1
|
Szecskó A, Mészáros M, Simões B, Cavaco M, Chaparro C, Porkoláb G, Castanho MARB, Deli MA, Neves V, Veszelka S. PepH3-modified nanocarriers for delivery of therapeutics across the blood-brain barrier. Fluids Barriers CNS 2025; 22:31. [PMID: 40170024 PMCID: PMC11959756 DOI: 10.1186/s12987-025-00641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/14/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Nanocarriers targeting the blood-brain barrier (BBB) are promising drug delivery systems to enhance the penetration of therapeutic molecules into the brain. Immunotherapy, particularly monoclonal antibodies designed to bind amyloid-beta peptides have become a promising strategy for Alzheimer's disease, but ensuring efficacy and safety is challenging and crucial for these therapies. Our aim was to develop an innovative nanocarriers conjugated with PepH3, a cationic peptide derived from Dengue virus type-2 capsid protein that crosses the BBB and acts as a shuttle peptide for the encapsulated single domain antibody (sdAb) recognizing Aβ oligomers. RESULTS PepH3 peptide enhanced the uptake of the nanoparticles (NPs) into brain endothelial cells, and transcytosis of sdAb, as a potential therapeutic molecule, across both rat and human BBB culture models. The cargo uptake was a temperature dependent active process that was reduced by metabolic and endocytosis inhibitors. The cellular uptake of the cationic PepH3-tagged NPs decreased when the negative surface charge of brain endothelial cells became more positive after treatments with a cationic lipid or with neuraminidase by digesting the glycocalyx. The NPs colocalized mostly with endoplasmic reticulum and Golgi apparatus and not with lysosomes, indicating the cargo may avoid cellular degradation. CONCLUSIONS Our results support that combination of NPs with a potential brain shuttle peptide such as PepH3 peptide can improve the delivery of antibody fragments across the BBB.
Collapse
Affiliation(s)
- Anikó Szecskó
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mária Mészáros
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- One Health Institute, Faculty of Health Sciences, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Beatriz Simões
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Chaparro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Gergő Porkoláb
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Szilvia Veszelka
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
2
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
3
|
Kim M, Shin M, Zhao Y, Ghosh M, Son Y. Transformative Impact of Nanocarrier‐Mediated Drug Delivery: Overcoming Biological Barriers and Expanding Therapeutic Horizons. SMALL SCIENCE 2024; 4. [DOI: 10.1002/smsc.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Advancing therapeutic progress is centered on developing drug delivery systems (DDS) that control therapeutic molecule release, ensuring precise targeting and optimal concentrations. Targeted DDS enhances treatment efficacy and minimizes off‐target effects, but struggles with drug degradation. Over the last three decades, nanopharmaceuticals have evolved from laboratory concepts into clinical products, highlighting the profound impact of nanotechnology in medicine. Despite advancements, the effective delivery of therapeutics remains challenging because of biological barriers. Nanocarriers offer a solution with a small size, high surface‐to‐volume ratios, and customizable properties. These systems address physiological and biological challenges, such as shear stress, protein adsorption, and quick clearance. They allow targeted delivery to specific tissues, improve treatment outcomes, and reduce adverse effects. Nanocarriers exhibit controlled release, decreased degradation, and enhanced efficacy. Their size facilitates cell membrane penetration and intracellular delivery. Surface modifications increase affinity for specific cell types, allowing precise treatment delivery. This study also elucidates the potential integration of artificial intelligence with nanoscience to innovate future nanocarrier systems.
Collapse
Affiliation(s)
- Minhye Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
| | - Myeongyeon Shin
- Department of Animal Biotechnology Faculty of Biotechnology College of Applied Life Sciences Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology Faculty of Biotechnology College of Applied Life Sciences Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
| | - Young‐Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
- Department of Animal Biotechnology Faculty of Biotechnology College of Applied Life Sciences Jeju National University Jeju‐si Jeju Special Self‐Governing Province 63243 Republic of Korea
- Bio‐Health Materials Core‐Facility Center Jeju National University Jeju‐si 63243 Republic of Korea
- Practical Translational Research Center Jeju National University Jeju‐si 63243 Republic of Korea
| |
Collapse
|
4
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
5
|
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. Int J Mol Sci 2024; 25:6219. [PMID: 38892406 PMCID: PMC11172452 DOI: 10.3390/ijms25116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Natalia Stefaniuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (I.M.-T.); (A.Z.W.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| |
Collapse
|
6
|
Wang J, Wang Z, Zhang G, Rodrigues J, Tomás H, Shi X, Shen M. Blood-brain barrier-crossing dendrimers for glioma theranostics. Biomater Sci 2024; 12:1346-1356. [PMID: 38362780 DOI: 10.1039/d4bm00043a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Glioma, as a disease of the central nervous system, is difficult to be treated due to the presence of the blood-brain barrier (BBB) that can severely hamper the efficacy of most therapeutic agents. Hence, drug delivery to glioma in an efficient, safe, and specifically targeted manner is the key to effective treatment of glioma. With the advances in nanotechnology, targeted drug delivery systems have been extensively explored to deliver chemotherapeutic agents, nucleic acids, and contrast agents. Among these nanocarriers, dendrimers have played a significant role since they possess highly branched structures, and are easy to be decorated, thus offering numerous binding sites for various drugs and ligands. Dendrimers can be designed to cross the BBB for glioma targeting, therapy or theranostics. In this review, we provide a concise overview of dendrimer-based carrier designs including dendrimer surface modification with hydroxyl termini, peptides, and transferrin etc. for glioma imaging diagnostics, chemotherapy, gene therapy, or imaging-guided therapy. Finally, the future perspectives of dendrimer-based glioma theraputics are also briefly discussed.
Collapse
Affiliation(s)
- Jinxia Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Guixiang Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - João Rodrigues
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Odom TL, LeBroc HD, Callmann CE. Biomacromolecule-tagged nanoscale constructs for crossing the blood-brain barrier. NANOSCALE 2024; 16:3969-3976. [PMID: 38305381 DOI: 10.1039/d3nr06154j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Access to the brain is restricted by the low permeability of the blood-brain barrier (BBB), greatly hampering modern drug delivery efforts. A promising approach to overcome this boundary is to utilize biomacromolecules (peptides, nucleic acids, carbohydrates) as targeting ligands on nanoscale delivery vehicles to shuttle cargo across the BBB. In this mini-review, we highlight the most recent approaches for crossing the BBB using synthetic nanoscale constructs decorated with members of these general classes of biomacromolecules to safely and selectively deliver therapeutic materials to the brain.
Collapse
Affiliation(s)
- Tyler L Odom
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| | - Hayden D LeBroc
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| | - Cassandra E Callmann
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| |
Collapse
|
8
|
Bao Y, Lu W. Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1681-1698. [PMID: 36945117 DOI: 10.1080/17425247.2023.2193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cerebral diseases have been threatening public physical and psychological health in the recent years. With the existence of the blood-brain barrier (BBB), it is particularly hard for therapeutic proteins like peptides, enzymes, antibodies, etc. to enter the central nervous system (CNS) and function in diagnosis and treatment in cerebral diseases. Fortunately, the past decade has witnessed some emerging strategies of delivering macromolecular therapeutic proteins across the BBB. AREAS COVERED Based on the structure, functions, and substances transport mechanisms, various enhanced delivery strategies of therapeutic proteins were reviewed, categorized by molecule-mediated delivery strategies, carrier-mediated delivery strategies, and other delivery strategies. EXPERT OPINION As for molecule-mediated delivery strategies, development of genetic engineering technology, optimization of protein expression and purification techniques, and mature of quality control systems all help to realize large-scale production of recombinant antibodies, making it possible to apply to the clinical practice. In terms of carrier-mediated delivery strategies and others, although nano-carriers/adeno-associated virus (AAV) are also promising candidates for delivering therapeutic proteins or genes across the BBB, some issues still remain to be further investigated, including safety concerns related to applied materials, large-scale production costs, quality control standards, combination therapies with auxiliary delivery strategies like focused ultrasound, etc.
Collapse
Affiliation(s)
- Yanning Bao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
- Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd. Lingang of Shanghai, China
| |
Collapse
|
9
|
Heh E, Allen J, Ramirez F, Lovasz D, Fernandez L, Hogg T, Riva H, Holland N, Chacon J. Peptide Drug Conjugates and Their Role in Cancer Therapy. Int J Mol Sci 2023; 24:829. [PMID: 36614268 PMCID: PMC9820985 DOI: 10.3390/ijms24010829] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Drug conjugates have become a significant focus of research in the field of targeted medicine for cancer treatments. Peptide-drug conjugates (PDCs), a subset of drug conjugates, are composed of carrier peptides ranging from 5 to 30 amino acid residues, toxic payloads, and linkers that connect the payload to the peptide. PDCs are further broken down into cell-penetrating peptides (CPPs) and cell-targeting peptides (CTPs), each having their own differences in the delivery of cytotoxic payloads. Generally, PDCs as compared to other drug conjugates-like antibody-drug conjugates (ADCs)-have advantages in tumor penetration, ease of synthesis and cost, and reduced off-target effects. Further, as compared to traditional cancer treatments (e.g., chemotherapy and radiation), PDCs have higher specificity for the target cancer with generally less toxic side effects in smaller doses. However, PDCs can have disadvantages such as poor stability and rapid renal clearance due to their smaller size and limited oral bioavailability due to digestion of its peptide structure. Some of these challenges can be overcome with modifications, and despite drawbacks, the intrinsic small size of PDCs with high target specificity still makes them an attractive area of research for cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jessica Chacon
- Paul L. Foster School of Medicine, Department of Medical Education, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
10
|
Kianinejad N, Kwon YM. Dual-targeting of brain tumors with nanovesicles. BIOIMPACTS : BI 2023; 13:1-3. [PMID: 36816997 PMCID: PMC9923813 DOI: 10.34172/bi.2022.26321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/21/2022] [Indexed: 01/09/2023]
Abstract
The delivery of chemotherapies to brain tumors faces the difficult task of crossing the blood-brain barrier (BBB).1-4 The brain capillary endothelial cells (BCECs) along with other cell lines, such as astrocytes and pericytes, form the BBB. This highly selective semipermeable barrier separates the blood from the brain parenchyma. The BBB controls the movement of drug molecules in a selective manner5 and maintains central nervous system (CNS) homeostasis. Depending on the properties of drugs such as their hydrophilic-lipophilic balance (HLB), some can cross the BBB through passive diffusion.6 However, this approach alone has not led to successful drug developments due to low net diffusion rates and systemic toxicity. Although the use of nanomedicine has been proposed to overcome these drawbacks, many recent studies still rely on the so-called 'enhanced permeability and retention (EPR)' effect though there is a realization in the field of drug delivery that EPR effect may not be sufficient for successful drug delivery to brain tumors. Since, compared to many other solid tumors, brain tumors pose additional challenges such as more restrictive blood-tumor barrier as well as the well-developed lymphatic drainage, the selection of functional moieties on the nanocarriers under consideration must be carried out with care to propose better solutions to this challenge.
Collapse
Affiliation(s)
- Nazanin Kianinejad
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Young Min Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, Fort Lauderdale, FL, USA,Corresponding author: Young M. Kwon,
| |
Collapse
|
11
|
Ch'ng ACW, Konthur Z, Lim TS. Magnetic Nanoparticle-Based Semi-automated Panning for High-Throughput Antibody Selection. Methods Mol Biol 2023; 2702:291-313. [PMID: 37679626 DOI: 10.1007/978-1-0716-3381-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Bio-panning is a common process involved in recombinant antibody selection against defined targets. The biopanning process aims to isolate specific antibodies against an antigen via affinity selection from a phage display library. In general, antigens are immobilized on solid surfaces such as polystyrene plastic, magnetic beads, and nitrocellulose. For high-throughput selection, semi-automated panning selection allows simultaneous panning against multiple target antigens adapting automated particle processing systems such as the KingFisher Flex. The system setup allows for minimal human intervention for pre- and post-panning steps such as antigen immobilization, phage rescue, and amplification. In addition, the platform is also adaptable to perform polyclonal and monoclonal ELISA for the evaluation process. This chapter will detail the protocols involved from the selection stage until the monoclonal ELISA evaluation with important notes attached at the end of this chapter for optimization and troubleshooting purposes.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Reseach in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Zoltán Konthur
- Department of Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Theam Soon Lim
- Institute for Reseach in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
12
|
Halogenation of Peptides and Proteins Using Engineered Tryptophan Halogenase Enzymes. Biomolecules 2022; 12:biom12121841. [PMID: 36551269 PMCID: PMC9775415 DOI: 10.3390/biom12121841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Halogenation of bioactive peptides via incorporation of non-natural amino acid derivatives during chemical synthesis is a common strategy to enhance functionality. Bacterial tyrptophan halogenases efficiently catalyze regiospecific halogenation of the free amino acid tryptophan, both in vitro and in vivo. Expansion of their substrate scope to peptides and proteins would facilitate highly-regulated post-synthesis/expression halogenation. Here, we demonstrate novel in vitro halogenation (chlorination and bromination) of peptides by select halogenase enzymes and identify the C-terminal (G/S)GW motif as a preferred substrate. In a first proof-of-principle experiment, we also demonstrate chemo-catalyzed derivatization of an enzymatically chlorinated peptide, albeit with low efficiency. We further rationally derive PyrH halogenase mutants showing improved halogenation of the (G/S)GW motif, both as a free peptide and when genetically fused to model proteins with efficiencies up to 90%.
Collapse
|
13
|
Song H, Ding Z, Chen J, Chen T, Wang T, Huang J. The AMPK-SIRT1-FoxO1-NF-κB signaling pathway participates in hesperetin-mediated neuroprotective effects against traumatic brain injury via the NLRP3 inflammasome. Immunopharmacol Immunotoxicol 2022; 44:970-983. [PMID: 35786120 DOI: 10.1080/08923973.2022.2096464] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) induces inflammations that lead to secondary damage. Hesperetin (Hes) exerts anti-inflammatory activities against central nervous system (CNS) diseases. This article probes the possible neuroprotective effect and mechanism of Hes on TBI-induced acute cerebral damage. METHODS Male C57BL/6J mice were subjected to controlled cortical impingement (CCI) and Hes (50 mg/kg) treatment after the surgery. Short-term neurological deficits were assessed with the modified neurological severity score (mNSS) and the Rota-rod test. The brain edema was tested by the wet/dry method. Neuron apoptosis was evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. The blood-brain barrier (BBB) integrity was measured by Evans' blue staining, and immunohistochemistry (IHC) was conducted to study BV2 microglial activation. BV2 microglia and HT22 neuronal cells were stimulated by oxygen-glucose deprivation followed by recovery (OGD/R) and processed with Hes. Quantitative real-time-polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were implemented to gauge the expression of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-β (IL-1-β) and interleukin-6 (IL-6). Western blot (WB) was performed to check AMPK-SIRT1-FoxO1 both in vitro and in vivo. RESULTS Hes eased neurological deficits, cerebral edema, and neuronal apoptosis in mice following TBI. Hes hampered microglial activation and pro-inflammatory cytokines production. Hes promoted AMPK and SIRT1 expression, whereas repressed the phosphorylation of FoxO1-NF-κB, and inhibited NLRP3 expression. The AMPK inhibitor Compound C markedly reversed Hes-mediated anti-inflammatory and neuron-protective effects. CONCLUSION Hes curbs microglial activation-mediated inflammation via the AMPK-SIRT1-FoxO1-NF-κB axis, thereby improving neurobehavioral function after TBI.
Collapse
Affiliation(s)
- Hai Song
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhongyun Ding
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jilin Chen
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Tingbao Chen
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Tinghua Wang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Jin Huang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Choudhury H, Pandey M, Mohgan R, Jong JSJ, David RN, Ngan WY, Chin TL, Ting S, Kesharwani P, Gorain B. Dendrimer-based delivery of macromolecules for the treatment of brain tumor. BIOMATERIALS ADVANCES 2022; 141:213118. [PMID: 36182834 DOI: 10.1016/j.bioadv.2022.213118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Brain tumor represents the most lethal form of cancer with the highest mortality and morbidity rates irrespective of age and sex. Advancements in macromolecule-based therapy (such as nucleic acids and peptides) have shown promising roles in the treatment of brain tumor where the phenomenon of severe toxicities due to the conventional chemotherapeutic agents can be circumvented. Despite its preclinical progress, successful targeting of these macromolecules across the blood-brain barrier without altering their physical and chemical characteristics is of great challenge. With the advent of nanotechnology, nowadays targeted delivery of therapeutics is being explored extensively and these macromolecules, including peptides and nucleic acids, have shown initial success in the treatment, where dendrimer has shown its potential for optimal delivery. Dendrimers are being favored as a mode of drug delivery due to their nano-spherical size and structure, high solubilization potential, multivalent surface, and high loading capacity, where biomolecule resembling characteristics of dendritic 3D structures has shown effective delivery of various therapeutic agents to the brain. Armed with targeting ligands to these dendrimers further expedite the transportation of these multifunctional shuttles specifically to the glioblastoma cells. Thus, a focus has been made in this review on therapeutic applications of dendrimer platforms in brain tumor treatment. The future development of dendrimers as a potential platform for nucleic acid and peptide delivery and its promising clinical application could provide effective and target-specific treatment against brain tumors.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana 123031, India.
| | - Raxshanaa Mohgan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Jim Sii Jack Jong
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Roshini Nicole David
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Wan Yi Ngan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Tze Liang Chin
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Shereen Ting
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
15
|
Zhang S, Gan L, Cao F, Wang H, Gong P, Ma C, Ren L, Lin Y, Lin X. The barrier and interface mechanisms of the brain barrier, and brain drug delivery. Brain Res Bull 2022; 190:69-83. [PMID: 36162603 DOI: 10.1016/j.brainresbull.2022.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
Three different barriers are formed between the cerebrovascular and the brain parenchyma: the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the cerebrospinal fluid-brain barrier (CBB). The BBB is the main regulator of blood and central nervous system (CNS) material exchange. The semipermeable nature of the BBB limits the passage of larger molecules and hydrophilic small molecules, Food and Drug Administration (FDA)-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Although the complexity of the BBB affects CNS drug delivery, understanding the composition and function of the BBB can provide a platform for the development of new methods for CNS drug delivery. This review summarizes the classification of the brain barrier, the composition and role of the basic structures of the BBB, and the transport, barrier, and destruction mechanisms of the BBB; discusses the advantages and disadvantages of different drug delivery methods and prospects for future drug delivery strategies.
Collapse
Affiliation(s)
- Shanshan Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| | - Lin Gan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Fengye Cao
- Yiyang The First Hospital of Traditional Chinese Medicine, Yiyang, Hunan Province, 413000, China
| | - Hao Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Peng Gong
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Congcong Ma
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Li Ren
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Yubo Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xianming Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
16
|
Gao X, Xu J, Yao T, Liu X, Zhang H, Zhan C. Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Adv Drug Deliv Rev 2022; 187:114362. [PMID: 35654215 DOI: 10.1016/j.addr.2022.114362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Blood-Brain Barrier (BBB) is one of the most important physiological barriers strictly restricting the substance exchange between blood and brain tissues. While the BBB protects the brain from infections and toxins and maintains brain homeostasis, it is also recognized as the main obstacle to the penetration of therapeutics and imaging agents into the brain. Due to high specificity and affinity, peptides are frequently exploited to decorate nanocarriers across the BBB for diagnosis and/or therapy purposes. However, there are still some challenges that restrict their clinical application, such as stability, safety and immunocompatibility. In this review, we summarize the biological and pathophysiological characteristics of the BBB, strategies across the BBB, and recent progress on peptide decorated nanocarriers for brain diseases diagnosis and therapy. The challenges and opportunities for their translation are also discussed.
Collapse
|
17
|
Xiong B, Wang Y, Chen Y, Xing S, Liao Q, Chen Y, Li Q, Li W, Sun H. Strategies for Structural Modification of Small Molecules to Improve Blood-Brain Barrier Penetration: A Recent Perspective. J Med Chem 2021; 64:13152-13173. [PMID: 34505508 DOI: 10.1021/acs.jmedchem.1c00910] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development of central nervous system (CNS) drugs, the blood-brain barrier (BBB) restricts many drugs from entering the brain to exert therapeutic effects. Although many novel delivery methods of large molecule drugs have been designed to assist transport, small molecule drugs account for the vast majority of the CNS drugs used clinically. From this perspective, we review studies from the past five years that have sought to modify small molecules to increase brain exposure. Medicinal chemists make it easier for small molecules to cross the BBB by improving diffusion, reducing efflux, and activating carrier transporters. On the basis of their excellent work, we summarize strategies for structural modification of small molecules to improve BBB penetration. These strategies are expected to provide a reference for the future development of small molecule CNS drugs.
Collapse
Affiliation(s)
- Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuanyuan Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghong Liao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Wei Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
18
|
Wu H, Zhou Y, Wang Y, Tong L, Wang F, Song S, Xu L, Liu B, Yan H, Sun Z. Current State and Future Directions of Intranasal Delivery Route for Central Nervous System Disorders: A Scientometric and Visualization Analysis. Front Pharmacol 2021; 12:717192. [PMID: 34322030 PMCID: PMC8311521 DOI: 10.3389/fphar.2021.717192] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The management of various central nervous system (CNS) disorders has been challenging, due to highly compact blood-brain barrier (BBB) impedes the access of most pharmacological agents to the brain. Among multiple strategies proposed to circumvent this challenge, intranasal delivery route has sparked great interest for brain targeting in the past decades. The aim of this study was to apply scientometric method to estimate the current status and future trends of the field from a holistic perspective. Methods: All relevant publications during 1998–2020 were retrieved from the Web of Science Core Collection (SCIE, 1998-present). Two different scientometric software including VOS viewer and CiteSpace, and one online platform were used to conduct co-authorship, co-citation, and co-occurrence analysis of journals, countries, institutes, authors, references and keywords. Results: A total of 2,928 documents, including 2,456 original articles and 472 reviews, were retrieved. Our analysis revealed a significant increasing trend in the total number of scientific publications over the past 2 decades (R2 = 0.98). The United States dominated the field, reflecting in the largest amount of publications (971), the highest H-index (99), and extensive international collaboration. Jamia Hamdard contributed to most publications. Frey WH and Illum L were key researchers with the highest number of publications and citations, respectively. The International Journal of Pharmaceutics was the most influential academic journal, and Pharmacology/Pharmacy and Neurosciences/Neurology were the hottest research categories in this field. Based on keywords occurrence analysis, four main topics were identified, and the current research focus of this field has shifted from cluster 4 (pathways and mechanisms of intranasal delivery) to cluster 2 (the study of nasal drug delivery systems), especially the nanostructured and nano-sized carrier systems. Keywords burst detection revealed that the research focus on oxidative stress, drug delivery, neuroinflammation, nanostructured lipid carrier, and formulation deserves our continued attention. Conclusion: To the authors’ knowledge, this is the first scientometric analysis regarding intranasal delivery research. This study has demonstrated a comprehensive knowledge map, development landscape and future directions of intranasal delivery research, which provides a practical and valuable reference for scholars and policymakers in this field.
Collapse
Affiliation(s)
- Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Linjian Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fanchen Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Sirong Song
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Lixia Xu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Baolong Liu
- Department of Ultrasound, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiming Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Spine and Spinal Cord, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
19
|
Safary A, Moghaddas-Sani H, Akbarzadeh-Khiavi M, Khabbazzi A, Rafi MA, Omidi Y. Enzyme replacement combinational therapy: effective treatments for mucopolysaccharidoses. Expert Opin Biol Ther 2021; 21:1181-1197. [PMID: 33653197 DOI: 10.1080/14712598.2021.1895746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mucopolysaccharidoses (MPS), as a group of inherited lysosomal storage disorders (LSDs), are clinically heterogeneous and characterized by multi-systemic manifestations, such as skeletal abnormalities and neurological dysfunctions. The currently used enzyme replacement therapy (ERT) might be associated with several limitations including the low biodistribution of the enzymes into the main targets, immunological responses against foreign enzymes, and the high cost of the treatment procedure. Therefore, a suitable combination approach can be considered for the successful treatment of each type of MPS. AREAS COVERED In this review, we provide comprehensive insights into the ERT-based combination therapies of MPS by reviewing the published literature on PubMed and Scopus. We also discuss the recent advancements in the treatment of MPS and bring up the hopes and hurdles in the futuristic treatment strategies. EXPERT OPINION Given the complex pathophysiology of MPS and its involvement in different tissues, the ERT of MPS in combination with stem cell therapy or gene therapy is deemed to provide a personalized precision treatment modality with the highest therapeutic responses and minimal side effects. By the same token, new combinational approaches need to be evaluated by using drugs that target alternative and secondary pathological pathways.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazzi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvanian USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida USA
| |
Collapse
|
20
|
Omidi Y, Kianinejad N, Kwon Y, Omidian H. Drug delivery and targeting to brain tumors: considerations for crossing the blood-brain barrier. Expert Rev Clin Pharmacol 2021; 14:357-381. [PMID: 33554678 DOI: 10.1080/17512433.2021.1887729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The blood-brain barrier (BBB) selectively impedes the transportation of drug molecules into the brain, which makes the drug delivery and targeting of brain tumors very challenging.Areas covered: Having surveyed the recent literature, comprehensive insights are given into the impacts of the BBB on the advanced drug delivery and targeting modalities for brain tumors.Expert opinion: Brain capillary endothelial cells form the BBB in association with astrocytes, pericytes, neurons, and extracellular matrix. Coop of these forms the complex setting of neurovascular unite. The BBB maintains the brain homeostasis by restrictive controlling of the blood circulating nutrients/substances trafficking. Despite substantial progress on therapy of brain tumors, there is no impeccable strategy to safely deliver chemotherapeutics into the brain. Various strategies have been applied to deliver chemotherapeutics into the brain (e.g. BBB opening, direct delivery by infusion, injection, microdialysis, and implants, and smart nanosystems), which hold different pros and cons. Of note, smart nanoscale multifunctional nanomedicines can serve as targeting, imaging, and treatment modality for brain tumors. Given that aggressive brain tumors (e.g. gliomas) are often unresponsive to any treatments, an in-depth understanding of the molecular/cellular complexity of brain tumors might help the development of smart and effective treatment modalities.
Collapse
Affiliation(s)
- Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Nazanin Kianinejad
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Young Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
21
|
Parrasia S, Rossa A, Varanita T, Checchetto V, De Lorenzi R, Zoratti M, Paradisi C, Ruzza P, Mattarei A, Szabò I, Biasutto L. An Angiopep2-PAPTP Construct Overcomes the Blood-Brain Barrier. New Perspectives against Brain Tumors. Pharmaceuticals (Basel) 2021; 14:ph14020129. [PMID: 33562146 PMCID: PMC7914648 DOI: 10.3390/ph14020129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
A developing family of chemotherapeutics—derived from 5-(4-phenoxybutoxy)psoralen (PAP-1)—target mitochondrial potassium channel mtKv1.3 to selectively induce oxidative stress and death of diseased cells. The key to their effectiveness is the presence of a positively charged triphenylphosphonium group which drives their accumulation in the organelles. These compounds have proven their preclinical worth in murine models of cancers such as melanoma and pancreatic adenocarcinoma. In in vitro experiments they also efficiently killed glioblastoma cells, but in vivo they were powerless against orthotopic glioma because they were completely unable to overcome the blood-brain barrier. In an effort to improve brain delivery we have now coupled one of these promising compounds, PAPTP, to well-known cell-penetrating and brain-targeting peptides TAT48–61 and Angiopep-2. Coupling has been obtained by linking one of the phenyl groups of the triphenylphosphonium to the first amino acid of the peptide via a reversible carbamate ester bond. Both TAT48–61 and Angiopep-2 allowed the delivery of 0.3–0.4 nmoles of construct per gram of brain tissue upon intravenous (i.v.) injection of 5 µmoles/kg bw to mice. This is the first evidence of PAPTP delivery to the brain; the chemical strategy described here opens the possibility to conjugate PAPTP to small peptides in order to fine-tune tissue distribution of this interesting compound.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (S.P.); (M.Z.)
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
| | - Tatiana Varanita
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (T.V.); (V.C.); (I.S.)
| | - Vanessa Checchetto
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (T.V.); (V.C.); (I.S.)
| | - Riccardo De Lorenzi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
- CNR Institute of Biomolecular Chemistry, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (S.P.); (M.Z.)
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
| | - Paolo Ruzza
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
- CNR Institute of Biomolecular Chemistry, Via F. Marzolo 1, 35131 Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (T.V.); (V.C.); (I.S.)
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (S.P.); (M.Z.)
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
22
|
Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021; 169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Brain metastasis is emerging as a unique entity in oncology based on its particular biology and, consequently, the pharmacological approaches that should be considered. We discuss the current state of modelling this specific progression of cancer and how these experimental models have been used to test multiple pharmacologic strategies over the years. In spite of pre-clinical evidences demonstrating brain metastasis vulnerabilities, many clinical trials have excluded patients with brain metastasis. Fortunately, this trend is getting to an end given the increasing importance of secondary brain tumors in the clinic and a better knowledge of the underlying biology. We discuss emerging trends and unsolved issues that will shape how we will study experimental brain metastasis in the years to come.
Collapse
|
23
|
Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1695. [PMID: 33470550 DOI: 10.1002/wnan.1695] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nearly one in six people worldwide suffer from disorders of the central nervous system (CNS). There is an urgent need for effective strategies to improve the success rates in CNS drug discovery and development. The lack of effective technologies for delivering drugs and genes to the brain due to the blood-brain barrier (BBB), a structural barrier that effectively blocks most neurotherapeutic agents from reaching the brain, has posed a formidable hurdle for CNS drug development. Brain-homing and brain-penetrating molecular transport vectors, such as brain permeable peptides or BBB shuttle peptides, have shown promise in overcoming the BBB and ferrying the drug molecules to the brain. The BBB shuttle peptides are discovered by phage display technology or derived from natural neurotropic proteins or certain viruses and harness the receptor-mediated transcytosis molecular machinery for crossing the BBB. Brain permeable peptide-drug conjugates (PDCs), composed of BBB shuttle peptides, linkers, and drug molecules, have emerged as a promising CNS drug delivery system by taking advantage of the endogenous transcytosis mechanism and tricking the brain into allowing these bioactive molecules to pass the BBB. Here, we examine the latest development of brain-penetrating peptide shuttles and brain-permeable PDCs as molecular vectors to deliver small molecule drug payloads across the BBB to reach brain parenchyma. Emerging knowledge of the contribution of the peptides and their specific receptors expressed on the brain endothelial cells, choice of drug payloads, the design of PDCs, brain entry mechanisms, and delivery efficiency to the brain are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Quentin R Smith
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| |
Collapse
|
25
|
Pourseif MM, Parvizpour S, Jafari B, Dehghani J, Naghili B, Omidi Y. A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: development of self-amplifying mRNA and peptide vaccines. BIOIMPACTS : BI 2020; 11:65-84. [PMID: 33469510 PMCID: PMC7803919 DOI: 10.34172/bi.2021.11] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Introduction: Coronavirus disease 2019 (COVID-19) is undoubtedly the most challenging pandemic in the current century with more than 293,241 deaths worldwide since its emergence in late 2019 (updated May 13, 2020). COVID-19 is caused by a novel emerged coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Today, the world needs crucially to develop a prophylactic vaccine scheme for such emerged and emerging infectious pathogens. Methods: In this study, we have targeted spike (S) glycoprotein, as an important surface antigen to identify its B- and T-cell immunodominant regions. We have conducted a multi-method B-cell epitope (BCE) prediction approach using different predictor algorithms to discover the most potential BCEs. Besides, we sought among a pool of MHC class I and II-associated peptide binders provided by the IEDB server through the strict cut-off values. To design a broad-coverage vaccine, we carried out a population coverage analysis for a set of candidate T-cell epitopes and based on the HLA allele frequency in the top most-affected countries by COVID-19 (update 02 April 2020). Results: The final determined B- and T-cell epitopes were mapped on the S glycoprotein sequence, and three potential hub regions covering the largest number of overlapping epitopes were identified for the vaccine designing (I531-N711; T717-C877; and V883-E973). Here, we have designed two domain-based constructs to be produced and delivered through the recombinant protein- and gene-based approaches, including (i) an adjuvanted domain-based protein vaccine construct (DPVC), and (ii) a self-amplifying mRNA vaccine (SAMV) construct. The safety, stability, and immunogenicity of the DPVC were validated using the integrated sequential (i.e. allergenicity, autoimmunity, and physicochemical features) and structural (i.e. molecular docking between the vaccine and human Toll-like receptors (TLRs) 4 and 5) analysis. The stability of the docked complexes was evaluated using the molecular dynamics (MD) simulations. Conclusion: These rigorous in silico validations supported the potential of the DPVC and SAMV to promote both innate and specific immune responses in preclinical studies.
Collapse
Affiliation(s)
- Mohammad Mostafa Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Jafari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Naghili
- Research Center for Infectious and Tropical Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Nova Southeastern University, College of Pharmacy, Florida, USA
| |
Collapse
|
26
|
Guo P, Si M, Wu D, Xue HY, Hu W, Wong HL. Incorporation of docosahexaenoic acid (DHA) enhances nanodelivery of antiretroviral across the blood-brain barrier for treatment of HIV reservoir in brain. J Control Release 2020; 328:696-709. [PMID: 33010335 PMCID: PMC7749038 DOI: 10.1016/j.jconrel.2020.09.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022]
Abstract
Although the newer antiretroviral (ARV) drugs are highly active against the human immunodeficiency virus (HIV) in the body compartment, they often fail to effectively tackle the HIV reservoir in the brain because of inefficient penetration to the blood-brain barrier (BBB). In this study, we investigated the potential benefits of incorporating docosahexaenoic acid (DHA), an omega-3 fatty acid essential for brain development, in lipid nanocarriers for facilitating the BBB passage of an ARV darunavir. The resulting nanocarriers (nanoARVs) containing 5-15% DHA were 90-140 nm in size, had high darunavir payload (~11-13% w/w), good stability and minimal cellular toxicity, and could be further decorated with transferrin (Tf) for Tf-receptor targeting. In BBB models of hCMEC/d3 cells, nanoARVs with higher DHA content achieved increased nanocarrier uptake and up to 8.99-fold higher darunavir permeation than free darunavir. In animals, nanoARVs were able to achieve 3.38-5.93-fold increase in brain darunavir level over free darunavir. Tf-conjugated nanoARVs also achieved significantly higher anti-HIV activity than free darunavir (viral titer 2 to 2.6-fold higher in latter group). Comparison of DHA incorporation and Tf-receptor targeting showed that while both strategies could enhance the cellular uptake and brain accumulation of the nanocarriers, DHA was more effective (P < 0.05) for improving BBB permeation and brain accumulation of the darunavir payload. Substituting DHA with another oil noticeably reduced the cellular uptake of nanoARVs. Overall, this proof-of-concept study has supported the development of DHA-based nanoARVs as an effective, safe yet technically simple strategy to enhance brain delivery of darunavir and potentially other lipophilic ARVs for treatment of HIV reservoir.
Collapse
Affiliation(s)
- Pengbo Guo
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Mengjie Si
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Di Wu
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Wenhui Hu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ho Lun Wong
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
27
|
Yadav KS, Upadhya A, Misra A. Targeted drug therapy in nonsmall cell lung cancer: clinical significance and possible solutions-part II (role of nanocarriers). Expert Opin Drug Deliv 2020; 18:103-118. [PMID: 33017541 DOI: 10.1080/17425247.2021.1832989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Nonsmall cell lung cancer (NSCLC) accounts for 80-85% of the cases of lung cancer. The conventional therapeutic effective dosage forms used to treat NSCLC are associated with rigid administration schedules, adverse effects, and may be associated with acquired resistance to therapy. Nanocarriers may provide a suitable alternative to regular formulations to overcome inherent drawbacks and provide better treatment modalities for the patient. AREAS COVERED The article explores the application of drug loaded nanocarriers for lung cancer treatment. Drug-loaded nanocarriers can be modified to achieve controlled delivery at the desired tumor infested site. The type of nanocarriers employed are diverse based on polymers, liposomes, metals and a combination of two or more different base materials (hybrids). These may be designed for systemic delivery or local delivery to the lung compartment (via inhalation). EXPERT OPINION Nanocarriers can improve pharmacokinetics of the drug payload by improving its delivery to the desired location and can reduce associated systemic toxicities. Through nanocarriers, a wide variety of therapeutics can be administered and targeted to the cancerous site. Some examples of the utilities of nanocarriers are codelivery of drugs, gene delivery, and delivery of other biologics. Overall, the nanocarriers have promising potential in improving therapeutic efficacy of drugs used in NSCLC.
Collapse
Affiliation(s)
- Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| | - Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| | - Ambikanandan Misra
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| |
Collapse
|
28
|
Ranjan K, Waghela BN, Vaidya FU, Pathak C. Cell-Penetrable Peptide-Conjugated FADD Induces Apoptosis and Regulates Inflammatory Signaling in Cancer Cells. Int J Mol Sci 2020; 21:ijms21186890. [PMID: 32961826 PMCID: PMC7555701 DOI: 10.3390/ijms21186890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Dysregulated expression of Fas-associated death domain (FADD) is associated with the impediment of various cellular pathways, including apoptosis and inflammation. The adequate cytosolic expression of FADD is critical to the regulation of cancer cell proliferation. Importantly, cancer cells devise mechanisms to suppress FADD expression and, in turn, escape from apoptosis signaling. Formulating strategies, for direct delivery of FADD proteins into cancer cells in a controlled manner, may represent a promising therapeutic approach in cancer therapy. We chemically conjugated purified FADD protein with cell permeable TAT (transactivator of transcription) peptide, to deliver in cancer cells. TAT-conjugated FADD protein internalized through the caveolar pathway of endocytosis and retained in the cytosol to augment cell death. Inside cancer cells, TAT-FADD rapidly constituted DISC (death inducing signaling complex) assembly, which in turn, instigate apoptosis signaling. The apoptotic competency of TAT-FADD showed comparable outcomes with the conventional apoptosis inducers. Notably, TAT-FADD mitigates constitutive NF-κB activation and associated downstream anti-apoptotic genes Bcl2, cFLIPL, RIP1, and cIAP2, independent of pro-cancerous TNF-α priming. In cancer cells, TAT-FADD suppresses the canonical NLRP3 inflammasome priming and restricts the processing and secretion of proinflammatory IL-1β. Our results demonstrate that TAT-mediated intracellular delivery of FADD protein can potentially recite apoptosis signaling with simultaneous regulation of anti-apoptotic and proinflammatory NF-κB signaling activation in cancer cells.
Collapse
|
29
|
Graphene-based multifunctional nanosystems for simultaneous detection and treatment of breast cancer. Colloids Surf B Biointerfaces 2020; 193:111104. [DOI: 10.1016/j.colsurfb.2020.111104] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/05/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
|
30
|
Kafil V, Saei AA, Tohidkia MR, Barar J, Omidi Y. Immunotargeting and therapy of cancer by advanced multivalence antibody scaffolds. J Drug Target 2020; 28:1018-1033. [DOI: 10.1080/1061186x.2020.1772796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vala Kafil
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Moradi A, Pourseif MM, Jafari B, Parvizpour S, Omidi Y. Nanobody-based therapeutics against colorectal cancer: Precision therapies based on the personal mutanome profile and tumor neoantigens. Pharmacol Res 2020; 156:104790. [DOI: 10.1016/j.phrs.2020.104790] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/07/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
|
32
|
Tibbo AJ, Baillie GS. Phosphodiesterase 4B: Master Regulator of Brain Signaling. Cells 2020; 9:cells9051254. [PMID: 32438615 PMCID: PMC7291338 DOI: 10.3390/cells9051254] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Phosphodiesterases (PDEs) are the only superfamily of enzymes that have the ability to break down cyclic nucleotides and, as such, they have a pivotal role in neurological disease and brain development. PDEs have a modular structure that allows targeting of individual isoforms to discrete brain locations and it is often the location of a PDE that shapes its cellular function. Many of the eleven different families of PDEs have been associated with specific diseases. However, we evaluate the evidence, which suggests the activity from a sub-family of the PDE4 family, namely PDE4B, underpins a range of important functions in the brain that positions the PDE4B enzymes as a therapeutic target for a diverse collection of indications, such as, schizophrenia, neuroinflammation, and cognitive function.
Collapse
|
33
|
Dubey SK, Lakshmi KK, Krishna KV, Agrawal M, Singhvi G, Saha RN, Saraf S, Saraf S, Shukla R, Alexander A. Insulin mediated novel therapies for the treatment of Alzheimer's disease. Life Sci 2020; 249:117540. [PMID: 32165212 DOI: 10.1016/j.lfs.2020.117540] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease, a progressive neurodegenerative disorder, is one of the leading causes of death in the USA, along with cancer and cardiac disorders. AD is characterized by various neurological factors like amyloid plaques, tau hyperphosphorylation, mitochondrial dysfunction, acetylcholine deficiency, etc. Together, impaired insulin signaling in the brain is also observed as essential factor to be considered in AD pathophysiology. Hence, currently researchers focused on studying the effect of brain insulin metabolism and relation of diabetes with AD. Based on the investigations, AD is also considered as type 3 or brain diabetes. Besides the traditional view of correlating AD with aging, a better understanding of various pathological factors and effects of other physical ailments is necessary to develop a promising therapeutic approach. There is a vast scope of studying the relation of systemic insulin level, insulin signaling, its neuroprotective potency and effect of diabetes on AD progression. The present work describes worldwide status of AD and its relation with diabetes mellitus and insulin metabolism; pathophysiology of AD; different metabolic pathways associating insulin metabolism with AD; insulin receptor and signaling in the brain; glucose metabolism; insulin resistance; and various preclinical and clinical studies reported insulin-based therapies to treat AD via systemic route and through direct intranasal delivery to the brain.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - K K Lakshmi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490 024, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayana Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-R), New Transit Campus, Bijnor Road, Sarojini Nagar, Lucknow 226002, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India.
| |
Collapse
|
34
|
Vandghanooni S, Barar J, Eskandani M, Omidi Y. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Steffens L, Morás AM, Arantes PR, Masterson K, Cao Z, Nugent M, Moura DJ. Electrospun PVA-Dacarbazine nanofibers as a novel nano brain-implant for treatment of glioblastoma: in silico and in vitro characterization. Eur J Pharm Sci 2020; 143:105183. [DOI: 10.1016/j.ejps.2019.105183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
|
36
|
Pottoo FH, Sharma S, Javed MN, Barkat MA, Harshita, Alam MS, Naim MJ, Alam O, Ansari MA, Barreto GE, Ashraf GM. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev 2020; 52:185-204. [PMID: 32116044 DOI: 10.1080/03602532.2020.1726942] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/03/2020] [Indexed: 12/27/2022]
Abstract
The neurological disorders affect millions of people worldwide, and are bracketed as the foremost basis of disability-adjusted life years (DALYs). The treatment options are symptomatic and often the movement of drugs is restricted by a specialized network of endothelial cell layers (adjoined by tight cell-to-cell junction proteins; occludin, claudins, and junctional adhesion molecules), pericytes and astroglial foot processes. In recent years, advances in nanomedicine have led to therapies that target central nervous system (CNS) pathobiology via altering signaling mechanisms such as activation of PI3K/Akt pathway in ischemic stroke arrests apoptosis, interruption of α-synuclein aggregation prevents neuronal degeneration in Parkinson's. Often such interactions are limited by insufficient concentrations of drugs reaching neuronal tissues and/or insufficient residence time of drug/s with the receptor. Hence, lipid nanoformulations, SLNs (solid lipid nanoparticles) and NLCs (nanostructured lipid carriers) emerged to overcome these challenges by utilizing physiological transport mechanisms across blood-brain barrier, such as drug-loaded SLN/NLCs adsorb apolipoproteins from the systemic circulation and are taken up by endothelial cells via low-density lipoprotein (LDL)-receptor mediated endocytosis and subsequently unload drugs at target site (neuronal tissue), which imparts selectivity, target ability, and reduction in toxicity. This paper reviews the utilization of SLN/NLCs as carriers for targeted delivery of novel CNS drugs to improve the clinical course of neurological disorders, placing some additional discussion on the metabolism of lipid-based formulations.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India
- School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, India
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Harshita
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Mohd Javed Naim
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
37
|
Mulvihill JJ, Cunnane EM, Ross AM, Duskey JT, Tosi G, Grabrucker AM. Drug delivery across the blood-brain barrier: recent advances in the use of nanocarriers. Nanomedicine (Lond) 2020; 15:205-214. [PMID: 31916480 DOI: 10.2217/nnm-2019-0367] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The blood-brain barrier (BBB) has a significant contribution to homeostasis and protection of the CNS. However, it also limits the crossing of therapeutics and thereby complicates the treatment of CNS disorders. To overcome this limitation, the use of nanocarriers for drug delivery across the BBB has recently been exploited. Nanocarriers can utilize different physiological mechanisms for drug delivery across the BBB and can be modified to achieve the desired kinetics and efficacy. Consequentially, several nanocarriers have been reported to act as functional nanomedicines in preclinical studies using animal models for human diseases. Given the rapid development of novel nanocarriers, this review provides a comprehensive insight into the most recent advancements made in nanocarrier-based drug delivery to the CNS, such as the development of multifunctional nanomedicines and theranostics.
Collapse
Affiliation(s)
- John Je Mulvihill
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,Health Research Institute (HRI) of University of Limerick, Limerick, V94T9PX, Ireland.,Synthesis & Solid State Pharmaceutical Centre, University of Limerick, Limerick, V94T9PX, Ireland.,School of Engineering, University of Limerick, Limerick, V94T9PX, Ireland
| | - Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aisling M Ross
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,School of Engineering, University of Limerick, Limerick, V94T9PX, Ireland
| | - Jason T Duskey
- Department of Life Sciences, NanoTech Lab, University of Modena & Reggio Emilia, Modena, 41124, Italy
| | - Giovanni Tosi
- Department of Life Sciences, NanoTech Lab, University of Modena & Reggio Emilia, Modena, 41124, Italy
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,Health Research Institute (HRI) of University of Limerick, Limerick, V94T9PX, Ireland.,Synthesis & Solid State Pharmaceutical Centre, University of Limerick, Limerick, V94T9PX, Ireland.,Department of Biological Sciences, University of Limerick, Limerick, V94T9PX, Ireland
| |
Collapse
|
38
|
Ghosh S, Lalani R, Patel V, Bhowmick S, Misra A. Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opin Drug Deliv 2019; 16:1287-1311. [DOI: 10.1080/17425247.2019.1676721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Rohan Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Vivek Patel
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Subhas Bhowmick
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
39
|
Fathi M, Safary A, Barar J. Therapeutic impacts of enzyme-responsive smart nanobiosystems. ACTA ACUST UNITED AC 2019; 10:1-4. [PMID: 31988850 PMCID: PMC6977590 DOI: 10.15171/bi.2020.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
Abstract
An important arena of the sophisticated nanosystems (NSs) is the combination of the responsive features of NSs with the biocatalytic properties of enzymes. The development of such smart drug delivery systems (DDSs) has seminal effectiveness in targeting, imaging, and monitoring of cancer. These NSs can exhibit site-specific delivery of the toxic cargo in response to the endogenous/exogenous stimuli. Enzyme responsive/targeted DDSs display enhanced accumulation of cargo molecules in the tumor microenvironment (TME) with a spatiotemporal controlled-release behavior. Based on the unique features of enzyme responsive/targeted DDSs, they offer incredible promise in overcoming some limitations of the currently used conventional DDSs. Taken all, targeting TME with the enzyme-responsive targeted DDSs may lead to versatile clinical outcomes in various malignancies.
Collapse
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|