Oncology, IRD, INEN, Lima, Peru.
| |
Collapse
|
29
|
Arreguin-Perez CA, Miranda-Miranda E, Folch-Mallol J, Ferrara-Tijera E, Cossio-Bayugar R. Complete genome sequence dataset of enthomopathogenic Aspergillus flavus isolated from a natural infection of the cattle-tick Rhipicephalus microplus. Data Brief 2023; 48:109053. [PMID: 37006402 PMCID: PMC10051017 DOI: 10.1016/j.dib.2023.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
As the most important bovine ectoparasite, the southern cattle tick Rhipicephalus microplus transmits lethal cattle diseases such as babesiosis and anaplasmosis, costing the global livestock industry billions of dollars annually. To control cattle ticks, preventive treatment of cattle with pesticides is a common practice; however, after decades of chemical treatment, pesticide resistance has arisen in cattle ticks, rendering most formulations ineffective over time. Facing the perspective of running out of effective chemical treatments against R. microplus, research on biocontrol alternatives is necessary. Acaro-pathogenic microorganisms isolated from different developmental stages of R. microplus offer potential as biocontrol agents. Aspergillus flavus strain INIFAP-2021, isolated from naturally infected cattle ticks, produced high levels of mobility and mortality in the tick population during experimental infections. The whole genome of the fungi was sequenced using the DNBSEQ platform by BGI. The genome was assembled using SOAPaligner, and A. flavus NRRL3357 was used as the reference genome; the complete genome contained eight pairs of chromosomes and 36.9 Mb with a GC content of 48.03%, exhibiting 11482 protein-coding genes. The final genome assembly was deposited at GenBank as a bio project under accession number PRJNA758689, and supplementary material is accessible through Mendeley DOI: 10.17632/mt8yxch6mz.1.
Collapse
Affiliation(s)
- Cesar A. Arreguin-Perez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad del INIFAP. Boulevard Cuauhnahuac No. 8534, Jiutepec, Morelos 62574, Mexico
- Centro de Investigaciones en Biotecnología de la Universidad Autónoma del Estado de Morelos Campus Cuernavaca, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal 510–3, Cuernavaca, Morelos 62210, Mexico
| | - Estefan Miranda-Miranda
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad del INIFAP. Boulevard Cuauhnahuac No. 8534, Jiutepec, Morelos 62574, Mexico
| | - Jorge Folch-Mallol
- Centro de Investigaciones en Biotecnología de la Universidad Autónoma del Estado de Morelos Campus Cuernavaca, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal 510–3, Cuernavaca, Morelos 62210, Mexico
| | - Eduardo Ferrara-Tijera
- Servicio Nacional de Sanidad, Inocuidad y Calidad, Secretaria de Agricultura y Desarrollo Rural (SADER). Boulevard Cuauhnahuac No. 8534, Jiutepec, Morelos 62574, Mexico
| | - Raquel Cossio-Bayugar
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad del INIFAP. Boulevard Cuauhnahuac No. 8534, Jiutepec, Morelos 62574, Mexico
- Corresponding author.
| |
Collapse
|
30
|
Comparison of Multi-locus Genotypes Detected in Aspergillus fumigatus Isolated from COVID Associated Pulmonary Aspergillosis (CAPA) and from Other Clinical and Environmental Sources. J Fungi (Basel) 2023; 9:jof9030298. [PMID: 36983466 PMCID: PMC10056896 DOI: 10.3390/jof9030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Aspergillus fumigatus is a saprophytic fungus, ubiquitous in the environment and responsible for causing infections, some of them severe invasive infections. The high morbidity and mortality, together with the increasing burden of triazole-resistant isolates and the emergence of new risk groups, namely COVID-19 patients, have raised a crescent awareness of the need to better comprehend the dynamics of this fungus. The understanding of the epidemiology of this fungus, especially of CAPA isolates, allows a better understanding of the interactions of the fungus in the environment and the human body. Methods: In the present study, the M3 markers of the STRAf assay were used as a robust typing technique to understand the connection between CAPA isolates and isolates from different sources (environmental and clinical-human and animal). Results: Of 100 viable isolates that were analyzed, 85 genotypes were found, 77 of which were unique. Some isolates from different sources presented the same genotype. Microsatellite genotypes obtained from A. fumigatus isolates from COVID+ patients were all unique, not being found in any other isolates of the present study or even in other isolates deposited in a worldwide database; these same isolates were heterogeneously distributed among the other isolates. Conclusions: Isolates from CAPA patients revealed high heterogeneity of multi-locus genotypes. A genotype more commonly associated with COVID-19 infections does not appear to exist.
Collapse
|
31
|
Andersson M(A, Vornanen-Winqvist C, Koivisto T, Varga A, Mikkola R, Kredics L, Salonen H. Composition of Culturable Microorganisms in Dusts Collected from Sport Facilities in Finland during the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12020339. [PMID: 36839611 PMCID: PMC9963892 DOI: 10.3390/pathogens12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Sport facilities represent extreme indoor environments due to intense cleaning and disinfection. The aim of this study was to describe the composition of the cultivated microbiota in dust samples collected in sport facilities during the COVID-19 pandemic. A dust sample is defined as the airborne dust sedimented on 0.02 m2 within 28 d. The results show that the microbial viable counts in samples of airborne dust (n = 9) collected from seven Finnish sport facilities during the pandemic contained a high proportion of pathogenic filamentous fungi and a low proportion of bacteria. The microbial viable counts were between 14 CFU and 189 CFU per dust sample. In seven samples from sport facilities, 20-85% of the microbial viable counts were fungi. Out of 123 fungal colonies, 47 colonies belonged to the potentially pathogenic sections of Aspergillus (Sections Fumigati, Nigri, and Flavi). Representatives of each section were identified as Aspergillus fumigatus, A. flavus, A. niger and A. tubingensis. Six colonies belonged to the genus Paecilomyces. In six samples of dust, a high proportion (50-100%) of the total fungal viable counts consisted of these potentially pathogenic fungi. A total of 70 isolates were considered less likely to be pathogenic, and were identified as Aspergillus section Nidulantes, Chaetomium cochliodes and Penicillium sp. In the rural (n = 2) and urban (n = 7) control dust samples, the microbial viable counts were >2000 CFU and between 44 CFU and 215 CFU, respectively, and consisted mainly of bacteria. The low proportion of bacteria and the high proportion of stress tolerant, potentially pathogenic fungi in the dust samples from sport facilities may reflect the influence of disinfection on microbial communities.
Collapse
Affiliation(s)
- Maria (Aino) Andersson
- Department of Civil Engineering, School of Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland
- Correspondence: ; Tel.: +358-405-508-934
| | - Camilla Vornanen-Winqvist
- Department of Civil Engineering, School of Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland
| | - Tuomas Koivisto
- Department of Civil Engineering, School of Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland
| | - András Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Raimo Mikkola
- Department of Civil Engineering, School of Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Heidi Salonen
- Department of Civil Engineering, School of Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland
- International Laboratory for Air Quality and Health, Faculty of Science, School of Earth & Atmospheric Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
32
|
Laut S, Poapolathep S, Piasai O, Sommai S, Boonyuen N, Giorgi M, Zhang Z, Fink-Gremmels J, Poapolathep A. Storage Fungi and Mycotoxins Associated with Rice Samples Commercialized in Thailand. Foods 2023; 12:487. [PMID: 36766016 PMCID: PMC9914209 DOI: 10.3390/foods12030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The study focused on the examination of the different fungal species isolated from commercial rice samples, applying conventional culture techniques, as well as different molecular and phylogenic analyses to confirm phenotypic identification. Additionally, the mycotoxin production and contamination were analyzed using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). In total, 40 rice samples were obtained covering rice berry, red jasmine rice, brown rice, germinated brown rice, and white rice. The blotting paper technique applied on the 5 different types of rice samples detected 4285 seed-borne fungal infections (26.8%) for 16,000 rice grains. Gross morphological data revealed that 19 fungal isolates belonged to the genera Penicillium/Talaromyces (18 of 90 isolates; 20%) and Aspergillus (72 of 90 isolates; 80%). To check their morphologies, molecular data (fungal sequence-based BLAST results and a phylogenetic tree of the combined ITS, BenA, CaM, and RPB2 datasets) confirmed the initial classification. The phylogenic analysis revealed that eight isolates belonged to P. citrinum and, additionally, one isolate each belonged to P. chermesinum, A. niger, A. fumigatus, and A. tubingensis. Furthermore, four isolates of T. pinophilus and one isolate of each taxon were identified as Talaromyces (T. radicus, T. purpureogenum, and T. islandicus). The results showed that A. niger and T. pinophilus were two commonly occurring fungal species in rice samples. After subculturing, ochratoxin A (OTA), generated by T. pinophilus code W3-04, was discovered using LC-MS/MS. In addition, the Fusarium toxin beauvericin was detected in one of the samples. Aflatoxin B1 or other mycotoxins, such as citrinin, trichothecenes, and fumonisins, were detected. These preliminary findings should provide valuable guidance for hazard analysis critical control point concepts used by commercial food suppliers, including the analysis of multiple mycotoxins. Based on the current findings, mycotoxin analyses should focus on A. niger toxins, including OTA and metabolites of T. pinophilus (recently considered a producer of emerging mycotoxins) to exclude health hazards related to the traditionally high consumption of rice by Thai people.
Collapse
Affiliation(s)
- Seavchou Laut
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Onuma Piasai
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Sujinda Sommai
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nattawut Boonyuen
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Mario Giorgi
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
33
|
Kidd SE, Abdolrasouli A, Hagen F. Fungal Nomenclature: Managing Change is the Name of the Game. Open Forum Infect Dis 2023; 10:ofac559. [PMID: 36632423 PMCID: PMC9825814 DOI: 10.1093/ofid/ofac559] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/18/2022] [Indexed: 01/09/2023] Open
Abstract
Fungal species have undergone and continue to undergo significant nomenclatural change, primarily due to the abandonment of dual species nomenclature in 2013 and the widespread application of molecular technologies in taxonomy allowing correction of past classification errors. These have effected numerous name changes concerning medically important species, but by far the group causing most concern are the Candida yeasts. Among common species, Candida krusei, Candida glabrata, Candida guilliermondii, Candida lusitaniae, and Candida rugosa have been changed to Pichia kudriavzevii, Nakaseomyces glabrata, Meyerozyma guilliermondii, Clavispora lusitaniae, and Diutina rugosa, respectively. There are currently no guidelines for microbiology laboratories on implementing changes, and there is ongoing concern that clinicians will dismiss or misinterpret laboratory reports using unfamiliar species names. Here, we have outlined the rationale for name changes across the major groups of clinically important fungi and have provided practical recommendations for managing change.
Collapse
Affiliation(s)
- Sarah E Kidd
- Correspondence: Sarah E. Kidd, BMedSc(Hons), PhD , National Mycology Reference Centre, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia ()
| | - Alireza Abdolrasouli
- Department of Medical Microbiology, King's College Hospital, London, United Kingdom,Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
34
|
Buonafina-Paz MDS, Santos FAG, Leite-Andrade MC, Alves AIS, Bezerra JDP, Leal MC, Robert E, Pape PL, Lima-Neto RG, Neves RP. Otomycosis caused by the cryptic and emerging species Aspergillus sydowii: two case reports. Future Microbiol 2022; 17:1437-1443. [DOI: 10.2217/fmb-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two cases of otomycosis have been reported in patients undergoing tympanomastoidectomy. The first one had chronic otitis media, hypertrophic concha and nasal septum deviation, tympanic perforation and otorrhea. The second had otalgia, pruritus, chronic otitis media and cholesteatoma. Direct examination showed mycelial septate filaments with a branch at an angle close to 45°, later identified as Aspergillus sydowii by sequencing the BenA and CaM genes. Susceptibility testing showed low MIC of amphotericin B, itraconazole, ketoconazole and ciclopirox olamine. In both cases, ketoconazole was instituted for 10 days. Otomycosis is a challenge as it is primarily recurrent in patients undergoing surgery. The clinical implication, the identification of the emerging pathogen and the determination of MIC were necessary for the knowledge of the epidemiological profile and establishment of the treatment.
Collapse
Affiliation(s)
| | - Franz AG Santos
- Federal University of Pernambuco, Recife, Pernambuco, 50670901, Brazil
| | | | - Adryelle IS Alves
- Federal University of Pernambuco, Recife, Pernambuco, 50670901, Brazil
| | | | - Mariana C Leal
- Federal University of Pernambuco, Recife, Pernambuco, 50670901, Brazil
| | - Estelle Robert
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Nantes, 44035, France
| | - Patrice Le Pape
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Nantes, 44035, France
| | | | - Rejane P Neves
- Federal University of Pernambuco, Recife, Pernambuco, 50670901, Brazil
| |
Collapse
|
35
|
Mesterhazy A, Szieberth D, Tóth ET, Nagy Z, Szabó B, Herczig B, Bors I, Tóth B. The Role of Preharvest Natural Infection and Toxin Contamination in Food and Feed Safety in Maize, South-East Hungary, 2014-2021. J Fungi (Basel) 2022; 8:1104. [PMID: 36294669 PMCID: PMC9605659 DOI: 10.3390/jof8101104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/20/2022] Open
Abstract
Mycotoxins originating in the preharvest period represent a less studied research problem, even though they are of the utmost practical significance in maize production, determining marketability (within EU limits), and storage ability, competitiveness, and profit rate. In this study, 18-23 commercial hybrids were tested between 2014 and 2021. Natural infection from Fusarium spp. was higher than 1.5%, and for Aspergillus spp. this was normally 0.01% or 0, much lower than would be considered as severe infection. In spite of this, many hybrids provided far higher toxin contamination than regulations allow. The maximum preharvest aflatoxin B1 was in 2020 (at 2286 μg/kg), and, in several cases, the value was higher than 1000 μg/kg. The hybrid differences were large. In Hungary, the presence of field-originated aflatoxin B1 was continuous, with three AFB1 epidemics in the 8 years. The highest DON contamination was in 2014 (at 27 mg/kg), and a detectable DON level was found in every hybrid. FUMB1+B2 were the highest in 2014 (at 45.78 mg/kg). At these low infection levels, correlations between visual symptoms and toxin contaminations were mostly non-significant, so it is not feasible to draw a conclusion about toxin contamination from ear rot coverage alone. The toxin contamination of hybrids for a percentage of visual infection is highly variable, and only toxin data can decide about food safety. Hybrids with no visual symptoms and high AFB1 contamination were also identified. Preharvest control, including breeding and variety registration, is therefore of the utmost importance to all three pathogens. Even natural ear rot and toxin data do not prove differences in resistance, so a high ear rot or toxin contamination level should be considered as a risk factor for hybrids. The toxin control of freshly harvested grain is vital for separating healthy and contaminated lots. In addition, proper growing and storage conditions must be ensured to protect the feed safety of the grain.
Collapse
Affiliation(s)
- Akos Mesterhazy
- Cereal Research Non-Profit Ltd., Fesu Street 1, 6701 Szeged, Hungary
| | - Denes Szieberth
- Hungarian Maize Club, Kazinczy Str. 12, 8152 Kőszárhegy, Hungary
| | - Eva Toldine Tóth
- Cereal Research Non-Profit Ltd., Fesu Street 1, 6701 Szeged, Hungary
| | - Zoltan Nagy
- Cereal Research Non-Profit Ltd., Fesu Street 1, 6701 Szeged, Hungary
| | - Balazs Szabó
- Cereal Research Non-Profit Ltd., Fesu Street 1, 6701 Szeged, Hungary
| | - Beata Herczig
- Bonafarm-Babolna Feed Ltd., Laboratory Branch, 2942 Nagyigmand, Hungary
| | - Istvan Bors
- Bonafarm-Babolna Feed Ltd., Laboratory Branch, 2942 Nagyigmand, Hungary
| | - Beata Tóth
- Cereal Research Non-Profit Ltd., Fesu Street 1, 6701 Szeged, Hungary
| |
Collapse
|
36
|
Invasive and Subcutaneous Infections Caused by Filamentous Fungi: Report from a Portuguese Multicentric Surveillance Program. Microorganisms 2022; 10:microorganisms10051010. [PMID: 35630453 PMCID: PMC9145964 DOI: 10.3390/microorganisms10051010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Invasive fungal infections (IFI) have significantly increased over the past years due to advances in medical care for the at-risk immunocompromised population. IFI are often difficult to diagnose and manage, and can be associated with substantial morbidity and mortality. This study aims to contribute to understanding the etiology of invasive and subcutaneous fungal infections, their associated risk factors, and to perceive the outcome of patients who developed invasive disease, raising awareness of these infections at a local level but also in a global context. A laboratory surveillance approach was conducted over a seven-year period and included: (i) cases of invasive and subcutaneous fungal infections caused by filamentous/dimorphic fungi, confirmed by either microscopy or positive culture from sterile samples, (ii) cases diagnosed as probable IFI according to the criteria established by EORTC/MSG when duly substantiated. Fourteen Portuguese laboratories were enrolled. Cases included in this study were classified according to the new consensus definitions of invasive fungal diseases (IFD) published in 2020 as follows: proven IFI (N = 31), subcutaneous fungal infection (N = 23). Those proven deep fungal infections (N = 54) totalized 71.1% of the total cases, whereas 28.9% were classified as probable IFI (N = 22). It was possible to identify the etiological fungal agent in 73 cases (96%). Aspergillus was the most frequent genera detected, but endemic dimorphic fungi represented 14.47% (N = 11) of the total cases. Despite the small number of cases, a high diversity of species were involved in deep fungal infections. This fact has implications for clinical and laboratory diagnosis, and on the therapeutic management of these infections, since different species, even within the same genus, can present diverse patterns of susceptibility to antifungals.
Collapse
|
37
|
Viegas C, Almeida B, Aranha Caetano L, Afanou A, Straumfors A, Veríssimo C, Gonçalves P, Sabino R. Algorithm to assess the presence of Aspergillus fumigatus resistant strains: The case of Norwegian sawmills. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:963-971. [PMID: 32814444 DOI: 10.1080/09603123.2020.1810210] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/11/2020] [Indexed: 05/24/2023]
Abstract
Association between selection pressure caused by the use of azole fungicides in sawmills and the development of fungal resistance has been described. The aim of this study was to implement an algorithm to assess the presence of Aspergillus section Fumigati resistant strains in sawmills.Eighty-six full-shift inhalable dust samples were collected from eleven industrial sawmills in Norway. Different culture media were used and molecular identification to species level in Aspergillus section Fumigati was done by calmodulin sequencing and TR34/L98H and TR46/Y121F/T289A mutations were screened by real-time PCR assay and confirmed by cyp51A sequencing. Six Fumigati isolates were identified as A. fumigatus sensu stricto and two of these grew on azole-supplemented media and were further analyzed by real-time PCR. One was confirmed to be a TR34/L98H mutant.The obtained results reinforce the need to assess the presence of A. fumigatus sensu stricto resistant isolates at other workplaces with fungicide pressure.
Collapse
Affiliation(s)
- Carla Viegas
- ESTeSL- Escola Superior De Tecnologia Da Saúde, Instituto Politécnico De Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA De Lisboa Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| | - Beatriz Almeida
- ESTeSL- Escola Superior De Tecnologia Da Saúde, Instituto Politécnico De Lisboa, Lisbon, Portugal
| | - Liliana Aranha Caetano
- ESTeSL- Escola Superior De Tecnologia Da Saúde, Instituto Politécnico De Lisboa, Lisbon, Portugal
- Research Institute for Medicines (Imed.ulisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Anani Afanou
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Anne Straumfors
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Cristina Veríssimo
- Reference Unit for Parasitic and Fungal Infections, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Paulo Gonçalves
- Reference Unit for Parasitic and Fungal Infections, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- European Centre for Disease Prevention and Control, European Programme for Public Health Microbiology Training (EUPHEM), Stockholm, Sweden
| | - Raquel Sabino
- Reference Unit for Parasitic and Fungal Infections, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Faculdade De Medicina Da, Instituto De Saúde Ambiental, Universidade De Lisboa, Lisbon, Portugal
| |
Collapse
|
38
|
Silva JJ, Fungaro MHP, Soto TS, Taniwaki MH, Iamanaka BT. Low-cost, specific PCR assays to identify the main aflatoxigenic species of Aspergillus section Flavi. METHODS IN MICROBIOLOGY 2022; 196:106470. [PMID: 35447279 DOI: 10.1016/j.mimet.2022.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/26/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
Aflatoxins are fungal metabolites that are present as contaminants in food globally. Most aflatoxigenic species belong to Aspergillus section Flavi, and the main ones are grouped in the A. flavus clade, where many cryptic species that are difficult to discriminate are found. In this study, we investigated inter- and intraspecific diversity of the A. flavus clade to develop low-cost, species-specific PCR assays for identifying aflatoxigenic species. A total of 269 sequences of the second largest subunit of RNA polymerase II (RPB2) locus were retrieved from GenBank, and primer pairs were designed using data mining to identify A. flavus, A. parasiticus, and A. novoparasiticus. Species-specific amplicons of approximately 620, 350, and 860 bp enabled identification of target species as A. flavus, A. parasiticus, and A. novoparasiticus, respectively.
Collapse
Affiliation(s)
- Josué J Silva
- Institute of Food Technology - ITAL, Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
39
|
Rozaliyani A, Abdullah A, Setianingrum F, Sjamsuridzal W, Wahyuningsih R, Bowolaksono A, Fatril AE, Adawiyah R, Tugiran M, Syam R, Wibowo H, Kosmidis C, Denning DW. Unravelling the Molecular Identification and Antifungal Susceptibility Profiles of Aspergillus spp. Isolated from Chronic Pulmonary Aspergillosis Patients in Jakarta, Indonesia: The Emergence of Cryptic Species. J Fungi (Basel) 2022; 8:411. [PMID: 35448642 PMCID: PMC9024953 DOI: 10.3390/jof8040411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022] Open
Abstract
Cryptic species of Aspergillus have rapidly increased in the last few decades. Chronic pulmonary aspergillosis (CPA) is a debilitating fungal infection frequently affecting patients with previous TB. The identification and antifungal susceptibility profiles of different species of Aspergillus are important to support the management of CPA. The aim of this study was to describe the molecular and susceptibility profiles of Aspergillus isolated from CPA patients. The species identity of isolates was determined by combined DNA analyses of internal transcribed space (ITS), partial β-tubulin genes, and part of the calmodulin gene. We revealed a high (27%) prevalence of cryptic species among previous tuberculosis patients with persistent symptoms. Twenty-nine (49%) patients met the criteria for diagnosis of CPA with 24% containing Aspergillus cryptic species. This is the first report of five cryptic Aspergillus species from clinical isolates in Indonesia: A. aculea tus, A. neoniger, A. brunneoviolacues, A. welwitschiae, and A. tubingensis. Significantly, there was decreased sensitivity against itraconazole in the CPA group (66% susceptible to itraconazole) compared to the non-CPA group (90% susceptible to itraconazole) (p = 0.003). The species-level characterisation of Aspergillus and its antifungal susceptibility tests demands greater attention to better the management of CPA patients.
Collapse
Affiliation(s)
- Anna Rozaliyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Asriyani Abdullah
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| | - Findra Setianingrum
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Wellyzar Sjamsuridzal
- Department of Biology, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia; (W.S.); (A.B.)
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Department of Parasitology, Faculty of Medicine, Universitas Kristen, Jakarta 13530, Indonesia
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia; (W.S.); (A.B.)
| | - Ayu Eka Fatril
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
| | - Robiatul Adawiyah
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Mulyati Tugiran
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Ridhawati Syam
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| | - Chris Kosmidis
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK; (C.K.); (D.W.D.)
- Manchester Academic Health Science Centre, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK
| | - David W. Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK; (C.K.); (D.W.D.)
- Manchester Academic Health Science Centre, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK
| |
Collapse
|
40
|
Updating the Methodology of Identifying Maize Hybrids Resistant to Ear Rot Pathogens and Their Toxins—Artificial Inoculation Tests for Kernel Resistance to Fusarium graminearum, F. verticillioides and Aspergillus flavus. J Fungi (Basel) 2022; 8:jof8030293. [PMID: 35330295 PMCID: PMC8954121 DOI: 10.3390/jof8030293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Resistance to toxigenic fungi and their toxins in maize is a highly important research topic, as mean global losses are estimated at about 10% of the yield. Resistance and toxin data of the hybrids are mostly not given, so farmers are not informed about the food safety risks of their grown hybrids. According to the findings aflatoxin regularly occurs at preharvest in Hungary and possibly other countries in the region can be jeopardized. We tested, with an improved methodology (two isolates, three pathogens, and a toxin control), 18 commercial hybrids (2017–2020) for kernel resistance (%), and for toxin contamination separately by two–two isolates of F. graminearum, F. verticillioides (mg/kg), and A. flavus (μg/kg). The preharvest toxin contamination was measured in the controls. Highly significant kernel resistance and toxin content differences were identified between hybrids to the different fungi. Extreme high toxin production was found for each toxic species. Only about 10–15% of the hybrids showed higher resistance to the fungal species tested and lower contamination level of their toxins. The lacking correlations between resistance to different fungi and toxins suggest that resistance to different fungi and response to toxin contamination inherits independently, so a toxin analysis is necessary. For safety risk estimation, separated artificial and natural kernel infection and toxin data are needed against all pathogens. Higher resistance to A. flavus and F. verticillioides stabilizes or improves feed safety in hot and dry summers, balancing the harmful effect of climate changes. Resistance and toxin tests during variety registration is an utmost necessity. The exclusion of susceptible or highly susceptible hybrids from commercial production results in reduced toxin contamination.
Collapse
|
41
|
Dhabaan G, Kus J, Kumar D, Humar A, Husain S, Mazzulli T. Molecular identification of Aspergillus fumigatus complex from lung transplant recipients using multilocus sequencing analysis (MLSA). JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2022; 7:54-63. [PMID: 36340850 PMCID: PMC9603012 DOI: 10.3138/jammi-2021-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND Aspergillus infection causes significant morbidity and mortality among lung transplant recipients (LTRs). It is primarily caused by Aspergillus fumigatus. Other closely related species belonging to the section Fumigati have also been found. These cryptic species are often misidentified as A. fumigatus. Thus, we used multilocus sequencing analysis (MLSA) of the calmodulin, β-tubulin, and hydrophobin gene sequences to identify these species and to determine the frequency with which they occur among LTRs. METHODS A total of 81 A. fumigatus isolates were initially isolated from bronchoalveolar lavage fluid or sputum specimens collected from lung transplant patients. These isolates were then sub-cultured and genotyped using MLSA. Of these isolates, 53, 17, and 11 were isolated from double LTRs, single LTRs, and pre-LTRs, respectively. RESULTS All isolates (100%) carried DNA sequences identical to those of A. fumigatus reference strains and thus clustered in the same clade with A. fumigatus. Analysis of the MLSA data revealed that A. fumigatus species were the only species recovered in this population of LTRs. The MLSA results were consistent with those routinely obtained by conventional mycological procedures in the microbiology laboratory. CONCLUSIONS A. fumigatus appears to be the primary causative agent of colonization or invasive aspergillosis among LTRs. No cryptic species were identified.
Collapse
Affiliation(s)
- Ghulam Dhabaan
- Department of Microbiology, Sinai Health System/University Health Network, Toronto, Ontario, Canada
- Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Public Health of Ontario Laboratory, Toronto, Ontario, Canada
| | - Julianne Kus
- Public Health of Ontario Laboratory, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Deepali Kumar
- Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Atul Humar
- Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shahid Husain
- Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tony Mazzulli
- Department of Microbiology, Sinai Health System/University Health Network, Toronto, Ontario, Canada
- Public Health of Ontario Laboratory, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Siddiqui ZS, Wei X, Umar M, Abideen Z, Zulfiqar F, Chen J, Hanif A, Dawar S, Dias DA, Yasmeen R. Scrutinizing the Application of Saline Endophyte to Enhance Salt Tolerance in Rice and Maize Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:770084. [PMID: 35251059 PMCID: PMC8891170 DOI: 10.3389/fpls.2021.770084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/21/2021] [Indexed: 05/24/2023]
Abstract
The present study aimed to witness the plant-microbe interaction associated with salt tolerance in crops. We isolated the endophytic microbe from the root zone of halophytic grass. Later, the salt tolerance of the endophyte was tested in the saline medium and was identified using nucleotide sequencing (GenBank under the accession numbers: SUB9030920 AH1_AHK_ITS1 MW570850: SUB9030920 AH1_AHK_ITS4 MW570851). Rice and maize seeds were coated with identified endophyte Aspergillus terreus and were sown in separate plastic pots. Later 21-day-old seedlings were subjected to three NaCl concentrations, including 50, 100, and 150 mM salt stress. Under saline conditions, A. terreus showed a substantial increase in growth, biomass, relative water content, oxidative balance, and photochemical efficiency of rice and maize plants. The data reflected that the stimulation of gibberellic acid (GA) in treated leaves may be the main reason for the upregulation of photosynthesis and the antioxidant defense cascade. The data also depict the downregulation of oxidative damage markers malondialdehyde, hydrogen peroxide in rice and maize plants. Conclusively, salt-tolerant endophytic fungus A. terreus explicitly displayed the positive plant-microbe interaction by developing salt tolerance in rice and maize plants. Salt tolerance by endophytic fungus coincides with the enhanced GA concentration, which illustrated the stimulated physiological mechanism and gene in response to the extreme environmental crisis, resulting in improved crop productivity.
Collapse
Affiliation(s)
- Zamin Shaheed Siddiqui
- Stress Physiology Phenomics Centre, Department of Botany, University of Karachi, Karachi, Pakistan
| | - Xiangying Wei
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Muhammad Umar
- Stress Physiology Phenomics Centre, Department of Botany, University of Karachi, Karachi, Pakistan
| | - Zainul Abideen
- Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, IFAS, University of Florida, Apopka, FL, United States
| | - Asma Hanif
- Stress Physiology Phenomics Centre, Department of Botany, University of Karachi, Karachi, Pakistan
| | - Shahnaz Dawar
- Stress Physiology Phenomics Centre, Department of Botany, University of Karachi, Karachi, Pakistan
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Melbourne, VIC, Australia
| | - Roomana Yasmeen
- Stress Physiology Phenomics Centre, Department of Botany, University of Karachi, Karachi, Pakistan
| |
Collapse
|
43
|
Shao J, Wang Q, Wei L, Wan Z, Li R, Yu J. Limitations of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of Aspergillus species. Med Mycol 2022; 60:6511566. [PMID: 35044460 DOI: 10.1093/mmy/myab084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
This study aimed to detect the identification limitations for Aspergillus species from patients or the environment based on MALDI-TOF MS analysis. A total of 209 Aspergillus isolates were selected in this study. One hundred and sixty-eight of the strains were selected as challenge strains for MALDI-TOF MS analysis, while the remaining 41 strains were used to construct a supplementary database. The 168 challenge strains were identified by the Bruker Filamentous Fungi Library v1.0 (the Bruker Library) and identified again using the Bruker Library combined with the supplementary database (the combined database). The sensitivity of MALDI-TOF MS with the Bruker Library alone and with the combined database in identifying the challenge strains at the species level was 64.3% and 85.7%, respectively. With the combined database, the sensitivity of MALDI-TOF MS in identifying strains in Aspergillus sections Fumigati, Flavi, Nigri, Terrei, and Nidulantes was 100%, 86.5%, 76.1%, 100%, and 80%, respectively, and the sensitivity in identifying strains of other Aspergillus species was 71.4%. The specificity of MALDI-TOF MS in identifying strains in all Aspergillus sections at the species level was 100%. Even when using the combined database, MALDI-TOF MS analysis showed some misidentification for the species A. niger, A. welwitschiae, A. luchuensis, A. flavus and A. sydowii. In conclusion, with the combined database, MALDI-TOF MS showed good performance in identifying the species in Aspergillus sections Fumigati and Terrei but limited performance in distinguishing some closely related species in sections Nigri, Flavi and Nidulantes.
Collapse
Affiliation(s)
- Jin Shao
- Department of Dermatology and Venereology, Peking University First Hospital; Research Center for Medical Mycology, Peking University; Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Qiqi Wang
- Department of Dermatology and Venereology, Peking University First Hospital; Research Center for Medical Mycology, Peking University; Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Linwei Wei
- Department of Dermatology and Venereology, Peking University First Hospital; Research Center for Medical Mycology, Peking University; Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Zhe Wan
- Department of Dermatology and Venereology, Peking University First Hospital; Research Center for Medical Mycology, Peking University; Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Ruoyu Li
- Department of Dermatology and Venereology, Peking University First Hospital; Research Center for Medical Mycology, Peking University; Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Jin Yu
- Department of Dermatology and Venereology, Peking University First Hospital; Research Center for Medical Mycology, Peking University; Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| |
Collapse
|
44
|
Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. Int J Food Microbiol 2022; 365:109556. [DOI: 10.1016/j.ijfoodmicro.2022.109556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/29/2021] [Accepted: 01/23/2022] [Indexed: 11/22/2022]
|
45
|
Re-Evaluation of the Taxonomy of Talaromyces minioluteus. J Fungi (Basel) 2021; 7:jof7110993. [PMID: 34829280 PMCID: PMC8619165 DOI: 10.3390/jof7110993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Talaromyces minioluteus belongs to the section Trachyspermi, has a worldwide distribution and has been found on various substrates, especially on various (stored) food commodities and indoor environments. This species is phenotypically and phylogenetically closely related to T. chongqingensis and T. minnesotensis. The phylogenetic and morphological analyses of 37 strains previously identified as T. chongqingensis, T. minnesotensis and T. minioluteus revealed that this clade incudes eight species: the accepted species T. chongqingensis, T. minnesotensis and T. minioluteus, the newly proposed species T. calidominioluteus, T. africanus and T. germanicus, and the new combinations T. gaditanus (basionym Penicillium gaditanum) and T. samsonii (basionym Penicillium samsonii). In this study, we give insight of the phylogenetic relationships and provide detailed descriptions of the species belonging to this clade. Macromorphological features, especially colony growth rates, texture and conidial colors on agar media, are important characters for phenotypic differentiation between species.
Collapse
|
46
|
Li X, Wu Y, Liu Z. Antifungal Activity of an Endophytic Fungus Aspergillus versicolor DYSJ3 from Aphanamixis grandifolia Blume against Colletotrichum musae. MYCOBIOLOGY 2021; 49:498-506. [PMID: 36970635 PMCID: PMC10035945 DOI: 10.1080/12298093.2021.1976967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 06/18/2023]
Abstract
An endophytic fungus strain DYSJ3 was isolated from a stem of Aphanamixis grandifolia Blume, which was identified as Aspergillus versicolor based on the morphological characteristics, internal transcribed spacer (ITS) and calmodulin gene sequences analyses. A. versicolor DYSJ3 exhibited strong antagonistic activity against Colletotrichum musae, C. gloeosporioides and Fusarium oxysporum f. sp. cubense with the inhibition rates of 61.9, 51.2 and 55.3% respectively. The antifungal metabolites mainly existed in the mycelium of A. versicolor DYSJ3, and its mycelial crude extract (CE) had broad-spectrum antifungal activities against plant pathogenic fungi. The CE had a good thermal stability, and the inhibition rate of 100 µg/mL CE against C. musae was above 70.0% after disposing at 120 °C for 1 h. Five secondary metabolites were isolated from the CE and identified as averufanin, ergosterol peroxide, versicolorin B, averythrin and sterigmatocystin. Activity evaluation showed versicolorin B exhibited inhibitory effects on the mycelial growth and conidial germination of C. musae, and sterigmatocystin had a weak inhibitory effect on the mycelial growth of C. musae.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Life Sciences, Hainan University, Haikou, China
| | - Yateng Wu
- School of Life Sciences, Hainan University, Haikou, China
| | - Zhiqiang Liu
- School of Life Sciences, Hainan University, Haikou, China
| |
Collapse
|
47
|
Błaszczyk L, Salamon S, Mikołajczak K. Fungi Inhabiting the Wheat Endosphere. Pathogens 2021; 10:1288. [PMID: 34684238 PMCID: PMC8539314 DOI: 10.3390/pathogens10101288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
Wheat production is influenced by changing environmental conditions, including climatic conditions, which results in the changing composition of microorganisms interacting with this cereal. The group of these microorganisms includes not only endophytic fungi associated with the wheat endosphere, both pathogenic and symbiotic, but also those with yet unrecognized functions and consequences for wheat. This paper reviews the literature in the context of the general characteristics of endophytic fungi inhabiting the internal tissues of wheat. In addition, the importance of epigenetic regulation in wheat-fungus interactions is recognized and the current state of knowledge is demonstrated. The possibilities of using symbiotic endophytic fungi in modern agronomy and wheat cultivation are also proposed. The fact that the current understanding of fungal endophytes in wheat is based on a rather small set of experimental conditions, including wheat genotypes, plant organs, plant tissues, plant development stage, or environmental conditions, is recognized. In addition, most of the research to date has been based on culture-dependent methods that exclude biotrophic and slow-growing species and favor the detection of fast-growing fungi. Additionally, only a few reports of studies on the entire wheat microbiome using high-throughput sequencing techniques exist. Conducting comprehensive research on the mycobiome of the endosphere of wheat, mainly in the context of the possibility of using this knowledge to improve the methods of wheat management, mainly the productivity and health of this cereal, is needed.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska Street, 60-479 Poznań, Poland; (S.S.); (K.M.)
| | | | | |
Collapse
|
48
|
Cosseboom SD, Hu M. Diversity, Pathogenicity, and Fungicide Sensitivity of Fungal Species Associated with Late-Season Rots of Wine Grape in the Mid-Atlantic United States. PLANT DISEASE 2021; 105:3101-3110. [PMID: 33656367 DOI: 10.1094/pdis-01-21-0006-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Late-season bunch rots cause major losses in grape production every year in the Mid-Atlantic United States, but the causal agents are not well characterized. In this study, 265 fungal isolates were collected from rotten grapes from 2014 to 2020 and identified to the genus level according to internal transcribed spacer sequences. The most prevalent of the 15 genera were Botrytis, Colletotrichum, Aspergillus, Alternaria, Pestalotiopsis, and Neopestalotiopsis. Of these, isolates within three prevalent, yet understudied, genera were identified to be Aspergillus uvarum, Alternaria alternata, and Neopestalotiopsis rosae. The pathogenicity of these three fungal species was evaluated in two field trials by artificially inoculating wounded and nonwounded grapes (Vitis vinifera) of four cultivars at the phenological stages of bloom, véraison, and preharvest. Upon ripening, fruit were weighed and assessed for severity of multiple diseases. On nonwounded fruit, A. uvarum caused significantly higher disease severity than the control in both seasons. On wounded fruit, each inocula caused significantly higher disease than the respective controls in the first season, but only A. uvarum and Botrytis cinerea caused this in the second season. Also, wounding was found to have a detrimental effect on cluster weight, which was significantly influenced by inoculation timing and cultivar. Lastly, A. uvarum and N. rosae were tested for sensitivity to azoxystrobin, boscalid, and difenoconazole. The A. uvarum isolates were found to be more sensitive to boscalid and difenoconazole in general, with varying sensitivity to azoxystrobin. N. rosae isolates were resistant to boscalid and azoxystrobin but displayed much higher sensitivity to difenoconazole. Evidence from the isolate collection and field trials demonstrates that A. uvarum could be a significant pathogen of wine grapes in the Mid-Atlantic United States. Results from this study will be useful for the identification and management of the understudied Alternaria, Aspergillus, and Neopestalotiopsis fruit rots of wine grapes.
Collapse
Affiliation(s)
- Scott D Cosseboom
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742
| | - Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742
| |
Collapse
|
49
|
Díaz GV, Coniglio RO, Chungara CI, Zapata PD, Villalba LL, Fonseca MI. Aspergillus niger LBM 134 isolated from rotten wood and its potential cellulolytic ability. Mycology 2021; 12:160-173. [PMID: 34567828 PMCID: PMC8462884 DOI: 10.1080/21501203.2020.1823509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aspergillus is a genus of filamentous and cosmopolitan fungi that includes important species for medical mycology, food, basic research and agro-industry areas. Aspergillus section Nigri are efficient producers of hydrolytic enzymes such as cellulases that are employed in the cellulose conversion. Hence, the search of new cellulolytic isolates and their correct identification is important for carrying out safe biotechnological processes. This study aimed to characterise the cellulolytic potential of Aspergillus sp. LBM 134, isolated from the Paranaense rainforest (Argentina) and to identify the isolate through a polyphasic approach. The fungus was identified as Aspergillus niger and its cellulolytic potential was evaluated by using Congo red technique and fluorescence plate assays for carboxymethyl cellulase, β-glucosidase and cellobiohydrolase, respectively. All three cellulase activities were positive; this bio-prospective positioned A. niger LBM 134 as a promising alternative for industries that require organisms capable of carrying out cellulosic biomass processing.
Collapse
Affiliation(s)
- Gabriela Verónica Díaz
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones "María Ebe Reca" CONICET. Facultad de Ciencias Exactas, Químicas y Naturales. Universidad Nacional de Misiones. Ruta, Posadas, Misiones, Argentina
| | - Romina Olga Coniglio
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones "María Ebe Reca" CONICET. Facultad de Ciencias Exactas, Químicas y Naturales. Universidad Nacional de Misiones. Ruta, Posadas, Misiones, Argentina
| | - Clara Inés Chungara
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones "María Ebe Reca" CONICET. Facultad de Ciencias Exactas, Químicas y Naturales. Universidad Nacional de Misiones. Ruta, Posadas, Misiones, Argentina
| | - Pedro Darío Zapata
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones "María Ebe Reca" CONICET. Facultad de Ciencias Exactas, Químicas y Naturales. Universidad Nacional de Misiones. Ruta, Posadas, Misiones, Argentina
| | - Laura Lidia Villalba
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones "María Ebe Reca" CONICET. Facultad de Ciencias Exactas, Químicas y Naturales. Universidad Nacional de Misiones. Ruta, Posadas, Misiones, Argentina
| | - María Isabel Fonseca
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones "María Ebe Reca" CONICET. Facultad de Ciencias Exactas, Químicas y Naturales. Universidad Nacional de Misiones. Ruta, Posadas, Misiones, Argentina
| |
Collapse
|
50
|
Identification of the Causal Agent of Aqueous Spot Disease of Sweet Cherries ( Prunus avium L.) from the Jerte Valley (Cáceres, Spain). Foods 2021; 10:foods10102281. [PMID: 34681330 PMCID: PMC8534920 DOI: 10.3390/foods10102281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023] Open
Abstract
The pre and postharvest disease named ‘aqueous spot’ is an emerging risk for sweet cherries growing in Jerte Valley (Cáceres, Spain). Early stages of the disease appear in the tree, but it is usually detected after harvesting, during the postharvest period. Symptoms include the appearance of skin discolouration and translucency in the shoulder areas. At the most advanced stages, a mycelium of white colour partially or completely covers the fruit. This manuscript provides a detailed description of the microbes involved in this disease, such as bacteria, yeasts, and moulds. Microbes of different cherry cultivars were studied during two consecutive seasons (2019 and 2020). The counts of bacteria and yeast in damaged tissues were higher (7.05 and 6.38 log10 CFU/g for total aerobic mesophilic microbes and yeasts, respectively) than sound tissues (6.08 and 5.19 log10 CFU/g, respectively). The Enterobacterales order dominated the bacteria population. Among yeasts, Yarrowia lipolytica, in 2019, and Metschnikowia pulcherrima and Metschnikowia viticola, in 2020, were consistently isolated from all samples. The presence of moulds was inconsistently detected at the early stage of this disease by plate counts. However, microscopic observations revealed the presence of hyphae in cherry flesh. Different pathogenic moulds were identified, although white mycelium, identified as Botrytis cinerea by molecular methods, was consistently isolated at later stages. Inoculation tests confirmed the involvement of white-mycelium B. cinerea in the development of this new postharvest disease in the Jerte Valley. Its combination with Enterobacterales enhanced the evolution of rotting, whereas the combination with yeasts decreased and delayed the symptoms. This work presents the first report of a consortia of microorganisms implicated in the development of ‘aqueous spot’, an emerging disease in sweet cherry cultivars in the Jerte Valley.
Collapse
|