1
|
Zhao S, Deng H, Lu Y, Tao Y, Li D, Jiang X, Wei X, Chen X, Ma F, Wang Y, Gou L, Yang J. Antagonist anti-LIF antibody derived from naive human scFv phage library inhibited tumor growth in mice. BMC Immunol 2024; 25:56. [PMID: 39169307 PMCID: PMC11340043 DOI: 10.1186/s12865-024-00636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Leukemia inhibitory factor (LIF) is a multifunctional member of the IL-6 cytokine family that activates downstream signaling pathways by binding to the heterodimer consisting of LIFR and gp130 on the cell surface. Previous research has shown that LIF is highly expressed in various tumor tissues (e.g. pancreatic cancer, breast cancer, prostate cancer, and colorectal cancer) and promotes cancer cell proliferation, migration, invasion, and differentiation. Moreover, the overexpression of LIF correlates with poor clinicopathological characteristics. Therefore, we hypothesized that LIF could be a promising target for the treatment of cancer. In this work, we developed the antagonist antibody 1G11 against LIF and investigated its anti-tumor mechanism and its therapeutic efficacy in mouse models. RESULTS A series of single-chain variable fragments (scFvs) targeting LIF were screened from a naive human scFv phage library. These scFvs were reconstructed in complete IgG form and produced by the mammalian transient expression system. Among the antibodies, 1G11 exhibited the excellent binding activity to human, cynomolgus monkey and mouse LIF. Functional analysis demonstrated 1G11 could block LIF binding to LIFR and inhibit the intracellular STAT3 phosphorylation signal. Interestingly, 1G11 did not block LIF binding to gp130, another LIF receptor that is involved in forming the receptor complex together with LIFR. In vivo, intraperitoneal administration of 1G11 inhibited tumor growth in CT26 and MC38 models of colorectal cancer. IHC analysis demonstrated that p-STAT3 and Ki67 were decreased in tumor tissue, while c-caspase 3 was increased. Furthermore, 1G11 treatment improves CD3+, CD4 + and CD8 + T cell infiltration in tumor tissue. CONCLUSIONS We developed antagonist antibodies targeting LIF/LIFR signaling pathway from a naive human scFv phage library. Antagonist anti-LIF antibody exerts antitumor effects by specifically reducing p-STAT3. Further studies revealed that anti-LIF antibody 1G11 increased immune cell infiltration in tumor tissues.
Collapse
Grants
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
Collapse
Affiliation(s)
- Shengyan Zhao
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Deng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Lu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiran Tao
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - David Li
- 503 Central Avenue, Sunnyvale, 94086, California, United States of America
| | - Xiaohua Jiang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xian Wei
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Chen
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanxin Ma
- Sound Biopharmaceuticals Co., Ltd, Tianfu International Bio-Town, Huigu Dong 2nd Road 8, 610200, Chengdu, Sichuan, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lantu Gou
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jinliang Yang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
2
|
Hutchings CJ, Sato AK. Phage display technology and its impact in the discovery of novel protein-based drugs. Expert Opin Drug Discov 2024; 19:887-915. [PMID: 39074492 DOI: 10.1080/17460441.2024.2367023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Phage display technology is a well-established versatile in vitro display technology that has been used for over 35 years to identify peptides and antibodies for use as reagents and therapeutics, as well as exploring the diversity of alternative scaffolds as another option to conventional therapeutic antibody discovery. Such successes have been responsible for spawning a range of biotechnology companies, as well as many complementary technologies devised to expedite the drug discovery process and resolve bottlenecks in the discovery workflow. AREAS COVERED In this perspective, the authors summarize the application of phage display for drug discovery and provide examples of protein-based drugs that have either been approved or are being developed in the clinic. The amenability of phage display to generate functional protein molecules to challenging targets and recent developments of strategies and techniques designed to harness the power of sampling diverse repertoires are highlighted. EXPERT OPINION Phage display is now routinely combined with cutting-edge technologies to deep-mine antibody-based repertoires, peptide, or alternative scaffold libraries generating a wealth of data that can be leveraged, e.g. via artificial intelligence, to enable the potential for clinical success in the discovery and development of protein-based therapeutics.
Collapse
|
3
|
Schlotheuber LJ, Lüchtefeld I, Eyer K. Antibodies, repertoires and microdevices in antibody discovery and characterization. LAB ON A CHIP 2024; 24:1207-1225. [PMID: 38165819 PMCID: PMC10898418 DOI: 10.1039/d3lc00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
Therapeutic antibodies are paramount in treating a wide range of diseases, particularly in auto-immunity, inflammation and cancer, and novel antibody candidates recognizing a vast array of novel antigens are needed to expand the usefulness and applications of these powerful molecules. Microdevices play an essential role in this challenging endeavor at various stages since many general requirements of the overall process overlap nicely with the general advantages of microfluidics. Therefore, microfluidic devices are rapidly taking over various steps in the process of new candidate isolation, such as antibody characterization and discovery workflows. Such technologies can allow for vast improvements in time-lines and incorporate conservative antibody stability and characterization assays, but most prominently screenings and functional characterization within integrated workflows due to high throughput and standardized workflows. First, we aim to provide an overview of the challenges of developing new therapeutic candidates, their repertoires and requirements. Afterward, this review focuses on the discovery of antibodies using microfluidic systems, technological aspects of micro devices and small-scale antibody protein characterization and selection, as well as their integration and implementation into antibody discovery workflows. We close with future developments in microfluidic detection and antibody isolation principles and the field in general.
Collapse
Affiliation(s)
- Luca Johannes Schlotheuber
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| | - Ines Lüchtefeld
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
- ETH Laboratory for Tumor and Stem Cell Dynamics, Institute of Molecular Health Sciences, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
4
|
Dübel S. Can antibodies be "vegan"? A guide through the maze of today's antibody generation methods. MAbs 2024; 16:2343499. [PMID: 38634488 PMCID: PMC11028021 DOI: 10.1080/19420862.2024.2343499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
There is no doubt that today's life sciences would look very different without the availability of millions of research antibody products. Nevertheless, the use of antibody reagents that are poorly characterized has led to the publication of false or misleading results. The use of laboratory animals to produce research antibodies has also been criticized. Surprisingly, both problems can be addressed with the same technology. This review charts today's maze of different antibody formats and the various methods for antibody production and their interconnections, ultimately concluding that sequence-defined recombinant antibodies offer a clear path to both improved quality of experimental data and reduced use of animals.
Collapse
Affiliation(s)
- Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Lu S, Mattox AK, Aitana Azurmendi P, Christodoulou I, Wright KM, Popoli M, Chen Z, Sur S, Li Y, Bonifant CL, Bettegowda C, Papadopoulos N, Zhou S, Gabelli SB, Vogelstein B, Kinzler KW. The rapid and highly parallel identification of antibodies with defined biological activities by SLISY. Nat Commun 2023; 14:17. [PMID: 36596784 PMCID: PMC9808734 DOI: 10.1038/s41467-022-35668-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
The therapeutic applications of antibodies are manifold and the emergence of SARS-CoV-2 provides a cogent example of the value of rapidly identifying biologically active antibodies. We describe an approach called SLISY (Sequencing-Linked ImmunoSorbent assaY) that in a single experiment can assess the binding specificity of millions of clones, be applied to any screen that links DNA sequence to a potential binding moiety, and requires only a single round of biopanning. We demonstrate this approach using an scFv library applied to cellular and protein targets to identify specific or broadly reacting antibodies. For a cellular target, we use paired HLA knockout cell lines to identify a panel of antibodies specific to HLA-A3. For a protein target, SLISY identifies 1279 clones that bound to the Receptor Binding Domain of the SARS-CoV-2 spike protein, with >40% of tested clones also neutralizing its interaction with ACE2 in in vitro assays. Using a multi-comparison SLISY against the Beta, Gamma, and Delta variants, we recovered clones that exhibited broad-spectrum neutralizing potential in vitro. By evaluating millions of scFvs simultaneously against multiple targets, SLISY allows the rapid identification of candidate scFvs with defined binding profiles facilitating the identification of antibodies with the desired biological activity.
Collapse
Affiliation(s)
- Steve Lu
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Austin K Mattox
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - P Aitana Azurmendi
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ilias Christodoulou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Katharine M Wright
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Maria Popoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Surojit Sur
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Yana Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Challice L Bonifant
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
6
|
Fiebig D, Bogen JP, Carrara SC, Deweid L, Zielonka S, Grzeschik J, Hock B, Kolmar H. Streamlining the Transition From Yeast Surface Display of Antibody Fragment Immune Libraries to the Production as IgG Format in Mammalian Cells. Front Bioeng Biotechnol 2022; 10:794389. [PMID: 35620472 PMCID: PMC9127228 DOI: 10.3389/fbioe.2022.794389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/20/2022] [Indexed: 01/18/2023] Open
Abstract
Yeast-surface display (YSD) is commonly applied to screen Fab immune or naïve libraries for binders of predefined target molecules. However, reformatting of isolated variants represents a time-intensive bottleneck. Herein, we present a novel approach to facilitate a lean transition from antibody screening using YSD Fab libraries to the production of full-length IgG antibodies in Expi293-F cells. In this study, utilizing Golden Gate Cloning (GGC) and a bidirectional promoter system, an exemplary Fab-displaying YSD library was generated based on immunised transgene rats. After subsequent screening for antigen-specific antibody candidates by fluorescence-activated cell sorting (FACS), the Fab-encoding genes were subcloned into a bidirectional mammalian expression vector, exhibiting CH2-CH3 encoding genes, in a GGC-mediated, PCR-free manner. This novel, straightforward and time-saving workflow allows the VH/VL pairing to be preserved. This study resulted in antibody variants exhibiting suitable biophysical properties and covered a broad VH diversity after two rounds of FACS screening, as revealed by NGS analysis. Ultimately, we demonstrate that the implication of such a gene transfer system streamlines antibody hit discovery efforts, allowing the faster characterisation of antibodies against a plethora of targets that may lead to new therapeutic agents.
Collapse
Affiliation(s)
- David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Björn Hock
- Ferring Biologics Innovation Centre, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Ferrara F, Erasmus MF, D'Angelo S, Leal-Lopes C, Teixeira AA, Choudhary A, Honnen W, Calianese D, Huang D, Peng L, Voss JE, Nemazee D, Burton DR, Pinter A, Bradbury ARM. A pandemic-enabled comparison of discovery platforms demonstrates a naïve antibody library can match the best immune-sourced antibodies. Nat Commun 2022; 13:462. [PMID: 35075126 PMCID: PMC8786865 DOI: 10.1038/s41467-021-27799-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
As a result of the SARS-CoV-2 pandemic numerous scientific groups have generated antibodies against a single target: the CoV-2 spike antigen. This has provided an unprecedented opportunity to compare the efficacy of different methods and the specificities and qualities of the antibodies generated by those methods. Generally, the most potent neutralizing antibodies have been generated from convalescent patients and immunized animals, with non-immune phage libraries usually yielding significantly less potent antibodies. Here, we show that it is possible to generate ultra-potent (IC50 < 2 ng/ml) human neutralizing antibodies directly from a unique semisynthetic naïve antibody library format with affinities, developability properties and neutralization activities comparable to the best from hyperimmune sources. This demonstrates that appropriately designed and constructed naïve antibody libraries can effectively compete with immunization to directly provide therapeutic antibodies against a viral pathogen, without the need for immune sources or downstream optimization. The most potent neutralizing antibodies are typically generated from convalescent patients and immunized animals. Here, the authors show it is possible to generate highly potent human neutralizing antibodies against the SARS-CoV-2 spike protein directly from a semisynthetic naïve antibody library.
Collapse
Affiliation(s)
| | | | | | - Camila Leal-Lopes
- Bioscience Division, New Mexico Consortium, Los Alamos, NM, 87544, USA
| | - André A Teixeira
- Bioscience Division, New Mexico Consortium, Los Alamos, NM, 87544, USA
| | - Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - William Honnen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - David Calianese
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Deli Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Linghan Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - James E Voss
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | | |
Collapse
|
8
|
Ehling RA, Weber CR, Mason DM, Friedensohn S, Wagner B, Bieberich F, Kapetanovic E, Vazquez-Lombardi R, Di Roberto RB, Hong KL, Wagner C, Pataia M, Overath MD, Sheward DJ, Murrell B, Yermanos A, Cuny AP, Savic M, Rudolf F, Reddy ST. SARS-CoV-2 reactive and neutralizing antibodies discovered by single-cell sequencing of plasma cells and mammalian display. Cell Rep 2022; 38:110242. [PMID: 34998467 PMCID: PMC8692065 DOI: 10.1016/j.celrep.2021.110242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/22/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).
Collapse
Affiliation(s)
- Roy A Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Raphaël B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland
| | | | - Michele Pataia
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Max D Overath
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland; Institute of Microbiology and Immunology, Department of Biology, ETH Zurich, Zurich, Switzerland; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Andreas P Cuny
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Miodrag Savic
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Surgery, Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland; Department of Health, Economics and Health Directorate, Canton Basel-Landschaft, Switzerland
| | - Fabian Rudolf
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland.
| |
Collapse
|
9
|
Zhang R, Prabakaran P, Yu X, Mackness BC, Boudanova E, Hopke J, Sancho J, Saleh J, Cho H, Zhang N, Simonds-Mannes H, Stimple SD, Hoffmann D, Park A, Chowdhury PS, Rao SP. A platform-agnostic, function first-based antibody discovery strategy using plasmid-free mammalian expression of antibodies. MAbs 2021; 13:1904546. [PMID: 33899674 PMCID: PMC8078661 DOI: 10.1080/19420862.2021.1904546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hybridoma technology has been valuable in the development of therapeutic antibodies. More recently, antigen-specific B-cell selection and display technologies are also gaining importance. A major limitation of these approaches used for antibody discovery is the extensive process of cloning and expression involved in transitioning from antibody identification to validating the function, which compromises the throughput of antibody discovery. In this study, we describe a process to identify and rapidly re-format and express antibodies for functional characterization. We used two different approaches to isolate antibodies to five different targets: 1) flow cytometry to identify antigen-specific single B cells from the spleen of immunized human immunoglobulin transgenic mice; and 2) panning of phage libraries. PCR amplification allowed recovery of paired VH and VL sequences from 79% to 96% of antigen-specific B cells. All cognate VH and VL transcripts were formatted into transcription and translation compatible linear DNA expression cassettes (LEC) encoding whole IgG or Fab. Between 92% and 100% of paired VH and VL transcripts could be converted to LECs, and nearly 100% of them expressed as antibodies when transfected into Expi293F cells. The concentration of IgG in the cell culture supernatants ranged from 0.05 µg/ml to 145.8 µg/ml (mean = 18.4 µg/ml). Antigen-specific binding was displayed by 78–100% of antibodies. High throughput functional screening allowed the rapid identification of several functional antibodies. In summary, we describe a plasmid-free system for cloning and expressing antibodies isolated by different approaches, in any format of choice for deep functional screening that can be applied in any research setting during antibody discovery.
Collapse
Affiliation(s)
- Ruijun Zhang
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | | | - Xiaocong Yu
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | - Brian C Mackness
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | - Ekaterina Boudanova
- Protein Engineering, Biologics Research, Sanofi Genzyme, Framingham, MA, USA
| | - Joern Hopke
- Molecular Expression and Screening Technologies, Sanofi Genzyme, Framingham, MA, USA
| | - Jose Sancho
- Neuroinflammation, Sanofi Genzyme, Framingham, MA, USA
| | | | - HyunSuk Cho
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | - Ningning Zhang
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | | | - Samuel D Stimple
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| | - Dietmar Hoffmann
- Molecular Expression and Screening Technologies, Sanofi Genzyme, Framingham, MA, USA
| | - Anna Park
- Protein Engineering, Biologics Research, Sanofi Genzyme, Framingham, MA, USA
| | | | - Sambasiva P Rao
- Therapeutic Antibody Discovery, Sanofi Genzyme, Framingham, MA, USA
| |
Collapse
|
10
|
Hofmann T, Schmidt J, Ciesielski E, Becker S, Rysiok T, Schütte M, Toleikis L, Kolmar H, Doerner A. Intein mediated high throughput screening for bispecific antibodies. MAbs 2021; 12:1731938. [PMID: 32151188 PMCID: PMC7153837 DOI: 10.1080/19420862.2020.1731938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies comprise extremely diverse architectures enabling complex modes of action, such as effector cell recruitment or conditional target modulation via dual targeting, not conveyed by monospecific antibodies. In recent years, research on bispecific therapeutics has substantially grown. However, evaluation of binding moiety combinations often leads to undesired prolonged development times. While high throughput screening for small molecules and classical antibodies has evolved into a mature discipline in the pharmaceutical industry, dual-targeting antibody screening methodologies lack the ability to fully evaluate the tremendous number of possible combinations and cover only a limited portion of the combinatorial screening space. Here, we propose a novel combinatorial screening approach for bispecific IgG-like antibodies to extenuate screening limitations in industrial scale, expanding the limiting screening space. Harnessing the ability of a protein trans-splicing reaction by the split intein Npu DnaE, antibody fragments were reconstituted within the hinge region in vitro. This method allows for fully automated, rapid one-pot antibody reconstitution, providing biological activity in several biochemical and functional assays. The technology presented here is suitable for automated functional and combinatorial high throughput screening of bispecific antibodies.
Collapse
Affiliation(s)
- Tim Hofmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Johannes Schmidt
- Compound Logistic & Bioassay Automation, Merck KGaA, Darmstadt, Germany
| | - Elke Ciesielski
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Thomas Rysiok
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Mark Schütte
- Global Innovation and Alliance Management, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| |
Collapse
|
11
|
Hentrich C, Kellmann SJ, Putyrski M, Cavada M, Hanuschka H, Knappik A, Ylera F. Periplasmic expression of SpyTagged antibody fragments enables rapid modular antibody assembly. Cell Chem Biol 2021; 28:813-824.e6. [PMID: 33529581 DOI: 10.1016/j.chembiol.2021.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Antibodies are essential tools in research and diagnostics. Although antibody fragments typically obtained from in vitro selection can be rapidly produced in bacteria, the generation of full-length antibodies or the modification of antibodies with probes is time and labor intensive. Protein ligation such as SpyTag technology could covalently attach domains and labels to antibody fragments equipped with a SpyTag. However, we found that the established periplasmic expression of antibody fragments in E. coli led to quantitative cleavage of the SpyTag by the proteases Tsp and OmpT. Here we report successful periplasmic expression of SpyTagged Fab fragments and demonstrate the coupling to separately prepared SpyCatcher modules. We used this modular toolbox of SpyCatcher proteins to generate reagents for a variety of immunoassays and measured their performance in comparison with traditional reagents. Furthermore, we demonstrate surface immobilization, high-throughput screening of antibody libraries, and rapid prototyping of antibodies based on modular antibody assembly.
Collapse
Affiliation(s)
| | | | - Mateusz Putyrski
- Bio-Rad AbD Serotec GmbH, Zeppelinstraße 4, 82178 Puchheim, Germany
| | - Manuel Cavada
- Bio-Rad AbD Serotec GmbH, Zeppelinstraße 4, 82178 Puchheim, Germany
| | - Hanh Hanuschka
- Bio-Rad AbD Serotec GmbH, Zeppelinstraße 4, 82178 Puchheim, Germany
| | - Achim Knappik
- Bio-Rad AbD Serotec GmbH, Zeppelinstraße 4, 82178 Puchheim, Germany
| | - Francisco Ylera
- Bio-Rad AbD Serotec GmbH, Zeppelinstraße 4, 82178 Puchheim, Germany.
| |
Collapse
|
12
|
|
13
|
Abstract
Phage display antibody libraries have proven an invaluable resource for the isolation of diagnostic and potentially therapeutic antibodies, the latter usually being antibody fragments converted into IgG formats. Recent advances in the production of highly diverse and functional antibody libraries are considered here, including for Fabs, scFvs and nanobodies. These advances include codon optimisation during generation of CDR diversity, improved display levels using novel signal sequences, molecular chaperones and isomerases and the use of highly stable scaffolds with relatively high expression levels. In addition, novel strategies for the batch reformatting of scFv and Fab phagemid libraries, derived from phage panning, into IgG formats are described. These strategies allow the screening of antibodies in the end-use format, facilitating more efficient selection of potential therapeutics.
Collapse
|
14
|
Chockalingam K, Peng Z, Vuong CN, Berghman LR, Chen Z. Golden Gate assembly with a bi-directional promoter (GBid): A simple, scalable method for phage display Fab library creation. Sci Rep 2020; 10:2888. [PMID: 32076016 PMCID: PMC7031318 DOI: 10.1038/s41598-020-59745-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Fabs offer an attractive platform for monoclonal antibody discovery/engineering, but library construction can be cumbersome. We report a simple method – Golden Gate assembly with a bi-directional promoter (GBid) – for constructing phage display Fab libraries. In GBid, the constant domains of the Fabs are located in the backbone of the phagemid vector and the library insert comprises only the variable regions of the antibodies and a central bi-directional promoter. This vector design reduces the process of Fab library construction to “scFv-like” simplicity and the double promoter ensures robust expression of both constituent chains. To maximize the library size, the 3 fragments comprising the insert – two variable chains and one bi-directional promoter – are assembled via a 3-fragment overlap extension PCR and the insert is incorporated into the vector via a high-efficiency one-fragment, one-pot Golden Gate assembly. The reaction setup requires minimal preparatory work and enzyme quantities, making GBid highly scalable. Using GBid, we constructed a chimeric chicken-human Fab phage display library comprising 1010 variants targeting the multi-transmembrane protein human CD20 (hCD20). Selection/counter-selection on transfected whole cells yielded hCD20-specific antibodies in four rounds of panning. The simplicity and scalability of GBid makes it a powerful tool for the discovery/engineering of Fabs and IgGs.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA
| | - Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA.,Biosion, Inc., Nanjing, 210061, China
| | - Christine N Vuong
- Department of Poultry Science, Texas A&M University, College Station, Texas, 77843, USA.,Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, 72703, USA
| | - Luc R Berghman
- Department of Poultry Science, Texas A&M University, College Station, Texas, 77843, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
15
|
Ministro JH, Oliveira SS, Oliveira JG, Cardoso M, Aires-da-Silva F, Corte-Real S, Goncalves J. Synthetic antibody discovery against native antigens by CRISPR/Cas9-library generation and endoplasmic reticulum screening. Appl Microbiol Biotechnol 2020; 104:2501-2512. [PMID: 32020276 DOI: 10.1007/s00253-020-10423-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 01/03/2023]
Abstract
Despite the significant advances of antibodies as therapeutic agents, there is still much room for improvement concerning the discovery of these macromolecules. Here, we present a new synthetic cell-based strategy that takes advantage of eukaryotic cell biology to produce highly diverse antibody libraries and, simultaneously, link them to a high-throughput selection mechanism, replicating B cell diversification mechanisms. The interference of site-specific recognition by CRISPR/Cas9 with error-prone DNA repair mechanisms was explored for the generation of diversity, in a cell population containing a gene for a light chain antibody fragment. We achieved up to 93% of cells containing a mutated antibody gene after diversification mechanisms, specifically inside one of the antigen-binding sites. This targeted variability strategy was then integrated into an intracellular selection mechanism. By fusing the antibody with a KDEL retention signal, the interaction of antibodies and native membrane antigens occurs inside the endoplasmic reticulum during the process of protein secretion, enabling the detection of high-quality leads for expression and affinity by flow cytometry. We successfully obtained antibody lead candidates against CD3 as proof of concept. In summary, we developed a novel antibody discovery platform against native antigens by endoplasmic synthetic library generation using CRISPR/Cas9, which will contribute to a faster discovery of new biotherapeutic molecules, reducing the time-to-market.
Collapse
Affiliation(s)
- Joana H Ministro
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.,Technophage SA, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Soraia S Oliveira
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.,Technophage SA, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Joana G Oliveira
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.,Technophage SA, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Miguel Cardoso
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal
| | - Frederico Aires-da-Silva
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Sofia Corte-Real
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.,Technophage SA, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Joao Goncalves
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.
| |
Collapse
|
16
|
Liu Y, Gu M, Wu Y, Wang W, Wang R, Du M, Ma P, Zhou X, Wang Y, Cao Y, Zhang H. High-throughput reformatting of phage-displayed antibody fragments to IgGs by one-step emulsion PCR. Protein Eng Des Sel 2019; 31:427-436. [PMID: 31096267 DOI: 10.1093/protein/gzz004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/15/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Single-chain variable fragment (scFv) is the most common format for phage display antibody library. The isolated scFvs need to be reformatted to full-length IgGs for further characterization. High throughput reformatting of scFv to IgG without disrupting VH-VL pairing is of great demanding for exhaustive screening of all antibodies in IgG format. Herein, we developed a strategy based on the overlap extension PCR in emulsion to reformat scFv to IgG while maintain the accuracy and complexity of variable region pairing. Using CD40 as an example target, we reformatted phage display derived CD40 binding scFv library to IgG mammalian display library and isolated high affinity CD40 binding IgGs. This robust and reliable antibody reformatting approach could be integrated into any phage display based antibody drug discovery.
Collapse
Affiliation(s)
- Yaohui Liu
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin, China.,College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, China
| | - Manping Gu
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin, China.,College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, China
| | - Yaxing Wu
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin, China.,College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Ruikun Wang
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin, China.,College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, China
| | - Mingjuan Du
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xingdong Zhou
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin, China
| | - Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin, China
| | - Youjia Cao
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin, China.,College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, China
| |
Collapse
|
17
|
Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18:585-608. [DOI: 10.1038/s41573-019-0028-1] [Citation(s) in RCA: 493] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Kumar R, Parray HA, Shrivastava T, Sinha S, Luthra K. Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol 2019; 135:907-918. [PMID: 31170490 DOI: 10.1016/j.ijbiomac.2019.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 12/29/2022]
Abstract
Monoclonal antibodies (mAbs) and their derivatives have achieved remarkable success as medicine, targeting both diagnostic and therapeutic applications associated with communicable and non-communicable diseases. In the last 3 to 4 decades, tremendous success has been manifested in the field of cancer therapy, autoimmune diseases, cardiovascular and infectious diseases. MAbs are the fastest growing class of biopharmaceuticals, with more than 25 derivatives are in clinical use and 7 of these have been isolated through phage display technology. Phage display technology has gained impetus in the field of medical and health sciences, as a large repertoire of diverse recombinant antibodies, targeting various antigens have been generated in a short span of time. A prominent number of phage display derived antibodies are already approved for therapy and significant numbers are currently in clinical trials. In this review we have discussed the various strategies employed for generation of monoclonal antibodies; their advantages, limitations and potential therapeutic applications. We also discuss the potential of phage display antibody libraries in isolation of monoclonal antibodies.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India; Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Hilal Ahmed Parray
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
19
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
20
|
Arslan M, Karadağ D, Kalyoncu S. Protein engineering approaches for antibody fragments: directed evolution and rational design approaches. ACTA ACUST UNITED AC 2019; 43:1-12. [PMID: 30930630 PMCID: PMC6426644 DOI: 10.3906/biy-1809-28] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The number of therapeutic antibodies in preclinical, clinical, or approved phases has been increasing exponentially, mostly due to their known successes. Development of antibody engineering methods has substantially hastened the development of therapeutic antibodies. A variety of protein engineering techniques can be applied to antibodies to improve their afinity and/or biophysical properties such as solubility and stability. Antibody fragments (where all or some parts of constant regions are eliminated while the essential antigen binding region is preserved) are more suitable for protein engineering techniques because there are many in vitro screening technologies available for antibody fragments but not full-length antibodies. Improvement of biophysical characteristics is important in the early development phase because most antibodies fail at the later stage of development and this leads to loss of resources and time. Here, we review directed evolution and rational design methods to improve antibody properties. Recent developments in rational design approaches and antibody display technologies, and especially phage display, which was recently awarded the 2018 Nobel Prize, are discussed to be used in antibody research and development.
Collapse
Affiliation(s)
- Merve Arslan
- İzmir Biomedicine and Genome Center , İzmir , Turkey.,İzmir Biomedicine and Genome Institute, Dokuz Eylül University , İzmir , Turkey
| | | | | |
Collapse
|
21
|
Toxin Neutralization Using Alternative Binding Proteins. Toxins (Basel) 2019; 11:toxins11010053. [PMID: 30658491 PMCID: PMC6356946 DOI: 10.3390/toxins11010053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer from several drawbacks, such as immunogenicity and high cost of production. Consequently, avenues for improving envenoming therapy, such as the discovery of toxin-sequestering monoclonal antibodies against medically important target toxins through phage display selection, are being explored. However, alternative binding protein scaffolds that exhibit certain advantages compared to the well-known immunoglobulin G scaffold, including high stability under harsh conditions and low cost of production, may pose as possible low-cost alternatives to antibody-based therapeutics. There is now a plethora of alternative binding protein scaffolds, ranging from antibody derivatives (e.g., nanobodies), through rationally designed derivatives of other human proteins (e.g., DARPins), to derivatives of non-human proteins (e.g., affibodies), all exhibiting different biochemical and pharmacokinetic profiles. Undeniably, the high level of engineerability and potentially low cost of production, associated with many alternative protein scaffolds, present an exciting possibility for the future of snakebite therapeutics and merit thorough investigation. In this review, a comprehensive overview of the different types of binding protein scaffolds is provided together with a discussion on their relevance as potential modalities for use as next-generation antivenoms.
Collapse
|
22
|
Colley CS, England E, Linley JE, Wilkinson TCI. Screening Strategies for the Discovery of Ion Channel Monoclonal Antibodies. ACTA ACUST UNITED AC 2018; 82:e44. [DOI: 10.1002/cpph.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caroline S. Colley
- Antibody Discovery and Protein Engineering, MedImmune; Cambridge United Kingdom
| | - Elizabeth England
- Antibody Discovery and Protein Engineering, MedImmune; Cambridge United Kingdom
| | - John E. Linley
- Neuroscience, IMED Biotech Unit, AstraZeneca; Cambridge United Kingdom
| | | |
Collapse
|
23
|
Recombinant human B cell repertoires enable screening for rare, specific, and natively paired antibodies. Commun Biol 2018; 1:5. [PMID: 30271892 PMCID: PMC6123710 DOI: 10.1038/s42003-017-0006-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/07/2017] [Indexed: 11/09/2022] Open
Abstract
The human antibody repertoire is increasingly being recognized as a valuable source of therapeutic grade antibodies. However, methods for mining primary antibody-expressing B cells are limited in their ability to rapidly isolate rare and antigen-specific binders. Here we show the encapsulation of two million primary B cells into picoliter-sized droplets, where their cognate V genes are fused in-frame to form a library of scFv cassettes. We used this approach to construct natively paired phage-display libraries from healthy donors and drove selection towards cross-reactive antibodies targeting influenza hemagglutinin. Within 4 weeks we progressed from B cell isolation to a panel of unique monoclonal antibodies, including seven that displayed broad reactivity to different clinically relevant influenza hemagglutinin subtypes. Most isolated antibody sequences were not detected by next-generation sequencing of the paired repertoire, illustrating how this method can isolate extremely rare leads not likely found by existing technologies. Saravanan Rajan et al. describe a high-throughput method for isolating unique human monoclonal antibodies using picoliter sized droplets containing primary B cells. They show this approach can rapidly drive selection towards novel antibodies against clinically-relevant influenza hemagglutinin subtypes.
Collapse
|
24
|
Koch J, Tesar M. Recombinant Antibodies to Arm Cytotoxic Lymphocytes in Cancer Immunotherapy. Transfus Med Hemother 2017; 44:337-350. [PMID: 29070979 PMCID: PMC5649249 DOI: 10.1159/000479981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has the potential to support and expand the body's own armamentarium of immune effector functions, which have been circumvented during malignant transformation and establishment of cancer and is presently considered to be the most promising treatment option for cancer patients. Recombinant antibody technologies have led to a multitude of novel antibody formats, which are in clinical development and hold great promise for future therapies. Among these formats, bispecific antibodies are extremely versatile due to their high efficacy to recruit and activate anti-tumoral immune effector cells, their excellent safety profile, and the opportunity for use in combination with cellular therapies. This review article summarizes the latest developments in cancer immunotherapy using immuno-engagers for recruiting T cells and NK cells to the tumor site. In addition to antibody formats, malignant cell targets, and immune cell targets, opportunities for combination therapies, including check point inhibitors, cytokines and adoptive transfer of immune cells, will be summarized and discussed.
Collapse
Affiliation(s)
- Joachim Koch
- Affimed GmbH, Technologiepark, Heidelberg, Germany
| | | |
Collapse
|