1
|
Goh E, Chavatte JM, Lin RTP, Ng LFP, Rénia L, Oon HH. Vaccines in Dermatology-Present and Future: A Review. Vaccines (Basel) 2025; 13:125. [PMID: 40006672 PMCID: PMC11860801 DOI: 10.3390/vaccines13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Dermatological vaccines have emerged as critical tools in preventing and managing a wide spectrum of skin conditions ranging from infectious diseases to malignancies. By synthesizing evidence from existing literature, this review aims to comprehensively evaluate the efficacy, safety, and immunogenicity of vaccines used in dermatology, including both approved vaccines and those currently being researched. Vaccines discussed in this paper include those targeting dermatoses and malignancies (e.g., acne vulgaris, atopic dermatitis, and melanoma); infectious diseases (e.g., human papillomavirus (HPV); varicella zoster virus (VZV); herpes zoster (HZ); warts; smallpox; mpox (monkeypox); hand, foot, and mouth disease (HFMD); candidiasis and Group B Streptococcus (GBS); and neglected tropical diseases (e.g., Buruli ulcer, leprosy, and leishmaniasis). Through this review, we aim to provide a detailed understanding of the role of vaccines in dermatology, identify knowledge gaps, and propose areas for future research.
Collapse
Affiliation(s)
- Eyan Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
| | - Jean-Marc Chavatte
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
| | - Raymond T. P. Lin
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
- National University Hospital Singapore, Singapore 119077, Singapore
| | - Lisa F. P. Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Laurent Rénia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hazel H. Oon
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National Skin Centre and Skin Research Institute of Singapore, Singapore 308205, Singapore
| |
Collapse
|
2
|
Wang H, Zhu W, Li Y, Sun M. Neutralizing antibody landscape of the non-polio Enteroviruses and future strategy. Front Immunol 2025; 15:1524356. [PMID: 39877351 PMCID: PMC11772190 DOI: 10.3389/fimmu.2024.1524356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
The non-polio Enteroviruses (NPEVs), consist of enteroviruses, coxsackieviruses, echoviruses, and rhinoviruses, are causative agents for a wide variety of diseases, ranging from common cold to encephalitis and acute flaccid paralysis (AFP). In recent years, several NPEVs have become serious public health threats, include EV-A71, which has caused epidemics of hand-foot-and-mouth disease (HMFD) in Southeast Asia, and EV-D68, which caused outbreaks of severe respiratory disease in children worldwide. Infections with these viruses are associated with neurological diseases like aseptic meningitis and AFP. Currently, apart from inactivated EV-A71 vaccines that were developed in China, no effective measures are available to prevent or treat NPEV infections. Antibody-mediated immunity is crucial for preventing and limiting viral infections, and potent neutralizing antibodies could serve as potential therapeutic agents. In this review, we describe recent progress in the NPEVs neutralization antibodies, summarizing the characteristics, breadth, and potency against NPEVs, such as EV-A71, CVA16, EV-D68, and echovirus. We focus on not only through the study of viral epitopes but also through the understanding of virus-antibody interactions. Also, we decipher the role of antibodies in the attachment of the virus to receptors, internalization, and uncoating process, providing insight into virus neutralization mechanisms. Moreover, bi-specific antibodies or multivalent antibodies with better potency are also discussed. Therefore, an in-depth understanding of structures of enterovirus and mechanisms of antibody neutralization should be useful for future strategies in guiding the design of a rational antiviral agent against NPEVs infections.
Collapse
Affiliation(s)
- Hongye Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wenbing Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ya Li
- Department of Laboratory Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
3
|
Duan S, Hou J, Li Y, Zhang M, Zhao Y, Jin W, Li M, Sun W, Xu H, Liu Q, Chen L, Deng Z, Yang F, Ma S, He Z. Establishment of a rhesus macaque model for coxsackievirus A6 infection: Pilot study to evaluate infection initiated through the respiratory or digestive track. Virology 2025; 601:110268. [PMID: 39522359 DOI: 10.1016/j.virol.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Coxsackievirus A6 (CVA6) is a primary pathogen associated with hand, foot, and mouth disease (HFMD) and is typified by fever, rashes or herpetic lesions at distinct locations. Although HFMD patients exhibit mild symptoms, a subset of patients may develop severe complications, such as viral encephalitis, myocarditis, pneumonia, and neurological disorders. However, in addition to rodent models, such as the CVA6-infected mouse model, no definitive nonhuman primate animal model or related research or analysis tool is available, which makes the development of suitable nonhuman primate animal models particularly crucial. In this study, 3- to 4-month-old rhesus monkeys were infected via the respiratory or digestive tract, and the pathogenic, pathological, and immunological alterations following CVA6 infection were investigated. The results revealed that the infected rhesus monkeys exhibited symptoms similar to those of patients, including signs of HFMD, blood cell changes, viremia, viral excretion, and inflammatory reactions during the acute phase (1-11 days). Pathological observations revealed inflammatory reactions in the intestinal and lymph node tissues. Notably, the acute symptoms gradually waned in the recovery phase (12-120 days), and a high level of neutralizing antibodies was sustained. Intriguingly, no significant disparity was observed between the infections initiated via the respiratory or digestive tract in terms of clinical symptoms, hemogram results or virus shedding. Overall, this study yielded a comprehensive dataset regarding the physiological, pathological, and immunological outcomes of CVA6 infection in a primate host, enhancing our comprehension of the mechanism of CVA6 infection and providing essential data for related vaccine and drug development.
Collapse
MESH Headings
- Animals
- Macaca mulatta
- Disease Models, Animal
- Pilot Projects
- Enterovirus/physiology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Coxsackievirus Infections/virology
- Coxsackievirus Infections/immunology
- Gastrointestinal Tract/virology
- Gastrointestinal Tract/pathology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Hand, Foot and Mouth Disease/virology
- Hand, Foot and Mouth Disease/pathology
- Respiratory System/virology
- Female
- Virus Shedding
- Viremia
- Male
- Enterovirus A, Human/pathogenicity
- Enterovirus A, Human/physiology
- Enterovirus A, Human/immunology
- Respiratory Tract Infections/virology
- Respiratory Tract Infections/immunology
Collapse
Affiliation(s)
- Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Jinghan Hou
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Mingxue Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Wenting Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Hongjie Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Quan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Lixiong Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Zijun Deng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| |
Collapse
|
4
|
Chen YA, Shen YS, Fang CY, Chan TT, Wu SR, Wang JR, Wu SC, Liu CC. Enhanced production of recombinant coxsackievirus A16 using a serum-free HEK293A suspension culture system for bivalent enterovirus vaccine development. Vaccine X 2024; 20:100559. [PMID: 39364390 PMCID: PMC11447303 DOI: 10.1016/j.jvacx.2024.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
Coxsackievirus A16 (CVA16) is one of the primary pathogens that causes hand, foot, and mouth disease (HFMD) in young children. In previous studies, CVA16 vaccine development has encountered several challenges, such as inefficient replication of the CVA16 virus in present culture systems, the induction of only mild neutralizing antibody titers, and neutralizing antibodies induced by certain vaccine candidates that are unable to protect against CVA16 viral challenge. In this study, we constructed a DNA-launched CVA16 infectious clone (CVA16ic) based on the genomic sequence of the CVA16 N5079 strain to minimize interference from viral quasispecies. The biochemical properties of this CVA16ic strain were similar to those of its parental strain. Serum-free HEK293A suspension cells, which produced higher virus titers than Vero cells, were demonstrated to improve CVA16 production yields. In addition, our study showed that inactivated EV-A71 antigens could enhance the immunogenicity of inactivated CVA16 mature/full particles (F-particles), suggesting that a bivalent CVA16 and EV-A71 vaccine may be an effective strategy for CVA16 vaccine development. These findings are expected to provide novel strategies and accelerate the development of bivalent HFMD vaccines.
Collapse
Affiliation(s)
- Yi-An Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Yu-Sheng Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ting-Ting Chan
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
5
|
Huang CY, Su SB, Chen KT. A review of enterovirus-associated hand-foot and mouth disease: preventive strategies and the need for a global enterovirus surveillance network. Pathog Glob Health 2024; 118:538-548. [PMID: 39229797 PMCID: PMC11892072 DOI: 10.1080/20477724.2024.2400424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Enterovirus (EV)-associated hand, foot, and mouth disease (HFMD) is a significant public health issue worldwide, commonly occurring in children five years of age or younger. The leading causes of most HFMD cases are EVs, which are members of the Picornaviridae family. The typical clinical manifestations of EV-associated HFMD are febrile presentations with mucosal herpangina, oral ulcerations, and skin rashes on the hands and feet. The majority of HFMD cases resolve without consequence; however, a subset progresses to severe neurological and cardiopulmonary complications, which can be fatal. In the past two decades, EV-associated HFMD has received significant attention. In this review, we organize published papers and provide updates on epidemiology, pathogenesis, surveillance, and vaccine developments for EV-associated HFMD. The impact of EV-associated HFMD is increasing globally. Developing efficacious vaccines has become a priority for preventing EV infections without adequate treatment. Simultaneously, emerging EV infections (including EV-D68, EV-A71, Coxsackieviruses, and echoviruses) are increasing, highlighting the need to create a vigilant surveillance system for EV infections worldwide.
Collapse
Affiliation(s)
- Chien-Yuan Huang
- Division of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Wang X, Qian J, Mi Y, Li Y, Cao Y, Qiao K. Correlations of PSGL-1 VNTR polymorphism with the susceptibility to severe HFMD associated with EV-71 and the immune status after infection. Virol J 2024; 21:187. [PMID: 39148126 PMCID: PMC11328417 DOI: 10.1186/s12985-024-02461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Enterovirus 71 (EV-71) has strong neurotropism, and it is the main pathogen causing severe hand, foot, and mouth disease (HFMD). In clinical observations, significant differences were observed in the severity and prognosis of HFMD among children who were also infected with EV-71. Genetic differences among individuals could be one of the important causes of differences in susceptibility to EV-71-induced HFMD. As P-selectin glycoprotein ligand-1 (PSGL-1) is an important receptor of EV-71, the correlation between single-nucleotide polymorphisms (SNPs) in PSGL-1 and the susceptibility to severe HFMD following EV-71 infection is worth studying. Given the role of PSGL-1 in immunity, the correlations between PSGL-1 SNPs and the immune status after EV-71 infection are also worth studying. Meanwhile, PSGL-1 variable number of tandem repeats (VNTR) represents a research hotspot in cardiovascular and cerebrovascular diseases, but PSGL-1 VNTR polymorphism has not been investigated in HFMD caused by EV-71 infection. In this study, specific gene fragments were amplified by polymerase chain reaction, and PSGL-1 VNTR sequences were genotyped using an automatic nucleic acid analyzer. The correlations of PSGL-1 VNTR polymorphism with the susceptibility to EV-71-associated severe HFMD and the post-infection immune status were analyzed. The PSGL-1 VNTR A allele was identified as a susceptible SNP for severe HFMD. The risk of severe HFMD was higher for AA + AB genotype carriers than for BB genotype carriers. The counts of peripheral blood lymphocyte subsets were lower in AA + AB genotype carries than in BB genotype carries. In conclusion, PSGL-1 VNTR polymorphism is associated with the susceptibility to EV-71-induced severe HFMD and the immune status after infection. PSGL-1 VNTR might play a certain role in the pathogenesis of severe cases.
Collapse
Affiliation(s)
- Xia Wang
- Tianjin Second People's Hospital, Tianjin, 300192, China
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China
| | - Jing Qian
- Tianjin Second People's Hospital, Tianjin, 300192, China
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China
| | - Yuqiang Mi
- Tianjin Second People's Hospital, Tianjin, 300192, China.
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China.
| | - Ying Li
- Tianjin Second People's Hospital, Tianjin, 300192, China.
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China.
| | - Yu Cao
- Tianjin Second People's Hospital, Tianjin, 300192, China
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China
| | - Kunyan Qiao
- Tianjin Second People's Hospital, Tianjin, 300192, China
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China
| |
Collapse
|
7
|
Alshiban NM, Aleyiydi MS, Nassar MS, Alhumaid NK, Almangour TA, Tawfik YM, Damiati LA, Almutairi AS, Tawfik EA. Epidemiologic and clinical updates on viral infections in Saudi Arabia. Saudi Pharm J 2024; 32:102126. [PMID: 38966679 PMCID: PMC11223122 DOI: 10.1016/j.jsps.2024.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
In the past two decades, the world has witnessed devastating pandemics affecting the global healthcare infrastructure and disrupting society and the economy worldwide. Among all pathogens, viruses play a critical role that is associated with outbreaks due to their wide range of species, involvement of animal hosts, easily transmitted to humans, and increased rates of infectivity. Viral disease outbreaks threaten public health globally due to the challenges associated with controlling and eradicating them. Implementing effective viral disease control programs starts with ongoing surveillance data collection and analyses to detect infectious disease trends and patterns, which is critical for maintaining public health. Viral disease control strategies include improved hygiene and sanitation facilities, eliminating arthropod vectors, vaccinations, and quarantine. The Saudi Ministry of Health (MOH) and the Public Health Authority (also known as Weqayah) in Saudi Arabia are responsible for public health surveillance to control and prevent infectious diseases. The notifiable viral diseases based on the Saudi MOH include hepatitis diseases, viral hemorrhagic fevers, respiratory viral diseases, exanthematous viral diseases, neurological viral diseases, and conjunctivitis. Monitoring trends and detecting changes in these viral diseases is essential to provide proper interventions, evaluate the established prevention programs, and develop better prevention strategies. Therefore, this review aims to highlight the epidemiological updates of the recently reported viral infections in Saudi Arabia and to provide insights into the recent clinical treatment and prevention strategies.
Collapse
Affiliation(s)
- Noura M. Alshiban
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Munirah S. Aleyiydi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Majed S. Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Nada K. Alhumaid
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yahya M.K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | | | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
8
|
Yang A, Luo Y, Yang J, Xie T, Wang W, Wan X, Wang K, Pang D, Yang D, Dai H, Wu J, Meng S, Guo J, Wang Z, Shen S. Quantitation of Enterovirus A71 Empty and Full Particles by Sedimentation Velocity Analytical Ultracentrifugation. Viruses 2024; 16:573. [PMID: 38675915 PMCID: PMC11053756 DOI: 10.3390/v16040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The enterovirus A71 (EV71) inactivated vaccine is an effective intervention to control the spread of the virus and prevent EV71-associated hand, foot, and mouth disease (HFMD). It is widely administered to infants and children in China. The empty particles (EPs) and full particles (FPs) generated during production have different antigenic and immunogenic properties. However, the antigen detection methods currently used were established without considering the differences in antigenicity between EPs and FPs. There is also a lack of other effective analytical methods for detecting the different particle forms, which hinders the consistency between batches of products. In this study, we analyzed the application of sedimentation velocity analytical ultracentrifugation (SV-AUC) in characterizing the EPs and FPs of EV71. Our results showed that the proportions of the two forms could be quantified simultaneously by SV-AUC. We also determined the repeatability and accuracy of this method and found that both parameters were satisfactory. We assessed SV-AUC for bulk vaccine quality control, and our findings indicated that SV-AUC can be used effectively to analyze the percentage of EPs and FPs and monitor the consistency of the process to ensure the quality of the vaccine.
Collapse
Affiliation(s)
- Anna Yang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Yun Luo
- The Research Core Facilities for Life Science (HUST), College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road, Wuhan 430074, China
| | - Jie Yang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Tingbo Xie
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Wenhui Wang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Xin Wan
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Kaiwen Wang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Deqin Pang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Dongsheng Yang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Hanyu Dai
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Jie Wu
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Shengli Meng
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Jing Guo
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| |
Collapse
|
9
|
Mustafa FH, Ismail I, Ahmad Munawar AAZ, Abdul Basir B, Shueb RH, Irekeola AA, Wan Ismail WZ, Jamaludin J, Balakrishnan SR, Sahrim M, Yusof NY. A review on current diagnostic tools and potential optical absorption spectroscopy for HFMD detection. Anal Biochem 2023; 683:115368. [PMID: 37890549 DOI: 10.1016/j.ab.2023.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Hand, Foot, and Mouth Disease (HFMD) is an outbreak infectious disease that can easily spread among children under the age of five. The most common causative agents of HFMD are enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), but infection caused by EV71 is more associated with fatalities due to severe neurological disorders. The present diagnosis methods rely on physical examinations by the doctors and further confirmation by laboratories detection methods such as viral culture and polymerase chain reaction. Clinical signs of HFMD infection and other childhood diseases such as chicken pox, and allergies are similar, yet the genetics and pathogenicity of the viruses are substantially different. Thus, there is an urgent need for an early screening of HFMD using an inexpensive and user-friendly device that can directly detect the causative agents of the disease. This paper reviews current HFMD diagnostic methods based on various target types, such as nucleic acid, protein, and whole virus. This was followed by a thorough discussion on the emerging sensing technologies for HFMD detection, including surface plasmon resonance, electrochemical sensor, and surface enhanced Raman spectroscopy. Lastly, optical absorption spectroscopic method was critically discussed and proposed as a promising technology for HFMD screening and detection.
Collapse
Affiliation(s)
- Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu, 81310, Johor, Malaysia; Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
| | - Irneza Ismail
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Ahmad Aiman Zuhaily Ahmad Munawar
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Basmah Abdul Basir
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Rafidah Hanim Shueb
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, PMB 4412, Offa Kwara State, Nigeria
| | - Wan Zakiah Wan Ismail
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Juliza Jamaludin
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Sharma Rao Balakrishnan
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Mus'ab Sahrim
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| |
Collapse
|
10
|
An HH, Li M, Liu RL, Wu J, Meng SL, Guo J, Wang ZJ, Qian SS, Shen S. Humoral and cellular immunogenicity and efficacy of a coxsackievirus A10 vaccine in mice. Emerg Microbes Infect 2023; 12:e2147022. [PMID: 36373411 PMCID: PMC9848378 DOI: 10.1080/22221751.2022.2147022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coxsackievirus A10 (CV-A10) has become one of the major pathogens of hand, foot and mouth disease (HFMD), and studies on the vaccine and animal model of CV-A10 are still far from complete. Our study used a mouse-adapted CV-A10 strain, which was lethal for 14-day-old mice, to develop an infected mouse model. Then this model was employed to establish an actively immunized-challenged mouse model to evaluate the efficacy of a formaldehyde-inactivated CV-A10 vaccine, which was prepared from a Vero cell-adapted strain. CV-A10 vaccine at a dose of 0.5 or 2.0 μg was inoculated intraperitoneally in neonatal Kunming mice on the third and ninth day. Then the mice were challenged on day 14. The survival rate of mice immunized with 0.5 or 2.0 μg vaccine were 90% and 100%, respectively, while all Alum-inoculated mice died. Compared to those in the two vaccinated groups, the Alum-inoculated mice showed severe pathological damage, strong viral protein expression and high viral loads. The antisera from vaccinated mice showed high level of neutralizing antibodies against CV-A10. Meanwhile, three potential T cell epitopes located at the carboxyl-terminal regions of the VP1 and VP3 were identified and exhibited CV-A10 serotype-specific. The humoral and cellular immunogenicity analysis showed that immunization with two doses of the vaccine elicited CV-A10 specific neutralizing antibody and T cell response in BALB/c mice. Collectively, these findings indicated that this actively immunized-challenged mouse model will be invaluable in future studies on CV-A10 pathogenesis and evaluation of vaccine candidates.
Collapse
Affiliation(s)
- Huan-Huan An
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Meng Li
- College of Medical Laboratory Science, Guilin Medical University, Guilin, People’s Republic of China
| | - Rui-Lun Liu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Jie Wu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Jing Guo
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Ze-Jun Wang
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Sha-Sha Qian
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China, Sha-Sha Qian Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan430207, People’s Republic of China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China,Shuo Shen Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan430207, People’s Republic of China
| |
Collapse
|
11
|
Shen YS, Chow YH, Fang CY, Wu SR, Chen CH, Huang MH, Liao CL, Chiang JR, Liu CC. The stability and immunogenicity of formalin-inactivated Enterovirus A71 whole virion vaccine after ten years of low temperature storage. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1121-1128. [PMID: 37919172 DOI: 10.1016/j.jmii.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/10/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Vaccine stability is an important issue for vaccine development, which affects whether the vaccine product is effective within a certain period of time in each progress. Hand, foot, and mouth diseases (HFMD) is an epidemic disease in young children usually caused by Enterovirus A group viruses, and the Enterovirus A71 (EV-A71) had caused several pandemics and public health issues around the world. After two decades of research and development, formalin-inactivated EV-A71 (FI-EV-A71) vaccines are the first to complete the phase III clinical trials for protection against EV-A71 infection. Currently, the shelf life of FI-EV-A71 vaccine product is set to be within 18 months, but the stability and the effectiveness of the FI-EV-A71 whole virion when stored long-term at low temperature remains undetermined. METHODS Assessing the long-term storage properties of viral particles facilitates flexibility in manufacturing of vaccine products. In this study, the stability profiles of FI-EV-A71 vaccine lots and bulks after long-term of low temperature storage were analyzed by protein tests, particle measurement and animal immunization study. RESULTS After over ten years of storage, the reduction of protein concentration in the FI-EV-A71 bulk samples is less than 30 % and the antigenic content remained in a suspended, particulate state. Both the packed FI-EV-A71 final vaccine products and the FI-EV-A71 antigens adjuvant premix bulk could elicit strong neutralizing responses in mice. CONCLUSION After ten years of low temperature storage, the FI-EV-A71 vaccine still presents decent stability and good immunogenicity.
Collapse
Affiliation(s)
- Yu-Sheng Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chi-Hsun Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan; Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Jen-Ron Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| |
Collapse
|
12
|
Xu S, Zhang B, Yao J, Ruan W. A new H9 influenza virus mRNA vaccine elicits robust protective immunity against infection. Vaccine 2023; 41:2905-2913. [PMID: 37005103 DOI: 10.1016/j.vaccine.2023.03.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
Avian influenza virus (AIV) poses a great threat to the poultry industry and public health. However commercial vaccines only provide limited immunity due to rapid virus mutation and rearrangement. Here, we developed an mRNA-lipid nanoparticle (mRNA-LNP) vaccine expressing AIV immunogenic protein hemagglutinin (HA) and also assessed its safety and immune-protection efficacy in vivo. Specifically, its safety was tested by inoculation of SPF chicken embryos and chicks, and there showed no clinical manifestations and pathological changes in both. As for the immune efficacy, the antibody titers, IFN-γ production levels, and viral loads in various organs were analyzed. The results showed that chickens in the mRNA-LNP-inoculated groups produced higher specific antibody titers compared with that in the control group by hemagglutination inhibition (HI) test. Meanwhile, the ELISpot assay demonstrated that the expression of IFN-γ was markedly induced in the mRNA-LNP group, and the viral loads in multiple organs were decreased. In addition, HE shows no obvious pathomorphological changes in the lungs of the mRNA-LNP-inoculated group. While, there was severe inflammatory cell infiltration in the DMEM-treated group instead. Taken together, the vaccine prepared in this study was safe and could trigger potent cellular and humoral immune response to defend against virus infection.
Collapse
Affiliation(s)
- Shengkui Xu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, People's Republic of China
| | - Bowen Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, People's Republic of China
| | - Jielin Yao
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, People's Republic of China
| | - Wenke Ruan
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, People's Republic of China.
| |
Collapse
|
13
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bowen Dai
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shujie Han
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
14
|
Leung AKC, Lam JM, Barankin B, Leong KF, Hon KL. Hand, Foot, and Mouth Disease: A Narrative Review. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:77-95. [PMID: 36284392 DOI: 10.2174/1570180820666221024095837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hand, foot, and mouth disease is a common viral disease in childhood. Because the disease has the potential to reach epidemic levels and mortality is high in some countries, early recognition of this disease is of paramount importance. OBJECTIVE This purpose of this article is to familiarize pediatricians with the clinical manifestations and management of hand, foot, and mouth disease. METHODS A search was conducted in February 2022 in PubMed Clinical Queries using the key term "hand, foot, and mouth disease". The search strategy included all clinical trials, observational studies, and reviews published within the past 10 years. Only papers published in English were included in this review. RESULTS Hand, foot, and mouth disease is characterized by a painful oral enanthem and asymptomatic exanthem on the palms and soles. Children younger than 5 years are most commonly affected. Hand, foot, and mouth disease caused by enterovirus A71 is more severe and has a higher rate of complications than that attributed to other viruses such as coxsackievirus A16. Circulatory failure secondary to myocardial impairment and neurogenic pulmonary edema secondary to brainstem damage are the main causes of death. Fortunately, the disease is usually benign and resolves in 7 to10 days without sequelae. Given the self-limited nature of most cases, treatment is mainly symptomatic and supportive. Intravenous immunoglobulin should be considered for the treatment of severe/complicated hand, foot, and mouth disease and has been recommended by several national and international guideline committees. Currently, there are no specific antiviral agents approved for the treatment of the disease. Drugs such as ribavirin, suramin, mulberroside C, aminothiazole analogs, and sertraline have emerged as potential candidates for the treatment of hand, foot, and mouth disease. Vaccination of susceptible individuals in high-risk areas and good personal hygiene are important preventative measures to combat the disease. CONCLUSION Familiarity of the disease including its atypical manifestations is crucial so that a correct diagnosis can be made, and appropriate treatment initiated. A timely diagnosis can help avoid contact with the affected individual and decrease the risk of an outbreak.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Paediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kin Fon Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam Lun Hon
- Department of Paediatrics, Hong Kong Institute of Integrative Medicine, and the Jockey Club School of Public Health and Primary Care, The Chinese University Hong Kong, Hong Kong
| |
Collapse
|
15
|
Lien SC, Lu CC, Shen YS, Yang YT, Wu SR, Fang CY, Chow YH, Liao CL, Chiang JR, Liu CC. Separation and purification of highly infectious enterovirus A71 particles using a strong anion-exchange column. J Chromatogr A 2022; 1680:463427. [PMID: 36029731 DOI: 10.1016/j.chroma.2022.463427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Virions produced from cell culture is the primary source for production of formalin-inactivated whole virus vaccines for enteroviruses. EV-A71 particles produced from culture system comprise two major types, the immature/empty (E)-particle and the mature/full (F)-particle, which both exhibit low isoelectric point (pI) values but have distinct differences in infectivity and immunogenicity. Although EV-A71 particles can conventionally be separated into E-particle and F-particle using sucrose gradient ultracentrifugation, this procedure is cumbersome and difficult to put into practice for vaccine production. Methods based on ion-exchange chromatography have been exploited to improve the purification efficacy; however, none of them are capable of separating the E- and F-particles efficiently. In this study, we aimed to develop an approach to isolate and purify the highly immunogenic mature EV-A71 particles. By applying a step gradient elution procedure, we successfully isolated the viral structure protein VP0-cleaved particles of EV-A71 from a mixture of cultured viral solution using the Q-membrane anion-exchange chromatography. The elution started with 0.1x phosphate buffered saline (PBS) solution while increasing the percentage of 1x PBS containing 1M NaCl in sequential steps. By this procedure, the VP0-cleaved mature particles and VP0-uncleaved immature particles of EV-A71 could be separated into different fractions in Q-membrane with gradually increased NaCl concentration in elution buffer. The purified VP0-cleaved particles were shown to have characteristics equivalent to those of the highly infectious F-particles of EV-A71. The overall recovery rate for the mature EV-A71 particles by Q-membrane is 56% and its purity was shown to be equivalent to those isolated by the sucrose gradient ultracentrifugation. Our approach provides a simple and efficient purification method for recovering mature, highly infectious virus particles from the EV-A71 culture bulk.
Collapse
Affiliation(s)
- Sheng-Chieh Lien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chun Lu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Yu-Sheng Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ya-Ting Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Jen-Ron Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan; Centers for Disease Control, Taipei, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| |
Collapse
|
16
|
Hand-foot-and-mouth disease (HFMD) in children. Current scenario, and advancements in developing vaccines and therapeutics: An update - Correspondence. Int J Surg 2022; 105:106834. [PMID: 35963573 DOI: 10.1016/j.ijsu.2022.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
|