1
|
Hum M, Lee ASG. DNA methylation in breast cancer: early detection and biomarker discovery through current and emerging approaches. J Transl Med 2025; 23:465. [PMID: 40269936 PMCID: PMC12020129 DOI: 10.1186/s12967-025-06495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
Breast cancer remains one of the most common cancers in women worldwide. Early detection is critical for improving patient outcomes, yet current screening methods have limitations. Therefore, there is a pressing need for more sensitive and specific approaches to detect breast cancer in its earliest stages. Liquid biopsy has emerged as a promising non-invasive method for early cancer detection and management. DNA methylation, an epigenetic alteration that often precedes genetic changes, has been observed in precancerous or early cancer stages, making it a valuable biomarker. This review explores the role of DNA methylation in breast cancer and its potential for developing blood-based tests. We discuss advancements in DNA methylation detection methods, recent discoveries of potential DNA methylation biomarkers from both single-omics and multi-omics integration studies, and the role of machine learning in enhancing diagnostic accuracy. Challenges and future directions are also addressed. Although challenges remain, advances in multi-omics integration and machine learning continue to enhance the clinical potential of methylation-based biomarkers. Ongoing research is crucial to further refine these approaches and improve early detection and patient outcomes.
Collapse
Affiliation(s)
- Melissa Hum
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
| | - Ann S G Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore.
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore.
| |
Collapse
|
2
|
Ren X, Wang X, Zeng Y, Chen X, Cui Y, Liu L, Chen X, Liu S, Zhong H, Liao P, Shen Y, Huang K. SP1 regulates porcine primary adipocyte differentiation by modulating BAMBI transcriptional activity. Biochem Biophys Res Commun 2025; 756:151576. [PMID: 40068433 DOI: 10.1016/j.bbrc.2025.151576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Obesity is a critical metabolic disorder in modern society, necessitating urgent research and intervention. Compared to mice, pigs are increasingly been recognized as valuable model organisms for such studied due to their closer genetic similarity to humans. The BAMBI gene plays a pivotal role in adipocyte differentiation and adipose tissue development, rendering it a potent target for exploring the mechanisms of obesity and related metabolic disorders. This study conducted an in-depth exploration of the intricate regulatory mechanisms governing the BAMBI gene, with a particular emphasis on the transcription factor SP1. Our experiments strongly provided that SP1 modulates BAMBI transcription by directly binding to its promoter. Using primary porcine adipocytes, we further demonstrated that SP1 regulates adipocyte differentiation occurs via the BAMBI gene. These findings enhance understanding of the critical role played by the BAMBI gene in adipocyte differentiation and establish a theoretical foundation for novel therapeutic strategies targeting obesity and type 2 diabetes. Importantly, this study emphasizes the potential of SP-BAMBI pathways in interventions within the context of metabolic diseases, addressing the global challenges posed by obesity and its associated complications.
Collapse
Affiliation(s)
- Xiaoyan Ren
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Xiaoyu Wang
- College of Life Science, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Yi Zeng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiaochang Chen
- Shanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an, Shaanxi, China.
| | - Yuting Cui
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lingzhi Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xinru Chen
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Si Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hongxu Zhong
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Shen
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kuilong Huang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
3
|
Kiltschewskij DJ, Reay WR, Cairns MJ. Schizophrenia is associated with altered DNA methylation variance. Mol Psychiatry 2025; 30:1383-1395. [PMID: 39271751 PMCID: PMC11919772 DOI: 10.1038/s41380-024-02749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Varying combinations of genetic and environmental risk factors are thought to underpin phenotypic heterogeneity between individuals in psychiatric conditions such as schizophrenia. While epigenome-wide association studies in schizophrenia have identified extensive alteration of mean DNA methylation levels, less is known about the location and impact of DNA methylation variance, which could contribute to phenotypic and treatment response heterogeneity. To explore this question, we conducted the largest meta-analysis of blood DNA methylation variance in schizophrenia to date, leveraging three cohorts comprising 1036 individuals with schizophrenia and 954 non-psychiatric controls. Surprisingly, only a small proportion (0.1%) of the 213 variably methylated positions (VMPs) associated with schizophrenia (Benjamini-Hochberg FDR < 0.05) were shared with differentially methylated positions (DMPs; sites with mean changes between cases and controls). These blood-derived VMPs were found to be overrepresented in genes previously associated with schizophrenia and amongst brain-enriched genes, with evidence of concordant changes at VMPs in the cerebellum, hippocampus, prefrontal cortex, or striatum. Epigenetic covariance was also observed with respect to clinically significant metrics including age of onset, cognitive deficits, and symptom severity. We also uncovered a significant VMP in individuals with first-episode psychosis (n = 644) from additional cohorts and a non-psychiatric comparison group (n = 633). Collectively, these findings suggest schizophrenia is associated with significant changes in DNA methylation variance, which may contribute to individual-to-individual heterogeneity.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - William R Reay
- Menzies Institute for Medical Research, Hobart, TAS, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
4
|
Kukla-Bartoszek M, Piechota M, Suski M, Hajto J, Borczyk M, Basta-Kaim A, Głombik K. Integrated Profiling Identifies Long-Term Molecular Consequences of Prenatal Dexamethasone Treatment in the Rat Brain-Potential Triggers of Depressive Phenotype and Cognitive Impairment. Mol Neurobiol 2025; 62:5183-5201. [PMID: 39528842 PMCID: PMC11880045 DOI: 10.1007/s12035-024-04586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Prenatal excess of glucocorticoids (GCs) is considered to be one of the highly impacting factors contributing to depression development. Although GCs are crucial for normal fetal development and their administration (mainly dexamethasone, DEX) is a life-saving procedure for those at risk of preterm delivery, exposure to excess levels of GCs during pregnancy can yield detrimental consequences. Therefore, we aimed to systematically investigate the brain molecular alterations triggered by prenatal DEX administration. We used a rat model of depression based on prenatal exposure to DEX and performed integrative multi-level methylomic, transcriptomic, and proteomic analyses of adult rats' brains (i.e., frontal cortex (FCx) and hippocampus (Hp)) to identify the outcomes of DEX action. Each of the investigated levels was significantly affected by DEX in the long-term manner. Particularly, we found 200 CpG islands to be differentially methylated in the FCx and 200 in the Hp of prenatally DEX-treated rats. Global transcriptomic analysis uncovered differential expression of transcripts mostly in FCx (271) and 1 in Hp, while proteomic study identified 146 differentially expressed proteins in FCx and 123 in Hp. Among the identified enriched molecular networks, we found altered pathways involved in synaptic plasticity (i.e., cAMP, calcium, and Wnt signaling pathways or tight junctions and adhesion molecules), which may contribute to cognitive impairment, observed in DEX-treated animals. Moreover, in the FCx, DEX administration in the prenatal period downregulates the expression of ribosome protein genes associated both with large and small ribosomal subunit assembly which can lead to a global decrease in translation and protein synthesis processes and, indirectly, alterations in the neurotransmission process.
Collapse
Affiliation(s)
- Magdalena Kukla-Bartoszek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Marcin Piechota
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Faculty of Medicine, Grzegórzecka 16, 31-531, Kraków, Poland
- Centre for the Development of Therapies for Civilization and Age-Related Diseases CDT-CARD, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Jacek Hajto
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
5
|
Simons RB, Adams HHH, Kayser M, Vidaki A. Investigating Single-Molecule Molecular Inversion Probes for Medium-Scale Targeted DNA Methylation Analysis. EPIGENOMES 2025; 9:8. [PMID: 40136321 PMCID: PMC11941031 DOI: 10.3390/epigenomes9010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Epigenetic biomarkers, particularly CpG methylation, are increasingly employed in clinical and forensic settings. However, we still lack a cost-effective, sensitive, medium-scale method for the analysis of hundreds to thousands of user-defined CpGs suitable for minute DNA input amounts (<10 ng). In this study, motivated by promising results in the genetics field, we investigated single-molecule molecular inversion probes (smMIPs) for simultaneous analysis of hundreds of CpGs by using an example set of 514 age-associated CpGs (Zhang model). METHODS First, we developed a novel smMIP design tool to suit bisulfite-converted DNA (Locksmith). Then, to optimize the capture process, we performed single-probe capture for ten selected, representative smMIPs. Based on this pilot, the full smMIP panel was tested under varying capture conditions, including hybridization and elongation temperature, smMIP and template DNA amounts, dNTP concentration and elongation time. RESULTS Overall, we found that the capture efficiency was highly probe-(and hence, sequence-) dependent, with a heterogeneous coverage distribution across CpGs higher than the 1000-fold range. Considering CpGs with at least 20X coverage, we yielded robust methylation detection with levels comparable to those obtained from the gold standard EPIC microarray analysis (Pearsons's r: 0.96). CONCLUSIONS The observed low specificity and uniformity indicate that smMIPs in their current form are not compatible with the lowered complexity of bisulfite-converted DNA.
Collapse
Affiliation(s)
- Roy B. Simons
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Hieab H. H. Adams
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
6
|
Gillespie CA, Chowdhury A, Quinn KA, Jenkins MW, Rollins AM, Watanabe M, Ford SM. Fundamentals of DNA methylation in development. Pediatr Res 2024:10.1038/s41390-024-03674-7. [PMID: 39658604 DOI: 10.1038/s41390-024-03674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024]
Abstract
DNA methyation is critical to regulation of gene expression especially during developmentally dynamic changes. A large proportion occurs at CpG (a cytosine followed by a guanine nucleotide) sites and impacts gene expression based on location, timing and level of DNA methylation. The spectrum of effects produced by DNA methylation ranges from inhibition to enhancement of gene expression. Here basic terms and concepts in the study of DNA methylation are introduced. In addition, some of the commonly used techniques to assay DNA methylation are explained. New methods that allow the precise addition and removal of DNA methylation at specific sites will likely enhance our understanding of DNA methylation in development and may even lead to long-lasting therapeutic strategies to cure diseases. IMPACT: Fundamentals of DNA methylation including its significance are made accessible to a broad audience. Common assays for detecting DNA methylation are explained succinctly. Developmental patterns of DNA methylation detected in commonly used animal models are discussed and explained. Novel methodologies to investigate consequences of DNA methylation and demethylation are introduced.
Collapse
Affiliation(s)
- Caitlyn A Gillespie
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Amrin Chowdhury
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Katie A Quinn
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Stephanie M Ford
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Divisions of Neonatology and Pediatric Cardiology, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Zhu Y, Gu L, Wang J, Han J, Gou J, Wu Z. DNA methylation profiling of CpG islands in trigeminal ganglion of rats with orofacial pain induced by experimental tooth movement. BMC Oral Health 2024; 24:1474. [PMID: 39633318 PMCID: PMC11619421 DOI: 10.1186/s12903-024-05269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Tooth movement induced orofacial pain is the most cited negative effect during orthodontic treatment, while treatment options without side effects are limited. The differential expression of pain-related genes due to DNA methylation and demethylation is instrumental in pain. The purpose of the study was to evaluate the DNA methylation profiling of CpG islands (CGI) and CGI shores in promoter regions in trigeminal ganglions (TG) of tooth movement induced orofacial pain rats, thus to further insight the DNA methylation regulation in orofacial pain. MATERIALS AND METHODS An orofacial pain rat model was constructed by ligating coil springs between the incisor and first maxillary molar with 40 g of force. The Rat Grimace Score (RGS) was used for pain evaluation. The genome methylation status was analyzed by the reduced representation bisulfite sequencing (RRBS) technique. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses were conducted in the differentially methylated regions (DMRs). Moreover, a protein-protein interaction (PPI) network was established to detect annotated genes associated with pain. RESULTS RGS was significantly higher in orofacial pain rats than in sham rats. RRBS showed widespread methylation changes in CGI and CGI shores in TG promoter regions. Both 902 hypermethylated DMRs and 862 hypomethylated DMRs were found in the CGIs of promoter regions. KEGG analysis revealed that annotated genes are participated in endocrine, nervous, immune, and sensory systems. Moreover, the "Calcium signaling pathway", "Wnt signaling pathway" and "Neuroactive ligand-receptor interaction" were significantly enriched pathways. Furthermore, PPI network showed several genes (Ctnnb1, Dlg4, Creb1, Camk2g, Bmp2, etc.) with different methylation statuses were reported to be associated with pain. CONCLUSIONS This study demonstrated methylation changes were existed in CGI and CGI shores in TG promoter regions when pain occurs, thus providing a basis for further study on the mechanism of DNA methylation in orofacial pain.
Collapse
Affiliation(s)
- Yafen Zhu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Liqun Gu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jian Wang
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jie Han
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Junzhuo Gou
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhifang Wu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
8
|
Lucchini S, Constantinou M, Marino S. Unravelling the mosaic: Epigenetic diversity in glioblastoma. Mol Oncol 2024; 18:2871-2889. [PMID: 39148319 PMCID: PMC11619803 DOI: 10.1002/1878-0261.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Glioblastoma is the most common primary malignant brain tumour. Despite decades of intensive research in the disease, its prognosis remains poor, with an average survival of only 14 months after diagnosis. The remarkable level of intra- and interpatient heterogeneity is certainly contributing to the lack of progress in tackling this tumour. Epigenetic dysregulation plays an important role in glioblastoma biology and significantly contributes to intratumour heterogeneity. However, it is becoming increasingly clear that it also contributes to intertumour heterogeneity, which historically had mainly been linked to diverse genetic events occurring in different patients. In this review, we explore how DNA methylation, chromatin remodelling, microRNA (miRNA) dysregulation, and long noncoding RNA (lncRNA) alterations contribute to intertumour heterogeneity in glioblastoma, including its implications for advanced tumour stratification, which is the essential first step for developing more effective patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sara Lucchini
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Myrianni Constantinou
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Silvia Marino
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Brain Tumour Centre, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Health NHS TrustLondonUK
| |
Collapse
|
9
|
Nilsson EE, Winchester P, Proctor C, Beck D, Skinner MK. Epigenetic biomarker for preeclampsia-associated preterm birth and potential preventative medicine. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae022. [PMID: 39606093 PMCID: PMC11602036 DOI: 10.1093/eep/dvae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Preterm birth (PTB) has dramatically increased within the population (i.e. >10%) and preeclampsia is a significant sub-category of PTB. Currently, there are no practical clinical parameters or biomarkers which predict preeclampsia induced PTB. The current study investigates the potential use of epigenetic (DNA methylation) alterations as a maternal preeclampsia biomarker. Non-preeclampsia term births were compared to preeclampsia PTBs to identify DNA methylation differences (i.e. potential epigenetic biomarker). Maternal buccal cell cheek swabs were used as a marker cell for systemic epigenetic alterations in the individuals, which are primarily due to environmentally induced early life or previous generations impacts, and minimally impacted or associated with the disease etiology or gestation variables. A total of 389 differential DNA methylation regions (DMRs) were identified and associated with the presence of preeclampsia. The DMRs were genome-wide and were predominantly low CpG density (<2 CpG/100 bp). In comparison with a previous PTB buccal cell epigenetic biomarker there was a 15% (60 DMR) overlap, indicating that the majority of the DMRs are unique for preeclampsia. Few previously identified preeclampsia genes have been identified, however, the DMRs had gene associations in the P13 K-Akt signaling pathway and metabolic gene family, such as phospholipid signaling pathway. Preliminary validation of the DMR use as a potential maternal biomarker used a cross-validation analysis on the samples and provided 78% accuracy. Although prospective expanded clinical trials in first trimester pregnancies and clinical comparisons are required, the current study provides the potential proof of concept a preeclampsia epigenetic biomarker may exist. The availability of a preeclampsia PTB maternal susceptibility biomarker may facilitate clinical management and allow preventative medicine approaches to identify and treat the preeclampsia condition prior to its occurrence.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| | - Paul Winchester
- Department of Pediatrics, St. Franciscan Hospital, School of Medicine, Indiana University, Indianapolis, IN 46202-5201, United States
| | - Cathy Proctor
- Department of Pediatrics, St. Franciscan Hospital, School of Medicine, Indiana University, Indianapolis, IN 46202-5201, United States
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| |
Collapse
|
10
|
Qi J, Hong B, Wang S, Wang J, Fang J, Sun R, Nie J, Wang H. Plasma cell-free DNA methylome-based liquid biopsy for accurate gastric cancer detection. Cancer Sci 2024; 115:3426-3438. [PMID: 39038922 PMCID: PMC11447983 DOI: 10.1111/cas.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Early detection plays a critical role in mitigating mortality rates linked to gastric cancer. However, current clinical screening methods exhibit suboptimal efficacy. Methylation alterations identified from cell-free DNA (cfDNA) present a promising biomarker for early cancer detection. Our study focused on identifying gastric cancer-specific markers from cfDNA methylation to facilitate early detection. We enrolled 150 gastric cancer patients and 100 healthy controls in this study, and undertook genome-wide methylation profiling of cfDNA using cell-free methylated DNA immunoprecipitation and high-throughput sequencing. We identified 21 differentially methylated regions (DMRs) between the gastric tumor and nontumor groups using multiple algorithms. Subsequently, using the 21 DMRs, we developed a gastric cancer detection model by random forest algorithm in the discovery set, and validated the model in an independent set. The model was able to accurately discriminate gastric cancer with a sensitivity and specificity of 93.90% and 95.15% in the discovery set, respectively, and 88.38% and 94.23% in the validation set, respectively. These results underscore the efficacy and accuracy of cfDNA-derived methylation markers in distinguishing early stage gastric cancer. This study highlighted the significance of cfDNA methylation alterations in early gastric cancer detection.
Collapse
Affiliation(s)
- Jian Qi
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of Sciences (CAS)HefeiChina
- Science Island BranchGraduate School of University of Science and Technology of ChinaHefeiChina
| | - Bo Hong
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of Sciences (CAS)HefeiChina
- Science Island BranchGraduate School of University of Science and Technology of ChinaHefeiChina
| | - Shujie Wang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of Sciences (CAS)HefeiChina
- Science Island BranchGraduate School of University of Science and Technology of ChinaHefeiChina
| | - Jingyun Wang
- School of MedicineAnhui University of Science and TechnologyHuainanChina
| | - Jinman Fang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of Sciences (CAS)HefeiChina
- Science Island BranchGraduate School of University of Science and Technology of ChinaHefeiChina
| | - Ruifang Sun
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Jinfu Nie
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of Sciences (CAS)HefeiChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and InnovationChinese Academy of SciencesHefeiChina
| | - Hongzhi Wang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of Sciences (CAS)HefeiChina
- Science Island BranchGraduate School of University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
11
|
El Kamouh M, Brionne A, Sayyari A, Lallias D, Labbé C, Laurent A. Strengths and limitations of reduced representation bisulfite sequencing (RRBS) in the perspective of DNA methylation analysis in fish: a case-study on rainbow trout spermatozoa. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2067-2082. [PMID: 38427283 DOI: 10.1007/s10695-024-01326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
DNA methylation in CpG dinucleotides is an important epigenetic mark in fish spermatozoa since it has been shown that some sperm methylome features are transmitted to the offspring. Reduced representation bisulfite sequencing (RRBS) is one genome-scale methods developed to assess DNA methylation at CpG sites. It allows the sequencing of a reduced fraction of the genome expected to be enriched in CpGs. The aim of this study is to characterize the extent of the CpG sites that can be identified in the RRBS-reduced sequenced fraction of rainbow trout spermatozoa, in order to evaluate the potential of RRBS for sperm DNA methylation studies. We observed that RRBS did provide a reduced amount of genomic data, the sum of the CpGs analyzed on 12 males spanning 9% of the total genomic CpGs. CpGs were only slightly enriched in the RRBS data (×1.7 times the sequenced nucleotides), the possible causes being linked to trout genome structure and sequenced fragments size. All genomic functional features were represented in our CpG dataset, with a noticeable enrichment in exons but, strikingly, not in promoters. The number of CpGs shared between biological replicates was low, but this proportion reached workable values from six biological replicates (46% of the analyzed cytosines) on. The choices that are to be made regarding fragment size selection and the options during bioinformatic data processing are discussed. In all, RRBS is a relevant first-approach method to scan the CpG DNA methylation status of spermatozoa along rainbow trout genome, although in a very reduced pattern among biological replicates.
Collapse
Affiliation(s)
| | | | - Amin Sayyari
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Delphine Lallias
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Catherine Labbé
- INRAE, Fish Physiology and Genomics, UR 1037, Rennes, France.
| | - Audrey Laurent
- INRAE, Fish Physiology and Genomics, UR 1037, Rennes, France
| |
Collapse
|
12
|
Zhang B, Li W, Li J, Li Y, Luo H, Xi Y, Dong S, Wu F, Yu W. Rapid genome-wide profiling of DNA methylation and genetic variation using guide positioning sequencing (GPS). Front Cell Dev Biol 2024; 12:1457387. [PMID: 39381371 PMCID: PMC11459621 DOI: 10.3389/fcell.2024.1457387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
Whole-genome bisulfite sequencing (WGBS) has been extensively utilized for DNA methylation profiling over the past decade. However, it has shown limitations in terms of high costs and inefficiencies. The productivity and accuracy of DNA methylation detection rely critically on the optimization of methodologies and the continuous refinements of related sequencing platforms. Here, we describe a detailed protocol of guide positioning sequencing (GPS), a bisulfite-based, location-specific sequencing technology designed for comprehensive DNA methylation characterization across the genome. The fundamental principle of GPS lies in the substitution of dCTP with 5-methyl-dCTP (5 mC) at the 3'-end of DNA fragments by T4 DNA polymerase, which protects cytosines from bisulfite conversion to preserve the integrity of the base composition. This alteration allows the 3'-end to independently facilitate genetic variation profiling and guides the 5'-end, enriched with methylation information, to align more rapidly to the reference genome. Hence, GPS enables the concurrent detection of both genetic and epigenetic variations. Additionally, we provide an accessible description of the data processing, specifically involving certain software and scripts. Overall, the entire GPS procedure can be completed within a maximum of 15 days, starting with a low initial DNA input of 100-500 ng, followed by 4-5 days for library construction, 8-10 days for high-throughput sequencing (HTS) and data analysis, which can greatly facilitate the promotion and application of DNA methylation detection, especially for the rapid clinical diagnosis of diverse disease pathologies associated with concurrent genetic and epigenetic variations.
Collapse
Affiliation(s)
- Baolong Zhang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Li
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huaibing Luo
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanping Xi
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shihua Dong
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feizhen Wu
- Key Laboratory of Medical Epigenetics and Metabolism, Institute of Clinical Science of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenqiang Yu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Lorenz V, Doná F, Cadaviz DB, Milesi MM, Varayoud J. Glyphosate and a glyphosate-based herbicide dysregulate the epigenetic landscape of Homeobox A10 ( Hoxa10) gene during the endometrial receptivity in Wistar rats. FRONTIERS IN TOXICOLOGY 2024; 6:1438826. [PMID: 39345349 PMCID: PMC11427440 DOI: 10.3389/ftox.2024.1438826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
We observed that gestational plus lactational exposure to glyphosate (Gly), as active ingredient, or a glyphosate-based herbicide (GBH) lead to preimplantation losses in F1 female Wistar rats. Here, we investigated whether GBH and/or Gly exposure could impair Hoxa10 gene transcription by inducing epigenetic changes during the receptive stage in rats, as a possible herbicide mechanism implicated in implantation failures. F0 dams were treated with Gly or a GBH through a food dose of 2 mg Gly/kg bw/day from gestational day (GD) 9 up to lactational day 21. F1 female rats were bred, and uterine tissues were analyzed on GD5 (preimplantation period). Transcripts levels of Hoxa10, DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b), histone deacetylases (Hdac-1 and Hdac-3) and histone methyltransferase (EZH2) were assessed by quantitative polymerase chain reaction (qPCR). Four CpG islands containing sites targeted by BstUI methylation-sensitive restriction enzyme and predicted transcription factors (TFs) were identified in Hoxa10 gene. qPCR-based methods were used to evaluate DNA methylation and histone post-translational modifications (hPTMs) in four regulatory regions (RRs) along the gene by performing methylation-sensitive restriction enzymes and chromatin immunoprecipitation assays, respectively. GBH and Gly downregulated Hoxa10 mRNA. GBH and Gly increased DNA methylation levels and Gly also induced higher levels than GBH in all the RRs analyzed. Both GBH and Gly enriched histone H3 and H4 acetylation in most of the RRs. While GBH caused higher H3 acetylation, Gly caused higher H4 acetylation in all RRs. Finally, GBH and Gly enhanced histone H3 lysine 27 trimethylation (H3K27me3) marker at 3 out of 4 RRs studied which was correlated with increased EZH2 levels. In conclusion, exposure to GBH and Gly during both gestational plus lactational phases induces epigenetic modifications in regulatory regions of uterine Hoxa10 gene. We show for the first time that Gly and a GBH cause comparable gene expression and epigenetic changes. Our results might contribute to delineate the mechanisms involved in the implantation failures previously reported. Finally, we propose that epigenetic information might be a valuable tool for risk assessment in the near future, although more research is needed to establish a cause-effect relationship.
Collapse
Affiliation(s)
- Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Florencia Doná
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Dalma B Cadaviz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
14
|
Chen R, Wang X, Li N, Golubnitschaja O, Zhan X. Body fluid multiomics in 3PM-guided ischemic stroke management: health risk assessment, targeted protection against health-to-disease transition, and cost-effective personalized approach are envisaged. EPMA J 2024; 15:415-452. [PMID: 39239108 PMCID: PMC11371995 DOI: 10.1007/s13167-024-00376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Because of its rapid progression and frequently poor prognosis, stroke is the third major cause of death in Europe and the first one in China. Many independent studies demonstrated sufficient space for prevention interventions in the primary care of ischemic stroke defined as the most cost-effective protection of vulnerable subpopulations against health-to-disease transition. Although several studies identified molecular patterns specific for IS in body fluids, none of these approaches has yet been incorporated into IS treatment guidelines. The advantages and disadvantages of individual body fluids are thoroughly analyzed throughout the paper. For example, multiomics based on a minimally invasive approach utilizing blood and its components is recommended for real-time monitoring, due to the particularly high level of dynamics of the blood as a body system. On the other hand, tear fluid as a more stable system is recommended for a non-invasive and patient-friendly holistic approach appropriate for health risk assessment and innovative screening programs in cost-effective IS management. This article details aspects essential to promote the practical implementation of highlighted achievements in 3PM-guided IS management. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00376-2.
Collapse
Affiliation(s)
- Ruofei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Xiaoyan Wang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Na Li
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, 53127 Germany
| | - Xianquan Zhan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Jinan Key Laboratory of Cancer Multiomics, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 P. R. China
| |
Collapse
|
15
|
Wu Z, Li M, Wu J, Jin S, Xu Y, Jin J, Wu Y. Characterization of the molecular role that ST3GAL1 plays in porcine susceptibility to E. coli F18 infection. Int J Biol Macromol 2024; 276:133959. [PMID: 39029847 DOI: 10.1016/j.ijbiomac.2024.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Escherichia coli F18 (E. coli F18) is the main cause of bacterial diarrhea in piglets. Previous transcriptome reported that ST3GAL1 was associated to E. coli F18 infection. However, its role in mediating the resistance to E. coli F18 remains elusive. Here, we revealed that the downregulation of ST3GAL1 expression contributed to the enhancement of E. coli F18 resistance in IPEC-J2 cells. Bisulfite sequencing identified 26 methylated CpG sites in the ST3GAL1 core promoter. Among these, the ST3GAL1 mRNA levels significantly correlated with methylation levels of the mC-8 site in the specificity protein 1 (SP1) transcription factor (P < 0.01). Interestingly, ST3GAL1 expression may enhances the immune response by activating TLRs signaling, meanwhile decreases the production of the E. coli F18 receptor by inhibiting glycosphingolipid biosynthesis signaling, thereby leading to enhance the resistance to E. coli F18 infection. Besides, low ST3GAL1 expression may increase E. coli resistance by reducing sialylation. Together, these results support the status of ST3GAL1 as a viable target for efforts to modulate E. coli F18 susceptibility, offering a theoretical foundation for the use of this gene as a key biomarker for molecular breeding to improve porcine disease resistance.
Collapse
Affiliation(s)
- Zhengchang Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Meiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiayun Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Shuting Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifan Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
16
|
Taff CC, McNew SM, Campagna L, Vitousek MN. Corticosterone exposure is associated with long-term changes in DNA methylation, physiology and breeding decisions in a wild bird. Mol Ecol 2024; 33:e17456. [PMID: 38953311 DOI: 10.1111/mec.17456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
When facing challenges, vertebrates activate a hormonal stress response that can dramatically alter behaviour and physiology. Although this response can be costly, conceptual models suggest that it can also recalibrate the stress response system, priming more effective responses to future challenges. Little is known about whether this process occurs in wild animals, particularly in adulthood, and if so, how information about prior experience with stressors is encoded. One potential mechanism is hormonally mediated changes in DNA methylation. We simulated the spikes in corticosterone that accompany a stress response using non-invasive dosing in tree swallows (Tachycineta bicolor) and monitored the phenotypic effects 1 year later. In a subset of individuals, we characterized DNA methylation using reduced representation bisulfite sequencing shortly after treatment and a year later. The year after treatment, experimental females had stronger negative feedback and initiated breeding earlier-traits that are associated with stress resilience and reproductive performance in our population-and higher baseline corticosterone. We also found that natural variation in corticosterone predicted patterns of DNA methylation. Finally, corticosterone treatment influenced methylation on short (1-2 weeks) and long (1 year) time scales; however, these changes did not have clear links to functional regulation of the stress response. Taken together, our results are consistent with corticosterone-induced priming of future stress resilience and support DNA methylation as a potential mechanism, but more work is needed to demonstrate functional consequences. Uncovering the mechanisms linking experience with the response to future challenges has implications for understanding the drivers of stress resilience.
Collapse
Affiliation(s)
- Conor C Taff
- Department of Ecology & Evolutionary Biology and Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Sabrina M McNew
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Leonardo Campagna
- Department of Ecology & Evolutionary Biology and Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Maren N Vitousek
- Department of Ecology & Evolutionary Biology and Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
Górczak K, Burzykowski T, Claesen J. A varying-coefficient model for the analysis of methylation sequencing data. Comput Biol Chem 2024; 111:108094. [PMID: 38781748 DOI: 10.1016/j.compbiolchem.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
DNA methylation is an important epigenetic modification involved in gene regulation. Advances in the next generation sequencing technology have enabled the retrieval of DNA methylation information at single-base-resolution. However, due to the sequencing process and the limited amount of isolated DNA, DNA-methylation-data are often noisy and sparse, which complicates the identification of differentially methylated regions (DMRs), especially when few replicates are available. We present a varying-coefficient model for detecting DMRs by using single-base-resolved methylation information. The model simultaneously smooths the methylation profiles and allows detection of DMRs, while accounting for additional covariates. The proposed model takes into account possible overdispersion by using a beta-binomial distribution. The overdispersion itself can be modeled as a function of the genomic region and explanatory variables. We illustrate the properties of the proposed model by applying it to two real-life case studies.
Collapse
Affiliation(s)
- Katarzyna Górczak
- Data Science Institute, Hasselt University, Belgium; Open Analytics NV, Antwerp, Belgium
| | - Tomasz Burzykowski
- Data Science Institute, Hasselt University, Belgium; Department of Biostatistics and Medical Informatics, Medical University of Bialystok, Poland; International Drug Development Institute (IDDI), Belgium
| | - Jürgen Claesen
- Data Science Institute, Hasselt University, Belgium; Department of Epidemiology and Data Science, Amsterdam UMC, VU Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Kushida Y, Oguma Y, Abe K, Deguchi T, Barbera FG, Nishimura N, Fujioka K, Iwatani S, Dezawa M. Human post-implantation blastocyst-like characteristics of Muse cells isolated from human umbilical cord. Cell Mol Life Sci 2024; 81:297. [PMID: 38992309 PMCID: PMC11335221 DOI: 10.1007/s00018-024-05339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Muse cells, identified as cells positive for the pluripotent surface marker SSEA-3, are pluripotent-like endogenous stem cells located in the bone marrow (BM), peripheral blood, and organ connective tissues. The detailed characteristics of SSEA-3(+) cells in extraembryonic tissue, however, are unknown. Here, we demonstrated that similar to human-adult tissue-Muse cells collected from the BM, adipose tissue, and dermis as SSEA-3(+), human-umbilical cord (UC)-SSEA-3(+) cells express pluripotency markers, differentiate into triploblastic-lineage cells at a single cell level, migrate to damaged tissue, and exhibit low telomerase activity and non-tumorigenicity. Notably, ~ 20% of human-UC-SSEA-3(+) cells were negative for X-inactive specific transcript (XIST), a naïve pluripotent stem cell characteristic, whereas all human adult tissue-Muse cells are XIST-positive. Single-cell RNA sequencing revealed that the gene expression profile of human-UC-SSEA-3(+) cells was more similar to that of human post-implantation blastocysts than human-adult tissue-Muse cells. The DNA methylation level showed the same trend, and notably, the methylation levels in genes particularly related to differentiation were lower in human-UC-SSEA-3(+) cells than in human-adult tissue-Muse cells. Furthermore, human-UC-SSEA-3(+) cells newly express markers specific to extraembryonic-, germline-, and hematopoietic-lineages after differentiation induction in vitro whereas human-adult tissue-Muse cells respond only partially to the induction. Among various stem/progenitor cells in living bodies, those that exhibit properties similar to post-implantation blastocysts in a naïve state have not yet been found in humans. Easily accessible human-UC-SSEA-3(+) cells may be a valuable tool for studying early-stage human development and human reproductive medicine.
Collapse
Affiliation(s)
- Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Yo Oguma
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Kana Abe
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Taichi Deguchi
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Federico Girolamo Barbera
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Noriyuki Nishimura
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sota Iwatani
- Department of Neonatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
19
|
Yadav B, Singh D, Mantri S, Rishi V. Genome-wide Methylation Dynamics and Context-dependent Gene Expression Variability in Differentiating Preadipocytes. J Endocr Soc 2024; 8:bvae121. [PMID: 38966711 PMCID: PMC11222978 DOI: 10.1210/jendso/bvae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 07/06/2024] Open
Abstract
Obesity, characterized by the accumulation of excess fat, is a complex condition resulting from the combination of genetic and epigenetic factors. Recent studies have found correspondence between DNA methylation and cell differentiation, suggesting a role of the former in cell fate determination. There is a lack of comprehensive understanding concerning the underpinnings of preadipocyte differentiation, specifically when cells are undergoing terminal differentiation (TD). To gain insight into dynamic genome-wide methylation, 3T3 L1 preadipocyte cells were differentiated by a hormone cocktail. The genomic DNA was isolated from undifferentiated cells and 4 hours, 2 days postdifferentiated cells, and 15 days TD cells. We employed whole-genome bisulfite sequencing (WGBS) to ascertain global genomic DNA methylation alterations at single base resolution as preadipocyte cells differentiate. The genome-wide distribution of DNA methylation showed similar overall patterns in pre-, post-, and terminally differentiated adipocytes, according to WGBS analysis. DNA methylation decreases at 4 hours after differentiation initiation, followed by methylation gain as cells approach TD. Studies revealed novel differentially methylated regions (DMRs) associated with adipogenesis. DMR analysis suggested that though DNA methylation is global, noticeable changes are observed at specific sites known as "hotspots." Hotspots are genomic regions rich in transcription factor (TF) binding sites and exhibit methylation-dependent TF binding. Subsequent analysis indicated hotspots as part of DMRs. The gene expression profile of key adipogenic genes in differentiating adipocytes is context-dependent, as we found a direct and inverse relationship between promoter DNA methylation and gene expression.
Collapse
Affiliation(s)
- Binduma Yadav
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
- Regional Center for Biotechnology, Faridabad, Haryana 160014, India
| | - Dalwinder Singh
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
| | - Shrikant Mantri
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Vikas Rishi
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| |
Collapse
|
20
|
Nair VD, Pincas H, Amper MAS, Ge Y, Vasoya M, Raja AN, Walsh MJ, Sealfon SC. Protocol for high-throughput DNA methylation profiling in rat tissues using automated reduced representation bisulfite sequencing. STAR Protoc 2024; 5:103007. [PMID: 38691461 PMCID: PMC11070626 DOI: 10.1016/j.xpro.2024.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 05/03/2024] Open
Abstract
Although reduced representation bisulfite sequencing (RRBS) measures DNA methylation (DNAme) across CpG-rich genomic regions with high sensitivity, the assay can be time-consuming and prone to batch effects. Here, we present a high-throughput, automated RRBS protocol starting with DNA extraction from frozen rat tissues. We describe steps for RRBS library preparation, library quality control, and sequencing. We also detail an optimized pipeline for sequencing data processing. This protocol has been applied successfully to DNAme profiling across multiple rat tissues. For complete details on the use and execution of this protocol, please refer to Nair et al.1.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hanna Pincas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Anne S Amper
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mital Vasoya
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
21
|
Zhang J, Li X, Wang R, Feng X, Wang S, Wang H, Wang Y, Li H, Li Y, Guo Y. DNA methylation patterns in patients with asthenospermia and oligoasthenospermia. BMC Genomics 2024; 25:602. [PMID: 38886667 PMCID: PMC11181631 DOI: 10.1186/s12864-024-10491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Spermatogenesis is a highly regulated and complex process in which DNA methylation plays a crucial role. This study aimed to explore the differential methylation profiles in sperm DNA between patients with asthenospermia (AS) and healthy controls (HCs), those with oligoasthenospermia (OAS) and HCs, and patients with AS and those with OAS. RESULTS Semen samples and clinical data were collected from five patients with AS, five patients with OAS, and six age-matched HCs. Reduced representation bisulfite sequencing (RRBS) was performed to identify differentially methylated regions (DMRs) in sperm cells among the different types of patients and HCs. A total of 6520, 28,019, and 16,432 DMRs were detected between AS and HC, OAS and HC, and AS and OAS groups, respectively. These DMRs were predominantly located within gene bodies and mapped to 2868, 9296, and 9090 genes in the respective groups. Of note, 12, 9, and 8 DMRs in each group were closely associated with spermatogenesis and male infertility. Furthermore, BDNF, SMARCB1, PIK3CA, and DDX27; RBMX and SPATA17; ASZ1, CDH1, and CHDH were identified as strong differentially methylated candidate genes in each group, respectively. Meanwhile, the GO analysis of DMR-associated genes in the AS vs. HC groups revealed that protein binding, cytoplasm, and transcription (DNA-templated) were the most enriched terms in the biological process (BP), cellular component (CC), and molecular function (MF), respectively. Likewise, in both the OAS vs. HC and AS vs. OAS groups, GO analysis revealed protein binding, nucleus, and transcription (DNA-templated) as the most enriched terms in BP, CC, and MF, respectively. Finally, the KEGG analysis of DMR-annotated genes and these genes at promoters suggested that metabolic pathways were the most significantly associated across all three groups. CONCLUSIONS The current study results revealed distinctive sperm DNA methylation patterns in the AS vs. HC and OAS vs. HC groups, particularly between patients with AS and those with OAS. The identification of key genes associated with spermatogenesis and male infertility in addition to the differentially enriched metabolic pathways may contribute to uncovering the potential pathogenesis in different types of abnormal sperm parameters.
Collapse
Affiliation(s)
- Jingdi Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xiaogang Li
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rongrong Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xinxin Feng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Siyu Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Hai Wang
- Department of Urology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yutao Wang
- Department of Urology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongjun Li
- Department of Urology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Ye Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
22
|
Procopio N, Bonicelli A. From flesh to bones: Multi-omics approaches in forensic science. Proteomics 2024; 24:e2200335. [PMID: 38683823 DOI: 10.1002/pmic.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Recent advancements in omics techniques have revolutionised the study of biological systems, enabling the generation of high-throughput biomolecular data. These innovations have found diverse applications, ranging from personalised medicine to forensic sciences. While the investigation of multiple aspects of cells, tissues or entire organisms through the integration of various omics approaches (such as genomics, epigenomics, metagenomics, transcriptomics, proteomics and metabolomics) has already been established in fields like biomedicine and cancer biology, its full potential in forensic sciences remains only partially explored. In this review, we have presented a comprehensive overview of state-of-the-art analytical platforms employed in omics research, with specific emphasis on their application in the forensic field for the identification of the cadaver and the cause of death. Moreover, we have conducted a critical analysis of the computational integration of omics approaches, and highlighted the latest advancements in employing multi-omics techniques for forensic investigations.
Collapse
Affiliation(s)
- Noemi Procopio
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| | - Andrea Bonicelli
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| |
Collapse
|
23
|
Olejnik-Wojciechowska J, Boboryko D, Bratborska AW, Rusińska K, Ostrowski P, Baranowska M, Pawlik A. The Role of Epigenetic Factors in the Pathogenesis of Psoriasis. Int J Mol Sci 2024; 25:3831. [PMID: 38612637 PMCID: PMC11011681 DOI: 10.3390/ijms25073831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, the prevalence of which is increasing. Genetic, genomic, and epigenetic changes play a significant role in the pathogenesis of psoriasis. This review summarizes the impact of epigenetics on the development of psoriasis and highlights challenges for the future. The development of epigenetics provides a basis for the search for genetic markers associated with the major histocompatibility complex. Genome-wide association studies have made it possible to link psoriasis to genes and therefore to epigenetics. The acquired knowledge may in the future serve as a solid foundation for developing newer, increasingly effective methods of treating psoriasis. In this narrative review, we discuss the role of epigenetic factors in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | | | - Klaudia Rusińska
- Department of General Pathology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Piotr Ostrowski
- Department of Nursing, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland
| | - Magdalena Baranowska
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| |
Collapse
|
24
|
Yang Q, Zhu X, Liu Y, He Z, Xu H, Zheng H, Huang Z, Wang D, Lin X, Guo P, Chen H. Reduced representative methylome profiling of cell-free DNA for breast cancer detection. Clin Epigenetics 2024; 16:33. [PMID: 38414041 PMCID: PMC10898043 DOI: 10.1186/s13148-024-01641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Whole-genome methylation sequencing of cfDNA is not cost-effective for tumor detection. Here, we introduce reduced representative methylome profiling (RRMP), which employs restriction enzyme for depletion of AT-rich sequence to achieve enrichment and deep sequencing of CG-rich sequences. METHODS We first verified the ability of RRMP to enrich CG-rich sequences using tumor cell genomic DNA and analyzed differential methylation regions between tumor cells and normal whole blood cells. We then analyzed cfDNA from 29 breast cancer patients and 27 non-breast cancer individuals to detect breast cancer by building machine learning models. RESULTS RRMP captured 81.9% CpG islands and 75.2% gene promoters when sequenced to 10 billion base pairs, with an enrichment efficiency being comparable to RRBS. RRMP allowed us to assess DNA methylation changes between tumor cells and whole blood cells. Applying our approach to cfDNA from 29 breast cancer patients and 27 non-breast cancer individuals, we developed machine learning models that could discriminate between breast cancer and non-breast cancer controls (AUC = 0.85), suggesting possibilities for truly non-invasive cancer detection. CONCLUSIONS We developed a new method to achieve reduced representative methylome profiling of cell-free DNA for tumor detection.
Collapse
Affiliation(s)
- Qingmo Yang
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xingqiang Zhu
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Yulu Liu
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Zhi He
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Huan Xu
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Hailing Zheng
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Zhiming Huang
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Dan Wang
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Xiaofang Lin
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Ping Guo
- Xiamen Huazao Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China.
| | - Hongliang Chen
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China.
- School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
25
|
Skinner MK. Epigenetic biomarkers for disease susceptibility and preventative medicine. Cell Metab 2024; 36:263-277. [PMID: 38176413 DOI: 10.1016/j.cmet.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
The development of molecular biomarkers for disease makes it possible for preventative medicine approaches to be considered. Therefore, therapeutics, treatments, or clinical management can be used to delay or prevent disease development. The problem with genetic mutations as biomarkers is the low frequency with genome-wide association studies (GWASs), generally at best a 1% association of the patients with the disease. In contrast, epigenetic alterations have a high-frequency association of greater than 90%-95% of individuals with pathology in epigenome-wide association studies (EWASs). A wide variety of human diseases have been shown to have epigenetic biomarkers that are disease specific and that detect pathology susceptibility. This review is focused on the epigenetic biomarkers for disease susceptibility, and it distinct from the large literature on epigenetics of disease etiology or progression. The development of efficient epigenetic biomarkers for disease susceptibility will facilitate a paradigm shift from reactionary medicine to preventative medicine.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| |
Collapse
|
26
|
Wang R, Yang Y, Lu T, Cui Y, Li B, Liu X. Circulating cell-free DNA-based methylation pattern in plasma for early diagnosis of esophagus cancer. PeerJ 2024; 12:e16802. [PMID: 38313016 PMCID: PMC10838104 DOI: 10.7717/peerj.16802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
With the increased awareness of early tumor detection, the importance of detecting and diagnosing esophageal cancer in its early stages has been underscored. Studies have consistently demonstrated the crucial role of methylation levels in circulating cell-free DNA (cfDNA) in identifying and diagnosing early-stage cancer. cfDNA methylation pertains to the methylation state within the genomic scope of cfDNA and is strongly associated with cancer development and progression. Several research teams have delved into the potential application of cfDNA methylation in identifying early-stage esophageal cancer and have achieved promising outcomes. Recent research supports the high sensitivity and specificity of cfDNA methylation in early esophageal cancer diagnosis, providing a more accurate and efficient approach for early detection and improved clinical management. Accordingly, this review aims to present an overview of methylation-based cfDNA research with a focus on the latest developments in the early detection of esophageal cancer. Additionally, this review summarizes advanced analytical technologies for cfDNA methylation that have significantly benefited from recent advancements in separation and detection techniques, such as methylated DNA immunoprecipitation sequencing (MeDIP-seq). Recent findings suggest that biomarkers based on cfDNA methylation may soon find successful applications in the early detection of esophageal cancer. However, large-scale prospective clinical trials are required to identify the potential of these biomarkers.
Collapse
Affiliation(s)
- Rui Wang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yue Yang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Tianyu Lu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Youbin Cui
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xin Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
Duncan GE, Avery A, Maamar MB, Nilsson EE, Beck D, Skinner MK. Epigenome-wide association study of systemic effects of obesity susceptibility in human twins. Epigenetics 2023; 18:2268834. [PMID: 37871278 PMCID: PMC10595392 DOI: 10.1080/15592294.2023.2268834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023] Open
Abstract
The current study was designed to use an epigenome-wide association approach (EWAS) to identify potential systemic DNA methylation alterations that are associated with obesity using 22 discordant twin pairs. Buccal cells (from a cheek swab) were used as a non-obesity relevant purified marker cell for the epigenetic analysis. Analysis of differential DNA methylation regions (DMRs) was used to identify epigenetic associations with metabolic and dietary measures related to obesity with discordant twins. An edgeR analysis provided a DMR signature with p < 1e-04, but statistical significance was reduced due to low sample size and known multiple origins of obesity. A weighted gene coexpression network analysis (WGCNA) was performed and identified modules (p < 0.005) of epigenetic sites that correlated with different metabolic and dietary measures. The DMR and WGCNA epigenetic sites were near genes (e.g., CIDEC, SPP1, ZFPG9, and POMC) with previously identified obesity associated pathways (e.g., metabolism, cholesterol, and fat digestion). Observations demonstrate the feasibility of identifying systemic epigenetic biomarkers for obesity, which can be further investigated for clinical relevance in future research with larger sample sizes. The availability of a systemic epigenetic biomarker for obesity susceptibility may facilitate preventative medicine and clinical management of the disease early in life.
Collapse
Affiliation(s)
- Glen E. Duncan
- Department of Nutrition and Exercise Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Ally Avery
- Department of Nutrition and Exercise Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E. Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
28
|
Wang P, Li Y, Liu Z, Zhang W, Li D, Wang X, Wen X, Feng Y, Zhang X. Analysis of DNA Methylation Differences during the JIII Formation of Bursaphelenchus xylophilus. Curr Issues Mol Biol 2023; 45:9656-9673. [PMID: 38132449 PMCID: PMC10742416 DOI: 10.3390/cimb45120603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
DNA methylation is a pivotal process that regulates gene expression and facilitates rapid adaptation to challenging environments. The pinewood nematode (PWN; Bursaphelenchus xylophilus), the causative agent of pine wilt disease, survives at low temperatures through third-stage dispersal juvenile, making it a major pathogen for pines in Asia. To comprehend the impact of DNA methylation on the formation and environmental adaptation of third-stage dispersal juvenile, we conducted whole-genome bisulfite sequencing and transcriptional sequencing on both the third-stage dispersal juvenile and three other propagative juvenile stages of PWN. Our findings revealed that the average methylation rate of cytosine in the samples ranged from 0.89% to 0.99%. Moreover, we observed significant DNA methylation changes in the third-stage dispersal juvenile and the second-stage propagative juvenile of PWN, including differentially methylated cytosine (DMCs, n = 435) and regions (DMRs, n = 72). In the joint analysis of methylation-associated transcription, we observed that 23 genes exhibited overlap between differentially methylated regions and differential gene expression during the formation of the third-stage dispersal juvenile of PWN. Further functional analysis of these genes revealed enrichment in processes related to lipid metabolism and fatty acid synthesis. These findings emphasize the significance of DNA methylation in the development of third-stage dispersal juvenile of PWN, as it regulates transcription to enhance the probability of rapid expansion in PWN.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (P.W.); (Z.L.); (W.Z.); (D.L.); (X.W.); (X.W.); (Y.F.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
29
|
Hong K, Radian Y, Manda T, Xu H, Luo Y. The Development of Plant Genome Sequencing Technology and Its Conservation and Application in Endangered Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:4006. [PMID: 38068641 PMCID: PMC10708082 DOI: 10.3390/plants12234006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
Genome sequencing is widely recognized as a fundamental pillar in genetic research and legal studies of biological phenomena, providing essential insights for genetic investigations and legal analyses of biological events. The field of genome sequencing has experienced significant progress due to rapid improvements in scientific and technological developments. These advancements encompass not only significant improvements in the speed and quality of sequencing but also provide an unparalleled opportunity to explore the subtle complexities of genomes, particularly in the context of rare species. Such a wide range of possibilities has successfully supported the validation of plant gene functions and the refinement of precision breeding methodologies. This expanded scope now includes a comprehensive exploration of the current state and conservation efforts of gymnosperm gene sequencing, offering invaluable insights into their genomic landscapes. This comprehensive review elucidates the trajectory of development and the diverse applications of genome sequencing. It encompasses various domains, including crop breeding, responses to abiotic stress, species evolutionary dynamics, biodiversity, and the unique challenges faced in the conservation and utilization of gymnosperms. It highlights both ongoing challenges and the unveiling of forthcoming developmental trajectories.
Collapse
Affiliation(s)
- Kaiyue Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yasmina Radian
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Teja Manda
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Haibin Xu
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
| |
Collapse
|
30
|
Johnson RK, Ireton AJ, Carry PM, Vanderlinden LA, Dong F, Romero A, Johnson DR, Ghosh D, Yang F, Frohnert B, Yang IV, Kechris K, Rewers M, Norris JM. DNA Methylation Near DLGAP2 May Mediate the Relationship between Family History of Type 1 Diabetes and Type 1 Diabetes Risk. Pediatr Diabetes 2023; 2023:5367637. [PMID: 38765731 PMCID: PMC11100224 DOI: 10.1155/2023/5367637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Given the differential risk of type 1 diabetes (T1D) in offspring of affected fathers versus affected mothers and our observation that T1D cases have differential DNA methylation near the imprinted DLGAP2 gene compared to controls, we examined whether methylation near DLGAP2 mediates the association between T1D family history and T1D risk. In a nested case-control study of 87 T1D cases and 87 controls from the Diabetes Autoimmunity Study in the Young, we conducted causal mediation analyses at 12 DLGAP2 region CpGs to decompose the effect of family history on T1D risk into indirect and direct effects. These effects were estimated from two regression models adjusted for the human leukocyte antigen DR3/4 genotype: a linear regression of family history on methylation (mediator model) and a logistic regression of family history and methylation on T1D (outcome model). For 8 of the 12 CpGs, we identified a significant interaction between T1D family history and methylation on T1D risk. Accounting for this interaction, we found that the increased risk of T1D for children with affected mothers compared to those with no family history was mediated through differences in methylation at two CpGs (cg27351978, cg00565786) in the DLGAP2 region, as demonstrated by a significant pure natural indirect effect (odds ratio (OR) = 1.98, 95% confidence interval (CI): 1.06-3.71) and nonsignificant total natural direct effect (OR = 1.65, 95% CI: 0.16-16.62) (for cg00565786). In contrast, the increased risk of T1D for children with an affected father or sibling was not explained by DNA methylation changes at these CpGs. Results were similar for cg27351978 and robust in sensitivity analyses. Lastly, we found that DNA methylation in the DLGAP2 region was associated (P<0:05) with gene expression of nearby protein-coding genes DLGAP2, ARHGEF10, ZNF596, and ERICH1. Results indicate that the maternal protective effect conferred through exposure to T1D in utero may operate through changes to DNA methylation that have functional downstream consequences.
Collapse
Affiliation(s)
- Randi K. Johnson
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amanda J. Ireton
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Patrick M. Carry
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren A. Vanderlinden
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fran Dong
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alex Romero
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David R. Johnson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fan Yang
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brigitte Frohnert
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
31
|
Troyee AN, Peña-Ponton C, Medrano M, Verhoeven KJF, Alonso C. Herbivory induced methylation changes in the Lombardy poplar: A comparison of results obtained by epiGBS and WGBS. PLoS One 2023; 18:e0291202. [PMID: 37682835 PMCID: PMC10490839 DOI: 10.1371/journal.pone.0291202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
DNA cytosine methylation is an epigenetic mechanism involved in regulation of plant responses to biotic and abiotic stress and its ability to change can vary with the sequence context in which a cytosine appears (CpG, CHG, CHH, where H = Adenine, Thymine, Cytosine). Quantification of DNA methylation in model plant species is frequently addressed by Whole Genome Bisulfite Sequencing (WGBS), which requires a good-quality reference genome. Reduced Representation Bisulfite Sequencing (RRBS) is a cost-effective potential alternative for ecological research with limited genomic resources and large experimental designs. In this study, we provide for the first time a comprehensive comparison between the outputs of RRBS and WGBS to characterize DNA methylation changes in response to a given environmental factor. In particular, we used epiGBS (recently optimized RRBS) and WGBS to assess global and sequence-specific differential methylation after insect and artificial herbivory in clones of Populus nigra cv. 'italica'. We found that, after any of the two herbivory treatments, global methylation percentage increased in CHH, and the shift was detected as statistically significant only by epiGBS. As regards to loci-specific differential methylation induced by herbivory (cytosines in epiGBS and regions in WGBS), both techniques indicated the specificity of the response elicited by insect and artificial herbivory, together with higher frequency of hypo-methylation in CpG and hyper-methylation in CHH. Methylation changes were mainly found in gene bodies and intergenic regions when present at CpG and CHG and in transposable elements and intergenic regions at CHH context. Thus, epiGBS succeeded to characterize global, genome-wide methylation changes in response to herbivory in the Lombardy poplar. Our results support that epiGBS could be particularly useful in large experimental designs aimed to explore epigenetic changes of non-model plant species in response to multiple environmental factors.
Collapse
Affiliation(s)
- A. Niloya Troyee
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Cristian Peña-Ponton
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Koen J. F. Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| |
Collapse
|
32
|
Biglari N, Soltani-Zangbar MS, Mohammadian J, Mehdizadeh A, Abbasi K. ctDNA as a novel and promising approach for cancer diagnosis: a focus on hepatocellular carcinoma. EXCLI JOURNAL 2023; 22:752-780. [PMID: 37720239 PMCID: PMC10502204 DOI: 10.17179/excli2023-6277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/26/2023] [Indexed: 09/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent forms of cancer worldwide. Therefore, it is essential to diagnose and treat HCC patients promptly. As a novel discovery, circulating tumor DNA (ctDNA) can be used to analyze the tumor type and the cancer location. Additionally, ctDNA assists the cancer stage determination, which enables medical professionals to provide patients with the most appropriate treatment. This review will discuss the HCC-related mutated genes diagnosed by ctDNA. In addition, we will introduce the different and the most appropriate ctDNA diagnosis approaches based on the facilities.
Collapse
Affiliation(s)
- Negin Biglari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Abbasi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Coppedè F, Bhaduri U, Stoccoro A, Nicolì V, Di Venere E, Merla G. DNA Methylation in the Fields of Prenatal Diagnosis and Early Detection of Cancers. Int J Mol Sci 2023; 24:11715. [PMID: 37511475 PMCID: PMC10380460 DOI: 10.3390/ijms241411715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The central objective of the metamorphosis of discovery science into biomedical applications is to serve the purpose of patients and curtail the global disease burden. The journey from the discovery of DNA methylation (DNAm) as a biological process to its emergence as a diagnostic tool is one of the finest examples of such metamorphosis and has taken nearly a century. Particularly in the last decade, the application of DNA methylation studies in the clinic has been standardized more than ever before, with great potential to diagnose a multitude of diseases that are associated with a burgeoning number of genes with this epigenetic alteration. Fetal DNAm detection is becoming useful for noninvasive prenatal testing, whereas, in very preterm infants, DNAm is also shown to be a potential biological indicator of prenatal risk factors. In the context of cancer, liquid biopsy-based DNA-methylation profiling is offering valuable epigenetic biomarkers for noninvasive early-stage diagnosis. In this review, we focus on the applications of DNA methylation in prenatal diagnosis for delivering timely therapy before or after birth and in detecting early-stage cancers for better clinical outcomes. Furthermore, we also provide an up-to-date commercial landscape of DNAm biomarkers for cancer detection and screening of cancers of unknown origin.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| | - Utsa Bhaduri
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Eleonora Di Venere
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
34
|
Petroff RL, Cavalcante RG, Colacino JA, Goodrich JM, Jones TR, Lalancette C, Morgan RK, Neier K, Perera BPU, Rygiel CA, Svoboda LK, Wang K, Sartor MA, Dolinoy DC. Developmental exposures to common environmental contaminants, DEHP and lead, alter adult brain and blood hydroxymethylation in mice. Front Cell Dev Biol 2023; 11:1198148. [PMID: 37384255 PMCID: PMC10294071 DOI: 10.3389/fcell.2023.1198148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction: The developing epigenome changes rapidly, potentially making it more sensitive to toxicant exposures. DNA modifications, including methylation and hydroxymethylation, are important parts of the epigenome that may be affected by environmental exposures. However, most studies do not differentiate between these two DNA modifications, possibly masking significant effects. Methods: To investigate the relationship between DNA hydroxymethylation and developmental exposure to common contaminants, a collaborative, NIEHS-sponsored consortium, TaRGET II, initiated longitudinal mouse studies of developmental exposure to human-relevant levels of the phthalate plasticizer di(2-ethylhexyl) phthalate (DEHP), and the metal lead (Pb). Exposures to 25 mg DEHP/kg of food (approximately 5 mg DEHP/kg body weight) or 32 ppm Pb-acetate in drinking water were administered to nulliparous adult female mice. Exposure began 2 weeks before breeding and continued throughout pregnancy and lactation, until offspring were 21 days old. At 5 months, perinatally exposed offspring blood and cortex tissue were collected, for a total of 25 male mice and 17 female mice (n = 5-7 per tissue and exposure). DNA was extracted and hydroxymethylation was measured using hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq). Differential peak and pathway analysis was conducted comparing across exposure groups, tissue types, and animal sex, using an FDR cutoff of 0.15. Results: DEHP-exposed females had two genomic regions with lower hydroxymethylation in blood and no differences in cortex hydroxymethylation. For DEHP-exposed males, ten regions in blood (six higher and four lower) and 246 regions (242 higher and four lower) and four pathways in cortex were identified. Pb-exposed females had no statistically significant differences in blood or cortex hydroxymethylation compared to controls. Pb-exposed males, however, had 385 regions (all higher) and six pathways altered in cortex, but no differential hydroxymethylation was identified in blood. Discussion: Overall, perinatal exposure to human-relevant levels of two common toxicants showed differences in adult DNA hydroxymethylation that was specific to sex, exposure type, and tissue, but male cortex was most susceptible to hydroxymethylation differences by exposure. Future assessments should focus on understanding if these findings indicate potential biomarkers of exposure or are related to functional long-term health effects.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Raymond G. Cavalcante
- Epigenomics Core, Biomedical Research Core Facilities, Michigan Medicine, Ann Arbor, MI, United States
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Tamara R. Jones
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Claudia Lalancette
- Epigenomics Core, Biomedical Research Core Facilities, Michigan Medicine, Ann Arbor, MI, United States
| | - Rachel K. Morgan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Kari Neier
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Bambarendage P. U. Perera
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Christine A. Rygiel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI, United States
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI, United States
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| |
Collapse
|
35
|
Xin L, Yue Y, Zihan R, Youbin C, Tianyu L, Rui W. Clinical application of liquid biopsy based on circulating tumor DNA in non-small cell lung cancer. Front Physiol 2023; 14:1200124. [PMID: 37351260 PMCID: PMC10282751 DOI: 10.3389/fphys.2023.1200124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Lung cancer is a widely occurring and deadly malignancy, with high prevalence rates in China and across the globe. Specifically, non-small cell lung cancer (NSCLC) represents about 85% of all lung cancer cases. The 5-year disease-free survival rate after surgery for stage IB-IIIB NSCLC patients (disease-free survival, DFS) has notably declined from 73% to 13%. Early detection of abnormal cancer molecules and subsequent personalized treatment plans are the most effective ways to address this problem. Liquid biopsy, surprisingly, enables safe, accurate, non-invasive, and dynamic tracking of disease progression. Among the various modalities, circulating tumor DNA (ctDNA) is the most commonly used liquid biopsy modality. ctDNA serves as a credible "liquid biopsy" diagnostic tool that, to a certain extent, overcomes tumor heterogeneity and harbors genetic mutations in malignancies, thereby providing early information on tumor genetic alterations. Despite considerable academic interest in the clinical significance of ctDNA, consensus on its utility remains lacking. In this review, we assess the role of ctDNA testing in the diagnosis and management of NSCLC as a reference for clinical intervention in this disease. Lastly, we examine future directions to optimize ctDNA for personalized therapy.
Collapse
Affiliation(s)
| | | | | | | | - Lu Tianyu
- *Correspondence: Wang Rui, ; Lu Tianyu,
| | - Wang Rui
- *Correspondence: Wang Rui, ; Lu Tianyu,
| |
Collapse
|
36
|
Ben Maamar M, Wang Y, Nilsson EE, Beck D, Yan W, Skinner MK. Transgenerational sperm DMRs escape DNA methylation erasure during embryonic development and epigenetic inheritance. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad003. [PMID: 37346491 PMCID: PMC10281242 DOI: 10.1093/eep/dvad003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Germline transmission of epigenetic information is a critical component of epigenetic inheritance. Previous studies have suggested that an erasure of DNA methylation is required to develop stem cells in the morula embryo. An exception involves imprinted genes that escape this DNA methylation erasure. Transgenerational differential DNA methylation regions (DMRs) have been speculated to be imprinted-like and escape this erasure. The current study was designed to assess if morula embryos escape the erasure of dichlorodiphenyltrichloroethane-induced transgenerational sperm DMR methylation. Observations demonstrate that the majority (98%) of transgenerational sperm DMR sites retain DNA methylation and are not erased, so appearing similar to imprinted-like sites. Interestingly, observations also demonstrate that the majority of low-density CpG genomic sites had a significant increase in DNA methylation in the morula embryo compared to sperm. This is in contrast to the previously observed DNA methylation erasure of higher-density CpG sites. The general erasure of DNA methylation during embryogenesis appears applicable to high-density DNA methylation sites (e.g. CpG islands) but neither to transgenerational DMR methylation sites nor to low-density CpG deserts, which constitute the vast majority of the genome's DNA methylation sites. The role of epigenetics during embryogenesis appears more dynamic than the simple erasure of DNA methylation.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yue Wang
- David Geffen School of Medicine at UCLA, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Wei Yan
- David Geffen School of Medicine at UCLA, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
37
|
Keukeleire P, Makrodimitris S, Reinders M. Cell type deconvolution of methylated cell-free DNA at the resolution of individual reads. NAR Genom Bioinform 2023; 5:lqad048. [PMID: 37274121 PMCID: PMC10236360 DOI: 10.1093/nargab/lqad048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Cell-free DNA (cfDNA) are DNA fragments originating from dying cells that are detectable in bodily fluids, such as the plasma. Accelerated cell death, for example caused by disease, induces an elevated concentration of cfDNA. As a result, determining the cell type origins of cfDNA molecules can provide information about an individual's health. In this work, we aim to increase the sensitivity of methylation-based cell type deconvolution by adapting an existing method, CelFiE, which uses the methylation beta values of individual CpG sites to estimate cell type proportions. Our new method, CelFEER, instead differentiates cell types by the average methylation values within individual reads. We additionally improved the originally reported performance of CelFiE by using a new approach for finding marker regions that are differentially methylated between cell types. We show that CelFEER estimates cell type proportions with a higher correlation (r = 0.94 ± 0.04) than CelFiE (r = 0.86 ± 0.09) on simulated mixtures of cell types. Moreover, we show that the cell type proportion estimated by CelFEER can differentiate between ALS patients and healthy controls, between pregnant women in their first and third trimester, and between pregnant women with and without gestational diabetes.
Collapse
Affiliation(s)
| | | | - Marcel Reinders
- To whom correspondence should be addressed. Tel: +31 15 27 86424;
| |
Collapse
|
38
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
39
|
Trinidad EM, Juan-Ribelles A, Pisano G, Castel V, Cañete A, Gut M, Heath S, Font de Mora J. Evaluation of circulating tumor DNA by electropherogram analysis and methylome profiling in high-risk neuroblastomas. Front Oncol 2023; 13:1037342. [PMID: 37251933 PMCID: PMC10213460 DOI: 10.3389/fonc.2023.1037342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Background Liquid biopsy has emerged as a promising, non-invasive diagnostic approach in oncology because the analysis of circulating tumor DNA (ctDNA) reflects the precise status of the disease at diagnosis, progression, and response to treatment. DNA methylation profiling is also a potential solution for sensitive and specific detection of many cancers. The combination of both approaches, DNA methylation analysis from ctDNA, provides an extremely useful and minimally invasive tool with high relevance in patients with childhood cancer. Neuroblastoma is an extracranial solid tumor most common in children and responsible for up to 15% of cancer-related deaths. This high death rate has prompted the scientific community to search for new therapeutic targets. DNA methylation also offers a new source for identifying these molecules. However, the limited blood sample size which can be obtained from children with cancer and the fact that ctDNA content may occasionally be diluted by non-tumor cell-free DNA (cfDNA) complicate optimal quantities of material for high-throughput sequencing studies. Methods In this article, we present an improved method for ctDNA methylome studies of blood-derived plasma from high-risk neuroblastoma patients. We assessed the electropherogram profiles of ctDNA-containing samples suitable for methylome studies, using 10 ng of plasma-derived ctDNA from 126 samples of 86 high-risk neuroblastoma patients, and evaluated several bioinformatic approaches to analyze DNA methylation sequencing data. Results We demonstrated that enzymatic methyl-sequencing (EM-seq) outperformed bisulfite conversion-based method, based on the lower proportion of PCR duplicates and the higher percentage of unique mapping reads, mean coverage, and genome coverage. The analysis of the electropherogram profiles revealed the presence of nucleosomal multimers, and occasionally high molecular weight DNA. We established that 10% content of the mono-nucleosomal peak is sufficient ctDNA for successful detection of copy number variations and methylation profiles. Quantification of mono-nucleosomal peak also showed that samples at diagnosis contained a higher amount of ctDNA than relapse samples. Conclusions Our results refine the use of electropherogram profiles to optimize sample selection for subsequent high-throughput analysis and support the use of liquid biopsy followed by enzymatic conversion of unmethylated cysteines to assess the methylomes of neuroblastoma patients.
Collapse
Affiliation(s)
- Eva María Trinidad
- Laboratory of Cellular and Molecular Biology, Health Research Institute Hospital La Fe, Valencia, Spain
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Antonio Juan-Ribelles
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Giulia Pisano
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Victoria Castel
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Adela Cañete
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
- School of Medicine, University of Valencia, Valencia, Spain
| | - Marta Gut
- National Center for Genomic Analysis – Centre for Genomic Regulation (CNAG-CRG), Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Heath
- National Center for Genomic Analysis – Centre for Genomic Regulation (CNAG-CRG), Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jaime Font de Mora
- Laboratory of Cellular and Molecular Biology, Health Research Institute Hospital La Fe, Valencia, Spain
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
| |
Collapse
|
40
|
Pierron F, Daffe G, Daramy F, Heroin D, Barré A, Bouchez O, Clérendeau C, Romero-Ramirez A, Nikolski M. Transgenerational endocrine disruptor effects of cadmium in zebrafish and contribution of standing epigenetic variation to adaptation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131579. [PMID: 37163897 DOI: 10.1016/j.jhazmat.2023.131579] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Evidence has emerged that environmentally-induced epigenetic changes can have long-lasting effects on gene transcription across generations. These recent findings highlight the need to investigate the transgenerational impacts of pollutants to assess their long term effects on populations. In this study, we investigated the transgenerational effect of cadmium on zebrafish across 4 generations. A first whole methylome approach carried out on fish of the first two generations led us to focus our investigations on the estradiol receptor alpha gene (esr1). We observed a sex-dependent transgenerational inheritance of Cd-induced DNA methylation changes up to the last generation. These changes were associated with single nucleotide polymorphisms (SNPs) that were themselves at the origin of the creation or deletion of methylation sites. Thus, Cd-induced genetic selection gave rise to DNA methylation changes. We also analyzed the transcription level of various sections of esr1 as well as estrogen responsive genes. While Cd triggered transgenerational disorders, Cd-induced epigenetic changes in esr1 contributed to the rapid transgenerational adaptation of fish to Cd. Our results provide insight into the processes underpinning rapid adaptation and highlight the need to maintain genetic diversity within natural populations to bolster the resilience of species faced with the global environmental changes.
Collapse
Affiliation(s)
- Fabien Pierron
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| | - Guillemine Daffe
- Univ. Bordeaux, CNRS, INRAE, La Rochelle Univ., UMS 2567 POREA, F-33615 Pessac, France
| | - Flore Daramy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Débora Heroin
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Aurélien Barré
- Univ. Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | | | | | - Macha Nikolski
- Univ. Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France; Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux 33077, France
| |
Collapse
|
41
|
Brockley LJ, Souza VGP, Forder A, Pewarchuk ME, Erkan M, Telkar N, Benard K, Trejo J, Stewart MD, Stewart GL, Reis PP, Lam WL, Martinez VD. Sequence-Based Platforms for Discovering Biomarkers in Liquid Biopsy of Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:2275. [PMID: 37190212 PMCID: PMC10136462 DOI: 10.3390/cancers15082275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Lung cancer detection and monitoring are hampered by a lack of sensitive biomarkers, which results in diagnosis at late stages and difficulty in tracking response to treatment. Recent developments have established liquid biopsies as promising non-invasive methods for detecting biomarkers in lung cancer patients. With concurrent advances in high-throughput sequencing technologies and bioinformatics tools, new approaches for biomarker discovery have emerged. In this article, we survey established and emerging biomarker discovery methods using nucleic acid materials derived from bodily fluids in the context of lung cancer. We introduce nucleic acid biomarkers extracted from liquid biopsies and outline biological sources and methods of isolation. We discuss next-generation sequencing (NGS) platforms commonly used to identify novel biomarkers and describe how these have been applied to liquid biopsy. We highlight emerging biomarker discovery methods, including applications of long-read sequencing, fragmentomics, whole-genome amplification methods for single-cell analysis, and whole-genome methylation assays. Finally, we discuss advanced bioinformatics tools, describing methods for processing NGS data, as well as recently developed software tailored for liquid biopsy biomarker detection, which holds promise for early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Liam J. Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Michelle E. Pewarchuk
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Melis Erkan
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Jessica Trejo
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Matt D. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Victor D. Martinez
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
42
|
Magi A, Mattei G, Mingrino A, Caprioli C, Ronchini C, Frigè G, Semeraro R, Bolognini D, Rambaldi A, Candoni A, Colombo E, Mazzarella L, Pelicci PG. High-resolution Nanopore methylome-maps reveal random hyper-methylation at CpG-poor regions as driver of chemoresistance in leukemias. Commun Biol 2023; 6:382. [PMID: 37031307 PMCID: PMC10082806 DOI: 10.1038/s42003-023-04756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
Aberrant DNA methylation at CpG dinucleotides is a cancer hallmark that is associated with the emergence of resistance to anti cancer treatment, though molecular mechanisms and biological significance remain elusive. Genome scale methylation maps by currently used methods are based on chemical modification of DNA and are best suited for analyses of methylation at CpG rich regions (CpG islands). We report the first high coverage whole-genome map in cancer using the long read nanopore technology, which allows simultaneous DNA-sequence and -methylation analyses on native DNA. We analyzed clonal epigenomic/genomic evolution in Acute Myeloid Leukemias (AMLs) at diagnosis and relapse, after chemotherapy. Long read sequencing coupled to a novel computational method allowed definition of differential methylation at unprecedented resolution, and showed that the relapse methylome is characterized by hypermethylation at both CpG islands and sparse CpGs regions. Most differentially methylated genes, however, were not differentially expressed nor enriched for chemoresistance genes. A small fraction of under-expressed and hyper-methylated genes at sparse CpGs, in the gene body, was significantly enriched in transcription factors (TFs). Remarkably, these few TFs supported large gene-regulatory networks including 50% of all differentially expressed genes in the relapsed AMLs and highly-enriched in chemoresistance genes. Notably, hypermethylated regions at sparse CpGs were poorly conserved in the relapsed AMLs, under-represented at their genomic positions and showed higher methylation entropy, as compared to CpG islands. Analyses of available datasets confirmed TF binding to their target genes and conservation of the same gene-regulatory networks in large patient cohorts. Relapsed AMLs carried few patient specific structural variants and DNA mutations, apparently not involved in drug resistance. Thus, drug resistance in AMLs can be mainly ascribed to the selection of random epigenetic alterations at sparse CpGs of a few transcription factors, which then induce reprogramming of the relapsing phenotype, independently of clonal genomic evolution.
Collapse
Affiliation(s)
- Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy.
- Institute for Biomedical Technologies, National Research Council, Segrate, Milano, Italy.
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Alessandra Mingrino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Caprioli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Chiara Ronchini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - GianMaria Frigè
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Davide Bolognini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Candoni
- Clinica Ematologica, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Emanuela Colombo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
43
|
Desaulniers D, Cummings-Lorbetskie C, Leingartner K, Meier MJ, Pickles JC, Yauk CL. DNA methylation changes from primary cultures through senescence-bypass in Syrian hamster fetal cells initially exposed to benzo[a]pyrene. Toxicology 2023; 487:153451. [PMID: 36754249 DOI: 10.1016/j.tox.2023.153451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Current chemical testing strategies are limited in their ability to detect non-genotoxic carcinogens (NGTxC). Epigenetic anomalies develop during carcinogenesis regardless of whether the molecular initiating event is associated with genotoxic (GTxC) or NGTxC events; therefore, epigenetic markers may be harnessed to develop new approach methodologies that improve the detection of both types of carcinogens. This study used Syrian hamster fetal cells to establish the chronology of carcinogen-induced DNA methylation changes from primary cells until senescence-bypass as an essential carcinogenic step. Cells exposed to solvent control for 7 days were compared to naïve primary cultures, to cells exposed for 7 days to benzo[a]pyrene, and to cells at the subsequent transformation stages: normal colonies, morphologically transformed colonies, senescence, senescence-bypass, and sustained proliferation in vitro. DNA methylation changes identified by reduced representation bisulphite sequencing were minimal at day-7. Profound DNA methylation changes arose during cellular senescence and some of these early differentially methylated regions (DMRs) were preserved through the final sustained proliferation stage. A set of these DMRs (e.g., Pou4f1, Aifm3, B3galnt2, Bhlhe22, Gja8, Klf17, and L1l) were validated by pyrosequencing and their reproducibility was confirmed across multiple clones obtained from a different laboratory. These DNA methylation changes could serve as biomarkers to enhance objectivity and mechanistic understanding of cell transformation and could be used to predict senescence-bypass and chemical carcinogenicity.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | | | - Karen Leingartner
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | | | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| |
Collapse
|
44
|
Phillips CM, Stamatovic SM, Keep RF, Andjelkovic AV. Epigenetics and stroke: role of DNA methylation and effect of aging on blood-brain barrier recovery. Fluids Barriers CNS 2023; 20:14. [PMID: 36855111 PMCID: PMC9972738 DOI: 10.1186/s12987-023-00414-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Incomplete recovery of blood-brain barrier (BBB) function contributes to stroke outcomes. How the BBB recovers after stroke remains largely unknown. Emerging evidence suggests that epigenetic factors play a significant role in regulating post-stroke BBB recovery. This study aimed to evaluate the epigenetic and transcriptional profile of cerebral microvessels after thromboembolic (TE) stroke to define potential causes of limited BBB recovery. RNA-sequencing and reduced representation bisulfite sequencing (RRBS) analyses were performed using microvessels isolated from young (6 months) and old (18 months) mice seven days poststroke compared to age-matched sham controls. DNA methylation profiling of poststroke brain microvessels revealed 11,287 differentially methylated regions (DMR) in old and 9818 DMR in young mice, corresponding to annotated genes. These DMR were enriched in genes encoding cell structural proteins (e.g., cell junction, and cell polarity, actin cytoskeleton, extracellular matrix), transporters and channels (e.g., potassium transmembrane transporter, organic anion and inorganic cation transporters, calcium ion transport), and proteins involved in endothelial cell processes (e.g., angiogenesis/vasculogenesis, cell signaling and transcription regulation). Integrated analysis of methylation and RNA sequencing identified changes in cell junctions (occludin), actin remodeling (ezrin) as well as signaling pathways like Rho GTPase (RhoA and Cdc42ep4). Aging as a hub of aberrant methylation affected BBB recovery processes by profound alterations (hypermethylation and repression) in structural protein expression (e.g., claudin-5) as well as activation of a set of genes involved in endothelial to mesenchymal transformation (e.g., Sox9, Snai1), repression of angiogenesis and epigenetic regulation. These findings revealed that DNA methylation plays an important role in regulating BBB repair after stroke, through regulating processes associated with BBB restoration and prevalently with processes enhancing BBB injury.
Collapse
Affiliation(s)
- Chelsea M Phillips
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana M Stamatovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA. .,Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| |
Collapse
|
45
|
Domi E, Barchiesi R, Barbier E. Epigenetic Dysregulation in Alcohol-Associated Behaviors: Preclinical and Clinical Evidence. Curr Top Behav Neurosci 2023. [PMID: 36717533 DOI: 10.1007/7854_2022_410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder (AUD) is characterized by loss of control over intake and drinking despite harmful consequences. At a molecular level, AUD is associated with long-term neuroadaptations in key brain regions that are involved in reward processing and decision-making. Over the last decades, a great effort has been made to understand the neurobiological basis underlying AUD. Epigenetic mechanisms have emerged as an important mechanism in the regulation of long-term alcohol-induced gene expression changes. Here, we review the literature supporting a role for epigenetic processes in AUD. We particularly focused on the three most studied epigenetic mechanisms: DNA methylation, Histone modification and non-coding RNAs. Clinical studies indicate an association between AUD and DNA methylation both at the gene and global levels. Using behavioral paradigms that mimic some of the characteristics of AUD, preclinical studies demonstrate that changes in epigenetic mechanisms can functionally impact alcohol-associated behaviors. While many studies support a therapeutic potential for targeting epigenetic enzymes, more research is needed to fully understand their role in AUD. Identification of brain circuits underlying alcohol-associated behaviors has made major advances in recent years. However, there are very few studies that investigate how epigenetic mechanisms can affect these circuits or impact the neuronal ensembles that promote alcohol-associated behaviors. Studies that focus on the role of circuit-specific and cell-specific epigenetic changes for clinically relevant alcohol behaviors may provide new insights on the functional role of epigenetic processes in AUD.
Collapse
Affiliation(s)
- Esi Domi
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Riccardo Barchiesi
- Department of Neuroscience, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Estelle Barbier
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
46
|
Systematic and benchmarking studies of pipelines for mammal WGBS data in the novel NGS platform. BMC Bioinformatics 2023; 24:33. [PMID: 36721080 PMCID: PMC9890740 DOI: 10.1186/s12859-023-05163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Whole genome bisulfite sequencing (WGBS), possesses the aptitude to dissect methylation status at the nucleotide-level resolution of 5-methylcytosine (5-mC) on a genome-wide scale. It is a powerful technique for epigenome in various cell types, and tissues. As a recently established next-generation sequencing (NGS) platform, GenoLab M is a promising alternative platform. However, its comprehensive evaluation for WGBS has not been reported. We sequenced two bisulfite-converted mammal DNA in this research using our GenoLab M and NovaSeq 6000, respectively. Then, we systematically compared those data via four widely used WGBS tools (BSMAP, Bismark, BatMeth2, BS-Seeker2) and a new bisulfite-seq tool (BSBolt). We interrogated their computational time, genome depth and coverage, and evaluated their percentage of methylated Cs. RESULT Here, benchmarking a combination of pre- and post-processing methods, we found that trimming improved the performance of mapping efficiency in eight datasets. The data from two platforms uncovered ~ 80% of CpG sites genome-wide in the human cell line. Those data sequenced by GenoLab M achieved a far lower proportion of duplicates (~ 5.5%). Among pipelines, BSMAP provided an intriguing representation of 5-mC distribution at CpG sites with 5-mC levels > ~ 78% in datasets from human cell lines, especially in the GenoLab M. BSMAP performed more advantages in running time, uniquely mapped reads percentages, genomic coverage, and quantitative accuracy. Finally, compared with the previous methylation pattern of human cell line and mouse tissue, we confirmed that the data from GenoLab M performed similar consistency and accuracy in methylation levels of CpG sites with that from NovaSeq 6000. CONCLUSION Together we confirmed that GenoLab M was a qualified NGS platform for WGBS with high performance. Our results showed that BSMAP was the suitable pipeline that allowed for WGBS studies on the GenoLab M platform.
Collapse
|
47
|
Meyer BS, Moiron M, Caswara C, Chow W, Fedrigo O, Formenti G, Haase B, Howe K, Mountcastle J, Uliano-Silva M, Wood J, Jarvis ED, Liedvogel M, Bouwhuis S. Sex-specific changes in autosomal methylation rate in ageing common terns. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.982443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Senescence, an age-related decline in survival and/or reproductive performance, occurs in species across the tree of life. Molecular mechanisms underlying this within-individual phenomenon are still largely unknown, but DNA methylation changes with age are among the candidates. Using a longitudinal approach, we investigated age-specific changes in autosomal methylation of common terns, relatively long-lived migratory seabirds known to show senescence. We collected blood at 1-, 3- and/or 4-year intervals, extracted DNA from the erythrocytes and estimated autosomal DNA methylation by mapping Reduced Representative Bisulfite Sequencing reads to a de novo assembled reference genome. We found autosomal methylation levels to decrease with age within females, but not males, and no evidence for selective (dis)appearance of birds of either sex in relation to their methylation level. Moreover, although we found positions in the genome to consistently vary in their methylation levels, individuals did not show such strong consistent variance. These results pave the way for studies at the level of genome features or specific positions, which should elucidate the functional consequences of the patterns observed, and how they translate to the ageing phenotype.
Collapse
|
48
|
Kim JY, Jelinek J, Lee YH, Kim DH, Kang K, Ryu SH, Moon HR, Cho K, Rha SH, Cha JK, Issa JPJ, Kim J. Hypomethylation in MTNR1B: a novel epigenetic marker for atherosclerosis profiling using stenosis radiophenotype and blood inflammatory cells. Clin Epigenetics 2023; 15:11. [PMID: 36658621 PMCID: PMC9854223 DOI: 10.1186/s13148-023-01423-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Changes in gene-specific promoter methylation may result from aging and environmental influences. Atherosclerosis is associated with aging and environmental effects. Thus, promoter methylation profiling may be used as an epigenetic tool to evaluate the impact of aging and the environment on atherosclerosis development. However, gene-specific methylation changes are currently inadequate epigenetic markers for predicting atherosclerosis and cardiovascular disease pathogenesis. RESULTS We profiled and validated changes in gene-specific promoter methylation associated with atherosclerosis using stenosis radiophenotypes of cranial vessels and blood inflammatory cells rather than direct sampling of atherosclerotic plaques. First, we profiled gene-specific promoter methylation changes using digital restriction enzyme analysis of methylation (DREAM) sequencing in peripheral blood mononuclear cells from eight samples each of cranial vessels with and without severe-stenosis radiophenotypes. Using DREAM sequencing profiling, 11 tags were detected in the promoter regions of the ACVR1C, ADCK5, EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PACSIN3, PAX8-AS1, TLDC1, and ZNF7 genes. Using methylation evaluation, we found that EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PAX8-AS1, and TLDC1 showed > 5% promoter methylation in non-plaque intima, atherosclerotic vascular tissues, and buffy coats. Using logistic regression analysis, we identified hypomethylation of MTNR1B as an independent variable for the stenosis radiophenotype prediction model by combining it with traditional atherosclerosis risk factors including age, hypertension history, and increases in creatinine, lipoprotein (a), and homocysteine. We performed fivefold cross-validation of the prediction model using 384 patients with ischemic stroke (50 [13%] no-stenosis and 334 [87%] > 1 stenosis radiophenotype). For the cross-validation, the training dataset included 70% of the dataset. The prediction model showed an accuracy of 0.887, specificity to predict stenosis radiophenotype of 0.940, sensitivity to predict no-stenosis radiophenotype of 0.533, and area under receiver operating characteristic curve of 0.877 to predict stenosis radiophenotype from the test dataset including 30% of the dataset. CONCLUSIONS We identified and validated MTNR1B hypomethylation as an epigenetic marker to predict cranial vessel atherosclerosis using stenosis radiophenotypes and blood inflammatory cells rather than direct atherosclerotic plaque sampling.
Collapse
Affiliation(s)
- Jee Yeon Kim
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Jaroslav Jelinek
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ USA
| | - Young Ho Lee
- grid.254230.20000 0001 0722 6377Department of Anatomy, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Dae Hyun Kim
- grid.412048.b0000 0004 0647 1081Department of Neurology, Dong-A University Hospital, Busan, South Korea
| | - Keunsoo Kang
- grid.411982.70000 0001 0705 4288Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
| | - Su Hyun Ryu
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Hye Rin Moon
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Kwangjo Cho
- grid.412048.b0000 0004 0647 1081Department of Thoracic and Cardiovascular Surgery, Dong-A University Hospital, Busan, South Korea
| | - Seo Hee Rha
- grid.412048.b0000 0004 0647 1081Department of Pathology, Dong-A University Hospital, Busan, South Korea
| | - Jae Kwan Cha
- grid.254230.20000 0001 0722 6377Department of Anatomy, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jean-Pierre J. Issa
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ USA
| | - Jei Kim
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea ,grid.411665.10000 0004 0647 2279Daejeon-Chungnam Regional Cerebrovascular Center, Chungnam National University Hospital, Daejeon, South Korea
| |
Collapse
|
49
|
Phillips C, Stamatovic S, Keep R, Andjelkovic A. Epigenetics and stroke: role of DNA methylation and effect of aging on blood-brain barrier recovery. RESEARCH SQUARE 2023:rs.3.rs-2444060. [PMID: 36711725 PMCID: PMC9882686 DOI: 10.21203/rs.3.rs-2444060/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Incomplete recovery of blood-brain barrier (BBB) function contributes to stroke outcomes. How the BBB recovers after stroke remains largely unknown. Emerging evidence suggests that epigenetic factors play a significant role in regulating post-stroke BBB recovery. This study aimed to evaluate the epigenetic and transcriptional profile of cerebral microvessels after thromboembolic (TE) stroke to define potential causes of limited BBB recovery. RNA-sequencing and reduced representation bisulfite sequencing (RRBS) analyses were performed using microvessels isolated from young (6 months) and old (18 months) mice seven days poststroke compared to age-matched sham controls. DNA methylation profiling of poststroke brain microvessels revealed 11287 differentially methylated regions (DMR) in old and 9818 DMR in young mice, corresponding to annotated genes. These DMR were enriched in genes encoding cell structural proteins (e.g., cell junction, and cell polarity, actin cytoskeleton, extracellular matrix), transporters and channels (e.g., potassium transmembrane transporter, organic anion and inorganic cation transporters, calcium ion transport), and proteins involved in endothelial cell processes (e.g., angiogenesis/vasculogenesis, cell signaling and transcription regulation). Integrated analysis of methylation and RNA sequencing identified changes in cell junctions (occludin), actin remodeling (ezrin) as well as signaling pathways like Rho GTPase (RhoA and Cdc42ep4). Aging as a hub of aberrant methylation affected BBB recovery processes by profound alterations (hypermethylation and repression) in structural protein expression (e.g., claudin-5) as well as activation of a set of genes involved in endothelial to mesenchymal transformation (e.g., Sox17 , Snail1 ), repression of angiogenesis and epigenetic regulation. These findings revealed that DNA methylation plays an important role in regulating BBB repair after stroke, through regulating processes associated with BBB restoration and prevalently with processes enhancing BBB injury.
Collapse
|
50
|
Kaefer M, Rink R, Misseri R, Winchester P, Proctor C, Ben Maamar M, Beck D, Nilsson E, Skinner MK. Role of epigenetics in the etiology of hypospadias through penile foreskin DNA methylation alterations. Sci Rep 2023; 13:555. [PMID: 36631595 PMCID: PMC9834259 DOI: 10.1038/s41598-023-27763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Abnormal penile foreskin development in hypospadias is the most frequent genital malformation in male children, which has increased dramatically in recent decades. A number of environmental factors have been shown to be associated with hypospadias development. The current study investigated the role of epigenetics in the etiology of hypospadias and compared mild (distal), moderate (mid shaft), and severe (proximal) hypospadias. Penile foreskin samples were collected from hypospadias and non-hypospadias individuals to identify alterations in DNA methylation associated with hypospadias. Dramatic numbers of differential DNA methylation regions (DMRs) were observed in the mild hypospadias, with reduced numbers in moderate and low numbers in severe hypospadias. Atresia (cell loss) of the principal foreskin fibroblast is suspected to be a component of the disease etiology. A genome-wide (> 95%) epigenetic analysis was used and the genomic features of the DMRs identified. The DMR associated genes identified a number of novel hypospadias associated genes and pathways, as well as genes and networks known to be involved in hypospadias etiology. Observations demonstrate altered DNA methylation sites in penile foreskin is a component of hypospadias etiology. In addition, a potential role of environmental epigenetics and epigenetic inheritance in hypospadias disease etiology is suggested.
Collapse
Affiliation(s)
- Martin Kaefer
- grid.257413.60000 0001 2287 3919Department of Pediatric Urology, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Richard Rink
- grid.257413.60000 0001 2287 3919Department of Pediatric Urology, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Rosalia Misseri
- grid.257413.60000 0001 2287 3919Department of Pediatric Urology, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Paul Winchester
- grid.257413.60000 0001 2287 3919Department of Pediatrics, St. Franciscan Hospital, School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Cathy Proctor
- grid.257413.60000 0001 2287 3919Department of Pediatrics, St. Franciscan Hospital, School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Millissia Ben Maamar
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Daniel Beck
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Eric Nilsson
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Michael K. Skinner
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| |
Collapse
|