1
|
Lodge J, Kajtar L, Duxbury R, Hall D, Burley GA, Cordy J, Yates JW, Rattray Z. Quantifying antibody binding: techniques and therapeutic implications. MAbs 2025; 17:2459795. [PMID: 39957177 PMCID: PMC11834528 DOI: 10.1080/19420862.2025.2459795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
The binding kinetics of an antibody for its target antigen represent key determinants of its biological function and success as a novel biotherapeutic. Defining these interactions and kinetics is critical for understanding the pharmacological and pharmacodynamic profiles of antibodies in therapeutic applications, with line of sight to clinical translation. In this review, we discuss the latest developments in approaches to measure and modulate antibody-antigen interactions, including antibody engineering, novel antibody formats, current, and emerging technologies for measuring antibody-antigen binding interactions, and emerging perspectives within the field. We also explore how emerging computational methods are set to become powerful tools for modeling antibody-binding interactions under physiologically relevant conditions. Finally, we consider the therapeutic implications of modulating target engagement in terms of pharmacodynamics and pharmacokinetics.
Collapse
Affiliation(s)
- James Lodge
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Lewis Kajtar
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Rachel Duxbury
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - David Hall
- Large Molecule Discovery, GSK, Stevenage, UK
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | | | | | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Jungbauer A, Ferreira G, Butler M, D'Costa S, Brower K, Rayat A, Willson R. Status and future developments for downstream processing of biological products: Perspectives from the Recovery XIX yield roundtable discussions. Biotechnol Bioeng 2024; 121:2524-2541. [PMID: 38795025 DOI: 10.1002/bit.28738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
Governments and biopharmaceutical organizations aggressively leveraged expeditious communication capabilities, decision models, and global strategies to make a COVID-19 vaccine happen within a period of 12 months. This was an unusual effort and cannot be transferred to normal times. However, this focus on a single vaccine has also led to other treatments and drug developments being sidelined. Society expects the pharmaceutical industry to provide an uninterrupted supply of medicines. However, it is often overlooked how complex the manufacture of these compounds is and what logistics are required, not to mention the time needed to develop new drugs. The overarching theme, therefore, is patient access and how we can help ensure access and extend it to low- and middle-income countries. Despite unceasing efforts to make medications available to all patient populations, this must never be done at the expense of patient safety. A major fraction of the costs in biopharmaceutical manufacturing are for drug discovery, process development, and clinical studies. Infrastructure costs are very difficult to quantify because they often depend on whether a greenfield facility or an existing, depreciated facility is used or adapted for a new product. To accelerate process development concepts of platform process and prior knowledge are increasingly leveraged. While more traditional protein therapeutics continue to dominate the field, we are also experiencing the exciting emergence and evolution of other therapeutic formats (bispecifics, tetravalent mAbs, antibody-drug conjugates, enzymes, peptides, etc.) that offer unique treatment options for patients. Protein modalities are still dominant, but new modalities are being developed that can be learned from including advanced therapeutics-like cell and gene therapies. The industry must develop a model-based strategy for process development and technologies such as continuous integrated biomanufacturing must be adopted. The overall conclusion is that the pandemic pace was unsustainable, focused on vaccine delivery at the expense of other modalities/disease targets, and had implications for professional and personal life (work-life balance). Routinely reducing development time from 10 years to 1 year is nearly impossible to achieve. Environmental aspects of sustainable downstream processing are also described.
Collapse
Affiliation(s)
- Alois Jungbauer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gisela Ferreira
- Process Development, AstraZeneca, Gaithersburg, Maryland, USA
| | - Michelle Butler
- Pharmaceutical Technical Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Susan D'Costa
- Technology Development and Manufacturing, Genezen Laboratories, Indianapolis, Indiana, USA
| | - Kevin Brower
- Mammalian Platform, Sanofi, Framingham, Massachusetts, USA
| | - Andrea Rayat
- Department of Biochemical Engineering, University College London, London, UK
| | - Richard Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Larsen DN, Kaczmarek JZ, Palarasah Y, Graversen JH, Højrup P. Epitope mapping of SARS-CoV-2 RBDs by hydroxyl radical protein footprinting reveals the importance of including negative antibody controls. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141011. [PMID: 38499233 DOI: 10.1016/j.bbapap.2024.141011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
Understanding protein-protein interactions is crucial for drug design and investigating biological processes. Various techniques, such as CryoEM, X-ray spectroscopy, linear epitope mapping, and mass spectrometry-based methods, can be employed to map binding regions on proteins. Commonly used mass spectrometry-based techniques are cross-linking and hydrogen‑deuterium exchange (HDX). Another approach, hydroxyl radical protein footprinting (HRPF), identifies binding residues on proteins but faces challenges due to high initial costs and complex setups. This study introduces a generally applicable method using Fenton chemistry for epitope mapping in a standard mass spectrometry laboratory. It emphasizes the importance of controls, particularly the inclusion of a negative antibody control, not widely utilized in HRPF epitope mapping. Quantification by TMT labelling is introduced to reduce false positives, enabling direct comparison between sample conditions and biological triplicates. Additionally, six technical replicates were incorporated to enhance the depth of analysis. Observations on the receptor-binding domain (RBD) of SARS-CoV-2 Spike Protein, Alpha and Delta variants, revealed both binding and opening regions. Significantly changed peptides upon mixing with a negative control antibody suggested structural alterations or nonspecific binding induced by the antibody alone. Integration of negative control antibody experiments and high overlap between biological triplicates led to the exclusion of 40% of significantly changed regions. The final identified binding region correlated with existing literature on neutralizing antibodies against RBD. The presented method offers a straightforward implementation for HRPF analysis in a generic mass spectrometry-based laboratory. Enhanced data reliability was achieved through increased technical and biological replicates alongside negative antibody controls.
Collapse
Affiliation(s)
- Daniel Nyberg Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; Ovodan Biotech A/S, Havnegade 36, DK-5000 Odense, Denmark
| | | | - Yaseelan Palarasah
- Department of Inflammation, Institute of Molecular Medicine, Faculty of Health and Medical Sciences, University of Southern Denmark, Odense, Denmark
| | - Jonas Heilskov Graversen
- Department of Inflammation, Institute of Molecular Medicine, Faculty of Health and Medical Sciences, University of Southern Denmark, Odense, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; Ovodan Biotech A/S, Havnegade 36, DK-5000 Odense, Denmark.
| |
Collapse
|
4
|
Houen G. Peptide Antibodies: Current Status. Methods Mol Biol 2024; 2821:1-8. [PMID: 38997476 DOI: 10.1007/978-1-0716-3914-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Peptide antibodies have become one of the most important classes of reagents in molecular biology and clinical diagnostics. For this reason, methods for their production and characterization continue to be developed, including basic peptide synthesis protocols, peptide-conjugate production and characterization, conformationally restricted peptides, immunization procedures, etc. Detailed mapping of peptide antibody epitopes has yielded important information on antibody-antigen interaction in general and specifically in relation to antibody cross-reactivity and theories of molecular mimicry. This information is essential for detailed understanding of paratope-epitope dynamics, design of antibodies for research, design of peptide-based vaccines, development of therapeutic peptide antibodies, and de novo design of antibodies with predetermined specificity.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Neurology and Translational Research Center, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
5
|
Jiang M, Wang Y, Yu X, He Y, Zheng X, Qin J, Gu Y, Li X, Shi Y, Ma X, Li J, Pu K. An image-based Abplex method for high-throughput GPCRs antibody discovery. Biotechnol J 2024; 19:e2300336. [PMID: 37941478 DOI: 10.1002/biot.202300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
As the field of antibody therapeutics advances rapidly, membrane proteins, particularly G protein-coupled receptors (GPCRs), have emerged as highly sought-after drug targets. However, the challenges associated with extracting membrane proteins have created a demand for effective antibody screening systems targeting these proteins. In this study, we propose developing an innovative antibody screening strategy (Abplex) based on high-content imaging. This approach leverages intact cells that express target membrane proteins, facilitating the presentation of proteins in their native conformation. Furthermore, it acquires both specific and non-specific binding signals in a single well, thereby bolstering the robustness of the outcomes. The technique involves just one step and can be completed within 50 min, enabling the analysis of a single sample in just one second. The amalgamation of dependable experimental findings, a simplified workflow, reduced hands-on time, and a swift analytical pace positions our method for superior throughput and precision when juxtaposed with traditional techniques such as CbELISA and FACS. Moreover, we introduce the concept of cell barcoding, wherein cells are labeled with different fluorescence spatial patterns. This feature allows for multiplexed detection to meet the needs of various experiments. The characteristics of Abplex promise to expedite GPCR-targeting antibody discovery, advance therapeutics and enable new disease treatments.
Collapse
Affiliation(s)
- Min Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yuanyuan Wang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xinke Yu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yiran He
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xuewen Zheng
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Jingyi Qin
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yayun Gu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xin Li
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Ying Shi
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jiong Li
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Kefeng Pu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
6
|
Warren PD, Dodson MS, Smith MH, Landowski TH, Palting JD, Towne P. High-Resolution Epitope Mapping and Affinity Binding Analysis Comparing a New Anti-Human LAG3 Rabbit Antibody Clone to the Commonly Used Mouse 17B4 Clone. Antibodies (Basel) 2022; 11:60. [PMID: 36278613 PMCID: PMC9589981 DOI: 10.3390/antib11040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphocyte activation gene 3 (LAG3) is a T cell inhibitory receptor that promotes tumor cell immune escape and is a potential target for cancer diagnostic and immunotherapeutic applications. We used automated capillary electrophoresis (ACE), surface plasmon resonance (SPR), and immunohistochemistry (IHC) to compare the binding characteristics of a new anti-LAG3 rabbit antibody clone, SP464, with the thirty-year old and extensively used anti-LAG3 mouse 17B4 clone. The rabbit SP464 clone exhibited between 20× to 30× greater binding to LAG3 than did the mouse 17B4 clone. Using these tools, we precisely mapped the relative locations of the epitopes of these two antibodies. The SP464 and 17B4 minimal epitopes were localized to separate, but overlapping, sub-fragments within the amino-terminal fifteen acids of the original thirty-mer peptide immunogen used to generate both antibodies. Application of this approach for quantifying the effects of alanine substitutions along the minimal SP464 epitope identified two amino acids essential for binding and four amino acids that likely contribute towards binding. Together, ACE, SPR, and IHC constitute a powerful orthologous approach for comparing antibody-binding characteristics and for fine mapping of linear epitopes within short immunogens. Our results indicate that the rabbit clone SP464 may be useful for assessing LAG3 expression.
Collapse
|
7
|
Matharu Z, Bee C, Schwarz F, Chen H, Tomlinson M, Wu G, Rakestraw G, Hornsby M, Drake A, Strop P, Rajpal A, Dollinger G. High-Throughput Surface Plasmon Resonance Biosensors for Identifying Diverse Therapeutic Monoclonal Antibodies. Anal Chem 2021; 93:16474-16480. [PMID: 34854675 DOI: 10.1021/acs.analchem.1c03548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Identification of antibodies targeting diverse functional epitopes on an antigen is highly crucial for discovering effective therapeutic candidates. Employing a traditional stepwise antibody "screening funnel" as well as prioritizing affinity-based selections over epitope-based selections, result in lead antibody panels lacking epitope diversity. In the present study, we employed an array-based surface plasmon resonance (SPR) platform to perform high-throughput epitope binning analysis on a large number of monoclonal antibodies (mAbs) generated in the early drug discovery process. The mAb panel contained clones from different antibody generation techniques and diverse transgenic mouse strains. The epitope binning results were analyzed in unique ways using various visualizations in the form of dendrograms and network plots, which assisted in determining diversity and redundancy in the mAb sample set. The binning data were further integrated with affinity information to evaluate the performance of seven different transgenic mouse strains. The combination of epitope binning results with binding kinetics and sequence analysis provided an effective and efficient way of selecting high affinity antibodies representing a diverse set of sequence families and epitopes.
Collapse
Affiliation(s)
- Zimple Matharu
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Christine Bee
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States.,Frontier Medicines, South San Francisco, California 94080, United States
| | - Flavio Schwarz
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Haibin Chen
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Matthew Tomlinson
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Gabriel Wu
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Ginger Rakestraw
- Bristol Myers Squibb, Cambridge, Massachusetts 02142, United States
| | - Michael Hornsby
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Andrew Drake
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States.,Biologics Discovery, Tallac Therapeutics, Burlingame, California 94010, United States
| | - Arvind Rajpal
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States.,Large Molecule Drug Discovery, Genentech, Inc., South San Francisco, California 94080, United States
| | - Gavin Dollinger
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, United States
| |
Collapse
|
8
|
Yang Y, Chai X, Xin W, Wang D, Dai C, Qian F, Yang T. Generation and characterization of a high-affinity chimeric anti-OX40 antibody with potent antitumor activity. FEBS Lett 2021; 595:1587-1603. [PMID: 33792041 DOI: 10.1002/1873-3468.14079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/07/2022]
Abstract
OX40 is a costimulatory molecule that belongs to the tumor necrosis factor receptor (TNFR) superfamily. OX40 agonist-based combinations are emerging as promising candidates for novel cancer immunotherapy. Clinical trials have shown that OX40 agonist antibodies could lead to better results in cancer patients. Using a hybridoma platform and three different types of immunization strategies, namely recombinant protein, DNA, and overexpressing cells, we identified a chimeric anti-OX40 antibody (mAb035-hIgG1 from DNA immunization) that shows excellent binding specificity, and slightly stronger activation of human memory CD4+ T cells and similar potent antitumor activity compared with BMS 986178, an anti-OX40 antibody currently being evaluated for the treatment of solid tumors. This paper further systematically investigates the antigen-specific immune response, the number of binders, epitope bins, and functional activities of antibodies among different immunization strategies. Interestingly, we found that different immunization strategies affect the biological activity of monoclonal antibodies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/pharmacology
- Antibody Affinity
- Antibody Specificity
- Antineoplastic Agents, Immunological/isolation & purification
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- Biological Assay
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CHO Cells
- Cricetulus
- Female
- Freund's Adjuvant/administration & dosage
- Gene Expression
- Genes, Reporter
- HEK293 Cells
- Humans
- Hybridomas/chemistry
- Hybridomas/immunology
- Immunization/methods
- Immunoglobulin Fc Fragments/biosynthesis
- Immunoglobulin Fc Fragments/isolation & purification
- Immunoglobulin Fc Fragments/pharmacology
- Jurkat Cells
- Luciferases/genetics
- Luciferases/metabolism
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred BALB C
- NF-kappa B/genetics
- NF-kappa B/immunology
- Receptors, OX40/antagonists & inhibitors
- Receptors, OX40/genetics
- Receptors, OX40/immunology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/pharmacology
Collapse
Affiliation(s)
- Yongli Yang
- Shanghai Public Health Clinical Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
- Shanghai ChemPartner Co., Ltd., China
| | | | | | | | | | - Feng Qian
- Shanghai Public Health Clinical Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| | | |
Collapse
|
9
|
Critical reagent generation, characterization, handling and storage workflows: impact on ligand binding assays. Bioanalysis 2021; 13:847-860. [PMID: 33890503 DOI: 10.4155/bio-2020-0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The foundation of pharmacokinetics and antidrug antibodies assay robustness relies on the use of high-quality reagents. Over the past decade, there has been increasing interest within the pharmaceutical industry, as well as regulators, on defining best practices and scientific approaches for generation, characterization and handling of critical reagents. In this review, we will discuss current knowledge and practices on critical reagent workflows and state-of-the-art approaches for characterization, generation, stability and storage and how each of these steps can impact ligand-binding assay robustness.
Collapse
|
10
|
Using multiple platforms for critical reagents selection process to support pharmacokinetic ligand-binding assay development. Bioanalysis 2021; 13:761-769. [PMID: 33769087 DOI: 10.4155/bio-2020-0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have evaluated the utility of epitope binning on biolayer interferometry (BLI) as a strategy to funnel the selection of candidate pairs suitable for pharmacokinetic assay development. Totally, 8 anti-Idiotypic monoclonal antibodies in 64 possible combinations were tested by BLI, ELISA and Gyrolab®. Two epitope binning approaches were utilized, in-tandem and classic sandwich. Both formats identified four mutually exclusive bins providing 31 and 25 possible antibody pair combinations, respectively. In contrast, the ELISA and Gyrolab yielded 18 and 9 positive pairs, respectively, with only a partial correlation to the BLI results. Several positive pairs by ELISA and Gyrolab, screened negative by BLI. Just over half of the pairs predicted by BLI were positive on ELISA and less than a quarter were positive on Gyrolab. This evaluation showed, in our case, that BLI was limited in its ability to predict candidate pairs that would be successful in pharmacokinetic method development.
Collapse
|
11
|
Qi H, Ma M, Hu C, Xu ZW, Wu FL, Wang N, Lai DY, Li Y, Zhang H, Jiang HW, Meng QF, Guo S, Kang Y, Zhao X, Li H, Tao SC. Antibody Binding Epitope Mapping (AbMap) of Hundred Antibodies in a Single Run. Mol Cell Proteomics 2021; 20:100059. [PMID: 33109704 PMCID: PMC8027275 DOI: 10.1074/mcp.ra120.002314] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antibodies play essential roles in both diagnostics and therapeutics. Epitope mapping is essential to understand how an antibody works and to protect intellectual property. Given the millions of antibodies for which epitope information is lacking, there is a need for high-throughput epitope mapping. To address this, we developed a strategy, Antibody binding epitope Mapping (AbMap), by combining a phage displayed peptide library with next-generation sequencing. Using AbMap, profiles of the peptides bound by 202 antibodies were determined in a single test, and linear epitopes were identified for >50% of the antibodies. Using spike protein (S1 and S2)-enriched antibodies from the convalescent serum of one COVID-19 patient as the input, both linear and potentially conformational epitopes of spike protein specific antibodies were identified. We defined peptide-binding profile of an antibody as the binding capacity (BiC). Conceptually, the BiC could serve as a systematic and functional descriptor of any antibody. Requiring at least one order of magnitude less time and money to map linear epitopes than traditional technologies, AbMap allows for high-throughput epitope mapping and creates many possibilities.
Collapse
Affiliation(s)
- Huan Qi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingliang Ma
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuansheng Hu
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao-Wei Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan-Lin Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Lu Dong University, Yantai, China
| | - Nan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China; Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
| | - Dan-Yun Lai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hainan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - He-Wei Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Feng Meng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shujuan Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hua Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory for Oncogenes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Brooks BD, Closmore A, Yang J, Holland M, Cairns T, Cohen GH, Bailey-Kellogg C. Characterizing Epitope Binding Regions of Entire Antibody Panels by Combining Experimental and Computational Analysis of Antibody: Antigen Binding Competition. Molecules 2020; 25:molecules25163659. [PMID: 32796656 PMCID: PMC7464469 DOI: 10.3390/molecules25163659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Vaccines and immunotherapies depend on the ability of antibodies to sensitively and specifically recognize particular antigens and specific epitopes on those antigens. As such, detailed characterization of antibody-antigen binding provides important information to guide development. Due to the time and expense required, high-resolution structural characterization techniques are typically used sparingly and late in a development process. Here, we show that antibody-antigen binding can be characterized early in a process for whole panels of antibodies by combining experimental and computational analyses of competition between monoclonal antibodies for binding to an antigen. Experimental "epitope binning" of monoclonal antibodies uses high-throughput surface plasmon resonance to reveal which antibodies compete, while a new complementary computational analysis that we call "dock binning" evaluates antibody-antigen docking models to identify why and where they might compete, in terms of possible binding sites on the antigen. Experimental and computational characterization of the identified antigenic hotspots then enables the refinement of the competitors and their associated epitope binding regions on the antigen. While not performed at atomic resolution, this approach allows for the group-level identification of functionally related monoclonal antibodies (i.e., communities) and identification of their general binding regions on the antigen. By leveraging extensive epitope characterization data that can be readily generated both experimentally and computationally, researchers can gain broad insights into the basis for antibody-antigen recognition in wide-ranging vaccine and immunotherapy discovery and development programs.
Collapse
Affiliation(s)
- Benjamin D. Brooks
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT 84738, USA
- Inovan Inc., Fargo, ND 58102, USA
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
- Correspondence: ; Tel.: +1-435-222-1403
| | - Adam Closmore
- Department of Pharmacy, North Dakota State University, Fargo, ND 58102, USA;
| | - Juechen Yang
- Department of Biomedical Engineering, North Dakota State University, Fargo, ND 58102, USA; (J.Y.); (M.H.)
| | - Michael Holland
- Department of Biomedical Engineering, North Dakota State University, Fargo, ND 58102, USA; (J.Y.); (M.H.)
| | - Tina Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
| | | |
Collapse
|
13
|
Yuan TZ, Lujan Hernandez AG, Keane E, Liu Q, Axelrod F, Kailasan S, Noonan-Shueh M, Aman MJ, Sato AK, Abdiche YN. Rapid exploration of the epitope coverage produced by an Ebola survivor to guide the discovery of therapeutic antibody cocktails. Antib Ther 2020; 3:167-178. [PMID: 33912793 PMCID: PMC7454256 DOI: 10.1093/abt/tbaa016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022] Open
Abstract
Background Development of successful neutralizing antibodies is dependent upon broad epitope coverage to increase the likelihood of achieving therapeutic function. Recent advances in synthetic biology have allowed us to conduct an epitope binning study on a large panel of antibodies identified to bind to Ebola virus glycoprotein with only published sequences. Methods and Results A rapid, first-pass epitope binning experiment revealed seven distinct epitope families that overlapped with known structural epitopes from the literature. A focused set of antibodies was selected from representative clones per bin to guide a second-pass binning that revealed previously unassigned epitopes, confirmed epitopes known to be associated with neutralizing antibodies, and demonstrated asymmetric blocking of EBOV GP from allosteric effectors reported from literature. Conclusions Critically, this workflow allows us to probe the epitope landscape of EBOV GP without any prior structural knowledge of the antigen or structural benchmark clones. Incorporating epitope binning on hundreds of antibodies during early stage antibody characterization ensures access to a library’s full epitope coverage, aids in the identification of high quality reagents within the library that recapitulate this diversity for use in other studies, and ultimately enables the rational development of therapeutic cocktails that take advantage of multiple mechanisms of action such as cooperative synergistic effects to enhance neutralization function and minimize the risk of mutagenic escape. The use of high-throughput epitope binning during new outbreaks such as the current COVID-19 pandemic is particularly useful in accelerating timelines due to the large amount of information gained in a single experiment.
Collapse
Affiliation(s)
- Tom Z Yuan
- Twist Biopharma, Twist Bioscience, South San Francisco, CA 94080, USA
| | | | - Erica Keane
- Twist Biopharma, Twist Bioscience, South San Francisco, CA 94080, USA
| | - Qiang Liu
- Twist Biopharma, Twist Bioscience, South San Francisco, CA 94080, USA
| | - Fumiko Axelrod
- Twist Biopharma, Twist Bioscience, South San Francisco, CA 94080, USA
| | | | | | | | - Aaron K Sato
- Twist Biopharma, Twist Bioscience, South San Francisco, CA 94080, USA
| | | |
Collapse
|
14
|
Hemmerová E, Špringer T, Krištofiková Z, Homola J. In vitro study of interaction of 17β-hydroxysteroid dehydrogenase type 10 and cyclophilin D and its potential implications for Alzheimer's disease. Sci Rep 2019; 9:16700. [PMID: 31723183 PMCID: PMC6853915 DOI: 10.1038/s41598-019-53157-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023] Open
Abstract
In early stages of Alzheimer's disease (AD), amyloid-β (Aβ) accumulates in neuronal mitochondria where it interacts with a number of biomolecules including 17beta-hydroxysteroide dehydrogenase 10 (17β-HSD10) and cyclophilin D (cypD). It has been hypothesized that 17β-HSD10 interacts with cypD preventing it from opening mitochondrial permeability transition pores and that its regulation during AD may be affected by the accumulation of Aβ. In this work, we demonstrate for the first time that 17β-HSD10 and cypD form a stable complex in vitro. Furthermore, we show that factors, such as pH, ionic environment and the presence of Aβ, affect the ability of 17β-HSD10 to bind cypD. We demonstrate that K+ and Mg2+ ions present at low levels may facilitate this binding. We also show that different fragments of Aβ (Aβ1-40 and Aβ1-42) affect the interaction between 17β-HSD10 and cypD differently and that Aβ1-42 (in contrast to Aβ1-40) is capable of simultaneously binding both 17β-HSD10 and cypD in a tri-complex.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, 182 51, Prague, Czech Republic
| | - Tomáš Špringer
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, 182 51, Prague, Czech Republic
| | - Zdenka Krištofiková
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, 182 51, Prague, Czech Republic.
| |
Collapse
|
15
|
Garzón V, Pinacho DG, Bustos RH, Garzón G, Bustamante S. Optical Biosensors for Therapeutic Drug Monitoring. BIOSENSORS 2019; 9:E132. [PMID: 31718050 PMCID: PMC6955905 DOI: 10.3390/bios9040132] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Therapeutic drug monitoring (TDM) is a fundamental tool when administering drugs that have a limited dosage or high toxicity, which could endanger the lives of patients. To carry out this monitoring, one can use different biological fluids, including blood, plasma, serum, and urine, among others. The help of specialized methodologies for TDM will allow for the pharmacodynamic and pharmacokinetic analysis of drugs and help adjust the dose before or during their administration. Techniques that are more versatile and label free for the rapid quantification of drugs employ biosensors, devices that consist of one element for biological recognition coupled to a signal transducer. Among biosensors are those of the optical biosensor type, which have been used for the quantification of different molecules of clinical interest, such as antibiotics, anticonvulsants, anti-cancer drugs, and heart failure. This review presents an overview of TDM at the global level considering various aspects and clinical applications. In addition, we review the contributions of optical biosensors to TDM.
Collapse
Affiliation(s)
- Vivian Garzón
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía 140013, Colombia
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Daniel G. Pinacho
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Rosa-Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Gustavo Garzón
- Faculty of Medicine, Universidad de La Sabana, Chía 140013, Colombia
| | - Sandra Bustamante
- Physics Department, the Centre for NanoHealth, Swansea University, Swansea SA2 8PP, UK
- Vedas, Corporación de Investigación e Innovación, Medellín 050001, Colombia
| |
Collapse
|
16
|
Wollacott AM, Robinson LN, Ramakrishnan B, Tissire H, Viswanathan K, Shriver Z, Babcock GJ. Structural prediction of antibody-APRIL complexes by computational docking constrained by antigen saturation mutagenesis library data. J Mol Recognit 2019; 32:e2778. [DOI: 10.1002/jmr.2778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 12/29/2022]
|
17
|
|
18
|
Li M, Guo X, Li H, Zuo X, Hao R, Song H, Aldalbahi A, Ge Z, Li J, Li Q, Song S, Li S, Shao N, Fan C, Wang L. Epitope Binning Assay Using an Electron Transfer-Modulated Aptamer Sensor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:341-349. [PMID: 29241329 DOI: 10.1021/acsami.7b17324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface plasmon resonance and quartz crystal microbalance are workhorses of protein-DNA interaction research for over 20 years, providing ways to quantitatively determine the protein-DNA binding. However, the cost, necessary technical expertise, and severe nonspecific adsorption poses barriers to their use. Convenient and effective techniques for the measurement of protein-DNA binding affinity and the epitope binning between DNA and proteins for developing highly sensitive detection platform remain challenging. Here, we develop a binding-induced alteration in electron transfer kinetics of the redox reporter labeled (methylene blue) on DNA aptamer to measure the binding affinity between prostate-specific antigen (PSA) and aptamer. We demonstrate that the binding of PSA to aptamer decreases the electron transfer rate of methylene blue for ∼45%. Further, we identify the best pairwise selection of aptamers for developing sandwich assay by sorting from 10 pairwise modes with the PSA detection limit of 500 ng/mL. Our study provides promising ways to analyze the binding affinity between ligand and receptor and to sort pairwise between aptamers or antibodies for the development of highly sensitive sandwich immunoassays.
Collapse
Affiliation(s)
- Min Li
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xudong Guo
- Institute of Disease Control and Prevention, AMMS , Beijing 100071, China
| | - Hui Li
- Beijing Institute of Basic Medical Sciences , Beijing 100850, China
| | - Xiaolei Zuo
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Rongzhang Hao
- Institute of Disease Control and Prevention, AMMS , Beijing 100071, China
| | - Hongbin Song
- Institute of Disease Control and Prevention, AMMS , Beijing 100071, China
| | - Ali Aldalbahi
- Chemistry Department, King Saud University , Riyadh 11451, Saudi Arabia
| | - Zhilei Ge
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Shiping Song
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Shaohua Li
- Beijing Institute of Basic Medical Sciences , Beijing 100850, China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences , Beijing 100850, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| |
Collapse
|
19
|
Hua CK, Gacerez AT, Sentman CL, Ackerman ME, Choi Y, Bailey-Kellogg C. Computationally-driven identification of antibody epitopes. eLife 2017; 6:29023. [PMID: 29199956 PMCID: PMC5739537 DOI: 10.7554/elife.29023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/02/2017] [Indexed: 12/21/2022] Open
Abstract
Understanding where antibodies recognize antigens can help define mechanisms of action and provide insights into progression of immune responses. We investigate the extent to which information about binding specificity implicitly encoded in amino acid sequence can be leveraged to identify antibody epitopes. In computationally-driven epitope localization, possible antibody–antigen binding modes are modeled, and targeted panels of antigen variants are designed to experimentally test these hypotheses. Prospective application of this approach to two antibodies enabled epitope localization using five or fewer variants per antibody, or alternatively, a six-variant panel for both simultaneously. Retrospective analysis of a variety of antibodies and antigens demonstrated an almost 90% success rate with an average of three antigen variants, further supporting the observation that the combination of computational modeling and protein design can reveal key determinants of antibody–antigen binding and enable efficient studies of collections of antibodies identified from polyclonal samples or engineered libraries.
Collapse
Affiliation(s)
- Casey K Hua
- Thayer School of Engineering, Dartmouth College, Hanover, United States.,Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Albert T Gacerez
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, United States.,Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Yoonjoo Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | |
Collapse
|
20
|
Lundstrom K. Cell-impedance-based label-free technology for the identification of new drugs. Expert Opin Drug Discov 2017; 12:335-343. [PMID: 28276704 DOI: 10.1080/17460441.2017.1297419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug discovery has progressed from relatively simple binding or activity screening assays to high-throughput screening of sophisticated compound libraries with emphasis on miniaturization and automation. The development of functional assays has enhanced the success rate in discovering novel drug molecules. Many technologies, originally based on radioactive labeling, have sequentially been replaced by methods based on fluorescence labeling. Recently, the focus has switched to label-free technologies in cell-based screening assays. Areas covered: Label-free, cell-impedance-based methods comprise of different technologies including surface plasmon resonance, mass spectrometry and biosensors applied for screening of anticancer drugs, G protein-coupled receptors, receptor tyrosine kinase and virus inhibitors, drug and nanoparticle cytotoxicity. Many of the developed methods have been used for high-throughput screening in cell lines. Cell viability and morphological damage prediction have been monitored in three-dimensional spheroid human HT-29 carcinoma cells and whole Schistosomula larvae. Expert opinion: Progress in label-free, cell-impedance-based technologies has facilitated drug screening and may enhance the discovery of potential novel drug molecules through, and improve target molecule identification in, alternative signal pathways. The variety of technologies to measure cellular responses through label-free cell-impedance based approaches all support future drug development and should provide excellent assets for finding better medicines.
Collapse
|