1
|
Amarah A, Elmakaty I, Nadroo I, Chhabra M, Hoang D, Suk D, Nadroo AM, Ron N, Dygulska B, Gudavalli MB, Narula P, Gad A. Effects of perinatal variables on echocardiographic assessments of left ventricular dimensions in infants born large for gestational age: a prospective cohort analysis. Ital J Pediatr 2025; 51:133. [PMID: 40319278 PMCID: PMC12049790 DOI: 10.1186/s13052-025-01945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/23/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND To assess the relationship between perinatal factors, and echocardiographic left ventricular (LV) dimensions after delivery in infants who are large for gestational age (LGA). METHODS This prospective cohort study that was conducted between 2014 and 2018, and involved healthy LGA newborns born ≥ 35 weeks' gestation, delivered at New York-Presbyterian Brooklyn Methodist Hospital, and a control group of appropriate for gestational age (AGA) infants. Data were analyzed using multivariate linear regression in STATA. RESULTS A total of 563 neonates were enrolled in this study. They were composed of 414 AGA infants as the control group and 149 LGA infants as the intervention group. Males were predominant in both groups. A larger proportion of neonates were admitted to the neonatal intensive care unit (NICU) in LGA infants (74.6%) as compared to the AGA infants (33.5%) (p < 0.001). Regression analysis identified birth weight (BW) as a key factor, positively correlating with increased LVmass, interventricular septum thickness, and LV posterior wall thickness in both LGA and AGA infants. Additionally, BW showed a positive correlation with left ventricular internal dimensions in diastole and systole. Higher maternal BMI was associated with an increase in fractional shortening in LGA infants, while maternal insulin use during pregnancy was positively associated with interventricular septum thickness. Notably, male infants exhibited significantly higher LV internal dimensions in both diastole and systole, while GA negatively impacted the left ventricular mass index. CONCLUSION The study's findings underscore the significant influence of perinatal factors on neonatal cardiac morphology in both LGA and AGA infants. Certain perinatal variables were identified as key determinants affecting various aspects of LV structure. These insights highlight the importance of considering these perinatal factors in neonatal cardiac assessments for early detection and intervention.
Collapse
Affiliation(s)
- Ahmed Amarah
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Iram Nadroo
- Division of Neonatology, Department of Pediatrics, New York Presbyterian Brooklyn Methodist Hospital, 506 6 Th St, Brooklyn, NY, 11215, USA
| | - Manoj Chhabra
- Division of Neonatology, Department of Pediatrics, New York Presbyterian Brooklyn Methodist Hospital, 506 6 Th St, Brooklyn, NY, 11215, USA
| | - Danthanh Hoang
- Division of Neonatology, Department of Pediatrics, New York Presbyterian Brooklyn Methodist Hospital, 506 6 Th St, Brooklyn, NY, 11215, USA
| | - Debbie Suk
- Division of Neonatology, Department of Pediatrics, New York Presbyterian Brooklyn Methodist Hospital, 506 6 Th St, Brooklyn, NY, 11215, USA
| | - Ali M Nadroo
- Division of Neonatology, Department of Pediatrics, New York Presbyterian Brooklyn Methodist Hospital, 506 6 Th St, Brooklyn, NY, 11215, USA
| | - Nitin Ron
- Division of Neonatology, Department of Pediatrics, New York Presbyterian Brooklyn Methodist Hospital, 506 6 Th St, Brooklyn, NY, 11215, USA
| | - Beata Dygulska
- Division of Neonatology, Department of Pediatrics, New York Presbyterian Brooklyn Methodist Hospital, 506 6 Th St, Brooklyn, NY, 11215, USA
| | - Madhu B Gudavalli
- Division of Neonatology, Department of Pediatrics, New York Presbyterian Brooklyn Methodist Hospital, 506 6 Th St, Brooklyn, NY, 11215, USA
| | - Pramod Narula
- Division of Neonatology, Department of Pediatrics, New York Presbyterian Brooklyn Methodist Hospital, 506 6 Th St, Brooklyn, NY, 11215, USA
| | - Ashraf Gad
- Division of Critical Care, Neonatology, Women'S Wellness and Research Centre, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
2
|
Harnois-Leblanc S, Hivert MF. Stopping the Intergenerational Risk of Diabetes-From Mechanisms to Interventions: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2025; 74:255-264. [PMID: 39556447 DOI: 10.2337/dbi24-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
Embedded in the developmental origins of health and disease (DOHaD) hypothesis, maternal hyperglycemia in utero, from preexisting diabetes or gestational diabetes mellitus, predisposes the offspring to excess adiposity and heightened risk of prediabetes and type 2 diabetes development. This transmission creates a vicious cycle increasing the presence of diabetes from one generation to another, leading to the question: How can we interrupt this vicious cycle? In this article, we present the current state of knowledge on the intergenerational transmission of diabetes from epidemiological life course studies. Then, we discuss the potential mechanisms implicated in the intergenerational transmission of diabetes with a focus on epigenetics. We present novel findings stemming from epigenome-wide association studies of offspring DNA methylation in blood and placental tissues, which shed light on potential molecular mechanisms implicated in the mother-offspring transmission of diabetes. Lastly, with a perspective on how to break the cycle, we consider interventions to prevent offspring obesity and diabetes development before puberty, as a critical period of the intergenerational cycle. This article is part of a series of perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program.
Collapse
Affiliation(s)
- Soren Harnois-Leblanc
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Tortelote GG. The Impact of Gestational Diabetes on Kidney Development: is There an Epigenetic Link? Curr Diab Rep 2024; 25:13. [PMID: 39690358 DOI: 10.1007/s11892-024-01569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE OF REVIEW This review explores the mechanisms through which gestational diabetes mellitus GDM impacts fetal kidney development, focusing on epigenetic alterations as mediators of these effects. We examine the influence of GDM on nephrogenesis and kidney maturation, exploring how hyperglycemia-induced intrauterine stress can reduce nephron endowment and compromise renal function via dysregulation of normal epigenetic mechanisms. RECENT FINDINGS In addition to metabolic impacts, emerging evidence suggests that GDM exerts its influence through epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNA expression, which disrupt gene expression patterns critical for kidney development. Recently, specific epigenetic modifications observed in offspring exposed to GDM were implicated in aberrant activation or repression of genes essential for kidney development. Key pathways influenced by these epigenetic changes, such as oxidative stress response, inflammatory regulation, and metabolic pathways, are discussed to illustrate the broad molecular impact of GDM on renal development. Finally, we consider potential intervention strategies that could mitigate the adverse effects of GDM on kidney development. These include optimizing maternal glycemic control, dietary modifications, dietary supplementation, and pharmacological agents targeting epigenetic pathways. Through a comprehensive synthesis of current research, this review underscores the importance of early preventive strategies to reduce the burden of kidney disease in individuals exposed to GDM and highlights key epigenetic mechanisms altered during GDM that impact kidney development.
Collapse
Affiliation(s)
- Giovane G Tortelote
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Saucedo R, Ferreira-Hermosillo A, Robledo-Clemente M, Díaz-Velázquez MF, Valencia-Ortega J. Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites 2024; 14:361. [PMID: 39057684 PMCID: PMC11278577 DOI: 10.3390/metabo14070361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Offspring exposed to gestational diabetes mellitus (GDM) exhibit greater adiposity at birth. This early-life phenotype may increase offspring risk of developing obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease later in life. Infants born to women with GDM have a dysregulation of several hormones, cytokines, and growth factors related to fetal fat mass growth. One of the molecular mechanisms of GDM influencing these factors is epigenetic alterations, such as DNA methylation (DNAm). This review will examine the role of DNAm as a potential biomarker for monitoring fetal growth during pregnancy in women with GDM. This information is relevant since it may provide useful new biomarkers for the diagnosis, prognosis, and treatment of fetal growth and its later-life health consequences.
Collapse
Affiliation(s)
- Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Magalhi Robledo-Clemente
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Mary Flor Díaz-Velázquez
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico
| |
Collapse
|
5
|
Power GM, Sanderson E, Pagoni P, Fraser A, Morris T, Prince C, Frayling TM, Heron J, Richardson TG, Richmond R, Tyrrell J, Warrington N, Davey Smith G, Howe LD, Tilling KM. Methodological approaches, challenges, and opportunities in the application of Mendelian randomisation to lifecourse epidemiology: A systematic literature review. Eur J Epidemiol 2024; 39:501-520. [PMID: 37938447 PMCID: PMC7616129 DOI: 10.1007/s10654-023-01032-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/21/2023] [Indexed: 11/09/2023]
Abstract
Diseases diagnosed in adulthood may have antecedents throughout (including prenatal) life. Gaining a better understanding of how exposures at different stages in the lifecourse influence health outcomes is key to elucidating the potential benefits of disease prevention strategies. Mendelian randomisation (MR) is increasingly used to estimate causal effects of exposures across the lifecourse on later life outcomes. This systematic literature review explores MR methods used to perform lifecourse investigations and reviews previous work that has utilised MR to elucidate the effects of factors acting at different stages of the lifecourse. We conducted searches in PubMed, Embase, Medline and MedRXiv databases. Thirteen methodological studies were identified. Four studies focused on the impact of time-varying exposures in the interpretation of "standard" MR techniques, five presented methods for repeat measures of the same exposure, and four described methodological approaches to handling multigenerational exposures. A further 127 studies presented the results of an applied research question. Over half of these estimated effects in a single generation and were largely confined to the exploration of questions regarding body composition. The remaining mostly estimated maternal effects. There is a growing body of research focused on the development and application of MR methods to address lifecourse research questions. The underlying assumptions require careful consideration and the interpretation of results rely on select conditions. Whilst we do not advocate for a particular strategy, we encourage practitioners to make informed decisions on how to approach a research question in this field with a solid understanding of the limitations present and how these may be affected by the research question, modelling approach, instrument selection, and data availability.
Collapse
Affiliation(s)
- Grace M Power
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Panagiota Pagoni
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Tim Morris
- Centre for Longitudinal Studies, Social Research Institute, University College London, London, UK
| | - Claire Prince
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Timothy M Frayling
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Jon Heron
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Rebecca Richmond
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Jessica Tyrrell
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Nicole Warrington
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- NIHR Bristol Biomedical Research Centre Bristol, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Laura D Howe
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Kate M Tilling
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| |
Collapse
|
6
|
Waldrop SW, Niemiec S, Wood C, Gyllenhammer LE, Jansson T, Friedman JE, Tryggestad JB, Borengasser SJ, Davidson EJ, Yang IV, Kechris K, Dabelea D, Boyle KE. Cord blood DNA methylation of immune and lipid metabolism genes is associated with maternal triglycerides and child adiposity. Obesity (Silver Spring) 2024; 32:187-199. [PMID: 37869908 PMCID: PMC10872762 DOI: 10.1002/oby.23915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVE Fetal exposures may impact offspring epigenetic signatures and adiposity. The authors hypothesized that maternal metabolic traits associate with cord blood DNA methylation, which, in turn, associates with child adiposity. METHODS Fasting serum was obtained in 588 pregnant women (27-34 weeks' gestation), and insulin, glucose, high-density lipoprotein cholesterol, triglycerides, and free fatty acids were measured. Cord blood DNA methylation and child adiposity were measured at birth, 4-6 months, and 4-6 years. The association of maternal metabolic traits with DNA methylation (429,246 CpGs) for differentially methylated probes (DMPs) and regions (DMRs) was tested. The association of the first principal component of each DMR with child adiposity was tested, and mediation analysis was performed. RESULTS Maternal triglycerides were associated with the most DMPs and DMRs of all traits tested (261 and 198, respectively, false discovery rate < 0.05). DMRs were near genes involved in immune function and lipid metabolism. Triglyceride-associated CpGs were associated with child adiposity at 4-6 months (32 CpGs) and 4-6 years (2 CpGs). One, near CD226, was observed at both timepoints, mediating 10% and 22% of the relationship between maternal triglycerides and child adiposity at 4-6 months and 4-6 years, respectively. CONCLUSIONS DNA methylation may play a role in the association of maternal triglycerides and child adiposity.
Collapse
Affiliation(s)
- Stephanie W. Waldrop
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Sierra Niemiec
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Lauren E. Gyllenhammer
- Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeanie B. Tryggestad
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sarah J. Borengasser
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Elizabeth J. Davidson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Ivana V. Yang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO USA
| | - Dana Dabelea
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Kristen E. Boyle
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO USA
| |
Collapse
|
7
|
Bamehrez M. Hypoglycemia and associated comorbidities among newborns of mothers with diabetes in an academic tertiary care center. Front Pediatr 2023; 11:1267248. [PMID: 37900684 PMCID: PMC10611491 DOI: 10.3389/fped.2023.1267248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Background Hypoglycemia is considered the common metabolic problem in newborns with serious long-term sequelae. This study evaluates the incidence of hypoglycemia in the newborns of mothers with diabetes mellitus and assesses the comorbidities that affect the newborns of mothers with gestational diabetes compared with the newborns of mothers with pregestational diabetes mellitus. Methods This retrospective cohort study was conducted between January-2018 and December-2020. All admissions to the hospital nursery of the newborns of diabetic mothers with diabetes mellitus were included. Results The study comprised 1,036 mothers with diabetes, of the newborns of mothers with pregestational diabetes, 22% had hypoglycemia, and of mothers with gestational diabetes, 12%. Mothers with pregestational diabetes had a significantly higher risk of needing an emergency cesarean section (OR: 2.1, 95% CI: 1.3-3.4); and of having a baby who is large for its gestational age (OR: 9.5, 95% CI: 2.6-35.5), must be admitted to the NICU (OR: 2.9, 95% CI: 1.5-5.6), has respiratory distress syndrome (OR: 3.3, 95% CI: 1.5-7.4), and needs gavage feeding (OR: 3.5, 95% CI: 1.4-8.9). Conclusion About 13% of the newborns of mothers with diabetes had hypoglycemia. Significantly more of these newborns were of mothers with pregestational diabetes than of mothers with gestational diabetes. Newborn of mothers with pregestational diabetes mellitus have the risk of large weight and neurological problems, such as sucking difficulties, length of hospital stay, NICU admission, and respiratory distress syndrome.
Collapse
Affiliation(s)
- Maha Bamehrez
- Pediatric Department, King Abdul Aziz University Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Kadam I, Dalloul M, Hausser J, Huntley M, Hoepner L, Fordjour L, Hittelman J, Saxena A, Liu J, Futterman ID, Minkoff H, Jiang X. Associations between nutrients in one-carbon metabolism and fetal DNA methylation in pregnancies with or without gestational diabetes mellitus. Clin Epigenetics 2023; 15:137. [PMID: 37633918 PMCID: PMC10464204 DOI: 10.1186/s13148-023-01554-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM), characterized by hyperglycemia that develops during pregnancy, increases the risk of fetal macrosomia, childhood obesity and cardiometabolic disorders later in life. This process has been attributed partly to DNA methylation modifications in growth and stress-related pathways. Nutrients involved with one-carbon metabolism (OCM), such as folate, choline, betaine, and vitamin B12, provide methyl groups for DNA methylation of these pathways. Therefore, this study aimed to determine whether maternal OCM nutrient intakes and levels modified fetal DNA methylation and in turn altered fetal growth patterns in pregnancies with and without GDM. RESULTS In this prospective study at a single academic institution from September 2016 to June 2019, we recruited 76 pregnant women with and without GDM at 25-33 weeks gestational age and assessed their OCM nutrient intake by diet recalls and measured maternal blood OCM nutrient levels. We also collected placenta and cord blood samples at delivery to examine fetal tissue DNA methylation of the genes that modify fetal growth and stress response such as insulin-like growth factor 2 (IGF2) and corticotropin-releasing hormone (CRH). We analyzed the association between maternal OCM nutrients and fetal DNA methylation using a generalized linear mixed model. Our results demonstrated that maternal choline intake was positively correlated with cord blood CRH methylation levels in both GDM and non-GDM pregnancies (r = 0.13, p = 0.007). Further, the downstream stress hormone cortisol regulated by CRH was inversely associated with maternal choline intake (r = - 0.36, p = 0.021). Higher maternal betaine intake and serum folate levels were associated with lower cord blood and placental IGF2 DNA methylation (r = - 0.13, p = 0.049 and r = - 0.065, p = 0.034, respectively) in both GDM and non-GDM pregnancies. Further, there was an inverse association between maternal betaine intake and birthweight of infants (r = - 0.28, p = 0.015). CONCLUSIONS In conclusion, we observed a complex interrelationship between maternal OCM nutrients and fetal DNA methylation levels regardless of GDM status, which may, epigenetically, program molecular pathways related to fetal growth and stress response.
Collapse
Affiliation(s)
- Isma'il Kadam
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, 2900 Bedford Ave, Brooklyn, NY, 11210, USA
| | - Mudar Dalloul
- Department of Obstetrics and Gynecology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Jeanette Hausser
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, 2900 Bedford Ave, Brooklyn, NY, 11210, USA
| | - Monique Huntley
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, 2900 Bedford Ave, Brooklyn, NY, 11210, USA
| | - Lori Hoepner
- Department of Environmental and Occupational Health Sciences, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Lawrence Fordjour
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Joan Hittelman
- Department of Psychology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Anjana Saxena
- Departments of Biology, Brooklyn College of City University of New York, Brooklyn, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center of the CUNY, New York, NY, 10031, USA
| | - Itamar D Futterman
- Division of Maternal Fetal Medicine, Departments of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, USA
| | - Howard Minkoff
- Department of Obstetrics and Gynecology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
- Division of Maternal Fetal Medicine, Departments of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, USA
| | - Xinyin Jiang
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, 2900 Bedford Ave, Brooklyn, NY, 11210, USA.
| |
Collapse
|
9
|
Taschereau A, Thibeault K, Allard C, Juvinao-Quintero D, Perron P, Lutz SM, Bouchard L, Hivert MF. Maternal glycemia in pregnancy is longitudinally associated with blood DNAm variation at the FSD1L gene from birth to 5 years of age. Clin Epigenetics 2023; 15:107. [PMID: 37386647 PMCID: PMC10308691 DOI: 10.1186/s13148-023-01524-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND In utero exposure to maternal hyperglycemia has been associated with an increased risk for the development of chronic diseases in later life. These predispositions may be programmed by fetal DNA methylation (DNAm) changes that persist postnatally. However, although some studies have associated fetal exposure to gestational hyperglycemia with DNAm variations at birth, and metabolic phenotypes in childhood, no study has yet examined how maternal hyperglycemia during pregnancy may be associated with offspring DNAm from birth to five years of age. HYPOTHESIS Maternal hyperglycemia is associated with variation in offspring DNAm from birth to 5 years of age. METHODS We estimated maternal hyperglycemia using the area under the curve for glucose (AUCglu) following an oral glucose tolerance test conducted at 24-30 weeks of pregnancy. We quantified DNAm levels in cord blood (n = 440) and peripheral blood at five years of age (n = 293) using the Infinium MethylationEPIC BeadChip (Illumina). Our total sample included 539 unique dyads (mother-child) with 194 dyads having DNAm at both time-points. We first regressed DNAm M-values against the cell types and child age for each time-point separately to account for the difference by time of measurement for these variables. We then used a random intercept model from the linear mixed model (LMM) framework to assess the longitudinal association between maternal AUCglu and the repeated measures of residuals of DNAm. We adjusted for the following covariates as fixed effects in the random intercept model: maternal age, gravidity, smoking status, child sex, maternal body mass index (BMI) (measured at first trimester of pregnancy), and a binary variable for time-point. RESULTS In utero exposure to higher maternal AUCglu was associated with lower offspring blood DNAm levels at cg00967989 located in FSD1L gene (β = - 0.0267, P = 2.13 × 10-8) in adjusted linear regression mixed models. Our study also reports other CpG sites for which DNAm levels were suggestively associated (P < 1.0 × 10-5) with in utero exposure to gestational hyperglycemia. Two of these (cg12140144 and cg07946633) were found in the promotor region of PRDM16 gene (β: - 0.0251, P = 4.37 × 10-07 and β: - 0.0206, P = 2.24 × 10-06, respectively). CONCLUSION Maternal hyperglycemia is associated with offspring DNAm longitudinally assessed from birth to 5 years of age.
Collapse
Affiliation(s)
- Amélie Taschereau
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kathrine Thibeault
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Catherine Allard
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada
| | | | - Patrice Perron
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada
- Department of Medicine, FMHS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sharon M Lutz
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada.
- Department of Medicine, FMHS, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Clinical Department of Laboratory Medicine, Pavillon des Augustines, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, 305 rue St-Vallier, Saguenay, QC, G7H 5H6, Canada.
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Stoccoro A, Nicolì V, Coppedè F, Grossi E, Fedrizzi G, Menotta S, Lorenzoni F, Caretto M, Carmignani A, Pistolesi S, Burgio E, Fanos V, Migliore L. Prenatal Environmental Stressors and DNA Methylation Levels in Placenta and Peripheral Tissues of Mothers and Neonates Evaluated by Applying Artificial Neural Networks. Genes (Basel) 2023; 14:836. [PMID: 37107594 PMCID: PMC10138241 DOI: 10.3390/genes14040836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure to environmental stressors during pregnancy plays an important role in influencing subsequent susceptibility to certain chronic diseases through the modulation of epigenetic mechanisms, including DNA methylation. Our aim was to explore the connections between environmental exposures during gestation with DNA methylation of placental cells, maternal and neonatal buccal cells by applying artificial neural networks (ANNs). A total of 28 mother-infant pairs were enrolled. Data on gestational exposure to adverse environmental factors and on mother health status were collected through the administration of a questionnaire. DNA methylation analyses at both gene-specific and global level were analyzed in placentas, maternal and neonatal buccal cells. In the placenta, the concentrations of various metals and dioxins were also analyzed. Analysis of ANNs revealed that suboptimal birth weight is associated with placental H19 methylation, maternal stress during pregnancy with methylation levels of NR3C1 and BDNF in placentas and mother's buccal DNA, respectively, and exposure to air pollutants with maternal MGMT methylation. Associations were also observed between placental concentrations of lead, chromium, cadmium and mercury with methylation levels of OXTR in placentas, HSD11B2 in maternal buccal cells and placentas, MECP2 in neonatal buccal cells, and MTHFR in maternal buccal cells. Furthermore, dioxin concentrations were associated with placental RELN, neonatal HSD11B2 and maternal H19 gene methylation levels. Current results suggest that exposure of pregnant women to environmental stressors during pregnancy could induce aberrant methylation levels in genes linked to several pathways important for embryogenesis in both the placenta, potentially affecting foetal development, and in the peripheral tissues of mothers and infants, potentially providing peripheral biomarkers of environmental exposure.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Enzo Grossi
- Autism Research Unit, Villa Santa Maria Foundation, 22038 Tavernerio, Italy
| | - Giorgio Fedrizzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Chemical Department, Via P. Fiorini 5, 40127 Bologna, Italy
| | - Simonetta Menotta
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Chemical Department, Via P. Fiorini 5, 40127 Bologna, Italy
| | - Francesca Lorenzoni
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, 56126 Pisa, Italy
| | - Marta Caretto
- Obstetrics and Gynecology Unit 1, Department of Experimental and Clinical Medicine, University of Pisa, 56126 Pisa, Italy
| | - Arianna Carmignani
- Obstetrics and Gynecology Unit 2, Pisa University Hospital, 56126 Pisa, Italy
| | - Sabina Pistolesi
- First Division of Pathology, Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Ernesto Burgio
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, 09124 Cagliari, Italy
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| |
Collapse
|
11
|
Valge M, Meitern R, Hõrak P. Mothers of small-bodied children and fathers of vigorous sons live longer. Front Public Health 2023; 11:1057146. [PMID: 36761140 PMCID: PMC9905732 DOI: 10.3389/fpubh.2023.1057146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Life-history traits (traits directly related to survival and reproduction) co-evolve and materialize through physiology and behavior. Accordingly, lifespan can be hypothesized as a potentially informative marker of life-history speed that subsumes the impact of diverse morphometric and behavioral traits. We examined associations between parental longevity and various anthropometric traits in a sample of 4,000-11,000 Estonian children in the middle of the 20th century. The offspring phenotype was used as a proxy measure of parental genotype, so that covariation between offspring traits and parental longevity (defined as belonging to the 90th percentile of lifespan) could be used to characterize the aggregation between longevity and anthropometric traits. We predicted that larger linear dimensions of offspring associate with increased parental longevity and that testosterone-dependent traits associate with reduced paternal longevity. Twelve of 16 offspring traits were associated with mothers' longevity, while three traits (rate of sexual maturation of daughters and grip strength and lung capacity of sons) robustly predicted fathers' longevity. Contrary to predictions, mothers of children with small bodily dimensions lived longer, and paternal longevity was not linearly associated with their children's body size (or testosterone-related traits). Our study thus failed to find evidence that high somatic investment into brain and body growth clusters with a long lifespan across generations, and/or that such associations can be detected on the basis of inter-generational phenotypic correlations.
Collapse
|
12
|
Manfredi JM, Jacob SI, Boger BL, Norton EM. A one-health approach to identifying and mitigating the impact of endocrine disorders on human and equine athletes. Am J Vet Res 2022; 84:ajvr.22.11.0194. [PMID: 36563063 DOI: 10.2460/ajvr.22.11.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endocrinopathies affect multiple species in ever-increasing percentages of their populations, creating an opportunity to apply one-health approaches to determining creative preventative measures and therapies in athletes. Obesity and alterations in insulin and glucose dynamics are medical concerns that play a role in whole-body health and homeostasis in both horses and humans. The role and impact of endocrine disorders on the musculoskeletal, cardiovascular, and reproductive systems are of particular interest to the athlete. Elucidation of both physiologic and pathophysiologic mechanisms involved in disease processes, starting in utero, is important for development of prevention and treatment strategies for the health and well-being of all species. This review focuses on the unrecognized effects of endocrine disorders associated with the origins of metabolic disease; inflammation at the intersection of endocrine disease and related diseases in the musculoskeletal, cardiovascular, and reproductive systems; novel interventions; and diagnostics that are informed via multiomic and one-health approaches. Readers interested in further details on specific equine performance conditions associated with endocrine disease are invited to read the companion Currents in One Health by Manfredi et al, JAVMA, February 2023.
Collapse
Affiliation(s)
- Jane M Manfredi
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Sarah I Jacob
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Brooke L Boger
- Comparative Medicine and Integrative Biology, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Elaine M Norton
- Department of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| |
Collapse
|
13
|
Associations between Cord Blood Leptin Levels and Childhood Adiposity Differ by Sex and Age at Adiposity Assessment. Life (Basel) 2022; 12:life12122060. [PMID: 36556424 PMCID: PMC9780853 DOI: 10.3390/life12122060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Lower cord blood leptin levels have been associated with lower and higher adiposity in childhood and associations seem to differ according to the child’s age, methods of adiposity assessment and sex. Our aim was to investigate sex-specific associations of cord blood leptinemia with childhood adiposity at birth, 3 and 5 years of age. We measured cord blood leptin using Luminex immunoassays in 520 offspring from the Gen3G cohort. We tested associations between cord blood leptin and body mass index (BMI) z-score, skinfolds thicknesses (SFT), and body composition using dual-energy X-ray absorptiometry, adjusted for confounders. At birth, girls had almost twice as much leptin in cord blood as boys (15.5 [8.9; 25.6] vs. 8.6 [4.9; 15.0] ng/mL; p < 0.0001) as well as significantly greater adiposity. Lower levels of cord blood leptin were associated with higher sum of SFT (β = −0.05 ± 0.02; p = 0.03) and higher BMI z-score (β= −0.22 ± 0.08; p = 0.01) in 3-year-old boys only. We did not observe these associations at age 5, or in girls. Our results suggest a sexual dimorphism in the programming of leptin sensitivity and childhood adiposity, but further observational and functional studies are needed to better understand the role of leptin in early life.
Collapse
|
14
|
Ormazabal V, Nair S, Carrión F, Mcintyre HD, Salomon C. The link between gestational diabetes and cardiovascular diseases: potential role of extracellular vesicles. Cardiovasc Diabetol 2022; 21:174. [PMID: 36057662 PMCID: PMC9441052 DOI: 10.1186/s12933-022-01597-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Extracellular vesicles are critical mediators of cell communication. They encapsulate a variety of molecular cargo such as proteins, lipids, and nucleic acids including miRNAs, lncRNAs, circular RNAs, and mRNAs, and through transfer of these molecular signals can alter the metabolic phenotype in recipient cells. Emerging studies show the important role of extracellular vesicle signaling in the development and progression of cardiovascular diseases and associated risk factors such as type 2 diabetes and obesity. Gestational diabetes mellitus (GDM) is hyperglycemia that develops during pregnancy and increases the future risk of developing obesity, impaired glucose metabolism, and cardiovascular disease in both the mother and infant. Available evidence shows that changes in maternal metabolism and exposure to the hyperglycemic intrauterine environment can reprogram the fetal genome, leaving metabolic imprints that define life-long health and disease susceptibility. Understanding the factors that contribute to the increased susceptibility to metabolic disorders of children born to GDM mothers is critical for implementation of preventive strategies in GDM. In this review, we discuss the current literature on the fetal programming of cardiovascular diseases in GDM and the impact of extracellular vesicle (EV) signaling in epigenetic programming in cardiovascular disease, to determine the potential link between EV signaling in GDM and the development of cardiovascular disease in infants.
Collapse
Affiliation(s)
- Valeska Ormazabal
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia.,Faculty of Biological Sciences, Pharmacology Department, University of Concepcion, Concepción, Chile
| | - Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Flavio Carrión
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - H David Mcintyre
- Mater Research, Faculty of Medicine, University of Queensland, Mater Health, South Brisbane, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia. .,Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
15
|
Marley AR, Ryder JR, Turcotte LM, Spector LG. Maternal obesity and acute lymphoblastic leukemia risk in offspring: A summary of trends, epidemiological evidence, and possible biological mechanisms. Leuk Res 2022; 121:106924. [PMID: 35939888 DOI: 10.1016/j.leukres.2022.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Acute lymphoblastic leukemia, a heterogenous malignancy characterized by uncontrolled proliferation of lymphoid progenitors and generally initiated in utero, is the most common pediatric cancer. Although incidence of ALL has been steadily increasing in recent decades, no clear reason for this trend has been identified. Rising concurrently with ALL incidence, increasing maternal obesity rates may be partially contributing to increasing ALL prevelance. Epidemiological studies, including a recent meta-analysis, have found an association between maternal obesity and leukemogenesis in offspring, although mechanisms underlying this association remain unknown. Therefore, the purpose of this review is to propose possible mechanisms connecting maternal obesity to ALL risk in offspring, including changes to fetal/neonatal epigenetics, altered insulin-like growth factor profiles and insulin resistance, modified adipokine production and secretion, changes to immune cell populations, and impacts on birthweight and childhood obesity/adiposity. We describe how each proposed mechanism is biologically plausible due to their connection with maternal obesity, presence in neonatal and/or fetal tissue, observation in pediatric ALL patients at diagnosis, and association with leukemogenesis, A description of ALL and maternal obesity trends, a summary of epidemiological evidence, a discussion of the pathway from intrauterine environment to subsequent malignancy, and propositions for future directions are also presented.
Collapse
Affiliation(s)
- Andrew R Marley
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA.
| | - Justin R Ryder
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Center for Pediatric Obesity Medicine, Department of Pediatrics, University of Minnesota, 2450 Riverside Ave S AO-102, Minneapolis, MN 55454, USA
| | - Lucie M Turcotte
- Division of Hematology/Oncology, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 484, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Zheng Y, Joyce B, Hwang SJ, Ma J, Liu L, Allen N, Krefman A, Wang J, Gao T, Nannini D, Zhang H, Jacobs DR, Gross M, Fornage M, Lewis CE, Schreiner PJ, Sidney S, Chen D, Greenland P, Levy D, Hou L, Lloyd-Jones D. Association of Cardiovascular Health Through Young Adulthood With Genome-Wide DNA Methylation Patterns in Midlife: The CARDIA Study. Circulation 2022; 146:94-109. [PMID: 35652342 PMCID: PMC9348746 DOI: 10.1161/circulationaha.121.055484] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiovascular health (CVH) from young adulthood is strongly associated with an individual's future risk of cardiovascular disease (CVD) and total mortality. Defining epigenomic biomarkers of lifelong CVH exposure and understanding their roles in CVD development may help develop preventive and therapeutic strategies for CVD. METHODS In 1085 CARDIA study (Coronary Artery Risk Development in Young Adults) participants, we defined a clinical cumulative CVH score that combines body mass index, blood pressure, total cholesterol, and fasting glucose measured longitudinally from young adulthood through middle age over 20 years (mean age, 25-45). Blood DNA methylation at >840 000 methylation markers was measured twice over 5 years (mean age, 40 and 45). Epigenome-wide association analyses on the cumulative CVH score were performed in CARDIA and compared in the FHS (Framingham Heart Study). We used penalized regression to build a methylation-based risk score to evaluate the risk of incident coronary artery calcification and clinical CVD events. RESULTS We identified 45 methylation markers associated with cumulative CVH at false discovery rate <0.01 (P=4.7E-7-5.8E-17) in CARDIA and replicated in FHS. These associations were more pronounced with methylation measured at an older age. CPT1A, ABCG1, and SREBF1 appeared as the most prominent genes. The 45 methylation markers were mostly located in transcriptionally active chromatin and involved lipid metabolism, insulin secretion, and cytokine production pathways. Three methylation markers located in genes SARS1, SOCS3, and LINC-PINT statistically mediated 20.4% of the total effect between CVH and risk of incident coronary artery calcification. The methylation risk score added information and significantly (P=0.004) improved the discrimination capacity of coronary artery calcification status versus CVH score alone and showed association with risk of incident coronary artery calcification 5 to 10 years later independent of cumulative CVH score (odds ratio, 1.87; P=9.66E-09). The methylation risk score was also associated with incident clinical CVD in FHS (hazard ratio, 1.28; P=1.22E-05). CONCLUSIONS Cumulative CVH from young adulthood contributes to midlife epigenetic programming over time. Our findings demonstrate the role of epigenetic markers in response to CVH changes and highlight the potential of epigenomic markers for precision CVD prevention, and earlier detection of subclinical CVD, as well.
Collapse
Affiliation(s)
- Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Joyce
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiantao Ma
- Tufts University Friedman School of Nutrition Science and Policy, Boston, Massachusetts, USA
| | - Lei Liu
- Division of Biostatistics, Washington University, St. Louis, Missouri, USA
| | - Norrina Allen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amy Krefman
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jun Wang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tao Gao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Drew Nannini
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Haixiang Zhang
- Center for Applied Mathematics, Tianjin University, Tianjin, China
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cora E. Lewis
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pamela J. Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Dongquan Chen
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Donald Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
17
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
18
|
Genomics and Epigenomics of Gestational Diabetes Mellitus: Understanding the Molecular Pathways of the Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms23073514. [PMID: 35408874 PMCID: PMC8998752 DOI: 10.3390/ijms23073514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most common complications during pregnancy is gestational diabetes mellitus (GDM), hyperglycemia that occurs for the first time during pregnancy. The condition is multifactorial, caused by an interaction between genetic, epigenetic, and environmental factors. However, the underlying mechanisms responsible for its pathogenesis remain elusive. Moreover, in contrast to several common metabolic disorders, molecular research in GDM is lagging. It is important to recognize that GDM is still commonly diagnosed during the second trimester of pregnancy using the oral glucose tolerance test (OGGT), at a time when both a fetal and maternal pathophysiology is already present, demonstrating the increased blood glucose levels associated with exacerbated insulin resistance. Therefore, early detection of metabolic changes and associated epigenetic and genetic factors that can lead to an improved prediction of adverse pregnancy outcomes and future cardio-metabolic pathologies in GDM women and their children is imperative. Several genomic and epigenetic approaches have been used to identify the genes, genetic variants, metabolic pathways, and epigenetic modifications involved in GDM to determine its etiology. In this article, we explore these factors as well as how their functional effects may contribute to immediate and future pathologies in women with GDM and their offspring from birth to adulthood. We also discuss how these approaches contribute to the changes in different molecular pathways that contribute to the GDM pathogenesis, with a special focus on the development of insulin resistance.
Collapse
|
19
|
Shashikadze B, Flenkenthaler F, Stöckl JB, Valla L, Renner S, Kemter E, Wolf E, Fröhlich T. Developmental Effects of (Pre-)Gestational Diabetes on Offspring: Systematic Screening Using Omics Approaches. Genes (Basel) 2021; 12:1991. [PMID: 34946940 PMCID: PMC8701487 DOI: 10.3390/genes12121991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/27/2022] Open
Abstract
Worldwide, gestational diabetes affects 2-25% of pregnancies. Due to related disturbances of the maternal metabolism during the periconceptional period and pregnancy, children bear an increased risk for future diseases. It is well known that an aberrant intrauterine environment caused by elevated maternal glucose levels is related to elevated risks for increased birth weights and metabolic disorders in later life, such as obesity or type 2 diabetes. The complexity of disturbances induced by maternal diabetes, with multiple underlying mechanisms, makes early diagnosis or prevention a challenging task. Omics technologies allowing holistic quantification of several classes of molecules from biological fluids, cells, or tissues are powerful tools to systematically investigate the effects of maternal diabetes on the offspring in an unbiased manner. Differentially abundant molecules or distinct molecular profiles may serve as diagnostic biomarkers, which may also support the development of preventive and therapeutic strategies. In this review, we summarize key findings from state-of-the-art Omics studies addressing the impact of maternal diabetes on offspring health.
Collapse
Affiliation(s)
- Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Libera Valla
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| |
Collapse
|
20
|
Blais K, Arguin M, Allard C, Doyon M, Dolinsky VW, Bouchard L, Hivert MF, Perron P. Maternal glucose in pregnancy is associated with child's adiposity and leptin at 5 years of age. Pediatr Obes 2021; 16:e12788. [PMID: 33728816 DOI: 10.1111/ijpo.12788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/31/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exposure to maternal hyperglycaemia in pregnancy has been associated with childhood obesity. Leptin regulation might be involved in this 'adiposity programming' and may depend on timing of exposure. OBJECTIVES To investigate associations of maternal glycaemia at different periods in pregnancy with childhood adiposity and leptin levels at 5 years of age. METHODS In a prospective pre-birth cohort, we measured maternal glucose levels after a 50 g oral glucose challenge test at first trimester (9.8 ± 2.3 weeks) and during a 75 g oral glucose tolerance test at second trimester (26.5 ± 0.9 weeks). We followed up children at 5 years; we measured anthropometry and body composition using dual-energy X-ray absorptiometry (DXA). We measured fasting leptin levels using immunoassays (Luminex) in 328 children. We conducted linear regression analyses, adjusting for potential confounders. RESULTS Maternal glycaemia at first trimester was associated with childhood leptin levels at 5 years, independently of maternal pre-pregnancy BMI and other confounders (β = .09 ± .04; P = .03). Higher post-load glucose levels at second trimester were associated with greater total body fat percentage measured by DXA (1 hour-glucose: β = .010 ± .004; P = .03 and 2 hours-glucose: β = .016 ± .005; P = .002), but not with leptin levels. CONCLUSIONS Our results suggest that programming of leptin regulation may be sensitive to maternal hyperglycaemia specifically in early pregnancy.
Collapse
Affiliation(s)
- Kasandra Blais
- Faculty of Medicine and Health Sciences, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mélina Arguin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Myriam Doyon
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Faculty of Medicine and Health Sciences, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Medical Biology, CIUSSS of Saguenay-Lac-Saint-Jean, Saguenay, Québec, Canada
| | - Marie-France Hivert
- Faculty of Medicine and Health Sciences, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA.,Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrice Perron
- Faculty of Medicine and Health Sciences, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
21
|
Šimják P, Anderlová K, Cinkajzlová A, Pařízek A, Kršek M, Haluzík M. The possible role of endocrine dysfunction of adipose tissue in gestational diabetes mellitus. MINERVA ENDOCRINOL 2021; 45:228-242. [PMID: 33000620 DOI: 10.23736/s0391-1977.20.03192-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gestational diabetes mellitus (GDM) is diabetes that is first diagnosed in the second or third trimester of pregnancy in patients who did not have a history of diabetes before pregnancy. Consequences of GDM include increased risk of macrosomia and birth complications in the infant and an increased risk of maternal type 2 diabetes mellitus (T2DM) after pregnancy. There is also a longer-term risk of obesity, T2DM, and cardiovascular diseases in the child. GDM is the result of impaired glucose tolerance due to pancreatic β-cell dysfunction on a background of insulin resistance that physiologically increases during pregnancy. The strongest clinical predictors of GDM are overweight and obesity. The fact that women with GDM are more likely to be overweight or obese suggests that adipose tissue dysfunction may be involved in the pathogenesis of GDM, similarly to T2DM. Adipose tissue is not only involved in energy storage but also functions as an active endocrine organ secreting adipokines (specific hormones and cytokines) with the ability to alter insulin sensitivity. Recent evidence points to a crucial role of numerous adipokines produced by fat in the development of GDM. The following text summarizes the current knowledge about a possible role of selected adipokines in the development of GDM.
Collapse
Affiliation(s)
- Patrik Šimják
- Department of Gynecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kateřina Anderlová
- Department of Gynecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Anna Cinkajzlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Antonín Pařízek
- Department of Gynecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michal Kršek
- Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Haluzík
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic -
| |
Collapse
|
22
|
Korsmo HW, Jiang X. One carbon metabolism and early development: a diet-dependent destiny. Trends Endocrinol Metab 2021; 32:579-593. [PMID: 34210607 PMCID: PMC8282711 DOI: 10.1016/j.tem.2021.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022]
Abstract
One carbon metabolism (OCM) is critical for early development, as it provides one carbon (1C) units for the biosynthesis of DNA, proteins, and lipids and epigenetic modification of the genome. Epigenetic marks established early in life can be maintained and exert lasting impacts on gene expression and functions later in life. Animal and human studies have increasingly demonstrated that prenatal 1C nutrient deficiencies impair fetal growth, neurodevelopment, and cardiometabolic parameters in childhood, while sufficient maternal 1C nutrient intake is protective against these detrimental outcomes. However, recent studies also highlight the potential risk of maternal 1C nutrient excess or imbalance in disrupting early development. Further studies are needed to delineate the dose-response relationship among prenatal 1C nutrient exposure, epigenetic modifications, and developmental outcomes.
Collapse
Affiliation(s)
- Hunter W Korsmo
- PhD Program in Biochemistry, The Graduate Center CUNY (City University of New York), New York, NY 10016, USA; Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Xinyin Jiang
- PhD Program in Biochemistry, The Graduate Center CUNY (City University of New York), New York, NY 10016, USA; Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| |
Collapse
|
23
|
Porcu E, Sjaarda J, Lepik K, Carmeli C, Darrous L, Sulc J, Mounier N, Kutalik Z. Causal Inference Methods to Integrate Omics and Complex Traits. Cold Spring Harb Perspect Med 2021; 11:a040493. [PMID: 32816877 PMCID: PMC8091955 DOI: 10.1101/cshperspect.a040493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Major biotechnological advances have facilitated a tremendous boost to the collection of (gen-/transcript-/prote-/methyl-/metabol-)omics data in very large sample sizes worldwide. Coordinated efforts have yielded a deluge of studies associating diseases with genetic markers (genome-wide association studies) or with molecular phenotypes. Whereas omics-disease associations have led to biologically meaningful and coherent mechanisms, the identified (non-germline) disease biomarkers may simply be correlates or consequences of the explored diseases. To move beyond this realm, Mendelian randomization provides a principled framework to integrate information on omics- and disease-associated genetic variants to pinpoint molecular traits causally driving disease development. In this review, we show the latest advances in this field, flag up key challenges for the future, and propose potential solutions.
Collapse
Affiliation(s)
- Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Jennifer Sjaarda
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Kaido Lepik
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
- Institute of Computer Science, University of Tartu, Tartu 50409, Estonia
| | - Cristian Carmeli
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Liza Darrous
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Jonathan Sulc
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Ninon Mounier
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX2 5AX, United Kingdom
| |
Collapse
|
24
|
Kunysz M, Mora-Janiszewska O, Darmochwał-Kolarz D. Epigenetic Modifications Associated with Exposure to Endocrine Disrupting Chemicals in Patients with Gestational Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22094693. [PMID: 33946662 PMCID: PMC8124363 DOI: 10.3390/ijms22094693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gestational diabetes mellitus (GDM) remains a significant clinical and public health issue due to its increasing prevalence and the possibility for numerous short- and long-term complications. The growing incidence of GDM seems to coincide with the widespread use of endocrine disrupting chemicals (EDCs). The extensive production and common use of these substances in everyday life has resulted in constant exposure to harmful substances from the environment. That may result in epigenetic changes, which may manifest themselves also after many years and be passed on to future generations. It is important to consider the possible link between environmental exposure to endocrine disrupting chemicals (EDCs) during pregnancy, epigenetic mechanisms and an increased risk for developing gestational diabetes mellitus (GDM). This manuscript attempts to summarize data on epigenetic changes in pregnant women suffering from gestational diabetes in association with EDCs. There is a chance that epigenetic marks may serve as a tool for diagnostic, prognostic, and therapeutic measures.
Collapse
|
25
|
Olstad EW, Nordeng HME, Gervin K. Prenatal medication exposure and epigenetic outcomes: a systematic literature review and recommendations for prenatal pharmacoepigenetic studies. Epigenetics 2021; 17:357-380. [PMID: 33926354 PMCID: PMC8993058 DOI: 10.1080/15592294.2021.1903376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
When used during pregnancy, analgesics and psychotropics pass the placenta to enter the foetal circulation and may induce epigenetic modifications. Where such modifications occur and whether they disrupt normal foetal developme nt, are currently unanswered questions. This field of prenatal pharmacoepigenetics has received increasing attention, with several studies reporting associations between in utero medication exposure and offspring epigenetic outcomes. Nevertheless, no recent systematic review of the literature is available. Therefore, the objectives of this review were to (i) provide an overview of the literature on the association of prenatal exposure to psychotropics a nd analgesics with epigenetic outcomes, and (ii) suggest recommendations for future studies within prenatal pharmacoepigenetics. We performed systematic literature searches in five databases. The eligible studies assessed human prenatal exposure to psychotropics or analgesics, with epigenetic analyses of offspring tissue as an outcome. We identified 18 eligible studies including 4,419 neonates exposed to either antidepressants, antiepileptic drugs, paracetamol, acetylsalicylic acid, or methadone. The epigenetic outcome in all studies was DNA methylation in cord blood, placental tissue or buccal cells. Although most studies found significant differences in DNA methylation upon medication exposure, almost no differences were persistent across studies for similar medications and sequencing methods. The reviewed studies were challenging to compare due to poor transparency in reporting, and heterogeneous methodology, design, genome coverage, and statistical modelling. We propose 10 recommendations for future prenatal pharmacoepigenetic studies considering both epidemiological and epigenetic perspectives. These recommendations may improve the quality, comparability, and clinical relevance of such studies. PROSPERO registration ID: CRD42020166675.
Collapse
Affiliation(s)
- Emilie Willoch Olstad
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Hedvig Marie Egeland Nordeng
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristina Gervin
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Maternal Melatonin Deficiency Leads to Endocrine Pathologies in Children in Early Ontogenesis. Int J Mol Sci 2021; 22:ijms22042058. [PMID: 33669686 PMCID: PMC7922827 DOI: 10.3390/ijms22042058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
The review summarizes the results of experimental and clinical studies aimed at elucidating the causes and pathophysiological mechanisms of the development of endocrine pathology in children. The modern data on the role of epigenetic influences in the early ontogenesis of unfavorable factors that violate the patterns of the formation of regulatory mechanisms during periods of critical development of fetal organs and systems and contribute to the delayed development of pathological conditions are considered. The mechanisms of the participation of melatonin in the regulation of metabolic processes and the key role of maternal melatonin in the formation of the circadian system of regulation in the fetus and in the protection of the genetic program of its morphofunctional development during pregnancy complications are presented. Melatonin, by controlling DNA methylation and histone modification, prevents changes in gene expression that are directly related to the programming of endocrine pathology in offspring. Deficiency and absence of the circadian rhythm of maternal melatonin underlies violations of the genetic program for the development of hormonal and metabolic regulatory mechanisms of the functional systems of the child, which determines the programming and implementation of endocrine pathology in early ontogenesis, contributing to its development in later life. The significance of this factor in the pathophysiological mechanisms of endocrine disorders determines a new approach to risk assessment and timely prevention of offspring diseases even at the stage of family planning.
Collapse
|
27
|
Chu AHY, Godfrey KM. Gestational Diabetes Mellitus and Developmental Programming. ANNALS OF NUTRITION AND METABOLISM 2021; 76 Suppl 3:4-15. [PMID: 33465774 DOI: 10.1159/000509902] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022]
Abstract
During normal pregnancy, increased insulin resistance acts as an adaptation to enhance materno-foetal nutrient transfer and meet the nutritional needs of the developing foetus, particularly in relation to glucose requirements. However, about 1 in 6 pregnancies worldwide is affected by the inability of the mother's metabolism to maintain normoglycaemia, with the combination of insulin resistance and insufficient insulin secretion resulting in gestational diabetes mellitus (GDM). A growing body of epidemiologic work demonstrates long-term implications for adverse offspring health resulting from exposure to GDM in utero. The effect of GDM on offspring obesity and cardiometabolic health may be partly influenced by maternal obesity; this suggests that improving glucose and weight control during early pregnancy, or better still before conception, has the potential to lessen the risk to the offspring. The consequences of GDM for microbiome modification in the offspring and the impact upon offspring immune dysregulation are actively developing research areas. Some studies have suggested that GDM impacts offspring neurodevelopmental and cognitive outcomes; confirmatory studies will need to separate the effect of GDM exposure from the complex interplay of social and environmental factors. Animal and human studies have demonstrated the role of epigenetic modifications in underpinning the predisposition to adverse health in offspring exposed to suboptimal hyperglycaemic in utero environment. To date, several epigenome-wide association studies in human have extended our knowledge on linking maternal diabetes-related DNA methylation marks with childhood adiposity-related outcomes. Identification of such epigenetic marks can help guide future research to develop candidate diagnostic biomarkers and preventive or therapeutic strategies. Longer-term interventions and longitudinal studies will be needed to better understand the causality, underlying mechanisms, or impact of GDM treatments to optimize the health of future generations.
Collapse
Affiliation(s)
- Anne H Y Chu
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom,
| |
Collapse
|
28
|
Maternally inherited hypercholesterolemia does not modify the cardiovascular phenotype in familial hypercholesterolemia. Atherosclerosis 2021; 320:47-52. [PMID: 33529866 DOI: 10.1016/j.atherosclerosis.2021.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is a codominant autosomal disease characterized by a high risk of cardiovascular disease when not in lipid-lowering treatment. However, there is a large variability in the clinical presentation in heterozygous subjects (HeFH). Maternal hypercholesterolemia has been proposed as a cardiometabolic risk factor later in life. Whether this phenotype variability depends on the mother or father origin of hypercholesterolemia is unknown. The objective of this study was to analyze potential differences in anthropometry, superficial lipid deposits, comorbidities, and lipid concentrations depending on the parental origin of hypercholesterolemia within a large group of HeFH. METHODS This is a cross-sectional observational, multicenter, nation-wide study in Spain. We recruited adults with HeFH to study clinical differences according to the parental origin. Data on HeFH patients were obtained from the Dyslipidemia Registry of the Spanish Atherosclerosis Society. RESULTS HeFH patients were grouped in 1231 HeFH-mother-offspring aged 45.7 (16.3) years and 1174 HeFH-father-offspring aged 44.8 (16.7) years. We did not find any difference in lipid parameters (total cholesterol, triglycerides, LDLc, HDLc, and Lp(a)), nor in the comorbidities studied (cardiovascular disease prevalence, age of onset of cardiovascular disease, obesity, diabetes, and hypertension) between groups. Lipid-lowering treatment did not differ between groups. The prevalence of comorbidities did not show differences when they were studied by age groups. CONCLUSIONS Our research with a large group of subjects with HeFH shows that a potential maternal effect is not relevant in FH. However, due to the size of our sample, potential differences between genders cannot be completely ruled out. This implies that severe maternal hypercholesterolemia during pregnancy is not associated with additional risk in the FH affected offspring.
Collapse
|
29
|
Diemer EW, Labrecque JA, Neumann A, Tiemeier H, Swanson SA. Mendelian randomisation approaches to the study of prenatal exposures: A systematic review. Paediatr Perinat Epidemiol 2021; 35:130-142. [PMID: 32779786 PMCID: PMC7891574 DOI: 10.1111/ppe.12691] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mendelian randomisation (MR) designs apply instrumental variable techniques using genetic variants to study causal effects. MR is increasingly used to evaluate the role of maternal exposures during pregnancy on offspring health. OBJECTIVES We review the application of MR to prenatal exposures and describe reporting of methodologic challenges in this area. DATA SOURCES We searched PubMed, EMBASE, Medline Ovid, Cochrane Central, Web of Science, and Google Scholar. STUDY SELECTION AND DATA EXTRACTION Eligible studies met the following criteria: (a) a maternal pregnancy exposure; (b) an outcome assessed in offspring of the pregnancy; and (c) a genetic variant or score proposed as an instrument or proxy for an exposure. SYNTHESIS We quantified the frequency of reporting of MR conditions stated, techniques used to examine assumption plausibility, and reported limitations. RESULTS Forty-three eligible studies were identified. When discussing challenges or limitations, the most common issues described were known potential biases in the broader MR literature, including population stratification (n = 29), weak instrument bias (n = 18), and certain types of pleiotropy (n = 30). Of 22 studies presenting point estimates for the effect of exposure, four defined their causal estimand. Twenty-four studies discussed issues unique to prenatal MR, including selection on pregnancy (n = 1) and pleiotropy via postnatal exposure (n = 10) or offspring genotype (n = 20). CONCLUSIONS Prenatal MR studies frequently discuss issues that affect all MR studies, but rarely discuss problems specific to the prenatal context, including selection on pregnancy and effects of postnatal exposure. Future prenatal MR studies should report and attempt to falsify their assumptions, with particular attention to issues specific to prenatal MR. Further research is needed to evaluate the impacts of biases unique to prenatal MR in practice.
Collapse
Affiliation(s)
- Elizabeth W. Diemer
- Department of Child and Adolescent PsychiatryErasmus MCRotterdamThe Netherlands
| | | | - Alexander Neumann
- Department of Child and Adolescent PsychiatryErasmus MCRotterdamThe Netherlands,Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
| | - Henning Tiemeier
- Department of Child and Adolescent PsychiatryErasmus MCRotterdamThe Netherlands,Department of Social and Behavioral ScienceHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Sonja A. Swanson
- Department of EpidemiologyErasmus MCRotterdamThe Netherlands,Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
| |
Collapse
|
30
|
Leerkes EM, Buehler C, Calkins SD, Shriver LH, Wideman L. Protocol for iGrow (Infant Growth and Development Study): biopsychosocial predictors of childhood obesity risk at 2 years. BMC Public Health 2020; 20:1912. [PMID: 33317498 PMCID: PMC7734916 DOI: 10.1186/s12889-020-10003-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022] Open
Abstract
Background Childhood obesity remains a significant public health problem. To date, most research on the causes and correlates of obesity has focused on a small number of direct predictors of obesity rather than testing complex models that address the multifactorial nature of the origins of obesity in early development. We describe the rationale and methods of iGrow (Infant Growth and Development Study) which will test multiple pathways by which (a) prenatal maternal psychobiological risk predicts infant weight gain over the first 6 months of life, and (b) this early weight gain confers risk for obesity at age 2. Infant hormonal and psychobiological risk are proposed mediators from prenatal risk to early weight gain, though these are moderated by early maternal sensitivity and obesogenic feeding practices. In addition, higher maternal sensitivity and lower obesogenic feeding practices are proposed predictors of adaptive child self-regulation in the second year of life, and all three are proposed to buffer/reduce the association between high early infant weight gain and obesity risk at age 2. Methods iGrow is a prospective, longitudinal community-based study of 300 diverse mothers and infants to be followed across 5 data waves from pregnancy until children are age 2. Key measures include (a) maternal reports of demographics, stress, well-being, feeding practices and child characteristics and health; (b) direct observation of maternal and infant behavior during feeding, play, and distress-eliciting tasks during which infant heart rate is recorded to derive measures of vagal withdrawal; (c) anthropometric measures of mothers and infants; and (d) assays of maternal prenatal blood and infant saliva and urine. A host of demographic and other potential confounds will be considered as potential covariates in structural equation models that include tests of mediation and moderation. Efforts to mitigate the deleterious effects of COVID-19 on study success are detailed. Discussion This study has the potential to inform (1) basic science about early life processes casually related to childhood obesity and (2) development of targeted intervention and prevention approaches that consider mother, infant, and family risks and resources.
Collapse
Affiliation(s)
- Esther M Leerkes
- UNC Greensboro, Department of Human Development and Family Studies, Greensboro, NC, 27402-6170, USA.
| | - Cheryl Buehler
- UNC Greensboro, Department of Human Development and Family Studies, Greensboro, NC, 27402-6170, USA
| | - Susan D Calkins
- UNC Greensboro, Office of Research and Engagement, Greensboro, NC, 27402-6170, USA
| | - Lenka H Shriver
- UNC Greensboro, Department of Nutrition, Greensboro, NC, 27402-6170, USA
| | - Laurie Wideman
- UNC Greensboro, Department of Kinesiology, Greensboro, NC, 27402-6170, USA
| |
Collapse
|
31
|
Leptin in Cord Blood Associates with Asthma Risk at Age 3 in the Offspring of Women with Gestational Obesity. Ann Am Thorac Soc 2020; 17:1583-1589. [PMID: 32726560 DOI: 10.1513/annalsats.202001-080oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rationale: Maternal obesity is associated with asthma in the offspring. Whether cord blood leptin is associated with risk of asthma in offspring is unclear.Objectives: To assess whether cord blood leptin from women with pregestational obesity predict preschool asthma.Methods: In this birth cohort study, we divided pregnant women into three weight categories during the first obstetric visit: normal (NL), overweight (OW), and obese (OB).Results: We followed the offspring recording atopy, wheezing, and other respiratory illnesses through 30 months of age. Cord blood and peripheral blood at 30 months of age were taken to measure cytokines, adipokines, metabolic biomarkers, and specific immunoglobulin E. Adjusted regression models were used to evaluate the association between maternal obesity and offspring asthma risk, defined by a positive Asthma Predictive Index. Three hundred thirty-nine mothers were recruited; 140 offspring were born from NL, 80 from OW, and 119 from OB mothers. OB women were older and less educated and had higher parity and higher C-section frequency. Offspring from OB women had higher birthweight, head circumference, and placental weight compared with other groups. The proportion of Asthma Predictive Index positive at 30 months of age was 12.2% in the NL, 14.7% in the OW, and 16.8% in the OB group (P = 0.18). Offspring from OB women had higher leptin, leptin/adiponectin ratio, interleukin-10, and insulin than the OW group and higher leptin than the NL group. In the adjusted analysis, offspring from OB mothers with high cord blood leptin had increased risk of asthma (adjusted odds ratio, 1.30; 95% confidence interval, 1.1-1.55; P = 0.003).Conclusions: Offspring from obese mothers with high cord blood leptin have 30% higher asthma risk at age 3.Clinical trial registered with ClinicalTrials.gov (NCT02903134).
Collapse
|
32
|
Wang H, He H, Yu Y, Su X, Li F, Li J. Maternal diabetes and the risk of feeding and eating disorders in offspring: a national population-based cohort study. BMJ Open Diabetes Res Care 2020; 8:8/1/e001738. [PMID: 33077476 PMCID: PMC7574887 DOI: 10.1136/bmjdrc-2020-001738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/02/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Previous studies have suggested that maternal diabetes may have programming effect on fetal brain development. However, little is known about the association between maternal diabetes and neurodevelopmental disorders in offspring that mainly manifest in infancy or early childhood. We aimed to examine the association between maternal diabetes before or during pregnancy and feeding and eating disorders (FED) in offspring. RESEARCH DESIGN AND METHODS This population-based cohort study included 1 193 891 singletons born in Denmark during 1996-2015. These children were followed from birth until the onset of FED, the sixth birthday, death, emigration, or 31 December 2016, whichever came first. Relative risk of FED was estimated by HRs using Cox proportional hazards model. RESULTS A total of 40 867 (3.4%) children were born to mothers with diabetes (20 887 with pregestational diabetes and 19 980 with gestational diabetes). The incidence rates of FED were 6.8, 4.6 and 2.9 per 10 000 person-years among children of mothers with pregestational diabetes, gestational diabetes and no diabetes, respectively. Offspring of mothers with diabetes had a 64% increased risk of FED (HR 1.64; 95% CI 1.36 to 1.99; p<0.001). The HR for maternal pregestational diabetes and gestational diabetes was 2.01 (95% CI 1.59 to 2.56; p<0.001) and 1.28 (95% CI 0.95 to 1.72; p=0.097), respectively. The increased risk was more pronounced among offspring of mothers with diabetic complications (HR 2.97; 95% CI 1.54 to 5.72; p=0.001). CONCLUSIONS Maternal diabetes was associated with an increased risk of FED in offspring in infancy and early childhood. Our findings can inform clinical decisions for better management of maternal diabetes, in particular before pregnancy, which can reduce early neurodevelopmental problems in the offspring.
Collapse
Affiliation(s)
- Hui Wang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua He
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Developmental and Behavioural Pediatric Department & Child Primary Care Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfu Yu
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Xiujuan Su
- Clinical Research Center, Shanghai First Maternity and Infant Hospital Affiliated to Tongji University, Shanghai, China
| | - Fei Li
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Developmental and Behavioural Pediatric Department & Child Primary Care Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Li
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
- School of Global Health, Chinese Center for Tropical Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Lima RS, Assis Silva Gomes J, Moreira PR. An overview about DNA methylation in childhood obesity: Characteristics of the studies and main findings. J Cell Biochem 2020; 121:3042-3057. [DOI: 10.1002/jcb.29544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Rafael Silva Lima
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| | - Juliana Assis Silva Gomes
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| | - Paula Rocha Moreira
- Laboratory of Cell‐Cell Interactions, Department of Morphology, Institute of Biological SciencesFederal University of Minas Gerais Minas Gerais Brazil
| |
Collapse
|
34
|
Daniels TE, Sadovnikoff AI, Ridout KK, Lesseur C, Marsit CJ, Tyrka AR. Associations of maternal diet and placenta leptin methylation. Mol Cell Endocrinol 2020; 505:110739. [PMID: 32004678 PMCID: PMC7185035 DOI: 10.1016/j.mce.2020.110739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Maternal diet is an important factor in prenatal development that also has implications for disease risk later in life. The adipokine leptin is a key regulator of energy homeostasis and may be involved in the association between maternal nutrition, maternal obesity, and infant outcomes. DNA methylation of placenta genes may occur in response to exposures and may program subsequent infant development. This study examined maternal diet, placenta leptin gene DNA methylation, and neonatal growth in a sample of healthy neonates and their mothers. METHODS Mothers and their healthy neonates (N = 135) were recruited within 1-2 days following delivery at Women and Infants Hospital in Providence, RI. A structured interview was conducted to assess maternal dietary intake. Maternal pre-pregnancy weight, weight gain during pregnancy, maternal health, medications, and vitamin use were obtained from medical records. Bisulfite pyrosequencing was used to measure methylation of CpG sites in the promoter region of the placenta leptin gene and determine genotype of the leptin single nucleotide polymorphism (SNP) rs2167270, which is known to influence leptin methylation. Bivariate analyses and linear regression models were used to evaluate associations of demographics, diet, and mean leptin methylation. RESULTS Genotype was a significant predictor of placenta leptin DNA methylation (p < .01), and after controlling for this and other relevant maternal and infant covariates, lower levels of leptin methylation were significantly associated with greater intake of carbohydrates (p < .05), in particular added sugars (p < .05) and white/refined carbohydrates (p < .05). Total caloric intake was also associated with placenta leptin methylation (p < .05), however after controlling for relevant covariates, significance diminished to trend-level. There were no significant associations of placenta leptin methylation and intake of protein (p > .05) or fat (p > .05). CONCLUSION These findings underline the importance of intake of carbohydrate consumption for methylation of the placenta leptin gene. Because methylation reduces gene transcription, lower methylation may indicate a placenta response to high caloric intake and carbohydrate food that would result in higher levels of this hormone during fetal development. Further investigation of the developmental ramifications of epigenetic changes to placenta leptin methylation should be pursued.
Collapse
Affiliation(s)
- Teresa E Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, USA.
| | - Alexander I Sadovnikoff
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Kathryn K Ridout
- Department of Psychiatry and Family Medicine, Kaiser Permanente, San Jose, CA, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| | - Audrey R Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, USA
| |
Collapse
|
35
|
Mediation Analysis Supports a Causal Relationship between Maternal Hyperglycemia and Placental DNA Methylation Variations at the Leptin Gene Locus and Cord Blood Leptin Levels. Int J Mol Sci 2020; 21:ijms21010329. [PMID: 31947745 PMCID: PMC6982090 DOI: 10.3390/ijms21010329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Accepted: 12/31/2019] [Indexed: 12/02/2022] Open
Abstract
Changes in fetal DNA methylation (DNAm) of the leptin (LEP) gene have been associated with exposure to maternal hyperglycemia, but their links with childhood obesity risk are still unclear. We investigated the association between maternal hyperglycemia, placental LEP DNAm (25 5′-C-phosphate-G-3′ (CpG) sites), neonatal leptinemia, and adiposity (i.e., BMI and skinfold thickness (ST) (subscapular (SS) + triceps (TR) skinfold measures, and the ratio of SS:TR) at 3-years-old, in 259 mother–child dyads, from Gen3G birth cohort. We conducted multivariate linear analyses adjusted for gestational age at birth, sex of the child, age at follow-up, and cellular heterogeneity. We assessed the causal role of DNAm in the association between maternal glycemia and childhood outcomes, using mediation analysis. We found three CpGs associated with neonatal leptinemia (p ≤ 0.002). Of these, cg05136031 and cg15758240 were also associated with BMI (β = −2.69, p = 0.05) and fat distribution (β = −0.581, p = 0.05) at 3-years-old, respectively. Maternal glycemia was associated with DNAm at cg15758240 (β = −0.01, p = 0.04) and neonatal leptinemia (β = 0.19, p = 0.004). DNAm levels at cg15758240 mediates 0.8% of the association between maternal glycemia and neonatal leptinemia (p < 0.001). Our results support that DNAm regulation of the leptin pathway in response to maternal glycemia might be involved in programming adiposity in childhood.
Collapse
|
36
|
Elliott HR, Sharp GC, Relton CL, Lawlor DA. Epigenetics and gestational diabetes: a review of epigenetic epidemiology studies and their use to explore epigenetic mediation and improve prediction. Diabetologia 2019; 62:2171-2178. [PMID: 31624900 PMCID: PMC6861541 DOI: 10.1007/s00125-019-05011-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Epigenetics encapsulates a group of molecular mechanisms including DNA methylation, histone modification and microRNAs (miRNAs). Gestational diabetes (GDM) increases the risk of adverse perinatal outcomes and is associated with future offspring risk of obesity and type 2 diabetes. It has been hypothesised that epigenetic mechanisms mediate an effect of GDM on offspring adiposity and type 2 diabetes and this could provide a modifiable mechanism to reduce type 2 diabetes in the next generation. Evidence for this hypothesis is lacking. Epigenetic epidemiology could also contribute to reducing type 2 diabetes by identifying biomarkers that accurately predict risk of GDM and its associated future adverse outcomes. We reviewed published human studies that explored associations between any of maternal GDM, type 2 diabetes, gestational fasting or post-load glucose and any epigenetic marker (DNA methylation, histone modification or miRNA). Of the 81 relevant studies we identified, most focused on the potential role of epigenetic mechanisms in mediating intrauterine effects of GDM on offspring outcomes. Studies were small (median total number of participants 58; median number of GDM cases 27) and most did not attempt replication. The most common epigenetic measure analysed was DNA methylation. Most studies that aimed to explore epigenetic mediation examined associations of in utero exposure to GDM with offspring cord or infant blood/placenta DNA methylation. Exploration of any causal effect, or effect on downstream offspring outcomes, was lacking. There is a need for more robust methods to explore the role of epigenetic mechanisms as possible mediators of effects of exposure to GDM on future risk of obesity and type 2 diabetes. Research to identify epigenetic biomarkers to improve identification of women at risk of GDM and its associated adverse (maternal and offspring) outcomes is currently rare but could contribute to future tools for accurate risk stratification.
Collapse
Affiliation(s)
- Hannah R Elliott
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- Bristol NIHR Biomedical Research Centre, University of Bristol, Bristol, UK.
| |
Collapse
|
37
|
Systemic endocrinopathies (thyroid conditions and diabetes): impact on postnatal life of the offspring. Fertil Steril 2019; 111:1076-1091. [PMID: 31155115 DOI: 10.1016/j.fertnstert.2019.04.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022]
Abstract
Fetal programming may influence childhood and adult life, determining the risk of specific diseases. During earlier stages of pregnancy, the transfer of maternal thyroid hormones to the fetus is vital for adequate neurologic development. The presence of severe maternal thyroid dysfunction, particularly severe iodine deficiency, is devastating, leading to irreversible neurologic sequelae. Moreover, mild maternal thyroid conditions, such as a mild-to-moderate iodine deficiency, may also lead to milder neurologic and behavioral conditions later during the life of the offspring. Maternal dysglycemia due to pregestational or gestational diabetes mellitus is another common situation in which fetal development encounters a hostile environment. Hyperglycemia in utero may trigger metabolic conditions in the offspring, including abnormalities of glucose tolerance and weight excess. Physicians assisting pregnant women have to be aware about these conditions, because they may go unnoticed if not properly screened. Because an early diagnosis and appropriate management may prevent most of the possible negative consequences for the progeny, the prevention, early diagnosis, and proper management of these endocrine conditions should be offered to all women undergoing pregnancy. Here, we comprehensively review the current evidence about the effects of maternal thyroid dysfunction and maternal dysglycemia on the cognitive function and carbohydrate metabolism in the offspring, two prevalent conditions of utmost importance for the child's health and development.
Collapse
|
38
|
Genetic variation, intrauterine growth, and adverse pregnancy conditions predict leptin gene DNA methylation in blood at birth and 12 months of age. Int J Obes (Lond) 2019; 44:45-56. [PMID: 31636377 DOI: 10.1038/s41366-019-0472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Leptin regulates satiety and energy homoeostasis, and plays a key role in placentation in pregnancy. Previous studies have demonstrated regulation of leptin gene (LEP) expression and/or methylation in placenta and cord blood in association with early life exposures, but most have been small and have not considered the influence of genetic variation. Here, we investigated the relationship between maternal factors in pregnancy, infant anthropometry and LEP genetic variation with LEP promoter methylation at birth and 12 months of age. METHODS LEP methylation was measured in cord (n = 877) and 12-month (n = 734) blood in the Barwon Infant Study, a population-based pre-birth cohort. Infant adiposity at birth and 12-months was measured as triceps and subscapular skinfold thickness. Cross-sectional regression tested associations of methylation with pregnancy and anthropometry measures, while longitudinal regression tested if birth anthropometry predicted 12-month LEP methylation levels. RESULTS Male infants had lower LEP methylation in cord blood (-2.07% average methylation, 95% CI (-2.92, -1.22), p < 0.001). Genetic variation strongly influenced DNA methylation at a single CpG site, which was also negatively associated with birth weight (r = -0.10, p = 0.003). Pre-eclampsia was associated with lower cord blood methylation at another CpG site (-6.06%, 95% CI (-10.70, -1.42), p = 0.01). Gestational diabetes was more modestly associated with methylation at two other CpG units. Adiposity at birth was associated with 12-month LEP methylation, modified by rs41457646 genotype. There was no association of LEP methylation with 12-month anthropometric measures. CONCLUSIONS Infant sex, weight, genetic variation, and exposure to pre-eclampsia and gestational diabetes, are associated with LEP methylation in cord blood. Infant adiposity at birth predicts 12-month blood LEP methylation in a genotype-dependent manner. These findings are consistent with genetics and anthropometry driving altered LEP epigenetic profile and expression in infancy. Further work is required to confirm this and to determine the long-term impact of altered LEP methylation on health.
Collapse
|
39
|
Hjort L, Novakovic B, Grunnet LG, Maple-Brown L, Damm P, Desoye G, Saffery R. Diabetes in pregnancy and epigenetic mechanisms-how the first 9 months from conception might affect the child's epigenome and later risk of disease. Lancet Diabetes Endocrinol 2019; 7:796-806. [PMID: 31128973 DOI: 10.1016/s2213-8587(19)30078-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 12/23/2022]
Abstract
Diabetes in pregnancy is not only associated with increased risk of pregnancy complications and subsequent maternal metabolic disease, but also increases the risk of long-term metabolic disease in the offspring. At the interface between genetic and environmental factors, epigenetic variation established in utero represents a plausible link between the in utero environment and later disease susceptibility. The identification of an epigenetic fingerprint of diabetes in pregnancy linked to the metabolic health of the offspring might provide novel biomarkers for the identification of offspring most at risk, before the onset of metabolic dysfunction, for targeted monitoring and intervention. In this Personal View, we (1) highlight the scale of the problem of diabetes in pregnancy, (2) summarise evidence for the variation in offspring epigenetic profiles following exposure to diabetes in utero, and (3) outline potential future approaches to further understand the mechanisms by which exposure to maternal metabolic dysfunction in pregnancy is transmitted through generations.
Collapse
Affiliation(s)
- Line Hjort
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Center for Pregnant Women with Diabetes, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; The Danish Diabetes Academy, Odense, Denmark.
| | - Boris Novakovic
- Cancer and Disease Epigenetics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Louise G Grunnet
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; The Danish Diabetes Academy, Odense, Denmark
| | - Louise Maple-Brown
- Wellbeing and Preventable Chronic Diseases Division, Menzies School of Health Research, Darwin, NT, Australia; Endocrinology Department, Royal Darwin Hospital, Darwin, NT, Australia
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Richard Saffery
- Cancer and Disease Epigenetics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Wróblewski A, Strycharz J, Świderska E, Drewniak K, Drzewoski J, Szemraj J, Kasznicki J, Śliwińska A. Molecular Insight into the Interaction between Epigenetics and Leptin in Metabolic Disorders. Nutrients 2019; 11:nu11081872. [PMID: 31408957 PMCID: PMC6723573 DOI: 10.3390/nu11081872] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022] Open
Abstract
Nowadays, it is well-known that the deregulation of epigenetic machinery is a common biological event leading to the development and progression of metabolic disorders. Moreover, the expression level and actions of leptin, a vast adipocytokine regulating energy metabolism, appear to be strongly associated with epigenetics. Therefore, the aim of this review was to summarize the current knowledge of the epigenetic regulation of leptin as well as the leptin-induced epigenetic modifications in metabolic disorders and associated phenomena. The collected data indicated that the deregulation of leptin expression and secretion that occurs during the course of metabolic diseases is underlain by a variation in the level of promoter methylation, the occurrence of histone modifications, along with miRNA interference. Furthermore, leptin was proven to epigenetically regulate several miRNAs and affect the activity of the histone deacetylases. These epigenetic modifications were observed in obesity, gestational diabetes, metabolic syndrome and concerned various molecular processes like glucose metabolism, insulin sensitivity, liver fibrosis, obesity-related carcinogenesis, adipogenesis or fetal/early postnatal programming. Moreover, the circulating miRNA profiles were associated with the plasma leptin level in metabolic syndrome, and miRNAs were found to be involved in hypothalamic leptin sensitivity. In summary, the evidence suggests that leptin is both a target and a mediator of epigenetic changes that develop in numerous tissues during metabolic disorders.
Collapse
Affiliation(s)
- Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland.
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Karolina Drewniak
- Student Scientific Society of the Civilization Diseases, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland.
| |
Collapse
|
41
|
Li C, Tobi EW, Heijmans BT, Lumey LH. The effect of the Chinese Famine on type 2 diabetes mellitus epidemics. Nat Rev Endocrinol 2019; 15:313-314. [PMID: 30899101 DOI: 10.1038/s41574-019-0195-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chihua Li
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Henan, China
| | - Elmar W Tobi
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - L H Lumey
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
42
|
Ling C, Rönn T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab 2019; 29:1028-1044. [PMID: 30982733 PMCID: PMC6509280 DOI: 10.1016/j.cmet.2019.03.009] [Citation(s) in RCA: 540] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic mechanisms control gene activity and the development of an organism. The epigenome includes DNA methylation, histone modifications, and RNA-mediated processes, and disruption of this balance may cause several pathologies and contribute to obesity and type 2 diabetes (T2D). This Review summarizes epigenetic signatures obtained from human tissues of relevance for metabolism-i.e., adipose tissue, skeletal muscle, pancreatic islets, liver, and blood-in relation to obesity and T2D. Although this research field is still young, these comprehensive data support not only a role for epigenetics in disease development, but also epigenetic alterations as a response to disease. Genetic predisposition, as well as aging, contribute to epigenetic variability, and several environmental factors, including exercise and diet, further interact with the human epigenome. The reversible nature of epigenetic modifications holds promise for future therapeutic strategies in obesity and T2D.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden.
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
43
|
Ma B, Allard C, Bouchard L, Perron P, Mittleman MA, Hivert MF, Liang L. Locus-specific DNA methylation prediction in cord blood and placenta. Epigenetics 2019; 14:405-420. [PMID: 30885044 DOI: 10.1080/15592294.2019.1588685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA methylation is known to be responsive to prenatal exposures, which may be a part of the mechanism linking early developmental exposures to future chronic diseases. Many studies use blood to measure DNA methylation, yet we know that DNA methylation is tissue specific. Placenta is central to fetal growth and development, but it is rarely feasible to collect this tissue in large epidemiological studies; on the other hand, cord blood samples are more accessible. In this study, based on paired samples of both placenta and cord blood tissues from 169 individuals, we investigated the methylation concordance between placenta and cord blood. We then employed a machine-learning-based model to predict locus-specific DNA methylation levels in placenta using DNA methylation levels in cord blood. We found that methylation correlation between placenta and cord blood is lower than other tissue pairs, consistent with existing observations that placenta methylation has a distinct pattern. Nonetheless, there are still a number of CpG sites showing robust association between the two tissues. We built prediction models for placenta methylation based on cord blood data and documented a subset of 1,012 CpG sites with high correlation between measured and predicted placenta methylation levels. The resulting list of CpG sites and prediction models could help to reveal the loci where internal or external influences may affect DNA methylation in both placenta and cord blood, and provide a reference data to predict the effects on placenta in future study even when the tissue is not available in an epidemiological study.
Collapse
Affiliation(s)
- Baoshan Ma
- a College of Information Science and Technology , Dalian Maritime University , Dalian , Liaoning Province , China
| | - Catherine Allard
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada
| | - Luigi Bouchard
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,c Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada.,d ECOGENE-21 Biocluster , CSSS de Chicoutimi , Chicoutimi , Quebec , Canada
| | - Patrice Perron
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,e Department of Medicine, Faculty of Medicine and Life Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada
| | - Murray A Mittleman
- f Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , MA , USA.,g Cardiovascular Epidemiology Research Unit , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Marie-France Hivert
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,e Department of Medicine, Faculty of Medicine and Life Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada.,h Department of Population Medicine , Harvard Pilgrim Health Care Institute, Harvard Medical School , Boston , MA , USA.,i Diabetes Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Liming Liang
- f Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , MA , USA.,j Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
44
|
Grau-Perez M, Agha G, Pang Y, Bermudez JD, Tellez-Plaza M. Mendelian Randomization and the Environmental Epigenetics of Health: a Systematic Review. Curr Environ Health Rep 2019; 6:38-51. [DOI: 10.1007/s40572-019-0226-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Silva L, Plösch T, Toledo F, Faas MM, Sobrevia L. Adenosine kinase and cardiovascular fetal programming in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165397. [PMID: 30699363 DOI: 10.1016/j.bbadis.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Gestational diabetes mellitus (GDM) is a detrimental condition for human pregnancy associated with endothelial dysfunction and endothelial inflammation in the fetoplacental vasculature and leads to increased cardio-metabolic risk in the offspring. In the fetoplacental vasculature, GDM is associated with altered adenosine metabolism. Adenosine is an important vasoactive molecule and is an intermediary and final product of transmethylation reactions in the cell. Adenosine kinase is the major regulator of adenosine levels. Disruption of this enzyme is associated with alterations in methylation-dependent gene expression regulation mechanisms, which are associated with the fetal programming phenomenon. Here we propose that cellular and molecular alterations associated with GDM can dysregulate adenosine kinase leading to fetal programming in the fetoplacental vasculature. This can contribute to the cardio-metabolic long-term consequences observed in offspring after exposure to GDM.
Collapse
Affiliation(s)
- Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen 9700 RB, the Netherlands.
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen 9700 RB, the Netherlands; Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia.
| |
Collapse
|
46
|
Associations of prenatal exposure to impaired glucose tolerance with eating in the absence of hunger in early adolescence. Int J Obes (Lond) 2019; 43:1903-1913. [PMID: 30622313 DOI: 10.1038/s41366-018-0296-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/25/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Exposure to impaired gestational glucose tolerance has been shown to have sex-specific associations with offspring obesity risk, perhaps by affecting the development of appetite regulation. We examined the extent to which prenatal exposure to impaired glucose tolerance was associated with eating in the absence of hunger (EAH) in early adolescent offspring, and in turn, whether EAH was cross-sectionally associated with body composition. METHODS We included data from 1097 adolescents participating in Project Viva, a pre-birth longitudinal cohort. We obtained the results of two-stage prenatal glycemic screening (50 g glucose challenge test, followed if abnormal by 100 g oral glucose tolerance test) at 26-28 weeks of gestation, and categorized mothers as having normal glucose tolerance, isolated hyperglycemia (IH, n = 92, 8.4%), impaired glucose tolerance (IGT, n = 36, 3.3%), or gestational diabetes mellitus (GDM, n = 52, 4.7%). At a median age of 13 years, offspring reported on two modified items of the Eating in the Absence of Hunger in Children and Adolescents questionnaire, we measured height and weight, and performed dual X-ray absorptiometry scans to assess fat and fat-free mass. We used multivariable linear regression analyses adjusted for sociodemographic and prenatal covariates, including maternal pre-pregnancy BMI. RESULTS On a ten-point scale, the mean (SD) EAH score was 4.4 points (SD = 1.5) in boys and 4.4 (SD = 1.4) in girls. In girls, prenatal exposure to both IH and IGT was associated with more EAH compared with normal glucose tolerance (e.g., for IH: 0.56 points, 95% CI: 0.17, 0.96), whereas in boys, prenatal exposure to IGT was associated with less EAH (-0.81 points, 95% CI: -1.41, -0.21). We did not observe an association between exposure to GDM and EAH, nor did we observe associations between EAH and body composition in early adolescence. CONCLUSIONS These findings suggest sex-specific associations of exposure to impaired gestational glucose tolerance with offspring EAH in early adolescence.
Collapse
|
47
|
Coppedè F, Seghieri M, Stoccoro A, Santini E, Giannini L, Rossi C, Migliore L, Solini A. DNA methylation of genes regulating appetite and prediction of weight loss after bariatric surgery in obese individuals. J Endocrinol Invest 2019; 42:37-44. [PMID: 29603098 DOI: 10.1007/s40618-018-0881-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Epigenetic traits are influenced by clinical variables; interaction between DNA methylation (DNAmeth) and bariatric surgery-induced weight loss has been scarcely explored. We investigated whether DNAmeth of genes encoding for molecules/hormones regulating appetite, food intake or obesity could predict successful weight outcome following Roux-en-Y gastric bypass (RYGB). METHODS Forty-five obese individuals with no known comorbidities were stratified accordingly to weight decrease one-year after RYGB (excess weight loss, EWL ≥ 50%: good responders, GR; EWL < 50%: worse responders, WR). DNAmeth of leptin (LEP), ghrelin (GHRL), ghrelin receptor (GHSR) and insulin-growth factor-2 (IGF2) was assessed before intervention. Single nucleotide polymorphisms of genes affecting DNAmeth, DNMT3A and DNMT3B, were also determined. RESULTS At baseline, type 2 diabetes was diagnosed by OGTT in 13 patients. Post-operatively, GR (n = 23) and WR (n = 22) achieved an EWL of 67.7 ± 9.6 vs 38.2 ± 9.0%, respectively. Baseline DNAmeth did not differ between GR and WR for any tested genes, even when the analysis was restricted to subjects with no diabetes. A relationship between GHRL and LEP methylation profiles emerged (r = 0.47, p = 0.001). Searching for correlation between DNAmeth of the studied genes with demographic characteristics and baseline biochemical parameters of the studied population, we observed a correlation between IGF2 methylation and folate (r = 0.44, p = 0.003). Rs11683424 for DNMT3A and rs2424913 for DNMT3B did not correlate with DNAmeth of the studied genes. CONCLUSIONS In severely obese subjects, the degree of DNAmeth of some genes affecting obesity and related conditions does not work as predictor of successful response to RYGB.
Collapse
Affiliation(s)
- F Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - M Seghieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Stoccoro
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - E Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - A Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| |
Collapse
|
48
|
Epigenome-wide methylation differences in a group of lean and obese women - A HUNT Study. Sci Rep 2018; 8:16330. [PMID: 30397228 PMCID: PMC6218540 DOI: 10.1038/s41598-018-34003-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/07/2018] [Indexed: 01/04/2023] Open
Abstract
Knowledge of epigenetically regulated biomarkers linked to obesity development is still scarce. Improving molecular understanding of the involved factors and pathways would improve obesity phenotype characterization and reveal potentially relevant targets for obesity intervention. The Illumina Infinium HumanMethylation450 BeadChip was used in a leucocyte epigenome-wide association study (EWAS) to quantify differential DNA methylation in 60 lean compared with 60 obese young women. Replication was done in monozygotic twins discordant for obesity. At adolescence and adulthood, the two weight groups differed significantly in obesity-related traits and metabolic risk factors. Differential hypomethylation was overrepresented in obese compared to lean women. In the adjusted model, the EWAS revealed 10 differentially methylated CpG sites linked to 8 gene loci – COX6A1P2/FGD2, SBNO2, TEX41, RPS6KA2, IGHE/IGHG1/IGHD, DMAP1, SOCS3, and SETBP1– and an enhancer locus at chromosome 2 (2p25.1). The sites linked to TEX41, IGHE/IGHG1/IGHD, DMAP1, and SETBP1 were novel findings, while COX6A1P/FGD2, SBNO2, RPS6KA2, and SOCS3 had been identified previously with concordant direction of effects. RPS6KA2, DMAP1, and SETBP1 were replicated in the BMI-discordant monozygotic twin cohort using the FDR of 5%.
Collapse
|
49
|
Hjort L, Martino D, Grunnet LG, Naeem H, Maksimovic J, Olsson AH, Zhang C, Ling C, Olsen SF, Saffery R, Vaag AA. Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children. JCI Insight 2018; 3:122572. [PMID: 30185669 DOI: 10.1172/jci.insight.122572] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Offspring of women with gestational diabetes mellitus (GDM) are at increased risk of developing metabolic disease, potentially mediated by epigenetic mechanisms. We recruited 608 GDM and 626 control offspring from the Danish National Birth Cohort, aged between 9 and 16 years. DNA methylation profiles were measured in peripheral blood of 93 GDM offspring and 95 controls using the Illumina HumanMethylation450 BeadChip. Pyrosequencing was performed for validation/replication of putative GDM-associated, differentially methylated CpGs in additional 905 offspring (462 GDM, 444 control offspring). We identified 76 differentially methylated CpGs in GDM offspring compared with controls in the discovery cohort (FDR, P < 0.05). Adjusting for offspring BMI did not affect the association between methylation levels and GDM status for any of the 76 CpGs. Most of these epigenetic changes were due to confounding by maternal prepregnancy BMI; however, 13 methylation changes were independently associated with maternal GDM. Three prepregnancy BMI-associated CpGs (cg00992687 and cg09452568 of ESM1 and cg14328641 of MS4A3) were validated in the replication cohort, while cg09109411 (PDE6A) was found to be associated with GDM status. The identified methylation changes may reflect developmental programming of organ disease mechanisms and/or may serve as disease biomarkers.
Collapse
Affiliation(s)
- Line Hjort
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,The Danish Diabetes Academy, Odense, Denmark
| | - David Martino
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, Melbourne University, Melbourne, Victoria, Australia
| | - Louise Groth Grunnet
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, Copenhagen, Denmark.,The Danish Diabetes Academy, Odense, Denmark
| | - Haroon Naeem
- Bioinformatics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Monash Bioinformatics Platform, Monash University, Clayton, Victoria, Australia.,Department of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Jovana Maksimovic
- Department of Pediatrics, Melbourne University, Melbourne, Victoria, Australia.,Bioinformatics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Anders Henrik Olsson
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, Copenhagen, Denmark
| | - Cuilin Zhang
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland, USA
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, CRC, Scania University Hospital, Malmö, Sweden
| | | | - Richard Saffery
- Department of Pediatrics, Melbourne University, Melbourne, Victoria, Australia.,Cancer and Disease Epigenetics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Allan Arthur Vaag
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, Copenhagen, Denmark.,Cardiovascular and Metabolic Disease (CVMD) Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
50
|
Hu X, Xiong Q, Xu Y, Zhang X, Xiao Y, Ma X, Bao Y. Contribution of maternal diabetes to visceral fat accumulation in offspring. Obes Res Clin Pract 2018; 12:426-431. [DOI: 10.1016/j.orcp.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
|