1
|
M V, Mohammed AI, Briot C, Ryan RM, Hambley TW. Is ASCT2 a Suitable Vector for the Selective Delivery of Anticancer Drugs? Modification of Glutamine at Either the Carboxylate or the Side Chain Hinders Binding and Transport. ChemMedChem 2025; 20:e202400759. [PMID: 39562323 DOI: 10.1002/cmdc.202400759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The Alanine, Serine, and Cysteine Transporter 2 (ASCT2) transports glutamine into cells and is upregulated in many cancers. Attachment to glutamine to enable ASCT2 to transport anticancer agents into cells has been proposed, but the impact of such modifications is a critical determinant of the potential of this strategy. Transport via ASCT2 of two glutamine analogues modified in ways that reflect possible mechanisms for attaching anticancer agents was studied. The aim was to determine if the modification of glutamine interferes with its transport via ASCT2 and thereby establish whether the conjugation of drugs to glutamine can facilitate the accumulation of anticancer drugs in cancer cells. L-theanine and a glutamine derivative modified at the carboxylate (7) were applied to Xenopus laevis oocytes expressing ASCT2. Two-electrode voltage clamp electrophysiology was used to measure substrate-elicited currents over a range of membrane potentials. Compound 7 was identified as neither a substrate nor an inhibitor while L-theanine was identified as an inhibitor of ASCT2. Thus, modification of glutamine in these ways prevents it from acting as a substrate and suggests that ASCT2 may not be a suitable target for delivery of anticancer drugs attached via either the carboxylate or side chain positions.
Collapse
Affiliation(s)
- Vinitha M
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Adnan Ibrahim Mohammed
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
- Department of Chemistry, College of Science, University of Kerbala, Kerbala, 56001, Iraq
| | - Chelsea Briot
- School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Renae M Ryan
- School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Trevor W Hambley
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Jiang J, Xia N, Yang M, Qiu P, Zhu W, Chen J, Zhu J. Identification and validation of glucose metabolism-related gene signature in endometrial cancer. BMC Cancer 2025; 25:30. [PMID: 39773448 PMCID: PMC11708096 DOI: 10.1186/s12885-024-13418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Metabolic syndrome associated with glucose metabolism plays a pivotal role in tumorigenesis, potentially elevating the risk of endometrial cancer (EC). This study sought to establish a glucose metabolism-related gene (GMRG) signature linked to EC. METHODS Differential analysis was conducted to identify differentially expressed genes (DEGs) between EC and normal samples from the TCGA-EC dataset. Glucose metabolism-related DEGs (GMR-DEGs) were then derived by intersecting these DEGs with GMRGs. A prognostic signature for EC was developed through the Least Absolute Shrinkage and Selection Operator (LASSO) regression and univariate Cox analysis. Additionally, immune profiling and immunotherapy responsiveness were evaluated across two distinct risk subgroups, accompanied by a single-cell analysis of prognostic genes. The expression levels of these prognostic genes were quantified at both transcriptional and translational stages using reverse transcription quantitative PCR (RT-qPCR) and immunohistochemistry (IHC) in clinical samples. Furthermore, the functional significance of key genes was explored through in vitro assays. RESULTS 2,912 DEGs and 202 GMR-DEGs were identified between the EC and normal groups. Subsequently, six prognostic genes were derived, including ASRGL1, SLC38A3, SLC2A1, ALDH1B1, GAD1, and GLYATL1. EC patients were classified into high and low-risk subgroups based on the six genes. Independent prognostic analysis indicated that risk score and disease stage were significant independent prognostic factors. Single-cell analysis revealed that the six prognostic genes were highly expressed in ciliated and epithelial cells. Immune cell infiltration was generally lower in the high-risk group, where tumor purity was elevated. The expression levels of SLC38A3, SLC2A1, and ASRGL1 are higher in tumor samples by RT-qPCR, with IHC confirming increased SLC38A3 expression. Finally, SLC38A3 may function as oncogenes in EC, as revealed by the results of in vitro experiments. CONCLUSIONS In this study, we developed six novel prognostic genes in EC based on glycolysis, and corresponding prognostic models were developed. Notably, we identified SLC38A3 as the key gene, which offers valuable insights for further research into EC.
Collapse
Affiliation(s)
- Juan Jiang
- Department of Obstetrics and Gynecology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, China
| | - Nan Xia
- Department of Pathology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, China
| | - Mei Yang
- Advanced Molecular Pathology, Institute of Soochow University and SANO, Suzhou, China
| | - Ping Qiu
- Department of Obstetrics and Gynecology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, China
| | - Wei Zhu
- Department of Obstetrics and Gynecology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, China
| | - Jing Chen
- Department of Pathology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, China
| | - Jiamei Zhu
- Department of Obstetrics and Gynecology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, China.
- Advanced Molecular Pathology, Institute of Soochow University and SANO, Suzhou, China.
| |
Collapse
|
3
|
Wang X, Guan J, Feng L, Li Q, Zhao L, Li Y, Ma R, Shi M, Han B, Hao G, Wang L, Li H, Wang X. A machine learning-based immune response signature to facilitate prognosis prediction in patients with endometrial cancer. Sci Rep 2024; 14:30801. [PMID: 39730507 DOI: 10.1038/s41598-024-81040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Endometrial cancer is the most prevalent form of gynecologic malignancy, with a significant surge in incidence among youngsters. Although the advent of the immunotherapy era has profoundly improved patient outcomes, not all patients benefit from immunotherapy; some patients experience hyperprogression while on immunotherapy. Hence, there is a pressing need to further delineate the distinct immune response profiles in patients with endometrial cancer to enhance prognosis prediction and facilitate the prediction of immunotherapeutic responses. The ssGSEA method was used to evaluate the activities of the immune response pathways in patients with endometrial cancer. Unsupervised clustering was employed to identify the different immune response patterns. WGCNA was employed to identify the genes that highly correlated with the immune response patterns observed. Ninety-five machine learning combinations were utilized to identify the optimal prognosis model and the novel biomarker, SLC38A3. Experiments such as cell invasion, migration, scratch, and in vivo tumorigenicity were performed to determine the function of SLC28A3. Molecular docking techniques were employed to determine the targeted action of periodate-oxidized adenosine on SLC38A3. Patients exhibited both immune response-suppressing C1 phenotypes and immune response-activating C2 phenotypes, with significant differences in prognosis between these two phenotypes. WGCNA identified 418 genes that highly correlated with the immune response phenotypes, of which 69 genes were associated with prognosis. The immune response-related score (IRRS) established by multiple machine learning frameworks demonstrated stability in predicting patient prognosis and immune status. High expression of SLC38A3 contributes to cellular malignant traits, and periodate-oxidized adenosine bound stably to SLC38A3. IRRS accurately predicts disease prognosis and immune status in patients with endometrial cancer. SLC38A3 serves as a prognostic marker for these patients and can be stably targeted by periodate-oxidized adenosine.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Jing Guan
- Department of Radiology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Li Feng
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Qingxue Li
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Liwei Zhao
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Yue Li
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Ruixiao Ma
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Mengnan Shi
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Biaogang Han
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Guorong Hao
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Lina Wang
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Hui Li
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China.
| | - Xiuli Wang
- Department of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
4
|
Wang XL, Li L, Meng X. Interplay between the Redox System and Renal Tubular Transport. Antioxidants (Basel) 2024; 13:1156. [PMID: 39456410 PMCID: PMC11505102 DOI: 10.3390/antiox13101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The kidney plays a critical role in maintaining the homeostasis of body fluid by filtration of metabolic wastes and reabsorption of nutrients. Due to the overload, a vast of energy is required through aerobic metabolism, which inevitably leads to the generation of reactive oxygen species (ROS) in the kidney. Under unstressed conditions, ROS are counteracted by antioxidant systems and maintained at low levels, which are involved in signal transduction and physiological processes. Accumulating evidence indicates that the reduction-oxidation (redox) system interacts with renal tubular transport. Redox imbalance or dysfunction of tubular transport leads to renal disease. Here, we discuss the ROS and antioxidant systems in the kidney and outline the metabolic dysfunction that is a common feature of renal disease. Importantly, we describe the key molecules involved in renal tubular transport and their relationship to the redox system and, finally, summarize the impact of their dysregulation on the pathogenesis and progression of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Lianjian Li
- Department of Vascular Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Hubei Academy of Chinese Medicine, Wuhan 430061, China;
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Cullen PF, Gammerdinger WJ, Sui SJH, Mazumder AG, Sun D. Transcriptional profiling of retinal astrocytes identifies a specific marker and points to functional specialization. Glia 2024; 72:1604-1628. [PMID: 38785355 PMCID: PMC11262981 DOI: 10.1002/glia.24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Astrocyte heterogeneity is an increasingly prominent research topic, and studies in the brain have demonstrated substantial variation in astrocyte form and function, both between and within regions. In contrast, retinal astrocytes are not well understood and remain incompletely characterized. Along with optic nerve astrocytes, they are responsible for supporting retinal ganglion cell axons and an improved understanding of their role is required. We have used a combination of microdissection and Ribotag immunoprecipitation to isolate ribosome-associated mRNA from retinal astrocytes and investigate their transcriptome, which we also compared to astrocyte populations in the optic nerve. Astrocytes from these regions are transcriptionally distinct, and we identified retina-specific astrocyte genes and pathways. Moreover, although they share much of the "classical" gene expression patterns of astrocytes, we uncovered unexpected variation, including in genes related to core astrocyte functions. We additionally identified the transcription factor Pax8 as a highly specific marker of retinal astrocytes and demonstrated that these astrocytes populate not only the retinal surface, but also the prelaminar region at the optic nerve head. These findings are likely to contribute to a revised understanding of the role of astrocytes in the retina.
Collapse
Affiliation(s)
- Paul F Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - William J Gammerdinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
6
|
Vázquez-Durán DL, Ortega A, Rodríguez A. Amino Acid Transporters Proteins Involved in the Glutamate-Glutamine Cycle and Their Alterations in Murine Models of Alzheimer's Disease. Mol Neurobiol 2024; 61:6077-6088. [PMID: 38273046 DOI: 10.1007/s12035-024-03966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
The brain's ability to integrate external stimuli and generate responses is highly complex. While these mechanisms are not completely understood, current evidence suggests that alterations in cellular metabolism and microenvironment are involved in some dysfunctions as complex as Alzheimer's disease. This pathology courses with defects in the establishment of chemical synapses, which is dependent on the production and supply of neurotransmitters like glutamate and its recycling through the glutamate-glutamine cycle. Alterations in the expression and function of the amino acid transporters proteins involved in this cycle have recently been reported in different stages of Alzheimer's disease. Most of these data come from patients in advanced stages of the disease or post-mortem, due to the ethical and technical limitations of human studies. Therefore, genetically modified mouse models have been an excellent tool to analyze metabolic and even behavioral parameters that are very similar to those that develop in Alzheimer's disease, even at presymptomatic stages. Hence, this paper analyzes the role of glutamate metabolism and its intercellular trafficking in excitatory synapses from different approaches using transgenic mouse models; such an analysis will contribute to our present understanding of AD.
Collapse
Affiliation(s)
| | - Arturo Ortega
- Departamento de Toxicología, Cinvestav- IPN, Mexico City, México
| | - Angelina Rodríguez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, México.
| |
Collapse
|
7
|
Zhou T, Meng Q, Sun R, Xu D, Zhu F, Jia C, Zhou S, Chen S, Yang Y. Structure and gene expression changes of the gill and liver in juvenile black porgy (Acanthopagrus schlegelii) under different salinities. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101228. [PMID: 38547756 DOI: 10.1016/j.cbd.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 05/27/2024]
Abstract
Black porgy (Acanthopagrus schlegelii) is an important marine aquaculture species in China. It is an ideal object for the cultivation of low-salinity aquaculture strains in marine fish and the study of salinity tolerance mechanisms in fish because of its strong low-salinity tolerance ability. Gill is the main osmoregulatory organ in fish, and the liver plays an important role in the adaptation of the organism to stressful environments. In order to understand the coping mechanisms of the gills and livers of black porgy in different salinity environments, this study explored these organs after 30 days of culture in hypoosmotic (0.5 ppt), isosmotic (12 ppt), and normal seawater (28 ppt) at histologic, physiologic, and transcriptomic levels. The findings indicated that gill exhibited a higher number of differentially expressed genes than the liver, emphasizing the gill's heightened sensitivity to salinity changes. Protein interaction networks and enrichment analyses highlighted energy metabolism as a key regulatory focus at both 0.5 ppt and 12 ppt salinity in gills. Additionally, gills showed enrichment in ions, substance transport, and other metabolic pathways, suggesting a more direct regulatory response to salinity stress. The liver's regulatory patterns at different salinities exhibited significant distinctions, with pathways and genes related to metabolism, immunity, and antioxidants predominantly activated at 0.5 ppt, and molecular processes linked to cell proliferation taking precedence at 12 ppt salinity. Furthermore, the study revealed a reduction in the volume of the interlamellar cell mass (ILCM) of the gills, enhancing the contact area of the gill lamellae with water. At 0.5 ppt salinity, hepatic antioxidant enzyme activity increased, accompanied by oxidative stress damage. Conversely, at 12 ppt salinity, gill NKA activity significantly decreased without notable changes in liver structure. These results underscore the profound impact of salinity on gill structure and function, highlighting the crucial role of the liver in adapting to salinity environments.
Collapse
Affiliation(s)
- Tangjian Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Meng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Ruijian Sun
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Dafeng Xu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Fei Zhu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Chaofeng Jia
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Shimiao Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuyin Chen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Yunxia Yang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
8
|
Zhang S, Huang L, Zeng Y, Gao G, Wu H, Li D, Guo R. SLC38A3 Promotes the Proliferation and Migration of Tumor Cells and Predicts Poor Prognosis in Colorectal Cancer. ACS OMEGA 2024; 9:21116-21126. [PMID: 38764627 PMCID: PMC11097367 DOI: 10.1021/acsomega.4c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Previous studies have revealed that abnormal expressions of membrane transporters were associated with colorectal cancer (CRC). We herein performed a comprehensive bioinformatics analysis to identify the key transporter protein-related genes involved in CRC and potential mechanisms. Differentially expressed transporter protein-related genes (DE-TPRGs) were identified from CRC and normal samples using The Cancer Genome Atlas database. SLC38A3 expression was validated by immunohistochemistry and RT-qPCR, and the potential mechanism was explored. A total of 63 DE-TPRGs (29 up-regulated and 34 down-regulated) were screened. Inside, ABCC2, ABCG2, SLC4A4, SLC9A3, SLC15A1, and SLC38A3 were identified as hub genes. SLC38A3 is indeed upregulated in colorectal cancer patients. Furthermore, we found that knockdown of SLC38A3 inhibited the proliferation and migration of HCT116 cells, and Hsp70 ATPase activator could rescue it. Overall, SLC38A3 is a novel potential biomarker involved in CRC progression and promotes the proliferation and migration of tumor cells by positively regulating the function of Hsp70.
Collapse
Affiliation(s)
- Siyi Zhang
- Department
of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lingli Huang
- Department
of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Youjie Zeng
- Department
of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ge Gao
- Department
of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hui Wu
- Department
of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Dai Li
- Phase
I Clinical Tria Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National
Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410005, China
| | - Ren Guo
- Department
of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
9
|
Chen X, Yan X, Tang X, Wang Y, Zhang X, Cao X, Ran X, Ma G, Hu T, Qureshi A, Luo P, Shen L. Study on the mechanism of arsenic-induced renal injury based on SWATH proteomics technology. J Trace Elem Med Biol 2024; 83:127390. [PMID: 38266420 DOI: 10.1016/j.jtemb.2024.127390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Arsenic (As) poisoning is a worldwide endemic disease affecting thousands of people. As is excreted mainly through the renal system, and arsenic has toxic effects on the kidneys, but the mechanism has not been elucidated. In this study, the molecular basis of arsenic's nephrotoxicity was studied by using a high-throughput proteomics technique. METHODS Eight SD (Sprague-Dawley) rats, half male and half female, were fed an As diet containing 50 mg/kg NaAsO2. Age- and sex-matched rats fed with regular chow were used as controls. At the end of the experiment (90 days), kidney tissue samples were collected and assessed for pathological changes using hematoxylin-eosin staining. Proteomic methods were used to identify alterations in protein expression levels in kidney tissues, and bioinformatic analyses of differentially expressed proteins between arsenic-treated and control groups were performed. The expression of some representative proteins was validated by Western blot analysis. RESULTS NaAsO2 could induce renal injury. Compared with the control group, 112 proteins were up-regulated, and 46 proteins were down-regulated in the arsenic-treated group. These proteins were associated with the electron transport chain, oxidative phosphorylation, mitochondrial membrane, apoptosis, and proximal tubules, suggesting that the mechanisms associated with them were related to arsenic-induced kidney injury and nephrotoxicity. The expressions of Atp6v1f, Cycs and Ndufs1 were verified, consistent with the results of omics. CONCLUSION These results provide important evidence for arsenic-induced kidney injury and provide new insights into the molecular mechanism of arsenic-induced kidney injury.
Collapse
Affiliation(s)
- Xiaolu Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoqian Ran
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ting Hu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ayesha Qureshi
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China.
| | - Liming Shen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
10
|
Chidley C, Darnell AM, Gaudio BL, Lien EC, Barbeau AM, Vander Heiden MG, Sorger PK. A CRISPRi/a screening platform to study cellular nutrient transport in diverse microenvironments. Nat Cell Biol 2024; 26:825-838. [PMID: 38605144 PMCID: PMC11098743 DOI: 10.1038/s41556-024-01402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Blocking the import of nutrients essential for cancer cell proliferation represents a therapeutic opportunity, but it is unclear which transporters to target. Here we report a CRISPR interference/activation screening platform to systematically interrogate the contribution of nutrient transporters to support cancer cell proliferation in environments ranging from standard culture media to tumours. We applied this platform to identify the transporters of amino acids in leukaemia cells and found that amino acid transport involves high bidirectional flux dependent on the microenvironment composition. While investigating the role of transporters in cystine starved cells, we uncovered a role for serotonin uptake in preventing ferroptosis. Finally, we identified transporters essential for cell proliferation in subcutaneous tumours and found that levels of glucose and amino acids can restrain proliferation in that environment. This study establishes a framework for systematically identifying critical cellular nutrient transporters, characterizing their function and exploring how the tumour microenvironment impacts cancer metabolism.
Collapse
Affiliation(s)
- Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin L Gaudio
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Evan C Lien
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna M Barbeau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Erichsen C, Heiser A, Haack N, Maclean P, Dwyer CM, McCoard S. Increasing the Understanding of Nutrient Transport Capacity of the Ovine Placentome. Animals (Basel) 2024; 14:1294. [PMID: 38731298 PMCID: PMC11083602 DOI: 10.3390/ani14091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Placental nutrient transport capacity influences fetal growth and development; however, it is affected by environmental factors, which are poorly understood. The objective of this study was to understand the impact of the ovine placentome morphological subtype, tissue type, and maternal parenteral supplementation of arginine mono-hydrochloride (Arg) on nutrient transport capacity using a gene expression approach. Placentomal tissues of types A, B, and C morphologic placentome subtypes were derived from 20 twin-bearing ewes, which were infused thrice daily with Arg (n = 9) or saline (Ctrl, n = 11) from 100 to 140 days of gestation. Samples were collected at day 140 of gestation. Expression of 31 genes involved in placental nutrient transport and function was investigated. Differential expression of specific amino acid transporter genes was found in the subtypes, suggesting a potential adaptive response to increase the transport capacity. Placentomal tissues differed in gene expression, highlighting differential transport capacity. Supplementation with Arg was associated with differential expressions of genes involved in amino acid transport and angiogenesis, suggesting a greater nutrient transport capacity. Collectively, these results indicate that the morphological subtype, tissue type, and maternal Arg supplementation can influence placental gene expression, which may be an adaptive response to alter the transport capacity to support fetal growth in sheep.
Collapse
Affiliation(s)
- Cathrine Erichsen
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
- Scotland’s Rural College (SRUC), Easter Bush Campus, Edinburgh EH25 9RG, UK;
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Axel Heiser
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| | - Neville Haack
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| | - Paul Maclean
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| | - Cathy Mary Dwyer
- Scotland’s Rural College (SRUC), Easter Bush Campus, Edinburgh EH25 9RG, UK;
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Sue McCoard
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| |
Collapse
|
12
|
Johnston KJA, Cote AC, Hicks E, Johnson J, Huckins LM. Genetically Regulated Gene Expression in the Brain Associated With Chronic Pain: Relationships With Clinical Traits and Potential for Drug Repurposing. Biol Psychiatry 2024; 95:745-761. [PMID: 37678542 PMCID: PMC10924073 DOI: 10.1016/j.biopsych.2023.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Chronic pain is a common, poorly understood condition. Genetic studies including genome-wide association studies have identified many relevant variants, which have yet to be translated into full understanding of chronic pain. Transcriptome-wide association studies using transcriptomic imputation methods such as S-PrediXcan can help bridge this genotype-phenotype gap. METHODS We carried out transcriptomic imputation using S-PrediXcan to identify genetically regulated gene expression associated with multisite chronic pain in 13 brain tissues and whole blood. Then, we imputed genetically regulated gene expression for over 31,000 Mount Sinai BioMe participants and performed a phenome-wide association study to investigate clinical relationships in chronic pain-associated gene expression changes. RESULTS We identified 95 experiment-wide significant gene-tissue associations (p < 7.97 × 10-7), including 36 unique genes and an additional 134 gene-tissue associations reaching within-tissue significance, including 53 additional unique genes. Of the 89 unique genes in total, 59 were novel for multisite chronic pain and 18 are established drug targets. Chronic pain genetically regulated gene expression for 10 unique genes was significantly associated with cardiac dysrhythmia, metabolic syndrome, disc disorders/dorsopathies, joint/ligament sprain, anemias, and neurologic disorder phecodes. Phenome-wide association study analyses adjusting for mean pain score showed that associations were not driven by mean pain score. CONCLUSIONS We carried out the largest transcriptomic imputation study of any chronic pain trait to date. Results highlight potential causal genes in chronic pain development and tissue and direction of effect. Several gene results were also drug targets. Phenome-wide association study results showed significant associations for phecodes including cardiac dysrhythmia and metabolic syndrome, thereby indicating potential shared mechanisms.
Collapse
Affiliation(s)
- Keira J A Johnston
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Alanna C Cote
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily Hicks
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jessica Johnson
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura M Huckins
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
13
|
Tan Z, Boyapati K, Tressler CM, Jenkinson NM, Glunde K. Glutamine transporter SLC38A3 promotes breast cancer metastasis via Gsk3β/β-catenin/EMT pathway. Cancer Lett 2024; 586:216653. [PMID: 38309615 DOI: 10.1016/j.canlet.2024.216653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
Breast cancer is the leading cancer-related cause of death in women. Here we show that solute carrier family 38-member 3 (SLC38A3) is overexpressed in breast cancer, particularly in triple-negative breast cancer (TNBC) cells and tissues. Our study reveals that SLC38A3 regulates cellular glutamine, glutamate, asparagine, aspartate, alanine, and glutathione (GSH) levels in breast cancer cells. Our data demonstrate that SLC38A3 enhances cell viability, cell migration and invasion in vitro, and promotes tumor growth and metastasis in vivo, while reducing apoptosis and oxidative stress. Mechanistically, we show that SLC38A3 suppresses the activity of glycogen synthase kinase 3-β (Gsk3β), a negative regulator of β-catenin, and increases protein levels of β-catenin, leading to the upregulation of epithelial-to-mesenchymal-transition (EMT)-inducing transcription factors and EMT markers in breast cancer. In summary, we show that SLC38A3 is overexpressed in breast cancer and promotes breast cancer metastasis via the GSK3β/β-catenin/EMT pathway, presenting a novel therapeutic target to explore for breast cancer.
Collapse
Affiliation(s)
- Zheqiong Tan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Keerti Boyapati
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin M Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole M Jenkinson
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Kolesova H, Hrabalova P, Bohuslavova R, Abaffy P, Fabriciova V, Sedmera D, Pavlinkova G. Reprogramming of the developing heart by Hif1a-deficient sympathetic system and maternal diabetes exposure. Front Endocrinol (Lausanne) 2024; 15:1344074. [PMID: 38505753 PMCID: PMC10948485 DOI: 10.3389/fendo.2024.1344074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Maternal diabetes is a recognized risk factor for both short-term and long-term complications in offspring. Beyond the direct teratogenicity of maternal diabetes, the intrauterine environment can influence the offspring's cardiovascular health. Abnormalities in the cardiac sympathetic system are implicated in conditions such as sudden infant death syndrome, cardiac arrhythmic death, heart failure, and certain congenital heart defects in children from diabetic pregnancies. However, the mechanisms by which maternal diabetes affects the development of the cardiac sympathetic system and, consequently, heightens health risks and predisposes to cardiovascular disease remain poorly understood. Methods and results In the mouse model, we performed a comprehensive analysis of the combined impact of a Hif1a-deficient sympathetic system and the maternal diabetes environment on both heart development and the formation of the cardiac sympathetic system. The synergic negative effect of exposure to maternal diabetes and Hif1a deficiency resulted in the most pronounced deficit in cardiac sympathetic innervation and the development of the adrenal medulla. Abnormalities in the cardiac sympathetic system were accompanied by a smaller heart, reduced ventricular wall thickness, and dilated subepicardial veins and coronary arteries in the myocardium, along with anomalies in the branching and connections of the main coronary arteries. Transcriptional profiling by RNA sequencing (RNA-seq) revealed significant transcriptome changes in Hif1a-deficient sympathetic neurons, primarily associated with cell cycle regulation, proliferation, and mitosis, explaining the shrinkage of the sympathetic neuron population. Discussion Our data demonstrate that a failure to adequately activate the HIF-1α regulatory pathway, particularly in the context of maternal diabetes, may contribute to abnormalities in the cardiac sympathetic system. In conclusion, our findings indicate that the interplay between deficiencies in the cardiac sympathetic system and subtle structural alternations in the vasculature, microvasculature, and myocardium during heart development not only increases the risk of cardiovascular disease but also diminishes the adaptability to the stress associated with the transition to extrauterine life, thus increasing the risk of neonatal death.
Collapse
Affiliation(s)
- Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Department of Developmental Cardiology, Institute of Physiology Czech Academy of Sciences (CAS), Prague, Czechia
| | - Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Department of Developmental Cardiology, Institute of Physiology Czech Academy of Sciences (CAS), Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), BIOCEV, Vestec, Czechia
| |
Collapse
|
15
|
Zhang D, Hua Z, Li Z. The role of glutamate and glutamine metabolism and related transporters in nerve cells. CNS Neurosci Ther 2024; 30:e14617. [PMID: 38358002 PMCID: PMC10867874 DOI: 10.1111/cns.14617] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glutamate and glutamine are the most abundant amino acids in the blood and play a crucial role in cell survival in the nervous system. Various transporters found in cell and mitochondrial membranes, such as the solute carriers (SLCs) superfamily, are responsible for maintaining the balance of glutamate and glutamine in the synaptic cleft and within cells. This balance affects the metabolism of glutamate and glutamine as non-essential amino acids. AIMS This review aims to provide an overview of the transporters and enzymes associated with glutamate and glutamine in neuronal cells. DISCUSSION We delve into the function of glutamate and glutamine in the nervous system by discussing the transporters involved in the glutamate-glutamine cycle and the key enzymes responsible for their mutual conversion. Additionally, we highlight the role of glutamate and glutamine as carbon and nitrogen donors, as well as their significance as precursors for the synthesis of reduced glutathione (GSH). CONCLUSION Glutamate and glutamine play a crucial role in the brain due to their special effects. It is essential to focus on understanding glutamate and glutamine metabolism to comprehend the physiological behavior of nerve cells and to treat nervous system disorders and cancer.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
16
|
Vyas A, Doshi G. A cross talk on the role of contemporary biomarkers in depression. Biomarkers 2024; 29:18-29. [PMID: 38261718 DOI: 10.1080/1354750x.2024.2308834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Introduction: Biomarkers can be used to identify determinants of response to various treatments of mental disorders. Evidence to date demonstrates that markers of inflammatory, neurotransmitter, neurotrophic, neuroendocrine, and metabolic function can predict the psychological and physical consequences of depression in individuals, allowing for the development of new therapeutic targets with fewer side effects. Extensive research has included hundreds of potential biomarkers of depression, but their roles in depression, abnormal patients, and how bioinformatics can be used to improve diagnosis, treatment, and prognosis have not been determined or defined. To determine which biomarkers can and cannot be used to predict treatment response, classify patients for specific treatments, and develop targets for new interventions, proprietary strategies, and current research projects need to be tailored.Material and Methods: This review article focuses on - biomarker systems that would help in the further development and expansion of newer targets - which holds great promise for reducing the burden of depression.Results and Discussion: Further, this review point to the inflammatory response, metabolic marker, and microribonucleic acids, long non-coding RNAs, HPA axis which are - related to depression and can serve as future targets.
Collapse
Affiliation(s)
- Aditi Vyas
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
17
|
Liao W, Lee KZ. CDKL5-mediated developmental tuning of neuronal excitability and concomitant regulation of transcriptome. Hum Mol Genet 2023; 32:3276-3298. [PMID: 37688574 DOI: 10.1093/hmg/ddad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a serine-threonine kinase enriched in the forebrain to regulate neuronal development and function. Patients with CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition caused by mutations of CDKL5 gene, present early-onset epilepsy as the most prominent feature. However, spontaneous seizures have not been reported in mouse models of CDD, raising vital questions on the human-mouse differences and the roles of CDKL5 in early postnatal brains. Here, we firstly measured electroencephalographic (EEG) activities via a wireless telemetry system coupled with video-recording in neonatal mice. We found that mice lacking CDKL5 exhibited spontaneous epileptic EEG discharges, accompanied with increased burst activities and ictal behaviors, specifically at postnatal day 12 (P12). Intriguingly, those epileptic spikes disappeared after P14. We next performed an unbiased transcriptome profiling in the dorsal hippocampus and motor cortex of Cdkl5 null mice at different developmental timepoints, uncovering a set of age-dependent and brain region-specific alterations of gene expression in parallel with the transient display of epileptic activities. Finally, we validated multiple differentially expressed genes, such as glycine receptor alpha 2 and cholecystokinin, at the transcript or protein levels, supporting the relevance of these genes to CDKL5-regulated excitability. Our findings reveal early-onset neuronal hyperexcitability in mouse model of CDD, providing new insights into CDD etiology and potential molecular targets to ameliorate intractable neonatal epilepsy.
Collapse
Affiliation(s)
- Wenlin Liao
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan
- Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei 116, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-Sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
18
|
Taurino G, Chiu M, Bianchi MG, Griffini E, Bussolati O. The SLC38A5/SNAT5 amino acid transporter: from pathophysiology to pro-cancer roles in the tumor microenvironment. Am J Physiol Cell Physiol 2023; 325:C550-C562. [PMID: 37458433 DOI: 10.1152/ajpcell.00169.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
SLC38A5/SNAT5 is a system N transporter that can mediate net inward or outward transmembrane fluxes of neutral amino acids coupled with Na+ (symport) and H+ (antiport). Its preferential substrates are not only amino acids with side chains containing amide (glutamine and asparagine) or imidazole (histidine) groups, but also serine, glycine, and alanine are transported by the carrier. Expressed in the pancreas, intestinal tract, brain, liver, bone marrow, and placenta, it is regulated at mRNA and protein levels by mTORC1 and WNT/β-catenin pathways, and it is sensitive to pH, nutritional stress, inflammation, and hypoxia. SNAT5 expression has been found to be altered in pathological conditions such as chronic inflammatory diseases, gestational complications, chronic metabolic acidosis, and malnutrition. Growing experimental evidence shows that SNAT5 is overexpressed in several types of cancer cells. Moreover, recently published results indicate that SNAT5 expression in stromal cells can support the metabolic exchanges occurring in the tumor microenvironment of asparagine-auxotroph tumors. We review the functional role of the SNAT5 transporter in pathophysiology and propose that, due to its peculiar operational and regulatory features, SNAT5 may play important pro-cancer roles when expressed either in neoplastic or in stromal cells of glutamine-auxotroph tumors.NEW & NOTEWORTHY The transporter SLC38A5/SNAT5 provides net influx or efflux of glutamine, asparagine, and serine. These amino acids are of particular metabolic relevance in several conditions. Changes in transporter expression or activity have been described in selected types of human cancers, where SNAT5 can mediate amino acid exchanges between tumor and stromal cells, thus providing a potential therapeutic target. This is the first review that recapitulates the characteristics and roles of the transporter in physiology and pathology.
Collapse
Affiliation(s)
- Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, University of Parma, Parma, Italy
| | - Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimiliano G Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, University of Parma, Parma, Italy
| | - Erika Griffini
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Sedaka R, Huang J, Yamaguchi S, Lovelady C, Hsu JS, Shinde S, Kasztan M, Crossman DK, Saigusa T. Accelerated cystogenesis by dietary protein load is dependent on, but not initiated by kidney macrophages. Front Med (Lausanne) 2023; 10:1173674. [PMID: 37538309 PMCID: PMC10394241 DOI: 10.3389/fmed.2023.1173674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Background Disease severity of autosomal dominant polycystic kidney disease (ADPKD) is influenced by diet. Dietary protein, a recognized cyst-accelerating factor, is catabolized into amino acids (AA) and delivered to the kidney leading to renal hypertrophy. Injury-induced hypertrophic signaling in ADPKD results in increased macrophage (MФ) activation and inflammation followed by cyst growth. We hypothesize that the cystogenesis-prompting effects of HP diet are caused by increased delivery of specific AA to the kidney, ultimately stimulating MФs to promote cyst progression. Methods Pkd1flox/flox mice with and without Cre (CAGG-ER) were given tamoxifen to induce global gene deletion (Pkd1KO). Pkd1KO mice were fed either a low (LP; 6%), normal (NP; 18%), or high (HP; 60%) protein diet for 1 week (early) or 6 weeks (chronic). Mice were then euthanized and tissues were used for histology, immunofluorescence and various biochemical assays. One week fed kidney tissue was cell sorted to isolate tubular epithelial cells for RNA sequencing. Results Chronic dietary protein load in Pkd1KO mice increased kidney weight, number of kidney infiltrating and resident MФs, chemokines, cytokines and cystic index compared to LP diet fed mice. Accelerated cyst growth induced by chronic HP were attenuated by liposomal clodronate-mediated MФ depletion. Early HP diet fed Pkd1KO mice had larger cystic kidneys compared to NP or LP fed counterparts, but without increases in the number of kidney MФs, cytokines, or markers of tubular injury. RNA sequencing of tubular epithelial cells in HP compared to NP or LP diet group revealed increased expression of sodium-glutamine transporter Snat3, chloride channel Clcnka, and gluconeogenesis marker Pepck1, accompanied by increased excretion of urinary ammonia, a byproduct of glutamine. Early glutamine supplementation in Pkd1KO mice lead to kidney hypertrophy. Conclusion Chronic dietary protein load-induced renal hypertrophy and accelerated cyst growth in Pkd1KO mice is dependent on both infiltrating and resident MФ recruitment and subsequent inflammatory response. Early cyst expansion by HP diet, however, is relient on increased delivery of glutamine to kidney epithelial cells, driving downstream metabolic changes prior to inflammatory provocation.
Collapse
Affiliation(s)
- Randee Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jifeng Huang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shinobu Yamaguchi
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Caleb Lovelady
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jung-Shan Hsu
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sejal Shinde
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Malgorzata Kasztan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Takamitsu Saigusa
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
20
|
Gan Y, Wei Z, Liu C, Li G, Feng Y, Deng Y. Solute carrier transporter disease and developmental and epileptic encephalopathy. Front Neurol 2022; 13:1013903. [PMID: 36419532 PMCID: PMC9676364 DOI: 10.3389/fneur.2022.1013903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 09/14/2023] Open
Abstract
The International League Against Epilepsy officially revised its classification in 2017, which amended "epileptic encephalopathy" to "developmental and epileptic encephalopathy". With the development of genetic testing technology, an increasing number of genes that cause developmental and epileptic encephalopathies are being identified. Among these, solute transporter dysfunction is part of the etiology of developmental and epileptic encephalopathies. Solute carrier transporters play an essential physiological function in the human body, and their dysfunction is associated with various human diseases. Therefore, in-depth studies of developmental and epileptic encephalopathies caused by solute carrier transporter dysfunction can help develop new therapeutic modalities to facilitate the treatment of refractory epilepsy and improve patient prognosis. In this article, the concept of transporter protein disorders is first proposed, and nine developmental and epileptic encephalopathies caused by solute carrier transporter dysfunction are described in detail in terms of pathogenesis, clinical manifestations, ancillary tests, and precise treatment to provide ideas for the precise treatment of epilepsy.
Collapse
Affiliation(s)
- Yajing Gan
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zihan Wei
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Liu
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guoyan Li
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Feng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanchun Deng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Xijing Institute of Epilepsy and Encephalopathy, Xi'an, China
| |
Collapse
|
21
|
Álvarez-Merz I, Fomitcheva IV, Sword J, Hernández-Guijo JM, Solís JM, Kirov SA. Novel mechanism of hypoxic neuronal injury mediated by non-excitatory amino acids and astroglial swelling. Glia 2022; 70:2108-2130. [PMID: 35802030 PMCID: PMC9474671 DOI: 10.1002/glia.24241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
In ischemic stroke and post-traumatic brain injury (TBI), blood-brain barrier disruption leads to leaking plasma amino acids (AA) into cerebral parenchyma. Bleeding in hemorrhagic stroke and TBI also release plasma AA. Although excitotoxic AA were extensively studied, little is known about non-excitatory AA during hypoxic injury. Hypoxia-induced synaptic depression in hippocampal slices becomes irreversible with non-excitatory AA, alongside their intracellular accumulation and increased tissue electrical resistance. Four non-excitatory AA (l-alanine, glycine, l-glutamine, l-serine: AGQS) at plasmatic concentrations were applied to slices from mice expressing EGFP in pyramidal neurons or astrocytes during normoxia or hypoxia. Two-photon imaging, light transmittance (LT) changes, and electrophysiological field recordings followed by electron microscopy in hippocampal CA1 st. radiatum were used to monitor synaptic function concurrently with cellular swelling and injury. During normoxia, AGQS-induced increase in LT was due to astroglial but not neuronal swelling. LT raise during hypoxia and AGQS manifested astroglial and neuronal swelling accompanied by a permanent loss of synaptic transmission and irreversible dendritic beading, signifying acute damage. Neuronal injury was not triggered by spreading depolarization which did not occur in our experiments. Hypoxia without AGQS did not cause cell swelling, leaving dendrites intact. Inhibition of NMDA receptors prevented neuronal damage and irreversible loss of synaptic function. Deleterious effects of AGQS during hypoxia were prevented by alanine-serine-cysteine transporters (ASCT2) and volume-regulated anion channels (VRAC) blockers. Our findings suggest that astroglial swelling induced by accumulation of non-excitatory AA and release of excitotoxins through antiporters and VRAC may exacerbate the hypoxia-induced neuronal injury.
Collapse
Affiliation(s)
- Iris Álvarez-Merz
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Ioulia V. Fomitcheva
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jeremy Sword
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jesús M. Hernández-Guijo
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
| | - José M. Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Sergei A. Kirov
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| |
Collapse
|
22
|
The Genetic Variability of Members of the SLC38 Family of Amino Acid Transporters ( SLC38A3, SLC38A7 and SLC38A9) Affects Susceptibility to Type 2 Diabetes and Vascular Complications. Nutrients 2022; 14:nu14214440. [PMID: 36364703 PMCID: PMC9654215 DOI: 10.3390/nu14214440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Type 2 Diabetes (T2D) is a metabolic disease associated with long-term complications, with a multifactorial pathogenesis related to the interplay between genetic and modifiable risk factors, of which nutrition is the most relevant. In particular, the importance of proteins and constitutive amino acids (AAs) in disease susceptibility is emerging. The ability to sense and respond to changes in AA supplies is mediated by complex networks, of which AA transporters (AATs) are crucial components acting also as sensors of AA availability. This study explored the associations between polymorphisms in selected AATs genes and T2D and vascular complications in 433 patients and 506 healthy controls. Analyses revealed significant association of SLC38A3-rs1858828 with disease risk. Stratification of patients based on presence/absence of vascular complications highlighted significant associations of SLC7A8-rs3783436 and SLC38A7-rs9806843 with diabetic retinopathy. Additionally, the SLC38A9-rs4865615 resulted associated with chronic kidney disease. Notably, these genes function as AAs sensors, specifically glutamine, leucine, and arginine, linked to the main nutrient signaling pathway mammalian target of rapamycin complex 1 (mTORC1). Thus, their genetic variability may contribute to T2D by influencing the ability to properly transduce a signal activating mTORC1 in response to AA availability. In this scenario, the contribution of dietary AAs supply to disease risk may be relevant.
Collapse
|
23
|
Huang L, Li L, Cheng B, Xing T. SLC38A6, regulated by EP300-mediated modifications of H3K27ac, promotes cell proliferation, glutamine metabolism and mitochondrial respiration in hepatocellular carcinoma. Carcinogenesis 2022; 43:885-894. [PMID: 35901507 DOI: 10.1093/carcin/bgac061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common form of liver cancer. The incidence of HCC is increasing and effective prevention methods are needed. The solute carrier family 38 member 6 (SLC38A6) plays an important role in the metabolism of glutamine, which is a central nutrient for many cancers. However, the regulation and function of SLC38A6 in HCC are unclear. SLC38A6 levels in human HCC tissue arrays and cells were determined. SLC38A6 was silenced or overexpressed to determine its role in regulating cell viability, colony formation, cell cycle progression, glutamine metabolism and mitochondrial respiration. A luminescence assay was used to study the interaction between SLC38A6 and EP300. The interactions between SLC38A6, H3K27ac and EP300 were determined using chromatin immunoprecipitation assays. Quantitative RT-PCR and immunoblots were performed to measure mRNAs and proteins, respectively. SLC38A6 expression was higher in HCC compared with expression in normal tissue. Silencing SLC38A6 inhibited cell viability, colony formation, cell cycle progression, glutamine metabolism and mitochondrial respiration, while SLC38A6 overexpression had the opposite effects. Silencing SLC38A6 also inhibited tumor growth in vivo. Silencing EP300 significantly suppressed the interaction between H3K27ac and the SLC38A6 promoter, leading to decreased SLC38A6. SLC38A6 is regulated by EP300-mediated modifications of H3K27ac and promotes viability, colony formation, cell cycle progression, glutamine metabolism and mitochondrial respiration in HCC cells.
Collapse
Affiliation(s)
- Li Huang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lixing Li
- Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai, China
| | - Bin Cheng
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tonghai Xing
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Wang H, Zhang L, Xia Z, Cui JY. Effect of Chronic Cadmium Exposure on Brain and Liver Transporters and Drug-Metabolizing Enzymes in Male and Female Mice Genetically Predisposed to Alzheimer's Disease. Drug Metab Dispos 2022; 50:1414-1428. [PMID: 35878927 PMCID: PMC9513859 DOI: 10.1124/dmd.121.000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Cadmium (Cd) exposure is associated with increased Alzheimer's disease (AD) risks. The human Apolipoprotein E (ApoE) gene encodes a lipid-transporting protein that is critical for brain functions. Compared with ApoE2 and E3, ApoE4 is associated with increased AD risk. Xenobiotic biotransformation-related genes have been implicated in the pathogenesis of AD. However, little is known about the effects of Cd, ApoE, and sex on drug-processing genes. We investigated the Cd-ApoE interaction on the transcriptomic changes in the brains and livers of ApoE3/ApoE4 transgenic mice. Cd disrupts the transcriptomes of transporter and drug-processing genes in brain and liver in a sex- and ApoE-genotype-specific manner. Proinflammation related genes were enriched in livers of Cd-exposed ApoE4 males, whereas circadian rhythm and lipid metabolism related genes were enriched in livers of Cd-exposed ApoE3 females. In brains, Cd up-regulated the arachidonic acid-metabolizing Cyp2j isoforms only in the brains of ApoE3 mice, whereas the dysregulation of cation transporters was male-specific. In livers, several direct target genes of the major xenobiotic-sensing nuclear receptor pregnane X receptor were uniquely upregulated in Cd-exposed ApoE4 males. There was a female-specific hepatic upregulation of the steroid hormone-metabolizing Cyp2 isoforms and the bile acid synthetic enzyme Cyp7a1 by Cd exposure. The dysregulated liver transporters were mostly involved in intermediary metabolism, with the most significant response observed in ApoE3 females. In conclusion, Cd dysregulated the brain and liver drug-processing genes in a sex- and ApoE-genotype specific manner, and this may serve as a contributing factor for the variance in the susceptibility to Cd neurotoxicity. SIGNIFICANCE STATEMENT: Xenobiotic biotransformation plays an important role in modulating the toxicity of environmental pollutants. The human ApoE4 allele is the strongest genetic risk factor for AD, and cadmium (Cd) is increasingly recognized as an environmental factor of AD. Very little is known regarding the interactions between Cd exposure, sex, and the genes involved in xenobiotic biotransformation in brain and liver. The present study has addressed this critical knowledge gap.
Collapse
Affiliation(s)
- Hao Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Liang Zhang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Zhengui Xia
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Renal Metabolome in Obese Mice Treated with Empagliflozin Suggests a Reduction in Cellular Respiration. Biomolecules 2022; 12:biom12091176. [PMID: 36139016 PMCID: PMC9496198 DOI: 10.3390/biom12091176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Sodium glucose cotransporter, type 2 inhibitors, such as Empagliflozin, are protective of the kidneys by unclear mechanisms. Our aim was to determine how Empagliflozin affected kidney cortical metabolome and lipidome in mice. Adult male TALLYHO mice (prone to obesity) were treated with a high-milk-fat diet, or this diet containing Empagliflozin (0.01%), for 8 weeks. Targeted and untargeted metabolomics and lipidomics were conducted on kidney cortex by liquid chromatography followed by tandem mass-spectroscopy. Metabolites were statistically analyzed by MetaboAnalyst 5.0, LipidSig (lipid species only) and/or CEU Mass Mediator (untargeted annotation). In general, volcano plotting revealed oppositely skewed patterns for targeted metabolites (primarily hydrophilic) and lipids (hydrophobic) in that polar metabolites showed a larger number of decreased species, while non-polar (lipids) had a greater number of increased species (>20% changed and/or raw p-value < 0.05). The top three pathways regulated by Empagliflozin were urea cycle, spermine/spermidine biosynthesis, and aspartate metabolism, with an amino acid network being highly affected, with 14 of 20 classic amino acids down-regulated. Out of 75 changed polar metabolites, only three were up-regulated, i.e., flavin mononucleotide (FMN), uridine, and ureidosuccinic acid. Both FMN and uridine have been shown to be protective of the kidney. Scrutiny of metabolites of glycolysis/gluconeogenesis/Krebs cycle revealed a 20−45% reduction in several species, including phosphoenolpyruvate (PEP), succinate, and malic acid. In contrast, although overall lipid quantity was not higher, several lipid species were increased by EMPA, including those of the classes, phosphatidic acids, phosphatidylcholines, and carnitines. Overall, these analyses suggest a protection from extensive metabolic load and the corresponding oxidative stress with EMPA in kidney. This may be in response to reduced energy demands of the proximal tubule as a result of inhibition of transport and/or differences in metabolic pools available for metabolism.
Collapse
|
26
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
27
|
Zielińska M, Albrecht J, Popek M. Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema. Front Neurosci 2022; 16:874750. [PMID: 35733937 PMCID: PMC9207324 DOI: 10.3389/fnins.2022.874750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute liver failure (ALF) impairs ammonia clearance from blood, which gives rise to acute hyperammonemia and increased ammonia accumulation in the brain. Since in brain glutamine synthesis is the only route of ammonia detoxification, hyperammonemia is as a rule associated with increased brain glutamine content (glutaminosis) which correlates with and contributes along with ammonia itself to hyperammonemic brain edema-associated with ALF. This review focuses on the effects of hyperammonemia on the two glutamine carriers located in the astrocytic membrane: Slc38a3 (SN1, SNAT3) and Slc7a6 (y + LAT2). We emphasize the contribution of the dysfunction of either of the two carriers to glutaminosis- related aspects of brain edema: retention of osmotically obligated water (Slc38a3) and induction of oxidative/nitrosative stress (Slc7a6). The changes in glutamine transport link glutaminosis- evoked mitochondrial dysfunction to oxidative-nitrosative stress as formulated in the “Trojan Horse” hypothesis.
Collapse
|
28
|
Marafi D, Fatih JM, Kaiyrzhanov R, Ferla MP, Gijavanekar C, Al-Maraghi A, Liu N, Sites E, Alsaif HS, Al-Owain M, Zakkariah M, El-Anany E, Guliyeva U, Guliyeva S, Gaba C, Haseeb A, Alhashem AM, Danish E, Karageorgou V, Beetz C, Subhi AA, Mullegama SV, Torti E, Sebastin M, Breilyn MS, Duberstein S, Abdel-Hamid MS, Mitani T, Du H, Rosenfeld JA, Jhangiani SN, Coban Akdemir Z, Gibbs RA, Taylor JC, Fakhro KA, Hunter JV, Pehlivan D, Zaki MS, Gleeson JG, Maroofian R, Houlden H, Posey JE, Sutton VR, Alkuraya FS, Elsea SH, Lupski JR. Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy. Brain 2022; 145:909-924. [PMID: 34605855 PMCID: PMC9050560 DOI: 10.1093/brain/awab369] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 11/14/2022] Open
Abstract
The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.
Collapse
Affiliation(s)
- Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
- Correspondence to: Dana Marafi, MD, MSc Department of Pediatrics, Faculty of Medicine, Kuwait University P.O. Box 24923, 13110 Safat, Kuwait E-mail:
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Matteo P Ferla
- NIHR Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Charul Gijavanekar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | | | - Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Emily Sites
- Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Hessa S Alsaif
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University 11533, Riyadh, Saudi Arabia
| | - Mohamed Zakkariah
- Section of Child Neurology, Department of Pediatrics, Al-adan Hospital, Riqqa, Kuwait
| | - Ehab El-Anany
- Section of Child Neurology, Department of Pediatrics, Al-adan Hospital, Riqqa, Kuwait
| | | | | | - Colette Gaba
- Department of Pediatrics, Bon Secours Mercy Health, Toledo, OH 43608, USA
| | - Ateeq Haseeb
- Mercy Children’s Hospital, Toledo, OH 43608, USA
| | - Amal M Alhashem
- Division of Medical Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Enam Danish
- Department of Ophthalmology, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | | | | | - Alaa A Subhi
- Neurosciences Department, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | | | | | - Monisha Sebastin
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York 10467, USA
- Division of Genetics, Department of Pediatrics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, 10467, USA
| | - Margo Sheck Breilyn
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York 10467, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan Duberstein
- Isabelle Rapin Division of Child Neurology in the Saul R Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Jill V Hunter
- E.B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, CA 92123, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence may also be addressed to: James R. Lupski, MD, PhD, DSc (hon) Department of Molecular and Human Genetics, Baylor College of Medicine One Baylor Plaza, Room 604B, Houston, TX 77030, USA E-mail:
| |
Collapse
|
29
|
Foster CS, Van Dyke JU, Thompson MB, Smith NM, Simpfendorfer CA, Murphy CR, Whittington CM. Different Genes are Recruited During Convergent Evolution of Pregnancy and the Placenta. Mol Biol Evol 2022; 39:msac077. [PMID: 35388432 PMCID: PMC9048886 DOI: 10.1093/molbev/msac077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The repeated evolution of the same traits in distantly related groups (convergent evolution) raises a key question in evolutionary biology: do the same genes underpin convergent phenotypes? Here, we explore one such trait, viviparity (live birth), which, qualitative studies suggest, may indeed have evolved via genetic convergence. There are >150 independent origins of live birth in vertebrates, providing a uniquely powerful system to test the mechanisms underpinning convergence in morphology, physiology, and/or gene recruitment during pregnancy. We compared transcriptomic data from eight vertebrates (lizards, mammals, sharks) that gestate embryos within the uterus. Since many previous studies detected qualitative similarities in gene use during independent origins of pregnancy, we expected to find significant overlap in gene use in viviparous taxa. However, we found no more overlap in uterine gene expression associated with viviparity than we would expect by chance alone. Each viviparous lineage exhibits the same core set of uterine physiological functions. Yet, contrary to prevailing assumptions about this trait, we find that none of the same genes are differentially expressed in all viviparous lineages, or even in all viviparous amniote lineages. Therefore, across distantly related vertebrates, different genes have been recruited to support the morphological and physiological changes required for successful pregnancy. We conclude that redundancies in gene function have enabled the repeated evolution of viviparity through recruitment of different genes from genomic "toolboxes", which are uniquely constrained by the ancestries of each lineage.
Collapse
Affiliation(s)
- Charles S.P. Foster
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - James U. Van Dyke
- School of Molecular Sciences, La Trobe University, Albury-Wodonga Campus, VIC, Australia
| | - Michael B. Thompson
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Nicholas M.A. Smith
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Colin A. Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Christopher R. Murphy
- School of Medical Sciences and The Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
30
|
Bhutia YD, Mathew M, Sivaprakasam S, Ramachandran S, Ganapathy V. Unconventional Functions of Amino Acid Transporters: Role in Macropinocytosis (SLC38A5/SLC38A3) and Diet-Induced Obesity/Metabolic Syndrome (SLC6A19/SLC6A14/SLC6A6). Biomolecules 2022; 12:biom12020235. [PMID: 35204736 PMCID: PMC8961558 DOI: 10.3390/biom12020235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Amino acid transporters are expressed in mammalian cells not only in the plasma membrane but also in intracellular membranes. The conventional function of these transporters is to transfer their amino acid substrates across the lipid bilayer; the direction of the transfer is dictated by the combined gradients for the amino acid substrates and the co-transported ions (Na+, H+, K+ or Cl−) across the membrane. In cases of electrogenic transporters, the membrane potential also contributes to the direction of the amino acid transfer. In addition to this expected traditional function, several unconventional functions are known for some of these amino acid transporters. This includes their role in intracellular signaling, regulation of acid–base balance, and entry of viruses into cells. Such functions expand the biological roles of these transporters beyond the logical amino acid homeostasis. In recent years, two additional unconventional biochemical/metabolic processes regulated by certain amino acid transporters have come to be recognized: macropinocytosis and obesity. This adds to the repertoire of biological processes that are controlled and regulated by amino acid transporters in health and disease. In the present review, we highlight the unusual involvement of selective amino acid transporters in macropinocytosis (SLC38A5/SLC38A3) and diet-induced obesity/metabolic syndrome (SLC6A19/SLC6A14/SLC6A6).
Collapse
|
31
|
Chakraborty S, Gourain V, Benz M, Scheiger J, Levkin P, Popova A. Droplet microarrays for cell culture: effect of surface properties and nanoliter culture volume on global transcriptomic landscape. Mater Today Bio 2021; 11:100112. [PMID: 34124640 PMCID: PMC8175407 DOI: 10.1016/j.mtbio.2021.100112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
The development of novel chemically developed and physically defined surfaces and environments for cell culture and screening is important for various biological applications. The Droplet microarray (DMA) platform based on hydrophilic-superhydrophobic patterning enables high-throughput cellular screening in nanoliter volumes and on various biocompatible surfaces. Here we performed phenotypic and transcriptomic analysis of HeLa-CCL2 cells cultured on DMA, with a goal to analyze cellular response on different surfaces and culture volumes down to 3 nL, compared with conventional cell culture platforms. Our results indicate that cells cultured on four tested substrates: nanostructured nonpolymer, rough and smooth variants of poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) polymer and poly(thioether) dendrimer are compatible with cells grown in Petri dish. Cells cultured on nanostructured nonpolymer coating exhibited the closet transcriptomic resemblance to that of cells grown in Petri dish. Analysis of cells cultured in 100, 9, and 3 nL media droplets on DMA indicated that all but cells grown in 3 nL volumes had unperturbed viability with minimal alterations in the transcriptome compared with 96-well plate. Our findings demonstrate the applicability of DMA for cell-based assays and highlight the possibility of establishing regular cell culture on various biomaterial-coated substrates and in nanoliter volumes, along with routinely used cell culture platforms.
Collapse
Affiliation(s)
- S. Chakraborty
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS–FMS), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
| | - V. Gourain
- Institute of Biological and Chemical Systems–Biological Information Processing (IBCS–BIP), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
| | - M. Benz
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS–FMS), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
| | - J.M. Scheiger
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS–FMS), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
- Institute of Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany
| | - P.A. Levkin
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS–FMS), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, 76131 Karlsruhe, Germany
| | - A.A. Popova
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS–FMS), Karlsruhe Institute of Technology (KIT), Hermann–von–Helmholtz–Platz 1, 76344 Eggenstein–Leopoldshafen, Germany
| |
Collapse
|
32
|
Hattori H, Hanai Y, Oshima Y, Kataoka H, Eto N. Excessive Intake of High-Fructose Corn Syrup Drinks Induces Impaired Glucose Tolerance. Biomedicines 2021; 9:biomedicines9050541. [PMID: 34066196 PMCID: PMC8150719 DOI: 10.3390/biomedicines9050541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
The number of patients with diabetes was approximately 463 million worldwide in 2019, with almost 57.6% of this population concentrated in Asia. Asians often develop type 2 diabetes (T2D), even if they are underweight and consume a smaller amount of food. Soft drinks contain large amounts of sweeteners, such as high-fructose corn syrup (HFCS). Excessive intake of HFCS drinks is considered to be one of the causes of T2D. In the present study, we investigated the effect of excessive consumption of HFCS-water on glucose tolerance and obesity under conditions of controlled caloric intake using a mouse model. Three-week-old male ICR mice were divided into two groups and given free access to 10% HFCS-water or deionized water. The caloric intake was adjusted to be the same in both groups using a standard rodent diet. The excess HFCS-water intake did not lead to obesity, but led to impaired glucose tolerance (IGT) due to insulin-secretion defect. It affected glucose and fructose metabolism; for example, it decreased the expression of glucokinases, ketohexokinase, and glucose transporter 2 in the pancreas. These results suggest that excessive consumption of HFCS drinks, such as soft drinks, without a proper diet, induces nonobese IGT due to insulin-secretion defect.
Collapse
Affiliation(s)
- Hidemi Hattori
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (Y.H.); (Y.O.); (N.E.)
- Correspondence: ; Tel.: +81-985-58-7255
| | - Yuma Hanai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (Y.H.); (Y.O.); (N.E.)
| | - Yuto Oshima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (Y.H.); (Y.O.); (N.E.)
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Nozomu Eto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (Y.H.); (Y.O.); (N.E.)
| |
Collapse
|
33
|
Álvarez-Merz I, Luengo JG, Muñoz MD, Hernández-Guijo JM, Solís JM. Hypoxia-induced depression of synaptic transmission becomes irreversible by intracellular accumulation of non-excitatory amino acids. Neuropharmacology 2021; 190:108557. [PMID: 33848510 DOI: 10.1016/j.neuropharm.2021.108557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
The intracellular accumulation of some amino acids (AAs), mainly glutamine, can contribute to brain edema observed during liver failure. We recently demonstrated that individual applications of high concentrations (10 mM) of some non-excitatory AAs increase the electrical resistance of hippocampal slices, indicating cell swelling. Therefore, we pondered whether an AA mixture's application might cause cell swelling at a physiological concentration range. In rat hippocampal slices, we carried out extra- and intracellular electrophysiological recordings and AAs analysis to address this question. We applied a mixture of 19 AAs at their plasmatic concentrations (Plasma solution: Ala, Gly, Gln, His, Ser, Tau, Thr, Arg, Leu, Met, Pro, Val, Asn, Cys, Phe, Ile, Lys, Tyr, and Trp). This solution was afterward divided into two according to the individual AAs at 10 mM concentration inducing synaptic potentiation (Plasma1, containing the first seven AAs of Plasma) or not (Plasma2, with the remaining AAs). Plasma application increased evoked field potentials requiring extracellular chloride. This effect was mimicked by the Plasma1 but not the Plasma2 solution. Plasma1-induced potentiation was independent of changes in release probability, basic electrophysiological membrane properties, and NMDAR activation. AAs in Plasma1 act cooperatively to accumulate intracellularly and to induce synaptic potentiation. In the presence of Plasma1, the reversible synaptic depression caused by a 40-min hypoxia period turned into an irreversible disappearance of synaptic potentials through an NMDAR-dependent mechanism. The presence of a system A transport inhibitor did not block Plasma1-mediated effects. These results indicate that cell swelling, induced by the accumulation of non-excitotoxic AAs through unidentified transporters, might foster deleterious effects produced by hypoxia-ischemia episodes.
Collapse
Affiliation(s)
- Iris Álvarez-Merz
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain; Departamento de Farmacología y Terapeútica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, Avda. Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Javier G Luengo
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain; Departamento de Farmacología y Terapeútica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, Avda. Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - María-Dolores Muñoz
- Unidad de Neurología Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, 28034, Spain
| | - Jesús M Hernández-Guijo
- Departamento de Farmacología y Terapeútica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, Avda. Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - José M Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain.
| |
Collapse
|
34
|
Maternal Heat Stress Alters Expression of Genes Associated with Nutrient Transport Activity and Metabolism in Female Placentae from Mid-Gestating Pigs. Int J Mol Sci 2021; 22:ijms22084147. [PMID: 33923747 PMCID: PMC8073098 DOI: 10.3390/ijms22084147] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Placental insufficiency is a known consequence of maternal heat stress during gestation in farm animals. The molecular regulation of placentae during the stress response is little known in pigs. This study aims to identify differential gene expression in pig placentae caused by maternal heat exposure during early to mid-gestation. RNA sequencing (RNA-seq) was performed on female placental samples from pregnant pigs exposed to thermoneutral control (CON; constant 20 °C; n = 5) or cyclic heat stress (HS; cyclic 28 to 33 °C; n = 5) conditions between d40 and d60 of gestation. On d60 of gestation, placental efficiency (fetal/placental weight) was decreased (p = 0.023) by maternal HS. A total of 169 genes were differentially expressed (FDR ≤ 0.1) between CON and HS placentae of female fetuses, of which 35 genes were upregulated and 134 genes were downregulated by maternal HS. The current data revealed transport activity (FDR = 0.027), glycoprotein biosynthetic process (FDR = 0.044), and carbohydrate metabolic process (FDR = 0.049) among the terms enriched by the downregulated genes (HS vs. CON). In addition, solute carrier (SLC)-mediated transmembrane transport (FDR = 0.008) and glycosaminoglycan biosynthesis (FDR = 0.027), which modulates placental stroma synthesis, were identified among the pathways enriched by the downregulated genes. These findings provide evidence that heat-stress induced placental inefficiency may be underpinned by altered expression of genes associated with placental nutrient transport capacity and metabolism. A further understanding of the molecular mechanism contributes to the identification of placental gene signatures of summer infertility in pigs.
Collapse
|
35
|
Min R, Chen Z, Wang Y, Deng Z, Zhang Y, Deng Y. Quantitative proteomic analysis of cortex in the depressive-like behavior of rats induced by the simulated complex space environment. J Proteomics 2021; 237:104144. [PMID: 33581354 DOI: 10.1016/j.jprot.2021.104144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/29/2022]
Abstract
Long-term spaceflight has always been challenging for astronauts due to the extremely complicated space environmental conditions, including microgravity, noise, confinement, and circadian rhythms disorders, which may cause adverse effects on astronauts' mental health, such as anxiety and depression. Unfortunately, so far, the underlying mechanism is not fully understood. Hence, a novel type of box and rat cage was designed and built in order to simulate complex space environment on the ground. After earth-based simulation for 21 days, the rats exhibited the depressive-like behavior according to the sucrose preference and forced swimming test. We applied label-free quantitative proteomics to explore the molecular mechanisms of depressive-like behavior through global changes in cortical protein abundance, given that the cortex is the hub of emotional management. The results revealed up-regulated spliceosome proteins in contrast to down-regulated oxidative phosphorylation (OXPHOS), glutamatergic, and GABAergic synapse related proteins in the simulated complex space environment (SCSE) group. Furthermore, PSD-95 protein was found down-regulated in mass spectrometry, reflecting its role in the psychopathology of depression, which was further validated by Western blotting. These findings provide valuable information to better understand the mechanisms of depressive-like behavior. SIGNIFICANCE: Quantitative proteomic analysis can quantify differentially abundant proteins related to a variety of potential signaling pathways in the rat cortex in the simulated complex space environment. These findings not only provide valuable information to better understand the mechanisms of depressive-like behavior, but also might offer the potential targets and develop countermeasures for the mental disorders to maintain the health of astronauts during the long-term spaceflight.
Collapse
Affiliation(s)
- Rui Min
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yun Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100007, China
| | - Zixuan Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yongqian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
36
|
Sexually dimorphic and brain region-specific transporter adaptations in system x c- null mice. Neurochem Int 2020; 141:104888. [PMID: 33199267 DOI: 10.1016/j.neuint.2020.104888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
System xc- is a heterodimeric amino acid antiporter that, in the central nervous system, is best known for linking the import of L-cystine (CySS) with the export of L-glutamate for the production and maintenance of cellular glutathione (GSH) and extracellular glutamate levels, respectively. Yet, mice that are null for system xc- are healthy, fertile, and, morphologically, their brains are grossly normal. This suggests other glutamate and/or cyst(e)ine transport mechanisms may be upregulated in compensation. To test this, we measured the plasma membrane expression of Excitatory Amino Acid Transporters (EAATs) 1-3, the Alanine-Serine-Cysteine-Transporter (ASCT) 1, the sodium-coupled neutral amino acid transporter (SNAT) 3 and the L Amino Acid Transporter (LAT) 2 in striatum, hippocampus and cortex of male and female mice using Western Blot analysis. Present results demonstrate brain region and transporter-specific changes occurs in female system xc- null mice with increased expression of EAAT1 and ASCT1 occurring in the striatum and cortex, respectively, and decreased SNAT 3 expression in cortex. In male system xc- null brain, only SNAT3 was altered significantly - increasing in the cortex, but decreasing in the striatum. Total levels of GSH and CyS were similar to that found in age and sex-matched littermate control mice, however, reductions in the ratio of reduced to oxidized GSH (GSH/GSSG) - a hallmark of oxidative stress - were found in all three brain regions in female system xc- null mice, whereas this occurred exclusively in the striatum of males. Protein levels of Superoxide dismutase (SOD) 1 were reduced, whereas SOD2 was enhanced in the hippocampus of male xc- null mice only. Finally, striatal vulnerability to 3-nitropropionic acid (3-NP)-mediated oxidative stress in either sex showed no genotype difference, although 3-NP was more toxic to female mice of either genotype, as evidenced by an increase in moribundity as compared to males.
Collapse
|
37
|
Bennett NK, Nguyen MK, Darch MA, Nakaoka HJ, Cousineau D, Ten Hoeve J, Graeber TG, Schuelke M, Maltepe E, Kampmann M, Mendelsohn BA, Nakamura JL, Nakamura K. Defining the ATPome reveals cross-optimization of metabolic pathways. Nat Commun 2020; 11:4319. [PMID: 32859923 PMCID: PMC7455733 DOI: 10.1038/s41467-020-18084-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Disrupted energy metabolism drives cell dysfunction and disease, but approaches to increase or preserve ATP are lacking. To generate a comprehensive metabolic map of genes and pathways that regulate cellular ATP-the ATPome-we conducted a genome-wide CRISPR interference/activation screen integrated with an ATP biosensor. We show that ATP level is modulated by distinct mechanisms that promote energy production or inhibit consumption. In our system HK2 is the greatest ATP consumer, indicating energy failure may not be a general deficiency in producing ATP, but rather failure to recoup the ATP cost of glycolysis and diversion of glucose metabolites to the pentose phosphate pathway. We identify systems-level reciprocal inhibition between the HIF1 pathway and mitochondria; glycolysis-promoting enzymes inhibit respiration even when there is no glycolytic ATP production, and vice versa. Consequently, suppressing alternative metabolism modes paradoxically increases energy levels under substrate restriction. This work reveals mechanisms of metabolic control, and identifies therapeutic targets to correct energy failure.
Collapse
Affiliation(s)
- Neal K Bennett
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Mai K Nguyen
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Maxwell A Darch
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Hiroki J Nakaoka
- Department of Radiation Oncology, University of California, San Francisco, CA, 94158, USA
| | - Derek Cousineau
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Markus Schuelke
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Bryce A Mendelsohn
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Jean L Nakamura
- Department of Radiation Oncology, University of California, San Francisco, CA, 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
- Graduate Program in Biomedical Sciences, University of California, San Francisco, CA, USA.
- Graduate Program in Neuroscience, University of California, San Francisco, CA, USA.
| |
Collapse
|
38
|
Fritz M, Klawonn AM, Zhao Q, Sullivan EV, Zahr NM, Pfefferbaum A. Structural and biochemical imaging reveals systemic LPS-induced changes in the rat brain. J Neuroimmunol 2020; 348:577367. [PMID: 32866714 DOI: 10.1016/j.jneuroim.2020.577367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Despite mounting evidence for the role of inflammation in Major Depressive Disorder (MDD), in vivo preclinical investigations of inflammation-induced negative affect using whole brain imaging modalities are scarce, precluding a valid model within which to evaluate pharmacological interventions. Here we used an E. coli lipopolysaccharide (LPS)-based model of inflammation-induced depressive signs in rats to explore brain changes using multimodal neuroimaging methods. During the acute phase of the LPS response (2 h post injection), prior to the emergence of a task-quantifiable depressive phenotype, striatal glutamine levels and splenial, retrosplenial, and peri-callosal hippocampal cortex volumes were greater than at baseline. LPS-induced depressive behaviors observed at 24 h, however, occurred concurrently with lower than control levels of striatal glutamine and a reversibility of volume expansion (i.e., shrinkage of splenial, retrosplenial, and peri-callosal hippocampal cortex to baseline volumes). In both striatum and hippocampus at 24 h, mRNA expression in LPS relative to control animals demonstrated alterations in enzymes and transporters regulating glutamine homeostasis. Collectively, the observed behavioral, in vivo structural and metabolic, and mRNA expression alterations suggest a critical role for astrocytic regulation of inflammation-induced depressive behaviors.
Collapse
Affiliation(s)
- Michael Fritz
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Anna M Klawonn
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America
| | - Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America.
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America
| |
Collapse
|
39
|
Abstract
Acid-base balance is critical for normal life. Acute and chronic disturbances impact cellular energy metabolism, endocrine signaling, ion channel activity, neuronal activity, and cardiovascular functions such as cardiac contractility and vascular blood flow. Maintenance and adaptation of acid-base homeostasis are mostly controlled by respiration and kidney. The kidney contributes to acid-base balance by reabsorbing filtered bicarbonate, regenerating bicarbonate through ammoniagenesis and generation of protons, and by excreting acid. This review focuses on acid-base disorders caused by renal processes, both inherited and acquired. Distinct rare inherited monogenic diseases affecting acid-base handling in the proximal tubule and collecting duct have been identified. In the proximal tubule, mutations of solute carrier 4A4 (SLC4A4) (electrogenic Na+/HCO3--cotransporter Na+/bicarbonate cotransporter e1 [NBCe1]) and other genes such as CLCN5 (Cl-/H+-antiporter), SLC2A2 (GLUT2 glucose transporter), or EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) causing more generalized proximal tubule dysfunction can cause proximal renal tubular acidosis resulting from bicarbonate wasting and reduced ammoniagenesis. Mutations in adenosine triphosphate ATP6V1 (B1 H+-ATPase subunit), ATPV0A4 (a4 H+-ATPase subunit), SLC4A1 (anion exchanger 1), and FOXI1 (forkhead transcription factor) cause distal renal tubular acidosis type I. Carbonic anhydrase II mutations affect several nephron segments and give rise to a mixed proximal and distal phenotype. Finally, mutations in genes affecting aldosterone synthesis, signaling, or downstream targets can lead to hyperkalemic variants of renal tubular acidosis (type IV). More common forms of renal acidosis are found in patients with advanced stages of chronic kidney disease and are owing, at least in part, to a reduced capacity for ammoniagenesis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland.
| | - Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| |
Collapse
|
40
|
Tripathi R, Hosseini K, Arapi V, Fredriksson R, Bagchi S. SLC38A10 (SNAT10) is Located in ER and Golgi Compartments and Has a Role in Regulating Nascent Protein Synthesis. Int J Mol Sci 2019; 20:ijms20246265. [PMID: 31842320 PMCID: PMC6940841 DOI: 10.3390/ijms20246265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 01/27/2023] Open
Abstract
The solute carrier (SLC) family-38 of transporters has eleven members known to transport amino acids, with glutamine being a common substrate for ten of them, with SLC38A9 being the exception. In this study, we examine the subcellular localization of SNAT10 in several independent immortalized cell lines and stem cell-derived neurons. Co-localization studies confirmed the SNAT10 was specifically localized to secretory organelles. SNAT10 is expressed in both excitatory and inhibitory neurons in the mouse brain, predominantly in the endoplasmic reticulum, and in the Golgi apparatus. Knock-down experiments of SNAT10, using Slc38a10-specific siRNA in PC12 cells reduced nascent protein synthesis by more than 40%, suggesting that SNAT10 might play a role in signaling pathways that regulate protein synthesis, and may act as a transceptor in a similar fashion to what has been shown previously for SLC38A2 (SNAT2) and SNAT9(SLC38A9).
Collapse
|
41
|
Genetic resistance to DEHP-induced transgenerational endocrine disruption. PLoS One 2019; 14:e0208371. [PMID: 31181066 PMCID: PMC6557477 DOI: 10.1371/journal.pone.0208371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Di(2-ethylhexyl)phthalate (DEHP) interferes with sex hormones signaling pathways (SHP). C57BL/6J mice prenatally exposed to 300 mg/kg/day DEHP develop a testicular dysgenesis syndrome (TDS) at adulthood, but similarly-exposed FVB/N mice are not affected. Here we aim to understand the reasons behind this drastic difference that should depend on the genome of the strain. In both backgrounds, pregnant female mice received per os either DEHP or corn oil vehicle and the male filiations were examined. Computer-assisted sperm analysis showed a DEHP-induced decreased sperm count and velocities in C57BL/6J. Sperm RNA sequencing experiments resulted in the identification of the 62 most differentially expressed RNAs. These RNAs, mainly regulated by hormones, produced strain-specific transcriptional responses to prenatal exposure to DEHP; a pool of RNAs was increased in FVB, another pool of RNAs was decreased in C57BL/6J. In FVB/N, analysis of non-synonymous single nucleotide polymorphisms (SNP) impacting SHP identified rs387782768 and rs29315913 respectively associated with absence of the Forkhead Box A3 (Foxa3) RNA and increased expression of estrogen receptor 1 variant 4 (NM_001302533) RNA. Analysis of the role of SNPs modifying SHP binding sites in function of strain-specific responses to DEHP revealed a DEHP-resistance allele in FVB/N containing an additional FOXA1-3 binding site at rs30973633 and four DEHP-induced beta-defensins (Defb42, Defb30, Defb47 and Defb48). A DEHP-susceptibility allele in C57BL/6J contained five SNPs (rs28279710, rs32977910, rs46648903, rs46677594 and rs48287999) affecting SHP and six genes (Svs2, Svs3b, Svs4, Svs3a, Svs6 and Svs5) epigenetically silenced by DEHP. Finally, targeted experiments confirmed increased methylation in the Svs3ab promoter with decreased SEMG2 persisting across generations, providing a molecular explanation for the transgenerational sperm velocity decrease found in C57BL/6J after DEHP exposure. We conclude that the existence of SNP-dependent mechanisms in FVB/N inbred mice may confer resistance to transgenerational endocrine disruption.
Collapse
|
42
|
Amino acid transporters in the regulation of insulin secretion and signalling. Biochem Soc Trans 2019; 47:571-590. [PMID: 30936244 DOI: 10.1042/bst20180250] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023]
Abstract
Amino acids are increasingly recognised as modulators of nutrient disposal, including their role in regulating blood glucose through interactions with insulin signalling. More recently, cellular membrane transporters of amino acids have been shown to form a pivotal part of this regulation as they are primarily responsible for controlling cellular and circulating amino acid concentrations. The availability of amino acids regulated by transporters can amplify insulin secretion and modulate insulin signalling in various tissues. In addition, insulin itself can regulate the expression of numerous amino acid transporters. This review focuses on amino acid transporters linked to the regulation of insulin secretion and signalling with a focus on those of the small intestine, pancreatic β-islet cells and insulin-responsive tissues, liver and skeletal muscle. We summarise the role of the amino acid transporter B0AT1 (SLC6A19) and peptide transporter PEPT1 (SLC15A1) in the modulation of global insulin signalling via the liver-secreted hormone fibroblast growth factor 21 (FGF21). The role of vesicular vGLUT (SLC17) and mitochondrial SLC25 transporters in providing glutamate for the potentiation of insulin secretion is covered. We also survey the roles SNAT (SLC38) family and LAT1 (SLC7A5) amino acid transporters play in the regulation of and by insulin in numerous affective tissues. We hypothesise the small intestine amino acid transporter B0AT1 represents a crucial nexus between insulin, FGF21 and incretin hormone signalling pathways. The aim is to give an integrated overview of the important role amino acid transporters have been found to play in insulin-regulated nutrient signalling.
Collapse
|
43
|
Exchange-mode glutamine transport across CNS cell membranes. Neuropharmacology 2019; 161:107560. [PMID: 30853601 DOI: 10.1016/j.neuropharm.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
CNS cell membranes possess four transporters capable of exchanging Lglutamine (Gln) for other amino acids: the large neutral amino acid (LNAA) transporters LAT1 and LAT2, the hybrid basic amino acid (L-arginine (Arg), L-leucine (Leu)/LNAA transporter y+LAT2, and the L-alanine/L-serine/L-cysteine transporter 2 (ASCT2). LAT1/LAT2 and y+LAT2 are present in astrocytes, neurons and the blood brain barrier (BBB) - forming cerebral vascular endothelial cells (CVEC), while the location of ASCT2 in the individual cell types is a matter of debate. In the healthy brain, contribution of the exchangers to Gln shuttling from astrocytes to neurons and thus their role in controlling the conversion of Gln to the amino acid neurotransmitters l-glutamate (Glu) and γ-aminobutyric acid (GABA) and Gln flux across the BBB appears negligible as compared to the system A and system N uniporters. Insofar, except for the contribution of LAT1 to the maintenance of Gln homeostasis in the interstitial fluid (ISF), no well-defined CNS-specific function has been established for either of the three transporters in the healthy brain. The Gln-accepting amino acid exchangers appear to gain significance under conditions of excessive brain Gln load (glutaminosis). Excess Gln efflux across the BBB enhances influx into the brain of L-tryptophan (Trp). Excess of Trp is responsible for overloading the brain with neuroactive compounds: serotonin, kynurenic acid, quinolinic acid and/or oxindole, which contribute to neurotransmission imbalance accompanying hyperammonemia. In turn, alterations of y+LAT2-mediated Gln/Arg exchange and Arg uptake in astrocyte, modulate astrocytic nitric oxide synthesis and oxidative/nitrosative stress in ammonia-overexposed brain. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
|
44
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
45
|
Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons. Neuromolecular Med 2018; 20:281-300. [DOI: 10.1007/s12017-018-8503-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022]
|
46
|
Lister A, Bourgeois S, Imenez Silva PH, Rubio-Aliaga I, Marbet P, Walsh J, Shelton LM, Keller B, Verrey F, Devuyst O, Giesbertz P, Daniel H, Goldring CE, Copple IM, Wagner CA, Odermatt A. NRF2 regulates the glutamine transporter Slc38a3 (SNAT3) in kidney in response to metabolic acidosis. Sci Rep 2018; 8:5629. [PMID: 29618784 PMCID: PMC5884861 DOI: 10.1038/s41598-018-24000-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
Expression of the glutamine transporter SNAT3 increases in kidney during metabolic acidosis, suggesting a role during ammoniagenesis. Microarray analysis of Nrf2 knock-out (KO) mouse kidney identified Snat3 as the most significantly down-regulated transcript compared to wild-type (WT). We hypothesized that in the absence of NRF2 the kidney would be unable to induce SNAT3 under conditions of metabolic acidosis and therefore reduce the availability of glutamine for ammoniagenesis. Metabolic acidosis was induced for 7 days in WT and Nrf2 KO mice. Nrf2 KO mice failed to induce Snat3 mRNA and protein expression during metabolic acidosis. However, there were no differences in blood pH, bicarbonate, pCO2, chloride and calcium or urinary pH, ammonium and phosphate levels. Normal induction of ammoniagenic enzymes was observed whereas several amino acid transporters showed differential regulation. Moreover, Nrf2 KO mice during acidosis showed increased expression of renal markers of oxidative stress and injury and NRF2 activity was increased during metabolic acidosis in WT kidney. We conclude that NRF2 is required to adapt the levels of SNAT3 in response to metabolic acidosis. In the absence of NRF2 and SNAT3, the kidney does not have any major acid handling defect; however, increased oxidative stress and renal injury may occur.
Collapse
Affiliation(s)
- Adam Lister
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Pedro H Imenez Silva
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Isabel Rubio-Aliaga
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Philippe Marbet
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Joanne Walsh
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Luke M Shelton
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Bettina Keller
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Francois Verrey
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Pieter Giesbertz
- Department of Biochemistry, ZIEL Research Center of Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Hannelore Daniel
- Department of Biochemistry, ZIEL Research Center of Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Christopher E Goldring
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Ian M Copple
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Carsten A Wagner
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland. .,National Center for Competence in Research Kidney.CH, Zürich, Switzerland.
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland. .,National Center for Competence in Research Kidney.CH, Zürich, Switzerland.
| |
Collapse
|