1
|
Nieto ÁVA, Diaz AH, Hernández M. Are there Effective Vegan-Friendly Supplements for Optimizing Health and Sports Performance? a Narrative Review. Curr Nutr Rep 2025; 14:44. [PMID: 40072649 DOI: 10.1007/s13668-025-00633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE OF REVIEW Veganism, characterized by the exclusion of all animal-derived products, has grown in popularity due to ethical, environmental, and health considerations. However, vegan athletes often face unique nutritional challenges related to dietary deficiencies of critical nutrients such as proteins, vitamin B12, iron, calcium, and omega-3 fatty acids, among others. This narrative review aims to explore the efficacy and benefits of vegan-friendly supplements specifically tailored to athletic performance, focusing on essential micronutrients, ergogenic aids, and nutrient bioavailability. RECENT FINDINGS Nineteen key supplements are discussed, including protein powders, creatine, beta-alanine, caffeine, vitamin B12, vitamin D, omega-3 fatty acids, zinc, calcium, iron, iodine, vitamin K2, selenium, probiotics, nitrates, electrolytes (including sodium and potassium), taurine, vitamin A, and magnesium. Evidence suggests that the integration of these supplements into personalized nutrition plans can bridge dietary gaps while addressing specific performance needs, potentially leveling the competitive field for vegan athletes. Recent studies also highlight research gaps in sex-specific needs, synergistic effects, and strategies to enhance the bioavailability of nutrients from whole foods. Vegan diets, while conferring various benefits, require careful consideration of nutrient intake for athletes seeking optimal performance. Personalized biochemical assessments should be considered when possible for tailoring specific nutritional guidelines for each case. This narrative review provides practical guidelines for clinicians, nutritionists, trainers, sports scientists, and athletes to design personalized supplementation strategies that address common nutritional shortfalls, enhance performance, and serve as a foundation for future research in vegan sports nutrition.
Collapse
Affiliation(s)
- Álvaro Vergara A Nieto
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile
- Facultad de Ciencias de La Salud, Escuela de Nutrición y Dietética, Universidad del Desarrollo, Ainavillo 456, 4070001, Concepción, Chile
| | - Andrés Halabi Diaz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida Republica 275, 8370146, Santiago, Chile.
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile.
- Departamento de I+D+I, CatchPredict SpA, Avenida Ramón Picarte 780, 5090000, Valdivia, Chile.
| | - Millaray Hernández
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile
| |
Collapse
|
2
|
Dugan C, Peeling P, Buissink P, MacLean B, Lim J, Jayasuriya P, Richards T. Effect of intravenous iron therapy on exercise performance, fatigue scores and mood states in iron-deficient recreationally active females of reproductive age: a double-blind, randomised control trial (IRONWOMAN Trial). Br J Sports Med 2025:bjsports-2024-108240. [PMID: 40032294 DOI: 10.1136/bjsports-2024-108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
OBJECTIVES Non-anaemic iron deficiency (IDNA) is highly prevalent in exercising females. Although iron therapy can be used to correct this issue, its impact on exercise performance is equivocal. Our aim was to assess the efficacy of intravenous iron therapy on exercise performance, fatigue, mood states, and quality of life in recreationally active IDNA females of reproductive age. METHODS Twenty-six recreationally active IDNA females were randomised to either an intravenous iron treatment (IRON) group or placebo (PLA). Prior to, 4 days and 4 weeks following intervention, participants completed a variety of assessments to determine changes in exercise performance, haemoglobin mass, blood iron status and haematology, fatigue levels, mood states and quality of life. RESULTS Intravenous iron therapy significantly improved serum ferritin, serum iron and transferrin saturation (p<0.05), with a highly variable individual response. No differences were observed between groups' peak oxygen consumption (V̇O2Peak), lactate threshold or haemoglobin mass. Running economy improved in IRON from baseline to 4 weeks (p<0.05), which was also different to PLA at 4 weeks (p<0.05). Fatigue scores improved in IRON but not PLA after 4 weeks (p<0.05). Mood states and quality of life remained unchanged in both groups over the trial. CONCLUSION In recreationally active IDNA females, intravenous iron therapy corrects iron status and improves both exercise economy and fatigue scores after 4 weeks. TRIAL REGISTRATION NUMBER ACTRN12620001357943.
Collapse
Affiliation(s)
- Cory Dugan
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter Peeling
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Paige Buissink
- Division of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Beth MacLean
- Division of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Jayne Lim
- Division of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Pradeep Jayasuriya
- Division of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Toby Richards
- School of Health, Sport & Bioscience, University of East London, London, England, UK
| |
Collapse
|
3
|
Satué K, Fazio E, Damiá E, Medica P, Cravana C. Correlation between erythrocyte parameters and iron status in cyclic Spanish Purebred mares. Vet Res Commun 2024; 48:2677-2681. [PMID: 38635104 DOI: 10.1007/s11259-024-10376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
The aim of this study was to evaluate the serum iron status and its relation to hematological indexes in cyclic mares. Blood samples were taken from 40 Spanish Purebred mares on days - 5, 0, + 5 and + 16 of their cycle. Concentration of transferrin (TRF) was significantly lower on day 0 than on days + 5 and + 16, transferrin saturation (TSAT) decreased significantly on days 0 and + 16 compared to day - 5, total iron-binding capacity (TIBC) on day + 16 was significantly higher than those on days - 5 and 0, and on day + 5 it was also significantly higher than that on day 0, unsaturated iron-binding capacity (UIBC) was reduced on day + 16 compared to days - 5 and 0, red blood cell (RBC) count on day + 16 was higher than that on days - 5 and 0 (p < 0.05), with no differences in the concentration of hemoglobin (HB) and packed cell volume (PCV). TRF and TIBC (r = 0.95), RBC and HB (r = 0.64), RBC and PCV (r = 0.78), and HB and PCV (r = 0.63) were positively and significantly correlated (P < 0.05). The estrous cycle in the Spanish Purebred mare is characterized by an increase in TRF and TIBC during the follicular phase and an increase in TSAT, UIBC and RBC in the luteal phase, without changes in other hematological parameters. The coordinated activity of these parameters guarantees an adequate iron (Fe) transfer and utilization during follicular development, ovulation, and the luteal period in the mare. Therefore, the estrous cycle must be considered in the evaluation of the mare's iron status, in light of significant changes observed both in early and at late luteal phases. The magnitude of these changes and the meaning to the physiology of the mares showed that in cyclic mares, hematological parameters and indicators of iron status evolve differently depending on the phase of the cycle, and their interpretation can help to veterinarians involved in equine practice.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, Valencia, 46115, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, Messina, 98168, Italy
| | - Elena Damiá
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, Valencia, 46115, Spain
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, Messina, 98168, Italy
| | - Cristina Cravana
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, Messina, 98168, Italy
| |
Collapse
|
4
|
Vardardottir B, Gudmundsdottir SL, Tryggvadottir EA, Olafsdottir AS. Patterns of energy availability and carbohydrate intake differentiate between adaptable and problematic low energy availability in female athletes. Front Sports Act Living 2024; 6:1390558. [PMID: 38783864 PMCID: PMC11111999 DOI: 10.3389/fspor.2024.1390558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background Problematic low energy availability (EA) is the underlying culprit of relative energy deficiency in sport (REDs), and its consequences have been suggested to be exacerbated when accompanied by low carbohydrate (CHO) intakes. Objectives This study compared dietary intake, nutrition status and occurrence of REDs symptoms in groups of female athletes, displaying different patterns of EA and CHO intake. Methods Female athletes (n = 41, median age 20.4 years) from various sports weighed and recorded their food intake and training for 7 consecutive days via a photo-assisted mobile application. Participants were divided into four groups based on patterns of EA and CHO intakes: sufficient to optimal EA and sufficient to optimal CHO intake (SEA + SCHO), SEA and low CHO intake (SEA + LCHO), low energy availability and SCHO (LEA + SCHO), and LEA and LCHO (LEA + LCHO). SEA patterns were characterised by EA ≥30 and LEA by EA <30 kcal/kg fat free mass, and SCHO patterns characterised by CHO intake ≥3.0 and LCHO <3.0 g/kg body weight for most of the registered days. Body composition was measured with dual energy x-ray absorptiometry, resting metabolic rate with indirect calorimetry and serum blood samples were collected for evaluation of nutrition status. Behavioural risk factors and self-reported symptoms of REDs were assessed with the Low Energy Availability in Females Questionnaire, Eating Disorder Examination Questionnaire Short (EDE-QS), Exercise Addiction Inventory, and Muscle Dysmorphic Disorder Inventory. Results In total, 36.6% were categorised as SEA + SCHO, of which 5/16 were ball sport, 7/10 endurance, 1/7 aesthetic, 2/5 weight-class, and 0/3 weight-class athletes. Of LEA + LCHO athletes (19.5% of all), 50% came from ball sports. Aesthetic and endurance athletes reported the greatest training demands, with weekly training hours higher for aesthetic compared to ball sports (13.1 ± 5.7 vs. 6.7 ± 3.4 h, p = 0.012). Two LEA + LCHO and one SEA + LCHO athlete exceeded the EDE-QS cutoff. LEA + LCHO evaluated their sleep and energy levels as worse, and both LEA groups rated their recovery as worse compared to SEA + SCHO. Conclusion Repeated exposures to LEA and LCHO are associated with a cluster of negative implications in female athletes. In terms of nutrition strategies, sufficient EA and CHO intakes appear to be pivotal in preventing REDs.
Collapse
|
5
|
Burtscher J, Pasha Q, Chanana N, Millet GP, Burtscher M, Strasser B. Immune consequences of exercise in hypoxia: A narrative review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:297-310. [PMID: 37734549 PMCID: PMC11116970 DOI: 10.1016/j.jshs.2023.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Immune outcomes are key mediators of many health benefits of exercise and are determined by exercise type, dose (frequency/duration, intensity), and individual characteristics. Similarly, reduced availability of ambient oxygen (hypoxia) modulates immune functions depending on the hypoxic dose and the individual capacity to respond to hypoxia. How combined exercise and hypoxia (e.g., high-altitude training) sculpts immune responses is not well understood, although such combinations are becoming increasingly popular. Therefore, in this paper, we summarize the impact on immune responses of exercise and of hypoxia, both independently and together, with a focus on specialized cells in the innate and adaptive immune system. We review the regulation of the immune system by tissue oxygen levels and the overlapping and distinct immune responses related to exercise and hypoxia, then we discuss how they may be modulated by nutritional strategies. Mitochondrial, antioxidant, and anti-inflammatory mechanisms underlie many of the adaptations that can lead to improved cellular metabolism, resilience, and overall immune functions by regulating the survival, differentiation, activation, and migration of immune cells. This review shows that exercise and hypoxia can impair or complement/synergize with each other while regulating immune system functions. Appropriate acclimatization, training, and nutritional strategies can be used to avoid risks and tap into the synergistic potentials of the poorly studied immune consequences of exercising in a hypoxic state.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Qadar Pasha
- Institute of Hypoxia Research, New Delhi 110067, India
| | - Neha Chanana
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck 6020, Austria.
| | - Barbara Strasser
- Faculty of Medicine, Sigmund Freud Private University, Vienna 1020, Austria; Ludwig Boltzmann Institute for Rehabilitation Research, Vienna 1100, Austria
| |
Collapse
|
6
|
Lomazzi M. Nutrition for European Elite Fencers: A Practical Tool for Coaches and Athletes. Nutrients 2024; 16:1104. [PMID: 38674795 PMCID: PMC11055078 DOI: 10.3390/nu16081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this narrative review is to create a comprehensive, innovative, and pragmatic resource to guide elite fencers and coaches in making strategic nutritional choices to enhance performance and facilitate recovery. The literature review identified only 12 articles specifically addressing the topic of nutrition for fencers. Thus, the recommendations provided in this review derive also from articles dealing with similar sports, such as martial arts, and from investigations with European elite fencers and their coaches. For elite fencers, it is suggested to consume daily 7-11 g/kg of body weight (BW) of carbohydrates and 1.5-2 g/kg of BW of proteins and allocate 25% to 30% of the total energy intake to essential fats, with a specific focus on omega-3 fatty acids. The timing of meals, ideally within one hour after exertion, plays a pivotal role in restoring glycogen reserves and preventing injuries. The intake of leucine, creatine, omega-3, collagen, and vitamins C and D is proposed as a strategy for injury recovery. It is worth acknowledging that even when personalized plans are provided, implementation can be challenging, especially during competitions and training camps.
Collapse
Affiliation(s)
- Marta Lomazzi
- Institute of Global Health, University of Geneva, 1202 Geneva, Switzerland
| |
Collapse
|
7
|
Schulte J, Peterson K, Thomsen T, Lentz S, Hall M, Slayman T. Daily versus three times weekly dosing for treatment of iron deficiency nonanemia in NCAA Division 1 female athletes. PM R 2024; 16:316-322. [PMID: 38545733 DOI: 10.1002/pmrj.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE To compare the effectiveness, compliance, and side effect profile between daily or three times weekly (TIW) oral iron supplementation regimens in treating iron deficiency nonanemia (IDNA) in National Collegiate Athletic Association (NCAA) Division 1 female track and field or soccer athletes. DESIGN Prospective cohort study. SETTING Division 1 collegiate athletics. PARTICIPANTS Thirty-three NCAA Division 1 female athletes (18 track and field, 15 soccer). INTERVENTIONS Daily or TIW dosing of ferrous bisglycinate. MAIN OUTCOME MEASURES Serum ferritin (μg/L) was measured before and after 8 weeks of supplementation. Self-reported compliance and side effect profile was assessed by electronic survey every 2 weeks. RESULTS The average main effect for the TIW regimen was a significant increase of 5.17 μg/L (95% CI: 0.86-9.47) in serum ferritin (p = .02). The average main effect for the daily regimen was a significant increase of 12.88 μg/L (95% CI: 4.84-20.93) in serum ferritin (p = .003). The estimated average effect of the treatment on the treated between regimens was a nonsignificant decrease of -7.17 μg/L (95% CI: -19.02 - 3.59) in serum ferritin (p = .17). Thus, the TIW regimen increased serum ferritin 7.17 units less than the daily regimen on average after 8 weeks of supplementation. The athletes following the daily regimen experienced significantly more nausea (p = .04) and constipation (p = .002) compared to the TIW regimen. There was no statistical difference in compliance between the two groups (p = .14). CONCLUSIONS Both the daily and TIW regimens increased serum ferritin. Compared to the daily regimen, the TIW regimen produced a smaller increase in serum ferritin but less nausea and constipation.
Collapse
Affiliation(s)
- Josh Schulte
- UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|
8
|
Raberin A, Burtscher J, Citherlet T, Manferdelli G, Krumm B, Bourdillon N, Antero J, Rasica L, Malatesta D, Brocherie F, Burtscher M, Millet GP. Women at Altitude: Sex-Related Physiological Responses to Exercise in Hypoxia. Sports Med 2024; 54:271-287. [PMID: 37902936 PMCID: PMC10933174 DOI: 10.1007/s40279-023-01954-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Sex differences in physiological responses to various stressors, including exercise, have been well documented. However, the specific impact of these differences on exposure to hypoxia, both at rest and during exercise, has remained underexplored. Many studies on the physiological responses to hypoxia have either excluded women or included only a limited number without analyzing sex-related differences. To address this gap, this comprehensive review conducted an extensive literature search to examine changes in physiological functions related to oxygen transport and consumption in hypoxic conditions. The review encompasses various aspects, including ventilatory responses, cardiovascular adjustments, hematological alterations, muscle metabolism shifts, and autonomic function modifications. Furthermore, it delves into the influence of sex hormones, which evolve throughout life, encompassing considerations related to the menstrual cycle and menopause. Among these physiological functions, the ventilatory response to exercise emerges as one of the most sex-sensitive factors that may modify reactions to hypoxia. While no significant sex-based differences were observed in cardiac hemodynamic changes during hypoxia, there is evidence of greater vascular reactivity in women, particularly at rest or when combined with exercise. Consequently, a diffusive mechanism appears to be implicated in sex-related variations in responses to hypoxia. Despite well-established sex disparities in hematological parameters, both acute and chronic hematological responses to hypoxia do not seem to differ significantly between sexes. However, it is important to note that these responses are sensitive to fluctuations in sex hormones, and further investigation is needed to elucidate the impact of the menstrual cycle and menopause on physiological responses to hypoxia.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Molina-López J, Pérez AB, Gamarra-Morales Y, Vázquez-Lorente H, Herrera-Quintana L, Sánchez-Oliver AJ, Planells E. Prevalence of sports supplements consumption and its association with food choices among female elite football players. Nutrition 2024; 118:112239. [PMID: 38071936 DOI: 10.1016/j.nut.2023.112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVES The present study aimed to 1) investigate the consumption of Sports Supplements (SSs) among female elite football players, 2) evaluate the influence of age on SS consumption, and 3) determine the relationship between the consumption of SSs and dietary choices among elite football players. METHODS A total of 126 female football players of Primera Iberdrola and Reto Iberdrola who participated in this descriptive, observational, and cross-sectional study completed a self-administered questionnaire on SSs and the Athletes' Food Choices Questionnaire. RESULTS Overall, 84.1% of participants consumed supplements, mainly for improved sports performance (68.3%) and health (34.1%). The main sources of purchase were the Internet (34.9%) and specialized shops (23.8%), and players were commonly advised by a dietitian-nutritionist to use SSs (56.3%). The SSs most often consumed included whey protein (30.2%), sports drinks (28.6%), creatine monohydrate (28.6%), sports bars (27.8%), and caffeine (27.8%). Older players consumed more supplements at the time of data compilation. Players predominantly acquired these supplements by using the Internet and reported benefits from their use (all P ≤ 0.036). Additionally, players who consumed SSs conveyed more concern about their food choices. CONCLUSIONS A high prevalence of female football players consumed SSs, particularly SSs supported by robust scientific evidence. Older players had higher supplement consumption rates. The use of SSs was related to food choices through nutritional characteristics of foods, knowledge about health and nutrition, weight control with the help of food, and the performance benefits players could acquire.
Collapse
Affiliation(s)
- Jorge Molina-López
- Faculty of Education, Psychology, and Sports Sciences, University of Huelva, Huelva, Spain; Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix," University of Granada, Granada, Spain.
| | - Andrea Baena Pérez
- Faculty of Education, Psychology, and Sports Sciences, University of Huelva, Huelva, Spain
| | | | - Héctor Vázquez-Lorente
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix," University of Granada, Granada, Spain
| | - Lourdes Herrera-Quintana
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix," University of Granada, Granada, Spain
| | | | - Elena Planells
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix," University of Granada, Granada, Spain
| |
Collapse
|
10
|
Best R, Williams JM, Pearce J. The Physiological Requirements of and Nutritional Recommendations for Equestrian Riders. Nutrients 2023; 15:4977. [PMID: 38068833 PMCID: PMC10708571 DOI: 10.3390/nu15234977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Equestrian sport is under-researched within the sport science literature, creating a possible knowledge vacuum for athletes and support personnel wishing to train and perform in an evidence-based manner. This review aims to synthesise available evidence from equitation, sport, and veterinary sciences to describe the pertinent rider physiology of equestrian disciplines. Estimates of energy expenditure and the contribution of underpinning energy systems to equestrian performance are used to provide nutrition and hydration recommendations for competition and training in equestrian disciplines. Relative energy deficiency and disordered eating are also considered. The practical challenges of the equestrian environment, including competitive, personal, and professional factors, injury and concussion, and female participation, are discussed to better highlight novelty within equestrian disciplines compared to more commonly studied sports. The evidence and recommendations are supported by example scenarios, and future research directions are outlined.
Collapse
Affiliation(s)
- Russ Best
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Te Pūkenga, Hamilton 3200, New Zealand
| | - Jane M. Williams
- Department of Animal Science, Hartpury University, Hartpury Gl19 3BE, UK;
| | - Jeni Pearce
- High Performance Sport New Zealand, Auckland 0632, New Zealand;
| |
Collapse
|
11
|
Kardasis W, Naquin ER, Garg R, Arun T, Gopianand JS, Karmakar E, Gnana-Prakasam JP. The IRONy in Athletic Performance. Nutrients 2023; 15:4945. [PMID: 38068803 PMCID: PMC10708480 DOI: 10.3390/nu15234945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Iron is an essential micronutrient for athletes, intricately linked to their performance, by regulating cellular respiration and metabolism. Impaired iron levels in the body can significantly hinder athletic performance. The increased demand for iron due to exercise, coupled with potential dietary iron insufficiencies, particularly among endurance athletes, amplifies the risk of iron deficiency. Moreover, prolonged exercise can impact iron absorption, utilization, storage, and overall iron concentrations in an athlete. On the contrary, iron overload may initially lead to enhanced performance; however, chronic excess iron intake or underlying genetic conditions can lead to detrimental health consequences and may negatively impact athletic performance. Excess iron induces oxidative damage, not only compromising muscle function and recovery, but also affecting various tissues and organs in the body. This narrative review delineates the complex relationship between exercise and iron metabolism, and its profound effects on athletic performance. The article also provides guidance on managing iron intake through dietary adjustments, oral iron supplementation for performance enhancement in cases of deficiency, and strategies for addressing iron overload in athletes. Current research is focused on augmenting iron absorption by standardizing the route of administration while minimizing side effects. Additionally, there is ongoing work to identify inhibitors and activators that affect iron absorption, aiming to optimize the body's iron levels from dietary sources, supplements, and chelators. In summary, by refining the athletic diet, considering the timing and dosage of iron supplements for deficiency, and implementing chelation therapies for iron overload, we can effectively enhance athletic performance and overall well-being.
Collapse
Affiliation(s)
| | | | | | | | | | - Eshani Karmakar
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA; (W.K.); (E.R.N.); (R.G.); (T.A.); (J.S.G.)
| | - Jaya P. Gnana-Prakasam
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA; (W.K.); (E.R.N.); (R.G.); (T.A.); (J.S.G.)
| |
Collapse
|
12
|
Norton KM, Davies RS, LeCheminant JD, Fullmer S. Educational Preparation and Course Approach of Undergraduate Sports Nutrition instructors in Large U.S. Institutions. Sports (Basel) 2023; 11:176. [PMID: 37755853 PMCID: PMC10536551 DOI: 10.3390/sports11090176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
College courses are often offered from various disciplines, and depending on which department offers the class, the course could be taught by faculty with different educational preparation or training. This could result in significant differences in the approach and content of the course (i.e., theoretical or applied) or a difference in the instructors' perceived importance and, therefore, the depth and time spent on various topics. We evaluated potential differences in the sports nutrition curriculum because it is a course that is usually taught by either nutritionists or exercise physiologists. A cross-sectional survey was sent to sports nutrition instructors at accredited large U.S. institutions. Descriptive statistics were analyzed via an ANOVA and Χ2 using Crosstabs in Qualtrics. Alpha was set at p < 0.001. Additionally, short interviews with some participants were recorded and transcribed verbatim. The findings of this study indicated that regardless of the instructor's educational preparation and discipline, the majority of sports nutrition topics received similar time and depth and were rated as similarly important (p > 0.001). Out of 10 current textbooks, the majority of instructors preferred only 1 of 4 of them. From the short interviews, instructors reported that their courses were more applied than theoretical or balanced between the two. Most instructors designed their courses with a focus on achieving applied outcomes.
Collapse
Affiliation(s)
- Kayla Marie Norton
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Randall Spencer Davies
- Department of Instructional Psychology and Technology, Brigham Young University, Provo, UT 84602, USA
| | - James Derek LeCheminant
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Susan Fullmer
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
13
|
Torstveit MK, Ackerman KE, Constantini N, Holtzman B, Koehler K, Mountjoy ML, Sundgot-Borgen J, Melin A. Primary, secondary and tertiary prevention of Relative Energy Deficiency in Sport (REDs): a narrative review by a subgroup of the IOC consensus on REDs. Br J Sports Med 2023; 57:1119-1126. [PMID: 37752004 DOI: 10.1136/bjsports-2023-106932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2023] [Indexed: 09/28/2023]
Abstract
Relative Energy Deficiency in Sport (REDs) is common among female and male athletes representing various sports at different performance levels, and the underlying cause is problematic low energy availability (LEA). It is essential to prevent problematic LEA to decrease the risk of serious health and performance consequences. This narrative review addresses REDs primary, secondary and tertiary prevention strategies and recommends best practice prevention guidelines targeting the athlete health and performance team, athlete entourage (eg, coaches, parents, managers) and sport organisations. Primary prevention of REDs seeks to minimise exposure to and reduce behaviours associated with problematic LEA. Some of the important strategies are educational initiatives and de-emphasising body weight and leanness, particularly in young and subelite athletes. Secondary prevention encourages the early identification and management of REDs signs or symptoms to facilitate early treatment to prevent development of more serious REDs outcomes. Recommended strategies for identifying athletes at risk are self-reported screening instruments, individual health interviews and/or objective assessment of REDs markers. Tertiary prevention (clinical treatment) seeks to limit short-term and long-term severe health consequences of REDs. The cornerstone of tertiary prevention is identifying the source of and treating problematic LEA. Best practice guidelines to prevent REDs and related consequences include a multipronged approach targeting the athlete health and performance team, the athlete entourage and sport organisations, who all need to ensure a supportive and safe sporting environment, have sufficient REDs knowledge and remain observant for the early signs and symptoms of REDs.
Collapse
Affiliation(s)
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Naama Constantini
- Sport Medicine, Shaare Zedek Medical Center, The Hebrew University, Jerusalem, Israel
| | - Bryan Holtzman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Karsten Koehler
- Department of Sport and Health Sciences, Technical University of Munich, München, Germany
| | - Margo L Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Anna Melin
- Department of Sport Science, Linnaeus University, Vaxjo/Kalmar, Sweden
| |
Collapse
|
14
|
Haller N, Behringer M, Reichel T, Wahl P, Simon P, Krüger K, Zimmer P, Stöggl T. Blood-Based Biomarkers for Managing Workload in Athletes: Considerations and Recommendations for Evidence-Based Use of Established Biomarkers. Sports Med 2023; 53:1315-1333. [PMID: 37204619 PMCID: PMC10197055 DOI: 10.1007/s40279-023-01836-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 05/20/2023]
Abstract
Blood-based biomarkers can provide an objective individualized measure of training load, recovery, and health status in order to reduce injury risk and maximize performance. Despite enormous potentials, especially owing to currently evolving technology, such as point-of-care testing, and advantages, in terms of objectivity and non-interference with the training process, there are several pitfalls in the use and interpretation of biomarkers. Confounding variables such as preanalytical conditions, inter-individual differences, or an individual chronic workload can lead to variance in resting levels. In addition, statistical considerations such as the detection of meaningful minimal changes are often neglected. The lack of generally applicable and individual reference levels further complicates the interpretation of level changes and thus load management via biomarkers. Here, the potentials and pitfalls of blood-based biomarkers are described, followed by an overview of established biomarkers currently used to support workload management. Creatine kinase is discussed in terms of its evidence for workload management to illustrate the limited applicability of established markers for workload management to date. We conclude with recommendations for best practices in the use and interpretation of biomarkers in a sport-specific context.
Collapse
Affiliation(s)
- Nils Haller
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
- Department of Sport and Exercise Science, University of Salzburg, Schlossallee 49, Salzburg, 5400 Hallein-Rif, Austria
| | - Michael Behringer
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Thomas Reichel
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Gießen, Gießen, Germany
| | - Patrick Wahl
- Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Gießen, Gießen, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Thomas Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Schlossallee 49, Salzburg, 5400 Hallein-Rif, Austria.
- Red Bull Athlete Performance Center, Salzburg, Austria.
| |
Collapse
|
15
|
Kapoor MP, Sugita M, Kawaguchi M, Timm D, Kawamura A, Abe A, Okubo T. Influence of iron supplementation on fatigue, mood states and sweating profiles of healthy non-anemic athletes during a training exercise: A double-blind, randomized, placebo-controlled, parallel-group study. Contemp Clin Trials Commun 2023; 32:101084. [PMID: 36817736 PMCID: PMC9932653 DOI: 10.1016/j.conctc.2023.101084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Iron is specifically important to athletes, and attention has grown to the association between sports performance and iron regulation in the daily diets of athletes. The study presents new insights into stress, mood states, fatigue, and sweating behavior among the non-anemic athletes with sweating exercise habits who consumed a routine low dose (3.6 mg/day) of iron supplementation. In this double-blind, randomized, placebo-controlled, parallel-group study, both non-anemic male (N = 51) and female (N = 42) athletes were supplemented either with a known highly bioavailable iron formulation (SunActive® Fe) or placebo during the follow-up training exercise period over four weeks at their respective designated clinical sites. The effect of oral iron consumption was examined on fatigue, stress profiles, as well as the quality of life using the profile of mood state (POMS) test or a visual analog scale (VAS) questionnaire, followed by an exercise and well-being related fatigue-sweat. Also, their monotonic association with stress biomarkers (salivary α-amylase, salivary cortisol, and salivary immunoglobulin A) were determined using spearman's rank correlation coefficient test. Repeated measure multivariate analysis of variance (group by time) revealed that the total mood disturbance (TMD) score was significantly lower (P = 0.016; F = 6.26) between placebo and iron supplementation groups over the four weeks study period among female athletes. Also, a significant reduction in tired feeling/exhaustion after the exercise (P = 0.05; F = 4.07) between the placebo and iron intake groups was noticed. A significant within-group reduction (P ≤ 0.05) was noticed in the degree of sweat among both male and female athletes after 2 and 4 weeks of iron supplementation, while athletes of the placebo intake group experienced a non-significant within-group reduction in the degree of sweat. Overall, the result indicates routine use of low dose (3.6 mg/day) iron supplementation is beneficial for non-anemic endurance athletes to improve stress, mood states, subjective fatigue, and sweating conditions.
Collapse
Affiliation(s)
- Mahendra P. Kapoor
- Taiyo Kagaku Co., Ltd., Research & Development, Nutrition Division, 1-3 Takaramachi, Yokkaichi, Mie, 510-0844, Japan,Corresponding author.
| | - Masaaki Sugita
- Nippon Sport Science University, Faculty of Sport Science, 7-1-1 Fukusawa, Setagaya-Ku, Tokyo, 158 8508, Japan
| | - Mikiko Kawaguchi
- Otsuma Women's University, Faculty of Home Economics, Department of Food Science, 12 Sanbancho, Chiyoda, Tokyo, 102-8357, Japan
| | - Derek Timm
- Taiyo International Inc, 5960 Golden Hills Dr., Minneapolis, MN, 55416, USA
| | - Aki Kawamura
- Nippon Sport Science University, Faculty of Sport Science, 7-1-1 Fukusawa, Setagaya-Ku, Tokyo, 158 8508, Japan
| | - Aya Abe
- Taiyo Kagaku Co., Ltd., Research & Development, Nutrition Division, 1-3 Takaramachi, Yokkaichi, Mie, 510-0844, Japan
| | - Tsutomu Okubo
- Taiyo Kagaku Co., Ltd., Research & Development, Nutrition Division, 1-3 Takaramachi, Yokkaichi, Mie, 510-0844, Japan
| |
Collapse
|
16
|
Alfaro-Magallanes VM, Romero-Parra N, Barba-Moreno L, Rael B, Benito PJ, Díaz ÁE, Cupeiro R, Peinado AB. Serum iron availability, but not iron stores, is lower in naturally menstruating than in oral contraceptive athletes. Eur J Sport Sci 2023; 23:231-240. [PMID: 34904534 DOI: 10.1080/17461391.2021.2018503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study measured serum markers of iron status in naturally menstruating and oral contraceptive (OC) athletes during the main hormonal milieus of these two profiles to identify potential differences confounding the diagnosis of iron deficiency in female athletes. Resting blood samples were collected from 36 naturally menstruating athletes during the early-follicular phase (EFP), mid- late-follicular phase (MLFP) and mid-luteal phase (MLP) of the menstrual cycle. Simultaneously, blood samples were collected from 24 OC athletes during the withdrawal and active-pill phase of the OC cycle. Serum iron, ferritin, transferrin, transferrin saturation (TSAT), C-reactive protein (CRP), interleukin-6 and sex hormones were analyzed. Naturally menstruating athletes showed lower levels of TSAT, iron and transferrin than OC athletes when comparing the bleeding phase of both profiles (p<0.05) as well as when comparing all analyzed phases of the menstrual cycle to the active pill phase of the OC cycle (p<0.05). Interestingly, only lower transferrin was found during MLFP and MLP compared to the withdrawal phase of the OC cycle (p>0.05), with all other iron markers showing no differences (p>0.05). Intracycle variations were also found within both types of cycle, presenting reduced TSAT and iron during menstrual bleeding phases (p<0.05). In conclusion, in OC athletes, serum iron availability, but not serum ferritin, seems higher than in naturally menstruating ones. However, such differences are lost when comparing the MLFP and MLP of the menstrual cycle with the withdrawal phase of the OC cycle. This should be considered in the assessment of iron status in female athletes.Highlights Naturally menstruating athletes present lower TSAT, iron and transferrin in all analyzed phases of the menstrual cycle compared to OC athletes during their active pill phase. However, both the mid-late follicular and mid-luteal phases of the menstrual cycle do not differ from the withdrawal phase of the oral contraceptive cycle.Intracycle variations are found for TSAT and iron in both naturally menstruating and oral contraceptive athletes, which are mainly driven by a reduction in TSAT and iron during menstrual bleeding phases.As serum iron availability changes significantly as a function of the athlete's hormonal status, it should be considered in the assessment of the athlete's iron status as well as standardise the phase of the menstrual cycle in which to assess iron markers to avoid misdiagnosis or misleading results.In contrast, the assessment of iron stores through serum ferritin is substantially stable and the athlete's hormonal status does not seem to be of relevance for this purpose.
Collapse
Affiliation(s)
- Víctor M Alfaro-Magallanes
- LFE Research Group. Department of Health and Human Performance. Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Nuria Romero-Parra
- LFE Research Group. Department of Health and Human Performance. Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Laura Barba-Moreno
- LFE Research Group. Department of Health and Human Performance. Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Beatriz Rael
- LFE Research Group. Department of Health and Human Performance. Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Pedro J Benito
- LFE Research Group. Department of Health and Human Performance. Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Ángel E Díaz
- Clinical laboratory. National Center of Sport Medicine. Health and Sports Department, AEPSAD, Madrid, Spain
| | - Rocío Cupeiro
- LFE Research Group. Department of Health and Human Performance. Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Ana B Peinado
- LFE Research Group. Department of Health and Human Performance. Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | -
- LFE Research Group. Department of Health and Human Performance. Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
17
|
Nicotra D, Arieli R, Redlich N, Navot-Mintzer D, Constantini NW. Iron Deficiency and Anemia in Male and Female Adolescent Athletes Who Engage in Ball Games. J Clin Med 2023; 12:970. [PMID: 36769618 PMCID: PMC9918288 DOI: 10.3390/jcm12030970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to assess the prevalence of iron deficiency (ID) and iron deficiency anemia (IDA) among male adolescent athletes who participate in non-calorie-restricting sports, and to compare the results with female athletes of the same age and sports. Data of the hemoglobin concentration (Hb) and serum ferritin (sFer) levels of male (n = 350) and female (n = 126) basketball and football players, aged 11-18, from two sport medicine centers in Israel were gathered and analyzed. Mild ID was defined as sFer ≤ 30 µg/L, moderate as sFer ≤ 20 µg/L, and severe as sFer ≤ 10 µg/L. IDA was defined as sFer ≤ 20 µg/L and Hb < 13 g/dL for males and sFer ≤ 20 µg/L and Hb < 12 g/dL for females. The prevalence of mild ID was 41.1% and 53.2%, moderate was 17.4% and 27.8%, and severe was 2% and 4.8% in males and females, respectively. The prevalence of IDA was 2.6% in males and 4% in females. Mild and moderate ID was significantly higher among females. In conclusion, non-anemic ID, which is known to be common among female athletes, especially in sports requiring leanness, is also highly prevalent among adolescent males playing ball games. Therefore, screening for hemoglobin and sFer is recommended for young athletes of both genders and in all sports.
Collapse
Affiliation(s)
- Daniela Nicotra
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel
| | - Rakefet Arieli
- Shaare Zedek Medical Center, Hebrew University, Jerusalem 9103102, Israel
| | - Noam Redlich
- Shaare Zedek Medical Center, Hebrew University, Jerusalem 9103102, Israel
| | - Dalya Navot-Mintzer
- The Ribstein Center for Sports Medicine and Research, Wingate Institute, Netanya 42902, Israel
| | | |
Collapse
|
18
|
Ahmed A, Afzaal M, Ali SW, Muzammil HS, Masood A, Saleem MA, Saeed F, Hussain M, Rasheed A, Al Jbawi E. Effect of vegan diet (VD) on sports performance: a mechanistic review of metabolic cascades. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Aftab Ahmed
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ammar Masood
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Awais Saleem
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Amara Rasheed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
19
|
Ruan Y, Song SJ, Yin ZF, Wang M, Huang N, Gu W, Ling CQ. Comprehensive evaluation of military training-induced fatigue among soldiers in China: A Delphi consensus study. Front Public Health 2022; 10:1004910. [PMID: 36523578 PMCID: PMC9745162 DOI: 10.3389/fpubh.2022.1004910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Military training-induced fatigue (MIF) often results into non-combat attrition. However, standard evaluation of MIF is unavailable. This study aimed to provide credible suggestions about MIF-evaluation. Methods A 3-round Delphi study was performed. The authority of the experts was assessed by the authority coefficient (Aa). In round 1, categories of indicators were collected via anonymous survey of experts, then potential indicators were selected via literature search. In round 2, experts should evaluate the clinical implication, practical value, and importance of each potential indicators, or recommend new indicators based on feedback of round 1. Indicators with recommendation proportions ≥ 70% and new recommended indicators would be included in round 3 to be rated on a 5-point Likert scale. "Consensus in" was achieved when coefficient of concordance (Kendall's W) of a round was between 0.2 and 0.5 and the coefficient of variation (CV) of each aspect for an indicator was < 0.5. If round 3 could not achieve "consensus in," more rounds would be conducted iteratively based on round 3. Indicators included in the recommendation set were ultimately classified into grade I (highly recommended) or grade II (recommended) according to the mean score and CV of the aspects. Results Twenty-three experts participated with credible authority coefficient (mean Aa = 0.733). "Consensus in" was achieved in round 3 (Kendall's W = 0.435, p < 0.001; all CV < 0.5). Round 1 recommended 10 categories with 73 indicators identified from 2,971 articles. After 3-round consultation, consensus was reached on 28 indicators focusing on the cardiovascular system (n = 4), oxygen transport system (n = 5), energy metabolism/metabolite level (n = 6), muscle/tissue damage level (n = 3), neurological function (n = 2), neuropsychological/psychological function (n = 3), endocrine function (n = 3), and exercise capacity (n = 2). Among these, 11 indicators were recommended as grade I: basic heart rate, heart-rate recovery time, heart rate variability, hemoglobin, blood lactic acid, urine protein, creatine kinase, reaction time, Borg Rating of Perceived Exertion Scale, testosterone/cortisol, and vertical jump height. Conclusion This study developed a reliable foundation for the comprehensive evaluation of MIF among soldiers.
Collapse
Affiliation(s)
- Yi Ruan
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China,PLA Naval Medical Center, Shanghai, China
| | - Shang-jin Song
- Department of Traditional Chinese Medicine, Xingcheng Sanatorium of PLA Strategic Support Force, Xingcheng, China
| | - Zi-fei Yin
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Man Wang
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Nian Huang
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China,*Correspondence: Wei Gu ;
| | - Chang-quan Ling
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China,Chang-quan Ling
| |
Collapse
|
20
|
Menstrual cycle affects iron homeostasis and hepcidin following interval running exercise in endurance-trained women. Eur J Appl Physiol 2022; 122:2683-2694. [PMID: 36129579 PMCID: PMC9613712 DOI: 10.1007/s00421-022-05048-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
Purpose Menstrual cycle phase affects resting hepcidin levels, but such effects on the hepcidin response to exercise are still unclear. Thus, we investigated the hepcidin response to running during three different menstrual cycle phases. Methods Twenty-one endurance-trained eumenorrheic women performed three identical interval running protocols during the early-follicular phase (EFP), late-follicular phase (LFP), and mid-luteal phase (MLP). The protocol consisted of 8 × 3 min bouts at 85% of the maximal aerobic speed, with 90-s recovery. Blood samples were collected pre-exercise and at 0 h, 3 h and 24 h post-exercise. Results Data presented as mean ± SD. Ferritin were lower in the EFP than the LFP (34.82 ± 16.44 vs 40.90 ± 23.91 ng/ml, p = 0.003), while iron and transferrin saturation were lower during the EFP (58.04 ± 19.70 µg/dl, 14.71 ± 5.47%) compared to the LFP (88.67 ± 36.38 µg/dl, 22.22 ± 9.54%; p < 0.001) and the MLP (80.20 ± 42.05 µg/dl, 19.87 ± 10.37%; p = 0.024 and p = 0.045, respectively). Hepcidin was not affected by menstrual cycle (p = 0.052) or menstrual cycle*time interaction (p = 0.075). However, when comparing hepcidin at 3 h post-exercise, a moderate and meaningful effect size showed that hepcidin was higher in the LFP compared to the EFP (3.01 ± 4.16 vs 1.26 ± 1.25 nMol/l; d = 0.57, CI = 0.07–1.08). No effect of time on hepcidin during the EFP was found either (p = 0.426). Conclusion The decrease in iron, ferritin and TSAT levels during the EFP may mislead the determination of iron status in eumenorrheic athletes. However, although the hepcidin response to exercise appears to be reduced in the EFP, it shows no clear differences between the phases of the menstrual cycle (clinicaltrials.gov: NCT04458662). Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-05048-5.
Collapse
|
21
|
Peeling P. Towards an Understanding of the Acute Impacts of Exercise on Iron Absorption in Athletes. J Nutr 2022; 152:2013-2014. [PMID: 35896019 DOI: 10.1093/jn/nxac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peter Peeling
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, Western Australia, Australia.,Western Australian Institute of Sport, Mt Claremont, Western Australia, Australia
| |
Collapse
|
22
|
Pilley S, Kaur H, Hippargi G, Gonde P, Rayalu S. Silk fibroin: a promising bio-material for the treatment of heavy metal-contaminated water, adsorption isotherms, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56606-56619. [PMID: 35347600 DOI: 10.1007/s11356-022-19833-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Silk is the strongest natural biopolymer produced by silk worms possessing superior adsorbent properties and thus extensively used in various applications. The present study involved the preparation of powder form of a silk fibroin materials and their application in adsorption of heavy metals, particularly, iron from aqueous solution. The morphological and structural characteristic properties of this promising materials were examined by using different analytical techniques. Batch experiments were conducted within feasible parametric ranges to understand the effect of dose, time, concentration, pH, and reusability. Silk fibroin was effective for iron adsorption over a wide range of pH 6 to 10. The adsorption removal efficiency of 98% was attained for removal of iron from contaminated water at moderate dose of 0.25 g and contact time of 60 min, which is unprecedented by considering the environment benign nature of the material. The data was examined in different isotherm models wherein it fitted best in Langmuir adsorption model. Similarly, Langmuir isotherm model, with R2 value of 0.984 and KL 0.412 and maximum adsorption capacity as 12.82 mg g-1, suggests monolayer adsorption. Kinetic study with better R2 value of 0.941 represented the pseudo-second order kinetics governed by the chemisorption reaction. To understand the practical applicability of silk fibroin, the repeatability study up to 5 cycles were performed. The findings are very encouraging which confirmed the usage of silk fibroin as adsorbent for multiple cycles with marginal decrease in adsorption efficiency. Eventually, the material was tested for iron removal in real contaminated water which revealed its potential and selectivity for removal of iron in different matrix.
Collapse
Affiliation(s)
- Sonali Pilley
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Harkirat Kaur
- St. Aloysius Institute of Technology, Gaur, Jabalpur, 482020, India
| | - Girivyankatesh Hippargi
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| | - Pranjali Gonde
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Sadhana Rayalu
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| |
Collapse
|
23
|
Badenhorst CE, Forsyth AK, Govus AD. A contemporary understanding of iron metabolism in active premenopausal females. Front Sports Act Living 2022; 4:903937. [PMID: 35966107 PMCID: PMC9366739 DOI: 10.3389/fspor.2022.903937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Iron metabolism research in the past decade has identified menstrual blood loss as a key contributor to the prevalence of iron deficiency in premenopausal females. The reproductive hormones estrogen and progesterone influence iron regulation and contribute to variations in iron parameters throughout the menstrual cycle. Despite the high prevalence of iron deficiency in premenopausal females, scant research has investigated female-specific causes and treatments for iron deficiency. In this review, we provide a comprehensive discussion of factors that influence iron status in active premenopausal females, with a focus on the menstrual cycle. We also outline several practical guidelines for monitoring, diagnosing, and treating iron deficiency in premenopausal females. Finally, we highlight several areas for further research to enhance the understanding of iron metabolism in this at-risk population.
Collapse
Affiliation(s)
- Claire E. Badenhorst
- School of Sport, Exercise, and Nutrition, College of Health, Massey University, Auckland, New Zealand
- *Correspondence: Claire E. Badenhorst
| | - Adrienne K. Forsyth
- School of Behavioural and Health Science, Australian Catholic University, Fitzroy, VIC, Australia
| | - Andrew D. Govus
- Discipline of Sport and Exercise, Department of Sport, Exercise, and Nutrition Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Cui P, Li M, Yu M, Liu Y, Ding Y, Liu W, Liu J. Advances in sports food: Sports nutrition, food manufacture, opportunities and challenges. Food Res Int 2022; 157:111258. [DOI: 10.1016/j.foodres.2022.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
|
25
|
Stanzione JR, Bell G, Greenwood DA. A systematic nutrition intervention for low iron status in collegiate distance runners. Nutr Health 2022:2601060221100337. [PMID: 35532088 DOI: 10.1177/02601060221100337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Iron is a trace mineral that plays a significant role in oxygen transport and energy production during exercise. In deficiency, iron can have a significant negative impact on sports performance. Due to its relative simplicity, supplementation is a common treatment to combat deficiency. However, there is a paucity of analyses combining supplementation with dietary education as a method of treatment. Objective: To assess the effectiveness of a systematic iron intervention combining nutrition education and supplementation stages to combat low ferritin levels in collegiate runners. Methods: Twenty four distance runners (13 women; 11 men; 19.5 ± 0.8 years of age) were measured for serum ferritin, daily iron, calcium and vitamin C intake at the start of the fall semester and again after 100 days of supplementation. A dependent groups t-test was applied to delineate changes in Ferritin levels and iron, vitamin C and calcium intake. Alpha levels were maintained a priori at p < 0.05. Results: Ferritin levels averaged 40.0 ± 22.6 ng/mL in Fall and 33.7 ± 14.7 ng/mL in Spring. There were no statistical differences in ferritin levels from Fall to Spring (p = 0.074). Weekly Iron intake (# of foods) significantly increased from Fall (110.8 ± 43.1) to Spring (123.3 ± 43.9), (p = 0.028). There were no significant changes in Vitamin C or Calcium intake between time points (p = 0.441), (p = 0.901). Conclusion: We found no significant differences in serum ferritin measures but dietary intake of iron increased as a result of the intervention.
Collapse
Affiliation(s)
- Joseph R Stanzione
- Department of Health Sciences, 5415University of Memphis, Memphis, Tennessee, USA
| | - Gracie Bell
- Department of Health Sciences, 5415University of Memphis, Memphis, Tennessee, USA
| | - Daniel A Greenwood
- Department of Health Sciences, 5415University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
26
|
Dietary Iron and the Elite Dancer. Nutrients 2022; 14:nu14091936. [PMID: 35565904 PMCID: PMC9105128 DOI: 10.3390/nu14091936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/10/2022] Open
Abstract
Dancers are an athlete population at high risk of developing iron deficiency (ID). The aesthetic nature of the discipline means dancers potentially utilise dietary restriction to meet physique goals. In combination with high training demands, this means dancers are susceptible to problems related to low energy availability (LEA), which impacts nutrient intake. In the presence of LEA, ID is common because of a reduced mineral content within the low energy diet. Left untreated, ID becomes an issue that results in fatigue, reduced aerobic work capacity, and ultimately, iron deficient anaemia (IDA). Such progression can be detrimental to a dancer’s capacity given the physically demanding nature of training, rehearsal, and performances. Previous literature has focused on the manifestation and treatment of ID primarily in the context of endurance athletes; however, a dance-specific context addressing the interplay between dance training and performance, LEA and ID is essential for practitioners working in this space. By consolidating findings from identified studies of dancers and other relevant athlete groups, this review explores causal factors of ID and potential treatment strategies for dancers to optimise absorption from an oral iron supplementation regime to adequately support health and performance.
Collapse
|
27
|
di Corcia M, Tartaglia N, Polito R, Ambrosi A, Messina G, Francavilla VC, Cincione RI, della Malva A, Ciliberti MG, Sevi A, Messina G, Albenzio M. Functional Properties of Meat in Athletes' Performance and Recovery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5145. [PMID: 35564540 PMCID: PMC9102337 DOI: 10.3390/ijerph19095145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
Physical activity (PA) and sport play an essential role in promoting body development and maintaining optimal health status both in the short and long term. Despite the benefits, a long-lasting heavy training can promote several detrimental physiological changes, including transitory immune system malfunction, increased inflammation, and oxidative stress, which manifest as exercise-induced muscle damages (EIMDs). Meat and derived products represent a very good source of bioactive molecules such as proteins, lipids, amino acids, vitamins, and minerals. Bioactive molecules represent dietary compounds that can interact with one or more components of live tissue, resulting in a wide range of possible health consequences such as immune-modulating, antihypertensive, antimicrobial, and antioxidative activities. The health benefits of meat have been well established and have been extensively reviewed elsewhere, although a growing number of studies found a significant positive effect of meat molecules on exercise performance and recovery of muscle function. Based on the limited research, meat could be an effective post-exercise food that results in favorable muscle protein synthesis and metabolic performance.
Collapse
Affiliation(s)
- Martina di Corcia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Nicola Tartaglia
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Antonio Ambrosi
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Gaetana Messina
- Department of Translational Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | | | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Antonella della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Maria Giovanna Ciliberti
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| |
Collapse
|
28
|
Bonilla DA, Moreno Y, Petro JL, Forero DA, Vargas-Molina S, Odriozola-Martínez A, Orozco CA, Stout JR, Rawson ES, Kreider RB. A Bioinformatics-Assisted Review on Iron Metabolism and Immune System to Identify Potential Biomarkers of Exercise Stress-Induced Immunosuppression. Biomedicines 2022; 10:724. [PMID: 35327526 PMCID: PMC8945881 DOI: 10.3390/biomedicines10030724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The immune function is closely related to iron (Fe) homeostasis and allostasis. The aim of this bioinformatics-assisted review was twofold; (i) to update the current knowledge of Fe metabolism and its relationship to the immune system, and (ii) to perform a prediction analysis of regulatory network hubs that might serve as potential biomarkers during stress-induced immunosuppression. Several literature and bioinformatics databases/repositories were utilized to review Fe metabolism and complement the molecular description of prioritized proteins. The Search Tool for the Retrieval of Interacting Genes (STRING) was used to build a protein-protein interactions network for subsequent network topology analysis. Importantly, Fe is a sensitive double-edged sword where two extremes of its nutritional status may have harmful effects on innate and adaptive immunity. We identified clearly connected important hubs that belong to two clusters: (i) presentation of peptide antigens to the immune system with the involvement of redox reactions of Fe, heme, and Fe trafficking/transport; and (ii) ubiquitination, endocytosis, and degradation processes of proteins related to Fe metabolism in immune cells (e.g., macrophages). The identified potential biomarkers were in agreement with the current experimental evidence, are included in several immunological/biomarkers databases, and/or are emerging genetic markers for different stressful conditions. Although further validation is warranted, this hybrid method (human-machine collaboration) to extract meaningful biological applications using available data in literature and bioinformatics tools should be highlighted.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Salvador Vargas-Molina
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia, Spain
| | - Carlos A. Orozco
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
29
|
Russ BS. Anemia: Considerations for the Athletic Population. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Benefits of a plant-based diet and considerations for the athlete. Eur J Appl Physiol 2022; 122:1163-1178. [PMID: 35150294 DOI: 10.1007/s00421-022-04902-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
Individuals may opt to follow a plant-based diet for a variety of reasons, such as religious practices, health benefits or concerns for animal or environmental welfare. Such diets offer a broad spectrum of health benefits including aiding in the prevention and management of chronic diseases. In addition to health benefits, a plant-based diet may provide performance-enhancing effects for various types of exercise due to high carbohydrate levels and the high concentration of antioxidants and phytochemicals found in a plant-based diet. However, some plant-based foods also contain anti-nutrional factors, such as phytate and tannins, which decrease the bioavailability of key nutrients, such as iron, zinc, and protein. Thus, plant-based diets must be carefully planned to ensure adequate intake and absorption of energy and all essential nutrients. The current narrative review summarizes the current state of the research concerning the implications of a plant-based diet for health and exercise performance. It also outlines strategies to enhance the bioavailability of nutrients, sources of hard-to-get nutrients, and sport supplements that could interest plant-based athletes.
Collapse
|
31
|
Cai C, Hu W, Chu T. Interplay Between Iron Overload and Osteoarthritis: Clinical Significance and Cellular Mechanisms. Front Cell Dev Biol 2022; 9:817104. [PMID: 35096841 PMCID: PMC8795893 DOI: 10.3389/fcell.2021.817104] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
There are multiple diseases or conditions such as hereditary hemochromatosis, hemophilia, thalassemia, sickle cell disease, aging, and estrogen deficiency that can cause iron overload in the human body. These diseases or conditions are frequently associated with osteoarthritic phenotypes, such as progressive cartilage degradation, alterations in the microarchitecture and biomechanics of the subchondral bone, persistent joint inflammation, proliferative synovitis, and synovial pannus. Growing evidences suggest that the conditions of pathological iron overload are associated with these osteoarthritic phenotypes. Osteoarthritis (OA) is an important complication in patients suffering from iron overload-related diseases and conditions. This review aims to summarize the findings and observations made in the field of iron overload-related OA while conducting clinical and basic research works. OA is a whole-joint disease that affects the articular cartilage lining surfaces of bones, subchondral bones, and synovial tissues in the joint cavity. Chondrocytes, osteoclasts, osteoblasts, and synovial-derived cells are involved in the disease. In this review, we will elucidate the cellular and molecular mechanisms associated with iron overload and the negative influence that iron overload has on joint homeostasis. The promising value of interrupting the pathologic effects of iron overload is also well discussed for the development of improved therapeutics that can be used in the field of OA.
Collapse
Affiliation(s)
- Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
32
|
Cabral MD, Patel DR, Greydanus DE, Deleon J, Hudson E, Darweesh S. Medical perspectives on pediatric sports medicine–Selective topics. Dis Mon 2022; 68:101327. [DOI: 10.1016/j.disamonth.2022.101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Kuwabara AM, Tenforde AS, Finoff JT, Fredericson M. Iron Deficiency in Athletes: A Narrative Review. PM R 2022; 14:620-642. [DOI: 10.1002/pmrj.12779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Anne M. Kuwabara
- Stanford University, Department of Physical Medicine and Rehabilitation, 450 Broadway Street, Pavilion C, 4th Floor Redwood City California United States
| | - Adam S. Tenforde
- Harvard Medical School, Department of Physical Medicine and Rehabilitation Assistant Professor of Physical Medicine and Rehabilitation
| | | | - Michael Fredericson
- Department of Physical Medicine and Rehabilitation Stanford University Medical Center
| |
Collapse
|
34
|
Aguilar-Navarro M, Baltazar-Martins G, Brito de Souza D, Muñoz-Guerra J, Del Mar Plata M, Del Coso J. Gender Differences in Prevalence and Patterns of Dietary Supplement Use in Elite Athletes. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2021; 92:659-668. [PMID: 32809924 DOI: 10.1080/02701367.2020.1764469] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Purpose: Dietary supplement use by athletes has been the topic of previous research; however, the lack of homogeneity among published studies makes it difficult to analyze the differences, if any, in the patterns of use between male and female athletes. The aim of this study was to determine gender differences in the patterns of dietary supplement use by elite athletes. Methods: A total of 504 elite athletes (329 males and 175 females) participating in individual and team sports completed a validated questionnaire on dietary supplement use during the preceding season. The dietary supplements were categorized according to the latest IOC consensus statement. Results: A higher proportion of male versus female athletes (65.3 versus 56.5%, p < .05) consumed dietary supplements. Both male and female athletes reported a similar mean consumption of dietary supplements (3.2 ± 2.1 versus 3.4 ± 2.3 supplements/season, respectively; p = .45). Protein supplements were the most commonly consumed supplements in male athletes (49.8%) and their prevalence was higher than in female athletes (29.3%, p < .01). In females, multivitamins (39.4%) and branched-chain amino acids (39.4%) were the most commonly consumed supplements and iron supplementation was more prevalent than in males (22.2% versus 10.2%, p = .01). A higher proportion of male athletes relied on themselves to plan dietary supplements use (48.0%), while female appeared to rely more on doctors (34.0%, p < .01). Conclusion: In summary, male athletes had a slightly higher prevalence in the use of supplements than their female counterparts, specifically regarding protein supplements, and were more involved in the self-prescription of supplements.
Collapse
|
35
|
Holtzman B, Ackerman KE. Recommendations and Nutritional Considerations for Female Athletes: Health and Performance. Sports Med 2021; 51:43-57. [PMID: 34515972 PMCID: PMC8566643 DOI: 10.1007/s40279-021-01508-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/29/2022]
Abstract
Optimal nutrition is an important aspect of an athlete’s preparation to achieve optimal health and performance. While general concepts about micro- and macronutrients and timing of food and fluids are addressed in sports science, rarely are the specific effects of women’s physiology on energy and fluid needs highly considered in research or clinical practice. Women differ from men not only in size, but in body composition and hormonal milieu, and also differ from one another. Their monthly hormonal cycles, with fluctuations in estrogen and progesterone, have varying effects on metabolism and fluid retention. Such cycles can change from month to month, can be suppressed with exogenous hormones, and may even be manipulated to capitalize on ideal timing for performance. But before such physiology can be manipulated, its relationship with nutrition and performance must be understood. This review will address general concepts regarding substrate metabolism in women versus men, common menstrual patterns of female athletes, nutrient and hydration needs during different phases of the menstrual cycle, and health and performance issues related to menstrual cycle disruption. We will discuss up-to-date recommendations for fueling female athletes, describe areas that require further exploration, and address methodological considerations to inform future work in this important area.
Collapse
Affiliation(s)
- Bryan Holtzman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kathryn E Ackerman
- Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA. .,Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Oliveira CB, Sousa M, Abreu R, Ferreira Â, Figueiredo P, Rago V, Teixeira VH, Brito J. Dietary supplements usage by elite female football players: an exploration of current practices. Scand J Med Sci Sports 2021; 32 Suppl 1:73-80. [PMID: 34087016 DOI: 10.1111/sms.14001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/16/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
The present study aimed to investigate the prevalence of dietary supplements usage (types, reasons for usage, sources of information, purchase venues) among elite female football players, using a self-administered questionnaire. The study participants (n = 103) were recruited through team physicians during an official international tournament. Overall, 82% reported using dietary supplements at least once during the last 12 months. The most common dietary supplements were vitamin D (52%), omega-3 fatty acids (49%), and protein (45%). Primary reasons for dietary supplement use were to stay healthy (66%), to accelerate recovery (58%), and to increase energy/reduce fatigue (54%). Supplement advice came mainly from medical doctors (46%), dietitians/nutritionists (43%), and coaches/fitness coaches (41%). Most dietary supplements were acquired from supplement stores (30%), a sponsor (26%), or drugstores/pharmacies (22%). Elite female football players are frequent dietary supplement users. Further research needs to explore the frequency, dose, and timing of these supplements.
Collapse
Affiliation(s)
- Catarina B Oliveira
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Mónica Sousa
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,CINTESIS, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Rodrigo Abreu
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Ângela Ferreira
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Pedro Figueiredo
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal.,CIDESD, Research Center in Sports Sciences, Health Sciences and Human Development, University Institute of Maia, ISMAI, Maia, Portugal
| | - Vincenzo Rago
- Faculty of Health Sciences and Sports, Universidade Europeia, Lisboa, Portugal
| | - Vitor Hugo Teixeira
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal.,CIAFEL, Research Centre in Physical Activity, Health and Leisure, University of Porto, Porto, Portugal
| | - João Brito
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
| |
Collapse
|
37
|
Koivisto-Mørk AE, Svendsen IS, Skattebo Ø, Hallén J, Paulsen G. Impact of baseline serum ferritin and supplemental iron on altitude-induced hemoglobin mass response in elite athletes. Scand J Med Sci Sports 2021; 31:1764-1773. [PMID: 33908091 DOI: 10.1111/sms.13982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/26/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023]
Abstract
The present study explored the impact of pre-altitude serum (s)-ferritin and iron supplementation on changes in hemoglobin mass (ΔHbmass) following altitude training. Measures of Hbmass and s-ferritin from 107 altitude sojourns (9-28 days at 1800-2500 m) with world-class endurance athletes (males n = 41, females n = 25) were analyzed together with iron supplementation and self-reported illness. Altitude sojourns with a hypoxic dose [median (range)] of 1169 (912) km·h increased Hbmass (mean ± SD) 36 ± 38 g (3.7 ± 3.7%, p < 0.001) and decreased s-ferritin -11 (190) µg·L-1 (p = 0.001). Iron supplements [27 (191) mg·day-1 ] were used at 45 sojourns (42%), while only 11 sojourns (10%) were commenced with s-ferritin <35 µg/L. Hbmass increased by 4.6 ± 3.7%, 3.4 ± 3.3%, 4.2 ± 4.3%, and 2.9 ± 3.4% with pre-altitude s-ferritin ≤35 µg·L-1 , 36-50 µg·L-1 , 51-100 µg·L-1 , and >100 µg·L-1 , respectively, with no group difference (p = 0.400). Hbmass increased by 4.1 ± 3.9%, 3.0 ± 3.0% and 3.7 ± 4.7% without, ≤50 mg·day-1 or >50 mg·day-1 supplemental iron, respectively (p = 0.399). Linear mixed model analysis revealed no interaction between pre-altitude s-ferritin and iron supplementation on ΔHbmass (p = 0.906). However, each 100 km·h increase in hypoxic dose augmented ΔHbmass by an additional 0.4% (95% CI: 0.1-0.7%; p = 0.012), while each 1 g·kg-1 higher pre-altitude Hbmass reduced ΔHbmass by -1% (-1.6 to -0.5; p < 0.001), and illness lowered ΔHbmass by -5.7% (-8.3 to -3.1%; p < 0.001). In conclusion, pre-altitude s-ferritin or iron supplementation were not related to the altitude-induced increase in Hbmass (3.7%) in world-class endurance athletes with clinically normal iron stores.
Collapse
Affiliation(s)
- Anu Elisa Koivisto-Mørk
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Ida Siobhan Svendsen
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Øyvind Skattebo
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jostein Hallén
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Gøran Paulsen
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
38
|
Barrack M, Fredericson M, Dizon F, Tenforde A, Kim B, Kraus E, Kussman A, Singh S, Nattiv A. Dietary Supplement Use According to Sex and Triad Risk Factors in Collegiate Endurance Runners. J Strength Cond Res 2021; 35:404-410. [PMID: 33278271 DOI: 10.1519/jsc.0000000000003848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Barrack, MT, Fredericson, M, Dizon, F, Tenforde, AS, Kim, BY, Kraus, E, Kussman, A, Singh, S, and Nattiv, A. Dietary supplement use according to sex and Triad risk factors in collegiate endurance runners. J Strength Cond Res 35(2): 404-410, 2021-This cross-sectional study evaluated the prevalence in the use of dietary supplements among elite collegiate runners among 2 NCAA Division I cross-country teams. At the start of each season from 2015 to 2017, male and female endurance runners were recruited to complete baseline study measures; the final sample included 135 (male n = 65, female n = 70) runners. Runners completed a health survey, web-based nutrition survey, and Triad risk assessment. The prevalence of dietary supplement use and Triad risk factors, including disordered eating, low bone mass, amenorrhea (in women), low body mass index, and stress fracture history, was assessed. A total of 78.5% (n = 106) runners reported taking 1 or more supplements on ≥4 days per week over the past month, 48% (n = 65) reported use of ≥3 supplements. Products used with highest frequency included multivitamin/minerals 46.7% (n = 63), iron 46.7% (n = 63), vitamin D 34.1% (n = 46), and calcium 33.3% (n = 45). More women, compared with men, used iron (61.4 vs. 30.8%, p < 0.001) and calcium (41.4 vs. 24.6%, p = 0.04); men exhibited higher use of amino acids and beta-alanine (6.2 vs. 0%, p = 0.04). Runners with bone stress injury (BSI) history, vs. no previous BSI, reported more frequent use of ≥3 supplements (61.5 vs. 32.8%, p = 0.001), vitamin D (49.2 vs. 19.4%, p < 0.001), and calcium (47.7 vs. 19.4%, p = 0.001). Low bone mineral density was also associated with higher use of vitamin D and calcium. Most runners reported regular use of 1 or more supplements, with patterns of use varying based on sex, history of BSI, and bone mass.
Collapse
Affiliation(s)
- Michelle Barrack
- Department of Family and Consumer Sciences, California State University, Long Beach, Long Beach, California
| | | | - Francis Dizon
- Department of Family and Consumer Sciences, California State University, Long Beach, Long Beach, California
| | - Adam Tenforde
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, Massachusetts
| | - Brian Kim
- Departments of Family Medicine and Orthopedic Surgery, University of California, Irvine, Irvine, California; and
| | - Emily Kraus
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Andrea Kussman
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Sonal Singh
- Departments of Family Medicine and Orthopedic Surgery, University of California, Los Angeles, Santa Monica, California
| | - Aurelia Nattiv
- Departments of Family Medicine and Orthopedic Surgery, University of California, Los Angeles, Santa Monica, California
| |
Collapse
|
39
|
Rajagukguk YV, Arnold M, Gramza-Michałowska A. Pulse Probiotic Superfood as Iron Status Improvement Agent in Active Women-A Review. Molecules 2021; 26:molecules26082121. [PMID: 33917113 PMCID: PMC8067853 DOI: 10.3390/molecules26082121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Active women or women of reproductive age (15–49 years old) have a high risk of suffering from anaemia. Anaemia is not solely caused by iron deficiency, however, the approaches to improve iron status in both cases are greatly related. Improving the iron status of active women can be done by dietary intervention with functional food. This review aims to provide insights about the functional food role to increase iron absorption in active women and the potency of pulse probiotic superfood development in dry matrices. Results showed that the beneficial effect of iron status is significantly improved by the synergic work between probiotic and prebiotic. Furthermore, chickpeas and lentils are good sources of prebiotic and the consumption of pulses are related with 21st century people’s intention to eat healthy food. There are wide possibilities to develop functional food products incorporated with probiotics to improve iron status in active woman.
Collapse
|
40
|
Abstract
Hintergrund Die labordiagnostische Untersuchung stellt eine wichtige Möglichkeit zur Beurteilung und Optimierung der Leistungs- und Regenerationsfähigkeit professioneller Athleten dar. Ferner ist sie für die Prävention, Diagnostik und Rehabilitation von Verletzungen und Überbelastungen von Bedeutung. Fragestellung Ziel dieser Arbeit ist die Darstellung muskuloskelettaler laborchemischer Parameter, die relevante Erkenntnisse für die medizinische Betreuung von Leistungssportlern liefern. Material und Methoden Literaturrecherche und narratives Review. Ergebnisse Die Bestimmung des Vitamin-D-, Calcium- und Knochenstoffwechsels stellt die laborchemische Basisdiagnostik im Rahmen der Beurteilung des Skelettstatus mit zusätzlichem präventivem Nutzen bezüglich muskuloskelettaler Verletzungen dar. Ferner können muskuläre Serummarker, z. B. Laktatdehydrogenase (LDH), Kreatinkinase (CK), Myoglobin und Aspartat-Aminotransferase (ASAT), helfen, eine metabolische Adaptation an das physische Training festzustellen und Aussagen über die muskuläre Arbeitslast und mögliche Schädigungen zu gewinnen. Die Energieverfügbarkeit kann durch eine entsprechende Bilanzierung sowie die laborchemische Bestimmung der Makro- und Mikronährstoffe eingeschätzt und optimiert werden. Schlussfolgerungen Die labordiagnostische Untersuchung besitzt in der Betreuung von Athleten eine sportartenübergreifende klinische Relevanz. Sie dient der Erreichung einer höchstmöglichen Leistungsfähigkeit sowie optimalen Prävention von Knochen- und Muskelverletzungen, wobei sämtliche Mangelzustände (z. B. Vitamin D) ausgeglichen werden sollten. Durch eine Periodisierung der laborchemischen Untersuchungen, mit zumindest zwei Labordiagnostiken im Jahr, und Aufstellung individueller Variabilitäts- und Referenzbereiche kann ferner eine bessere Beurteilbarkeit erreicht werden.
Collapse
|
41
|
Badenhorst CE, Goto K, O'Brien WJ, Sims S. Iron status in athletic females, a shift in perspective on an old paradigm. J Sports Sci 2021; 39:1565-1575. [PMID: 33583330 DOI: 10.1080/02640414.2021.1885782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron deficiency is a common nutrient deficiency within athletes, with sport scientists and medical professionals recognizing that athletes require regular monitoring of their iron status during intense training periods. Revised considerations for athlete iron screening and monitoring have suggested that males get screened biannually during heavy training periods and females require screening biannually or quarterly, depending on their previous history of iron deficiency. The prevalence of iron deficiency in female athletes is higher than their male counterparts and is often cited as being a result of the presence of a menstrual cycle in the premenopausal years. This review has sought to revise our current understanding of female physiology and the interaction between primary reproductive hormones (oestrogen and progesterone) and iron homoeostasis in females. The review highlights an apparent symbiotic relationship between iron metabolism and the menstrual cycle that requires additional research as well as identifying areas of the menstrual cycle that may be primed for nutritional iron supplementation.
Collapse
Affiliation(s)
- Claire E Badenhorst
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Wendy J O'Brien
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Stacy Sims
- Te Huataki Waiora - School of Health, the University of Waikato, Hamilton, New Zealand
| |
Collapse
|
42
|
Alfaro-Magallanes VM, Benito PJ, Rael B, Barba-Moreno L, Romero-Parra N, Cupeiro R, Swinkels DW, Laarakkers CM, Peinado AB. Menopause Delays the Typical Recovery of Pre-Exercise Hepcidin Levels after High-Intensity Interval Running Exercise in Endurance-Trained Women. Nutrients 2020; 12:nu12123866. [PMID: 33348847 PMCID: PMC7766833 DOI: 10.3390/nu12123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Menopause commonly presents the gradual accumulation of iron in the body over the years, which is a risk factor for diseases such as cancer, osteoporosis, or cardiovascular diseases. Running exercise is known to acutely increase hepcidin levels, which reduces iron absorption and recycling. As this fact has not been studied in postmenopausal women, this study investigated the hepcidin response to running exercise in this population. Thirteen endurance-trained postmenopausal women (age: 51.5 ± 3.89 years; height: 161.8 ± 4.9 cm; body mass: 55.9 ± 3.6 kg; body fat: 24.7 ± 4.2%; peak oxygen consumption: 42.4 ± 4.0 mL·min-1·kg-1) performed a high-intensity interval running protocol, which consisted of 8 × 3 min bouts at 85% of the maximal aerobic speed with 90-second recovery. Blood samples were collected pre-exercise, 0, 3, and 24 hours post-exercise. As expected, hepcidin exhibited higher values at 3 hours post-exercise (3.69 ± 3.38 nmol/L), but also at 24 hours post-exercise (3.25 ± 3.61 nmol/L), in comparison with pre-exercise (1.77 ± 1.74 nmol/L; p = 0.023 and p = 0.020, respectively) and 0 hour post-exercise (2.05 ± 2.00 nmol/L; p = 0.021 and p = 0.032, respectively) concentrations. These differences were preceded by a significant increment of interleukin-6 at 0 hour post-exercise (3.41 ± 1.60 pg/mL) compared to pre-exercise (1.65 ± 0.48 pg/m, p = 0.003), 3 hours (1.50 ± 0.00 pg/mL, p = 0.002) and 24 hours post-exercise (1.52 ± 0.07 pg/mL, p = 0.001). Hepcidin peaked at 3 hours post-exercise as the literature described for premenopausal women but does not seem to be fully recovered to pre-exercise levels within 24 hours post-exercise, as it would be expected. This suggests a slower recovery of basal hepcidin levels in postmenopausal women, suggesting interesting applications in order to modify iron homeostasis as appropriate, such as the prevention of iron accumulation or proper timing of iron supplementation.
Collapse
Affiliation(s)
- Víctor M. Alfaro-Magallanes
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Pedro J. Benito
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
- Correspondence: ; Tel.: +34-910-677-866
| | - Beatriz Rael
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Laura Barba-Moreno
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Nuria Romero-Parra
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Rocío Cupeiro
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Dorine W. Swinkels
- Translational Metabolic Laboratory (TML 830), Medical Center, Department of Laboratory Medicine, Radboud University, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (D.W.S.); (C.M.L.)
- Hepcidinanalysis.com, Geert Grooteplein 10 (830), 6525 GA Nijmegen, The Netherlands
| | - Coby M. Laarakkers
- Translational Metabolic Laboratory (TML 830), Medical Center, Department of Laboratory Medicine, Radboud University, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (D.W.S.); (C.M.L.)
- Hepcidinanalysis.com, Geert Grooteplein 10 (830), 6525 GA Nijmegen, The Netherlands
| | - Ana B. Peinado
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | | |
Collapse
|
43
|
Prevalence of iron deficiency among university kendo practitioners in Japan: an observational cohort study. J Int Soc Sports Nutr 2020; 17:62. [PMID: 33287850 PMCID: PMC7720520 DOI: 10.1186/s12970-020-00393-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
Background Iron deficiency is widely recognized as being the cause of anemia in athletes, although iron status in athletes of Kendo, a traditional Japanese martial art based on swordsmanship and practiced as an educational sport, has not been widely investigated. Methods We performed a health assessment on anemia and serum ferritin levels, along with nutrient intake evaluation, for Kendo practitioners in a university in Japan. Results A total of 56 Kendo practitioners (39 male and 17 female) aged between 18 and 23 years participated in the study. No individuals exhibited WHO-defined anemia (less than 13 or 12 g/dL of hemoglobin levels in male or female), while hypoferritinemia (less than 30 ng/mL) was found in seven (41%) females but not in males. Significantly higher body mass index was found in the female athletes with hypoferritinemia compared to females with normo-ferritinemia in sub-analysis (median [interquartile range]; 25.6 [24.2, 26.9] versus 22.6 [21.7, 24.1], respectively. p < 0.05). No significant differences in the intake of iron were registered between males and females (with and without hypoferritinemia) using data from a food-frequency questionnaire survey. Conclusion No apparent anemia was found in adolescent Kendo practitioners, although this study confirmed the presence of hypoferritinemia in several female athletes. Careful follow-up, involving both clinical and nutritional assessment, will be necessary for them to prevent progression into anemia. A future study with larger cohorts in multiple sites is warranted to assess the prevalence of iron deficiency for validation and, if necessary, to devise a strategy for improving the iron status in Kendo athletes.
Collapse
|
44
|
Franco B, Cavallaro LAR, Mota DS, Rodrigues NDA, Manchado-Gobatto FDB, Bezerra RMN, Esteves AM. Differences in iron intake during pregnancy influence in trainability response of male rat offspring. EINSTEIN-SAO PAULO 2020; 18:eAO5665. [PMID: 33295427 PMCID: PMC7690933 DOI: 10.31744/einstein_journal/2020ao5665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
Objective: To evaluate if different concentrations of iron in diets during pregnancy would interfere in the aerobic and anaerobic performance of the offspring, observed during 8-week swimming training and measured by lactate minimum test. Methods: Pregnant rats were divided into four groups with different dietary iron concentrations: standard (40mg/kg), supplementation (100mg/kg), restriction since weaning, and restriction only during pregnancy (4mg/kg). After birth, the offspring were assigned to their respective groups (Standard Offspring, Supplementation Offspring, Restriction Offspring or Restriction Offspring 2). The lactate minimum test was performed at three time points: before starting exercise training, after 4 weeks and after 8 weeks of exercise training. Results: The Restriction Offspring Group had a significant reduction in the concentration of lactate minimum and in swimming time to exhaustion, after 4 and 8 weeks of training as compared to before training. Therefore, the results showed the Restriction Offspring Group was not able to maintain regularity during training in lactate minimum tests. Conclusion: Our results suggested the Restriction Offspring Group showed a marked decrease in its performance parameters, which may have occurred due to iron restriction.
Collapse
Affiliation(s)
- Beatriz Franco
- Faculdade de Educação Física, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Diego Silva Mota
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP, Brazil
| | | | - Fúlvia de Barros Manchado-Gobatto
- Faculdade de Educação Física, Universidade Estadual de Campinas, Campinas, SP, Brazil.,Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP, Brazil
| | | | - Andrea Maculano Esteves
- Faculdade de Educação Física, Universidade Estadual de Campinas, Campinas, SP, Brazil.,Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP, Brazil
| |
Collapse
|
45
|
Benardot D. Nutritional Concerns for the Artistic Athlete. Phys Med Rehabil Clin N Am 2020; 32:51-64. [PMID: 33198898 DOI: 10.1016/j.pmr.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Performing artists are similar to sports athletes, with repeated patterns of training and performing. This requires that artistic athletes manage the dynamic interaction between energy/nutrient/fluid utilization and provision to assure long, healthful, and successful careers. Although sports athletes have an abundance of science-based nutritional guidance available, there are few nutrition-focused resources available to artistic athletes, which can result in failure to optimally satisfy the artistic athlete's individual nutritional needs. The purpose of this article is to review common nutritional issues faced by artistic athletes and to present science-based nutrition strategies that can aid in lowering nutrition-associated health and performance risks.
Collapse
Affiliation(s)
- Dan Benardot
- Center for the Study of Human Health, Candler Library, Emory University, Suite 107, Atlanta, GA 30323, USA; Emeritus, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
46
|
Skorseth P, Segovia N, Hastings K, Kraus E. Prevalence of Female Athlete Triad Risk Factors and Iron Supplementation Among High School Distance Runners: Results From a Triad Risk Screening Tool. Orthop J Sports Med 2020; 8:2325967120959725. [PMID: 33195716 PMCID: PMC7605010 DOI: 10.1177/2325967120959725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Investigations of the female athlete triad (Triad) in high school athletes have found that 36% had low energy availability, 54% had menstrual abnormalities, and 16% had low bone mineral density (BMD). Limited data are available showing the prevalence of these risk factors in high school distance runners or regarding best practice on screening for the Triad in the adolescent population. Purpose: To (1) evaluate the prevalence of Triad risk factors and iron supplementation in high school distance runners and (2) pilot a screening tool for Triad risk score. Study Design: Descriptive epidemiology study. Methods: The study population included female high school athletes who participated in cross-country/track. Participants completed a survey including questions regarding dietary habits, menstrual history, and bone stress injury (BSI) history. They then underwent evaluation of 25-hydroxyvitamin D, free triiodothyronine (T3), and dual-energy x-ray absorptiometry scan to measure body fat and BMD through use of age-, sex-, and ethnicity-matched Z scores. Triad scores were calculated. Relationships were analyzed using Spearman correlation coefficient. Results: There were 38 study participants (mean age, 16.9 years). Average body mass index was 19.8 kg/m2. Disordered eating or eating disorders were reported in 76.3% of runners; in addition, 23.7% reported delayed menarche, 45.9% had a history of amenorrhea or oligomenorrhea, 42.1% had low BMD (Z score < –1.0), and 15.8% reported prior BSI. Low free T3 was significantly associated with higher Triad risk scores (rS = –0.36; P = .028). More than 42% of athletes were supplementing iron. Conclusion: The prevalence of Triad risk factors in high school distance runners was high. Free T3 was inversely associated with Triad score, which may serve as an indicator of low energy availability. Nearly half of the athletes were using iron supplementation.
Collapse
Affiliation(s)
- Paige Skorseth
- Division of Pediatric Orthopedic Surgery and Sports Medicine, Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California, USA.,University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nicole Segovia
- Division of Pediatric Orthopedic Surgery and Sports Medicine, Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Katherine Hastings
- Division of Pediatric Orthopedic Surgery and Sports Medicine, Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Emily Kraus
- Division of Pediatric Orthopedic Surgery and Sports Medicine, Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
47
|
Collins J, Maughan RJ, Gleeson M, Bilsborough J, Jeukendrup A, Morton JP, Phillips SM, Armstrong L, Burke LM, Close GL, Duffield R, Larson-Meyer E, Louis J, Medina D, Meyer F, Rollo I, Sundgot-Borgen J, Wall BT, Boullosa B, Dupont G, Lizarraga A, Res P, Bizzini M, Castagna C, Cowie CM, D'Hooghe M, Geyer H, Meyer T, Papadimitriou N, Vouillamoz M, McCall A. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br J Sports Med 2020; 55:416. [PMID: 33097528 DOI: 10.1136/bjsports-2019-101961] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Football is a global game which is constantly evolving, showing substantial increases in physical and technical demands. Nutrition plays a valuable integrated role in optimising performance of elite players during training and match-play, and maintaining their overall health throughout the season. An evidence-based approach to nutrition emphasising, a 'food first' philosophy (ie, food over supplements), is fundamental to ensure effective player support. This requires relevant scientific evidence to be applied according to the constraints of what is practical and feasible in the football setting. The science underpinning sports nutrition is evolving fast, and practitioners must be alert to new developments. In response to these developments, the Union of European Football Associations (UEFA) has gathered experts in applied sports nutrition research as well as practitioners working with elite football clubs and national associations/federations to issue an expert statement on a range of topics relevant to elite football nutrition: (1) match day nutrition, (2) training day nutrition, (3) body composition, (4) stressful environments and travel, (5) cultural diversity and dietary considerations, (6) dietary supplements, (7) rehabilitation, (8) referees and (9) junior high-level players. The expert group provide a narrative synthesis of the scientific background relating to these topics based on their knowledge and experience of the scientific research literature, as well as practical experience of applying knowledge within an elite sports setting. Our intention is to provide readers with content to help drive their own practical recommendations. In addition, to provide guidance to applied researchers where to focus future efforts.
Collapse
Affiliation(s)
- James Collins
- Intra Performance Group, London, UK.,Performance and Research Team, Arsenal Football Club, London, UK
| | | | - Michael Gleeson
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Johann Bilsborough
- Faculty of Health, University of Technology, Sydney, New South Wales, Australia.,New England Patriots, Foxboro, MA, USA
| | - Asker Jeukendrup
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK.,MySport Science, Birmingham, UK
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - S M Phillips
- Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Lawrence Armstrong
- Human Performance Laboratory, University of Connecticut, Storrs, CT, USA
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rob Duffield
- Faculty of Health, University of Technology, Sydney, New South Wales, Australia.,Medical Department, Football Federation Australia, Sydney, New South Wales, Australia
| | - Enette Larson-Meyer
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel Medina
- Athlete Care and Performance, Monumental Sports & Entertainment, Washington, DC, USA
| | - Flavia Meyer
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ian Rollo
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK.,PepsiCo Life Sciences, Global R&D, Gatorade Sports Science Institute, Birmingham, UK
| | | | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Gregory Dupont
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Peter Res
- Dutch Olympic Team, Amsterdam, Netherlands
| | - Mario Bizzini
- Research and Human Performance Lab, Schulthess Clinic, Zurich, Switzerland
| | - Carlo Castagna
- University of Rome Tor Vergata, Rome, Italy.,Technical Department, Italian Football Federation (FIGC), Florence, Italy.,Italian Football Referees Association, Bologna, Italy
| | - Charlotte M Cowie
- Technical Directorate, Football Association, Burton upon Trent, UK.,Medical Committee, UEFA, Nyon, Switzerland
| | - Michel D'Hooghe
- Medical Committee, UEFA, Nyon, Switzerland.,Medical Centre of Excelence, Schulthess Clinic, Zurich, Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Tim Meyer
- Medical Committee, UEFA, Nyon, Switzerland.,Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | | | | | - Alan McCall
- Performance and Research Team, Arsenal Football Club, London, UK .,Medical Department, Football Federation Australia, Sydney, New South Wales, Australia.,Sport, Exercise and Health Sciences, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| |
Collapse
|
48
|
McCormick R, Sim M, Dawson B, Peeling P. Refining Treatment Strategies for Iron Deficient Athletes. Sports Med 2020; 50:2111-2123. [PMID: 33057935 DOI: 10.1007/s40279-020-01360-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iron deficiency (ID) is a prevailing nutritional concern amongst the athletic population due to the increased iron demands of this group. Athletes' ability to replenish taxed iron stores is challenging due to the low bioavailability of dietary sources, and the interaction between exercise and hepcidin, the primary iron-regulatory hormone. To date, copious research has explored the link between exercise and iron regulation, with a more recent focus on optimising iron treatment applications. Currently, oral iron supplementation is typically the first avenue of iron replacement therapy beyond nutritional intervention, for treatment of ID athletes. However, many athletes encounter associated gastrointestinal side-effects which can deter them from fulfilling a full-term oral iron treatment plan, generally resulting in sub-optimal treatment efficacy. Consequently, various strategies (e.g. dosage, composition, timing) of oral iron supplementation have been investigated with the goal of increasing fractional iron absorption, reducing gastric irritation, and ultimately improving the efficacy of oral iron therapy. This review explores the various treatment strategies pertinent to athletes and concludes a contemporary strategy of oral iron therapy entailing morning supplementation, ideally within the 30 min following morning exercise, and in athletes experiencing gut sensitivity, consumed on alternate days or at lower doses.
Collapse
Affiliation(s)
- Rachel McCormick
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia. .,The Western Australian Institute of Sport, Mt Claremont, WA, Australia.
| | - Marc Sim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| | - Brian Dawson
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia.,The Western Australian Institute of Sport, Mt Claremont, WA, Australia
| |
Collapse
|
49
|
Gibson-Smith E, Storey R, Ranchordas M. Dietary Intake, Body Composition and Iron Status in Experienced and Elite Climbers. Front Nutr 2020; 7:122. [PMID: 32850940 PMCID: PMC7419595 DOI: 10.3389/fnut.2020.00122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023] Open
Abstract
Climbing has developed into a popular recreational and elite sport, evidenced by a growing number of licenced competition athletes, and the acceptance into the Olympic calendar for Tokyo 2020. A nutritional assessment, including the evaluation of anthropometric and biochemical data, has not been previously reported in climbing athletes. Therefore, the aim of this study was to assess the dietary intake, body composition, and iron status in experienced climbers, across a range of performance levels. Forty climbers (n = 20 male, n = 20 female; 8.8 ± 6.6 years' experience; BMI 21.6 ± 1.7) aged 18–46 (30.3 ± 6.7 years) participated in the study. Dietary intake was recorded in a 3-days diet diary. Body composition was assessed using a skinfold profile and iron status via blood markers. Mean energy intake was 2154.6 ± 450 kcal·day−1, with 30% of male climbers and 5% of female climbers failing to meet predicted resting metabolic rate. Furthermore, 77.5% of participants failed to meet a predicted energy requirement to support a “moderate” training programme. There were no significant correlations between daily energy intake and exercise volume. Mean intake of carbohydrate, protein and fat was 3.7 ± 0.9 g·kg−1·day−1, 1.6 ± 0.5 g·kg−1·day−1, and 1.4 ± 0.4 g·kg−1·day−1, respectively, with no significant difference between genders. Approximately 17% of males (n =3) and 45% of females (n = 9) had a sub-optimal iron status. Thirty percent of females met the classification criteria for iron deficiency. Mean serum ferritin was significantly greater in males, compared to females (102.7 ± 54.9 vs. 51.4 ± 24.2 μg·L−1; p ≤ 0.01) and significantly lower in vegan/vegetarians vs. omnivores, in female climbers only (33.2 ± 14.8 vs. 57.5 ± 24 μg·L−1; p = 0.05). No significant differences were observed between climbing ability groups (intermediate-advanced/elite-higher elite) for body composition, dietary intake, or iron status, for males or females. These findings suggest that experienced climbers are at risk of energy restriction and iron deficiency, therefore, routine assessment of nutritional status is warranted. Future research should consider iron status in relation to energy availability and investigate additional factors which may predispose this population to iron deficiency, as well as the risk of relative energy deficiency in sport (RED-S).
Collapse
Affiliation(s)
- Edward Gibson-Smith
- Centre for Sport and Exercise Science, College of Health, Wellbeing and Lifestyle, Sheffield Hallam University, Sheffield, United Kingdom
| | - Ryan Storey
- Sport Industry Research Centre, College of Health, Wellbeing and Lifestyle, Sheffield Hallam University, Sheffield, United Kingdom
| | - Mayur Ranchordas
- Academy of Sport and Physical Activity, College of Health, Wellbeing and Lifestyle, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
50
|
Nutrition and Altitude: Strategies to Enhance Adaptation, Improve Performance and Maintain Health: A Narrative Review. Sports Med 2020; 49:169-184. [PMID: 31691928 PMCID: PMC6901429 DOI: 10.1007/s40279-019-01159-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Training at low to moderate altitudes (~ 1600-2400 m) is a common approach used by endurance athletes to provide a distinctive environmental stressor to augment training stimulus in the anticipation of increasing subsequent altitude- and sea-level-based performance. Despite some scientific progress being made on the impact of various nutrition-related changes in physiology and associated interventions at mountaineering altitudes (> 3000 m), the impact of nutrition and/or supplements on further optimization of these hypoxic adaptations at low-moderate altitudes is only an emerging topic. Within this narrative review we have highlighted six major themes involving nutrition: altered energy availability, iron, carbohydrate, hydration, antioxidant requirements and various performance supplements. Of these issues, emerging data suggest that particular attention be given to the potential risk for poor energy availability and increased iron requirements at the altitudes typical of elite athlete training (~ 1600-2400 m) to interfere with optimal adaptations. Furthermore, the safest way to address the possible increase in oxidative stress associated with altitude exposure is via the consumption of antioxidant-rich foods rather than high-dose antioxidant supplements. Meanwhile, many other important questions regarding nutrition and altitude training remain to be answered. At the elite level of sport where the differences between winning and losing are incredibly small, the strategic use of nutritional interventions to enhance the adaptations to altitude training provides an important consideration in the search for optimal performance.
Collapse
|