1
|
Jeong YH, Lennon G, Veldman G, Serna DM, Ibrahimov A. Establishing endotoxin limits to enhance the reliability of in vitro immunogenicity risk assessments. MAbs 2025; 17:2458627. [PMID: 39893505 PMCID: PMC11792839 DOI: 10.1080/19420862.2025.2458627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
Immunogenic responses to biotherapeutics often lead to termination of their development because the resulting anti-drug-antibodies (ADA) can negatively impact pharmacology, safety, and efficacy. To mitigate ADA risks, in vitro risk assessment assays in non-clinical settings are essential to enhance safety and efficacy of protein-based therapeutics. This study aimed to develop and validate a human in vitro immunogenicity T cell proliferation assay. However, there is a lack of comprehensive guidelines for managing product-related factors such as endotoxin contamination, which can significantly influence assay sensitivity and accuracy. Our investigation of the impact of endotoxins revealed that levels above 0.1 EU/mg significantly induce T cell proliferation and CD14+ myeloid cell expansion, leading to potential false-positive outcomes in immunogenicity assessments. These findings suggest the importance of developing standardized protocols to enhance the predictive capability of in vitro methods, ensuring the assessment of therapeutic proteins accurately reflects their immunogenic potential without interference from contaminants.
Collapse
Affiliation(s)
- Yun Hee Jeong
- In Vitro Immunosafety, Development Biological Sciences, Abbvie Bioresearch Center, Worcester, MA, USA
| | - Gillian Lennon
- In Vitro Immunosafety, Development Biological Sciences, Abbvie Bioresearch Center, Worcester, MA, USA
| | - Geertruida Veldman
- Biotherapeutics Discovery Research, AbbVie Bioresearch Center, AbbVie Bioresearch Center, Worcester, MA, USA
| | - Daniel M. Serna
- In Vitro Immunosafety, Development Biological Sciences, Abbvie Bioresearch Center, Worcester, MA, USA
| | - Alexander Ibrahimov
- In Vitro Immunosafety, Development Biological Sciences, Abbvie Bioresearch Center, Worcester, MA, USA
| |
Collapse
|
2
|
Barlow KA, Battles MB, Brown ME, Canfield K, Lu X, Lynaugh H, Morrill M, Rappazzo CG, Reyes SP, Sandberg C, Sharkey B, Strong C, Zhao J, Sivasubramanian A. Design of orthogonal constant domain interfaces to aid proper heavy/light chain pairing of bispecific antibodies. MAbs 2025; 17:2479531. [PMID: 40126074 PMCID: PMC11934185 DOI: 10.1080/19420862.2025.2479531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
The correct pairing of cognate heavy and light chains is critical to the efficient manufacturing of IgG-like bispecific antibodies (bsAbs) from a single host cell. We present a general solution for the elimination of heavy chain (HC):light chain (LC) mispairs in bsAbs with κ LCs via the use of two orthogonal constant domain (CH1:Cκ ) interfaces comprising computationally designed amino acid substitutions. Substitutions were designed by Rosetta to introduce novel hydrogen bond (H-bond) networks at the CH1:Cκ interface, followed by Rosetta energy calculations to identify designs with enhanced pairing specificity and interface stability. Our final design, featuring a total of 11 amino acid substitutions across two Fab constant regions, was tested on a set of six IgG-like bsAbs featuring a diverse set of unmodified human antibody variable domains. Purity assessments showed near-complete elimination of LC mispairs, including in cases with high baseline mispairing with wild-type constant domains. The engineered bsAbs broadly recapitulated the antigen-binding and biophysical developability properties of their monospecific counterparts and no adverse immunogenicity signal was identified by an in vitro assay. Fab crystal structures containing engineered constant domain interfaces revealed no major perturbations relative to the wild-type coordinates and validated the presence of the designed hydrogen bond interactions. Our work enables the facile assembly of independently discovered IgG-like bispecific antibodies in a single-cell host and demonstrates a streamlined and generalizable computational and experimental workflow for redesigning conserved protein:protein interfaces.
Collapse
Affiliation(s)
| | | | | | | | - Xiaojun Lu
- Protein Analytics, Adimab, Lebanon, NH, USA
| | | | | | | | | | | | - Beth Sharkey
- High-Throughput Expression, Adimab, Lebanon, NH, USA
| | | | | | - Arvind Sivasubramanian
- Computational Biology, Adimab, Mountain View, CA, USA
- Platform Technologies, Adimab, Lebanon, NH, USA
| |
Collapse
|
3
|
Pack BW, Siegel RW, Cornwell PD, Ferrante A, Roepke DA, Hodsdon ME, Malherbe L, Carfagna MA. A Phase-Appropriate Risk Assessment Strategy in Support of the Safety of Peptide and Oligonucleotide-Related Impurities. AAPS J 2025; 27:56. [PMID: 40050561 DOI: 10.1208/s12248-025-01023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/14/2025] [Indexed: 03/25/2025] Open
Abstract
There is limited regulatory guidance that outlines the globally acceptable level of individual and total impurities present in peptide and oligonucleotide drug substances that can be supported and accepted during clinical testing. In early clinical development, there is uncertainty regarding the potential toxicological and immunogenicity risk of these impurities relative to the active pharmaceutical ingredient; however, as pharmaceutical development companies move closer to marketing applications, this uncertainty lessens through knowledge gained by clinical and toxicology studies. While these peptide and oligonucleotide related impurities are predicted to be under process control and to have the same safety profile as the parent drug substance, they do not offer any inherent advantages to the patient. Thus, the safety and specification control of these impurities is frequently challenged by regulatory agencies. In support of phase-appropriate control strategies, this manuscript presents a risk-based approach to evaluate the safety of peptide and oligonucleotide impurities from a toxicology and immunogenicity perspective. In many cases, the proposed safety threshold is higher than what is accepted by regulatory bodies, but still is expected to be safe based upon sound toxicological principles which should be the focus for clinical studies. The risk assessment strategies presented here consider the stage of development, indication, potential impact of unintended cross reactivity with endogenous proteins, dose, and frequency of dosing throughout development to inform chemistry manufacturing and control of inherent safety risks associated with API-related impurities. Importantly, for the first time, this manuscript establishes a threshold of immunogenicity concern along with an experimental mitigation plan specifically for peptide impurities as a function of the development phase.
Collapse
Affiliation(s)
- Brian W Pack
- Eli Lilly and Company Indianapolis, Indianapolis, Indiana, USA.
| | - Robert W Siegel
- Eli Lilly and Company Indianapolis, Indianapolis, Indiana, USA
| | - Paul D Cornwell
- Eli Lilly and Company Indianapolis, Indianapolis, Indiana, USA
| | - Andrea Ferrante
- Eli Lilly and Company Indianapolis, Indianapolis, Indiana, USA
| | | | | | | | - Mark A Carfagna
- Eli Lilly and Company Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Carter PJ, Quarmby V. Immunogenicity risk assessment and mitigation for engineered antibody and protein therapeutics. Nat Rev Drug Discov 2024; 23:898-913. [PMID: 39424922 DOI: 10.1038/s41573-024-01051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Remarkable progress has been made in recent decades in engineering antibodies and other protein therapeutics, including enhancements to existing functions as well as the advent of novel molecules that confer biological activities previously unknown in nature. These protein therapeutics have brought major benefits to patients across multiple areas of medicine. One major ongoing challenge is that protein therapeutics can elicit unwanted immune responses (immunogenicity) in treated patients, including the generation of anti-drug antibodies. In rare and unpredictable cases, anti-drug antibodies can seriously compromise therapeutic safety and/or efficacy. Systematic deconvolution of this immunogenicity problem is confounded by the complexity of its many contributing factors and the inherent limitations of available experimental and computational methods. Nevertheless, continued progress with the assessment and mitigation of immunogenicity risk at the preclinical stage has the potential to reduce the incidence and severity of clinical immunogenicity events. This Review focuses on identifying key unsolved anti-drug antibody-related challenges and offers some pragmatic approaches towards addressing them. Examples are drawn mainly from antibodies, given that the majority of available clinical data are from this class of protein therapeutics. Plausible and seemingly tractable solutions are in sight for some immunogenicity problems, whereas other challenges will likely require completely new approaches.
Collapse
Affiliation(s)
- Paul J Carter
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA.
| | - Valerie Quarmby
- Department of BioAnalytical Sciences, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
5
|
Fujiyama S, Asano H, Namatame I. Integration of a fully automated flow cytometry system with high robustness into a Screening Station. SLAS Technol 2024; 29:100215. [PMID: 39454873 DOI: 10.1016/j.slast.2024.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
In recent years, there has been an increasing demand for the detection of rare cells in drug discovery research, such as cells that have differentiated off-purpose or are required for immunogenicity evaluation. Since detection and quantification limits depend on the robustness of the experiment, inter-human differences in technique have a significant impact on the performance of the assay system. Here, we integrated flow cytometry into a cell experiment platform, Screening Station, to construct a robust assay system, examined each step of the flow cytometric pretreatment using Jurkat cells, and finally evaluated the overall assay performance. Cell detection rate when the experiment was performed manually was 48.8 % ± 5.7 % (CV=11.6 %) versus 73.7 %±2.0 % (CV=2.8 %) with the automated method. To further clarify the analytical performance of the automated method, 1-100 PD-1 expressing Jurkat cells were spiked with 1 × 105 Jurkat cells, and the lower limit of detection, linearity, and CV% were evaluated. Average detection rate was 69 %, decision count was 0.985, and lower limit of detection was 4 cells (0.004 %). We evaluated the CV% value of the number of detected cells per spiked cell and found our system to be highly robust, approximating a binomial distribution with a 69 % recovery rate. In conclusion, we have integrated the Novocyte flow cytometry system into an automated experimental platform, Screening Station, to create a fully automated flow cytometric assay system with high robustness. Our platform can fulfill the technology needs of drug discovery for rare cell detection, which have intensified in recent years.
Collapse
Affiliation(s)
- Shingo Fujiyama
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi 305-8585, Ibaraki, Japan.
| | - Hidemitsu Asano
- Rorze Lifescience Inc., 430-1, Kamiyokoba, Tsukuba-shi 305-0854, Ibaraki, Japan
| | - Ichiji Namatame
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi 305-8585, Ibaraki, Japan
| |
Collapse
|
6
|
Siegel M, Padamsey A, Bolender AL, Hargreaves P, Fraidling J, Ducret A, Hartman K, Looney CM, Bertinetti-Lapatki C, Rohr O, Hickling TP, Kraft TE, Marban-Doran C. Development and characterization of dendritic cell internalization and activation assays contributing to the immunogenicity risk evaluation of biotherapeutics. Front Immunol 2024; 15:1406804. [PMID: 39229274 PMCID: PMC11368763 DOI: 10.3389/fimmu.2024.1406804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Immunogenicity refers to the ability of a substance, such as a therapeutic drug, to elicit an immune response. While beneficial in vaccine development, undesirable immunogenicity can compromise the safety and efficacy of therapeutic proteins by inducing anti-drug antibodies (ADAs). These ADAs can reduce drug bioavailability and alter pharmacokinetics, necessitating comprehensive immunogenicity risk assessments starting at early stages of drug development. Given the complexity of immunogenicity, an integrated approach is essential, as no single assay can universally recapitulate the immune response leading to the formation of anti-drug antibodies. Methods To better understand the Dendritic Cell (DC) contribution to immunogenicity, we developed two flow cytometry-based assays: the DC internalization assay and the DC activation assay. Monocyte-derived dendritic cells (moDCs) were generated from peripheral blood mononuclear cells (PBMCs) and differentiated over a five-day period. The internalization assay measured the accumulation rate of therapeutic antibodies within moDCs, while the activation assay assessed the expression of DC activation markers such as CD40, CD80, CD86, CD83, and DC-SIGN (CD209). To characterize these two assays further, we used a set of marketed therapeutic antibodies. Results The study highlights that moDCs differentiated for 5 days from freshly isolated monocytes were more prone to respond to external stimuli. The internalization assay has been shown to be highly sensitive to the molecule tested, allowing the use of only 4 donors to detect small but significant differences. We also demonstrated that therapeutic antibodies were efficiently taken up by moDCs, with a strong correlation with their peptide presentation on MHC-II. On the other hand, by monitoring DC activation through a limited set of activation markers including CD40, CD83, and DC-SIGN, the DC activation assay has the potential to compare a series of compounds. These two assays provide a more comprehensive understanding of DC function in the context of immunogenicity, highlighting the importance of both internalization and activation processes in ADA development. Discussion The DC internalization and activation assays described here address key gaps in existing immunogenicity assessment methods by providing specific and reliable measures of DC function. The assays enhance our ability to pre-clinically evaluate the immunogenic potential of biotherapeutics, thereby improving their safety and efficacy. Future work should focus on further validating these assays and integrating them into a holistic immunogenicity risk assessment framework.
Collapse
Affiliation(s)
- Michel Siegel
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Aman Padamsey
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Anna-Lena Bolender
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Patrick Hargreaves
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Johannes Fraidling
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Axel Ducret
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Katharina Hartman
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Cary M. Looney
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Cristina Bertinetti-Lapatki
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Olivier Rohr
- University of Strasbourg, UPR CNRS 9002 ARN, IUT Louis Pasteur, Schiltigheim, France
- Institut Universitaire de Technologie Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - Timothy P. Hickling
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Thomas E. Kraft
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Céline Marban-Doran
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
7
|
Walsh RE, Nix A, Ackaert C, Mazy A, Schockaert J, Pattyn S, Malherbe L. Preclinical immunogenicity risk assessment of biotherapeutics using CD4 T cell assays. Front Immunol 2024; 15:1406040. [PMID: 38863708 PMCID: PMC11165089 DOI: 10.3389/fimmu.2024.1406040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
T-cell dependent antibody responses to biotherapeutics remain a challenge to the optimal clinical application of biotherapeutics because of their capacity to impair drug efficacy and their potential to cause safety issues. To minimize this clinical immunogenicity risk, preclinical assays measuring the capacity of biotherapeutics to elicit CD4 T cell response in vitro are commonly used. However, there is considerable variability in assay formats and a general poor understanding of their respective predictive value. In this study, we evaluated the performance of three different CD4 T cell proliferation assays in their capacity to predict clinical immunogenicity: a CD8 T cell depleted peripheral blood mononuclear cells (PBMC) assay and two co-culture-based assays between dendritic cells (DCs) and autologous CD4 T cells with or without restimulation with monocytes. A panel of 10 antibodies with a wide range of clinical immunogenicity was selected. The CD8 T cell depleted PBMC assay predicted the clinical immunogenicity in four of the eight highly immunogenic antibodies included in the panel. Similarly, five antibodies with high clinical immunogenicity triggered a response in the DC: CD4 T cell assay but the responses were of lower magnitude than the ones observed in the PBMC assay. Remarkably, three antibodies with high clinical immunogenicity did not trigger any response in either platform. The addition of a monocyte restimulation step to the DC: CD4 T cell assay did not further improve its predictive value. Overall, these results indicate that there are no CD4 T cell assay formats that can predict the clinical immunogenicity of all biotherapeutics and reinforce the need to combine results from various preclinical assays assessing antigen uptake and presentation to fully mitigate the immunogenicity risk of biotherapeutics.
Collapse
Affiliation(s)
- Robin E. Walsh
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Angela Nix
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Chloé Ackaert
- ImmunXperts SA| Rue August Piccard 48, Gosselies, Belgium
| | - Aurélie Mazy
- ImmunXperts SA| Rue August Piccard 48, Gosselies, Belgium
| | | | - Sofie Pattyn
- ImmunXperts SA| Rue August Piccard 48, Gosselies, Belgium
| | - Laurent Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
8
|
Harris CT, Cohen S. Reducing Immunogenicity by Design: Approaches to Minimize Immunogenicity of Monoclonal Antibodies. BioDrugs 2024; 38:205-226. [PMID: 38261155 PMCID: PMC10912315 DOI: 10.1007/s40259-023-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
Monoclonal antibodies (mAbs) have transformed therapeutic strategies for various diseases. Their high specificity to target antigens makes them ideal therapeutic agents for certain diseases. However, a challenge to their application in clinical practice is their potential risk to induce unwanted immune response, termed immunogenicity. This challenge drives the continued efforts to deimmunize these protein therapeutics while maintaining their pharmacokinetic properties and therapeutic efficacy. Because mAbs hold a central position in therapeutic strategies against an array of diseases, the importance of conducting comprehensive immunogenicity risk assessment during the drug development process cannot be overstated. Such assessment necessitates the employment of in silico, in vitro, and in vivo strategies to evaluate the immunogenicity risk of mAbs. Understanding the intricacies of the mechanisms that drive mAb immunogenicity is crucial to improving their therapeutic efficacy and safety and developing the most effective strategies to determine and mitigate their immunogenic risk. This review highlights recent advances in immunogenicity prediction strategies, with a focus on protein engineering strategies used throughout development to reduce immunogenicity.
Collapse
Affiliation(s)
- Chantal T Harris
- Department of BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, 94080-4990, USA
| | - Sivan Cohen
- Department of BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, 94080-4990, USA.
| |
Collapse
|
9
|
Lteif M, Pallardy M, Turbica I. Antibodies internalization mechanisms by dendritic cells and their role in therapeutic antibody immunogenicity. Eur J Immunol 2024; 54:e2250340. [PMID: 37985174 DOI: 10.1002/eji.202250340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Internalization and processing by antigen-presenting cells such as dendritic cells (DCs) are critical steps for initiating a T-cell response to therapeutic antibodies. Consequences are the production of neutralizing antidrug antibodies altering the clinical response, the presence of immune complexes, and, in some rare cases, hypersensitivity reactions. In recent years, significant progress has been made in the knowledge of cellular uptake mechanisms of antibodies in DCs. The uptake of antibodies could be directly related to their immunogenicity by regulating the quantity of materials entering the DCs in relation to antibody structure. Here, we summarize the latest insights into cellular uptake mechanisms and pathways in DCs. We highlight the approaches to study endocytosis, the impact of endocytosis routes on T-cell response, and discuss the link between how DCs internalize therapeutic antibodies and the potential mechanisms that could give rise to immunogenicity. Understanding these processes could help in developing assays to evaluate the immunogenicity potential of biotherapeutics.
Collapse
Affiliation(s)
- Maria Lteif
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Isabelle Turbica
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
10
|
Sun R, Qian MG, Zhang X. T and B cell epitope analysis for the immunogenicity evaluation and mitigation of antibody-based therapeutics. MAbs 2024; 16:2324836. [PMID: 38512798 PMCID: PMC10962608 DOI: 10.1080/19420862.2024.2324836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The surge in the clinical use of therapeutic antibodies has reshaped the landscape of pharmaceutical therapy for many diseases, including rare and challenging conditions. However, the administration of exogenous biologics could potentially trigger unwanted immune responses such as generation of anti-drug antibodies (ADAs). Real-world experiences have illuminated the clear correlation between the ADA occurrence and unsatisfactory therapeutic outcomes as well as immune-related adverse events. By retrospectively examining research involving immunogenicity analysis, we noticed the growing emphasis on elucidating the immunogenic epitope profiles of antibody-based therapeutics aiming for mechanistic understanding the immunogenicity generation and, ideally, mitigating the risks. As such, we have comprehensively summarized here the progress in both experimental and computational methodologies for the characterization of T and B cell epitopes of therapeutics. Furthermore, the successful practice of epitope-driven deimmunization of biotherapeutics is exceptionally highlighted in this article.
Collapse
Affiliation(s)
- Ruoxuan Sun
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc. (TDCA), Cambridge, MA, USA
| | - Mark G. Qian
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc. (TDCA), Cambridge, MA, USA
| | - Xiaobin Zhang
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc. (TDCA), Cambridge, MA, USA
| |
Collapse
|
11
|
Jarvi NL, Balu-Iyer SV. A mechanistic marker-based screening tool to predict clinical immunogenicity of biologics. COMMUNICATIONS MEDICINE 2023; 3:174. [PMID: 38066254 PMCID: PMC10709359 DOI: 10.1038/s43856-023-00413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/21/2023] [Indexed: 01/01/2024] Open
Abstract
BACKGROUND The efficacy and safety of therapeutic proteins are undermined by immunogenicity driven by anti-drug antibodies. Immunogenicity risk assessment is critically necessary during drug development, but current methods lack predictive power and mechanistic insight into antigen uptake and processing leading to immune response. A key mechanistic step in T-cell-dependent immune responses is the migration of mature dendritic cells to T-cell areas of lymphoid compartments, and this phenomenon is most pronounced in the immune response toward subcutaneously delivered proteins. METHODS The migratory potential of monocyte-derived dendritic cells is proposed to be a mechanistic marker for immunogenicity screening. Following exposure to therapeutic protein in vitro, dendritic cells are analyzed for changes in activation markers (CD40 and IL-12) in combination with levels of the chemokine receptor CXCR4 to represent migratory potential. Then a transwell assay captures the intensity of dendritic cell migration in the presence of a gradient of therapeutic protein and chemokine ligands. RESULTS Here, we show that an increased ability of the therapeutic protein to induce dendritic cell migration along a gradient of chemokine CCL21 and CXCL12 predicts higher immunogenic potential. Expression of the chemokine receptor CXCR4 on human monocyte-derived dendritic cells, in combination with activation markers CD40 and IL-12, strongly correlates with clinical anti-drug antibody incidence. CONCLUSIONS Mechanistic understanding of processes driving immunogenicity led to the development of a predictive tool for immunogenicity risk assessment of therapeutic proteins. These predictive markers could be adapted for immunogenicity screening of other biological modalities.
Collapse
Affiliation(s)
- Nicole L Jarvi
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| |
Collapse
|
12
|
Lee MV, Saad OM, Wong S, LaMar J, Kamen L, Ordonia B, Melendez R, Hassanzadeh A, Chung S, Kaur S. Development of a semi-automated MHC-associated peptide proteomics (MAPPs) method using streptavidin bead-based immunoaffinity capture and nano LC-MS/MS to support immunogenicity risk assessment in drug development. Front Immunol 2023; 14:1295285. [PMID: 38022649 PMCID: PMC10667718 DOI: 10.3389/fimmu.2023.1295285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Major histocompatibility complex (MHC)-Associated Peptide Proteomics (MAPPs) is an ex vivo method used to assess the immunogenicity risk of biotherapeutics. MAPPs can identify potential T-cell epitopes within the biotherapeutic molecule. Using adalimumab treated human monocyte derived dendritic cells (DCs) and a pan anti-HLA-DR antibody (Ab), we systematically automated and optimized biotin/streptavidin (SA)-capture antibody coupling, lysate incubation with capture antibody, as well as the washing and elution steps of a MAPPs method using functionalized magnetic beads and a KingFisher Magnetic Particle processor. Automation of these steps, combined with capturing using biotinylated-Ab/SA magnetic beads rather than covalently bound antibody, improved reproducibility as measured by minimal inter-and intra-day variability, as well as minimal analyst-to-analyst variability. The semi-automated MAPPs workflow improved sensitivity, allowing for a lower number of cells per analysis. The method was assessed using five different biotherapeutics with varying immunogenicity rates ranging from 0.1 to 48% ADA incidence in the clinic. Biotherapeutics with ≥10%immunogenicity incidence consistently presented more peptides (1.8-28 fold) and clusters (10-21 fold) compared to those with <10% immunogenicity incidence. Our semi-automated MAPPs method provided two main advantages over a manual workflow- the robustness and reproducibility affords confidence in the epitopes identified from as few as 5 to 10 donors and the method workflow can be readily adapted to incorporate different capture Abs in addition to anti-HLA-DR. The incorporation of semi-automated MAPPs with biotinylated-Ab/SA bead-based capture in immunogenicity screening strategies allows the generation of more consistent and reliable data, helping to improve immunogenicity prediction capabilities in drug development. MHC associated peptide proteomics (MAPPs), Immunogenicity risk assessment, in vitro/ex vivo, biotherapeutics, Major Histocompatibility Complex Class II (MHC II), LC-MS, Immunoaffinity Capture, streptavidin magnetic beads.
Collapse
Affiliation(s)
| | - Ola M. Saad
- *Correspondence: M. Violet Lee, ; Ola M. Saad,
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
De Groot AS, Khan S, Mattei AE, Lelias S, Martin WD. Does human homology reduce the potential immunogenicity of non-antibody scaffolds? Front Immunol 2023; 14:1215939. [PMID: 38022550 PMCID: PMC10664710 DOI: 10.3389/fimmu.2023.1215939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Biologics developers are moving beyond antibodies for delivery of a wide range of therapeutic interventions. These non-antibody modalities are often based on 'natural' protein scaffolds that are modified to deliver bioactive sequences. Both human-derived and non-human-sourced scaffold proteins have been developed. New types of "non-antibody" scaffolds are still being discovered, as they offer attractive alternatives to monoclonals due to their smaller size, improved stability, and ease of synthesis. They are believed to have low immunogenic potential. However, while several human-sourced protein scaffolds have not been immunogenic in clinical studies, this may not predict their overall performance in other therapeutic applications. A preliminary evaluation of their potential for immunogenicity is warranted. Immunogenicity risk potential has been clearly linked to the presence of T "helper" epitopes in the sequence of biologic therapeutics. In addition, tolerogenic epitopes are present in some human proteins and may decrease their immunogenic potential. While the detailed sequences of many non-antibody scaffold therapeutic candidates remain unpublished, their backbone sequences are available for review and analysis. We assessed 12 example non-antibody scaffold backbone sequences using our epitope-mapping tools (EpiMatrix) for this perspective. Based on EpiMatrix scoring, their HLA DRB1-restricted T cell epitope content appears to be lower than the average protein, and sequences that may act as tolerogenic epitopes are present in selected human-derived scaffolds. Assessing the potential immunogenicity of scaffold proteins regarding self and non-self T cell epitopes may be of use for drug developers and clinicians, as these exciting new non-antibody molecules begin to emerge from the preclinical pipeline into clinical use.
Collapse
Affiliation(s)
- Anne S. De Groot
- EpiVax, Providence, RI, United States
- University of Georgia, Center for Vaccines and Immunology, Athens, GA, United States
| | | | | | | | | |
Collapse
|
14
|
Di Ianni A, Barbero L, Fraone T, Cowan K, Sirtori FR. Preclinical risk assessment strategy to mitigate the T-cell dependent immunogenicity of protein biotherapeutics: State of the art, challenges and future perspectives. J Pharm Biomed Anal 2023; 234:115500. [PMID: 37311374 DOI: 10.1016/j.jpba.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Protein therapeutics hold a prominent role and have brought significant diversity in efficacious medicinal products. Not just monoclonal antibodies and different antibody formats (pegylated antigen-binding fragments, bispecifics, antibody-drug conjugates, single chain variable fragments, nanobodies, dia-, tria- and tetrabodies), but also purified blood products, growth factors, recombinant cytokines, enzyme replacement factors, fusion proteins are all good instances of therapeutic proteins that have been developed in the past decades and approved for their value in oncology, immune-oncology, and autoimmune diseases discovery programs. Although there was an ingrained belief that fully humanized proteins were expected to have limited immunogenicity, adverse effects associated with immune responses to biological therapies raised some concern in biotech companies. Consequently, drug developers are designing strategies to assess potential immune responses to protein therapeutics during both the preclinical and clinical phases of development. Despite the many factors that can contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) immunogenicity seems to play a crucial role in the development of anti-drug antibodies (ADAs) to biologics. A broad range of methodologies to predict and rationally assess Td immune responses to protein drugs has been developed. This review aims to briefly summarize the preclinical immunogenicity risk assessment strategy to mitigate the risk of potential immunogenic candidates coming towards clinical phases, discussing the advantages and limitations of these technologies, and suggesting a rational approach for assessing and mitigating Td immunogenicity.
Collapse
Affiliation(s)
- Andrea Di Ianni
- University of Turin, Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Luca Barbero
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Tiziana Fraone
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Kyra Cowan
- New Biological Entities, Drug Metabolism and Pharmacokinetics (NBE-DMPK), Research and Development, Merck KGaA, Frankfurterstrasse 250, 64293 Darmstadt, Germany
| | - Federico Riccardi Sirtori
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy.
| |
Collapse
|
15
|
Arata Y, Motoyama S, Yano M, Ikuno T, Ito S, Matsushita T, Takeiri A, Nishito Y, Yabuki N, Mizuno H, Sampei Z, Mishima M, Honda M, Kiyokawa J, Suzuki H, Chiba S, Tabo M, Kubo C. Rapid in vitro assessment of the immunogenicity potential of engineered antibody therapeutics through detection of CD4 + T cell interleukin-2 secretion. MAbs 2023; 15:2253570. [PMID: 37682072 PMCID: PMC10494738 DOI: 10.1080/19420862.2023.2253570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Therapeutic antibodies sometimes elicit anti-drug antibodies (ADAs) that can affect efficacy and safety. Engineered antibodies that contain artificial amino acid sequences are potentially highly immunogenic, but this is currently difficult to predict. Therefore, it is important to efficiently assess immunogenicity during the development of complex antibody-based formats. Here, we present an in vitro peripheral blood mononuclear cell-based assay that can be used to assess immunogenicity potential within 3 days. This method involves examining the frequency and function of interleukin (IL)-2-secreting CD4+ T cells induced by therapeutic antibodies. IL-2-secreting CD4+ T cells seem to be functionally relevant to the immunogenic potential due to their proliferative activity and the expression of several cytokines. The rates of the donors responding to low and high immunogenic proteins, mAb1, and keyhole limpet hemocyanin were 1.3% and 93.5%, respectively. Seven antibodies with known rates of immunogenicity (etanercept, emicizumab, abciximab, romosozumab, blosozumab, humanized anti-human A33 antibody, and bococizumab) induced responses in 1.9%, 3.8%, 6.4%, 10.0%, 29.2%, 43.8%, and 89.5% of donors, respectively. These data are comparable with ADA incidences in clinical settings. Our results show that this assay can contribute to the swift assessment and mechanistic understanding of the immunogenicity of therapeutic antibodies.
Collapse
Affiliation(s)
- Yoshiyuki Arata
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Shigeki Motoyama
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Mariko Yano
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Tatsuya Ikuno
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Shunsuke Ito
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Tomochika Matsushita
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Akira Takeiri
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Yukari Nishito
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Nami Yabuki
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Hideaki Mizuno
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Zenjiro Sampei
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Masayuki Mishima
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Masaki Honda
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Jumpei Kiyokawa
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Hiromi Suzuki
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Shuichi Chiba
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Mitsuyasu Tabo
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Chiyomi Kubo
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| |
Collapse
|
16
|
Zeunik R, Ryuzoji AF, Peariso A, Wang X, Lannan M, Spindler LJ, Knierman M, Copeland V, Patel C, Wen Y. Investigation of immune responses to oxidation, deamidation, and isomerization in therapeutic antibodies using preclinical immunogenicity risk assessment assays. J Pharm Sci 2022; 111:2217-2229. [DOI: 10.1016/j.xphs.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/30/2023]
|
17
|
Zhou Y, Penny HL, Kroenke MA, Bautista B, Hainline K, Chea LS, Parnes J, Mytych DT. Immunogenicity assessment of bispecific antibody-based immunotherapy in oncology. J Immunother Cancer 2022; 10:e004225. [PMID: 35444060 PMCID: PMC9024276 DOI: 10.1136/jitc-2021-004225] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/18/2022] Open
Abstract
With increasing numbers of bispecific antibodies (BsAbs) and multispecific products entering the clinic, recent data highlight immunogenicity as an emerging challenge in the development of such novel biologics. This review focuses on the immunogenicity risk assessment (IgRA) of BsAb-based immunotherapies for cancer, highlighting several risk factors that need to be considered. These include the novel scaffolds consisting of bioengineered sequences, the potentially synergistic immunomodulating mechanisms of action (MOAs) from different domains of the BsAb, as well as several other product-related and patient-related factors. In addition, the clinical relevance of anti-drug antibodies (ADAs) against selected BsAbs developed as anticancer agents is reviewed and the advances in our knowledge of tools and strategies for immunogenicity prediction, monitoring, and mitigation are discussed. It is critical to implement a drug-specific IgRA during the early development stage to guide ADA monitoring and risk management strategies. This IgRA may include a combination of several assessment tools to identify drug-specific risks as well as a proactive risk mitigation approach for candidate or format selection during the preclinical stage. The IgRA is an on-going process throughout clinical development. IgRA during the clinical stage may bridge the gap between preclinical immunogenicity prediction and clinical immunogenicity, and retrospectively guide optimization efforts for next-generation BsAbs. This iterative process throughout development may improve the reliability of the IgRA and enable the implementation of effective risk mitigation strategies, laying the foundation for improved clinical success.
Collapse
Affiliation(s)
- Yanchen Zhou
- Clinical Immunology, Amgen Inc, South San Francisco, California, USA
| | | | - Mark A Kroenke
- Clinical Immunology, Amgen Inc, Thousand Oaks, California, USA
| | - Bianca Bautista
- Clinical Immunology, Amgen Inc, Thousand Oaks, California, USA
| | - Kelly Hainline
- Clinical Immunology, Amgen Inc, Thousand Oaks, California, USA
| | - Lynette S Chea
- Clinical Immunology, Amgen Inc, South San Francisco, California, USA
| | - Jane Parnes
- Early Development, Amgen Inc, Thousand Oaks, California, USA
| | - Daniel T Mytych
- Clinical Immunology, Amgen Inc, Thousand Oaks, California, USA
| |
Collapse
|
18
|
Negron C, Fang J, McPherson MJ, Stine WB, McCluskey AJ. Separating clinical antibodies from repertoire antibodies, a path to in silico developability assessment. MAbs 2022; 14:2080628. [PMID: 35771588 PMCID: PMC9255221 DOI: 10.1080/19420862.2022.2080628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Approaches for antibody discovery have seen substantial improvement and success in recent years. Yet, advancing antibodies into the clinic remains difficult because therapeutic developability concerns are challenging to predict. We developed a computational model to simplify antibody developability assessment and enable accelerated early-stage screening. To this end, we quantified the ability of hundreds of sequence- and structure-based descriptors to differentiate clinical antibodies that have undergone rigorous screening and characterization for drug-like properties from antibodies in the human repertoire that are not natively paired. This analysis identified 144 descriptors capable of distinguishing clinical from repertoire antibodies. Five descriptors were selected and combined based on performance and orthogonality into a single model referred to as the Therapeutic Antibody Developability Analysis (TA-DA). On a hold-out test set, this tool separated clinical antibodies from repertoire antibodies with an AUC = 0.8, demonstrating the ability to identify developability attributes unique to clinical antibodies. Based on our results, the TA-DA score may serve as an approach for selecting lead antibodies for further development. Abbreviations: Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS), Area Under the Curve (AUC), Complementary-Determining Region (CDR), Clinical-Stage Therapeutics (CST), Framework (FR), Monoclonal Antibodies (mAbs), Observed Antibody Space (OAS), Receiver Operating Characteristic (ROC), Size-Exclusion Chromatography (SEC), Structural Aggregation Propensity (SAP), Therapeutic Antibody Developability Analysis (TA-DA), Therapeutic Antibody Profiler (TAP), Therapeutic Structural Antibody Database (Thera-SAbDab), Variable Heavy (VH), Variable Light (VL).
Collapse
Affiliation(s)
| | - Joyce Fang
- AbbVie Bioresearch Center, Worcester, MA, USA
| | | | | | | |
Collapse
|
19
|
Ducret A, Ackaert C, Bessa J, Bunce C, Hickling T, Jawa V, Kroenke MA, Lamberth K, Manin A, Penny HL, Smith N, Terszowski G, Tourdot S, Spindeldreher S. Assay format diversity in pre-clinical immunogenicity risk assessment: Toward a possible harmonization of antigenicity assays. MAbs 2021; 14:1993522. [PMID: 34923896 PMCID: PMC8726688 DOI: 10.1080/19420862.2021.1993522] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A major impediment to successful use of therapeutic protein drugs is their ability to induce anti-drug antibodies (ADA) that can alter treatment efficacy and safety in a significant number of patients. To this aim, in silico, in vitro, and in vivo tools have been developed to assess sequence and other liabilities contributing to ADA development at different stages of the immune response. However, variability exists between similar assays developed by different investigators due to the complexity of assays, a degree of uncertainty about the underlying science, and their intended use. The impact of protocol variations on the outcome of the assays, i.e., on the immunogenicity risk assigned to a given drug candidate, cannot always be precisely assessed. Here, the Non-Clinical Immunogenicity Risk Assessment working group of the European Immunogenicity Platform (EIP) reviews currently used assays and protocols and discusses feasibility and next steps toward harmonization and standardization.
Collapse
Affiliation(s)
- Axel Ducret
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Chloé Ackaert
- ImmunXperts SA (A Nexelis Group Company), Gosselies, Belgium
| | - Juliana Bessa
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | - Timothy Hickling
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Vibha Jawa
- Biotherapeutics and Bioanalysis Non-Clinical Development, Bristol Myers Squibb, Princeton, NJ, USA
| | - Mark A Kroenke
- Clinical Immunology-Translational Medicine, Amgen Inc, Thousand Oaks, CA, USA
| | - Kasper Lamberth
- Analysis & Characterisation, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Anaïs Manin
- Abzena, Babraham Research Campus, Cambridge, UK
| | - Hweixian L Penny
- Clinical Immunology-Translational Medicine, Amgen Inc, Thousand Oaks, CA, USA
| | - Noel Smith
- Lonza Biologics, Chesterford Research Park, Saffron Walden, UK
| | - Grzegorz Terszowski
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
20
|
Wen Y, Wang X, Cahya S, Anderson P, Velasquez C, Torres C, Ferrante A, Kaliyaperumal A. Comparability study of monocyte derived dendritic cells, primary monocytes, and THP1 cells for innate immune responses. J Immunol Methods 2021; 498:113147. [PMID: 34508774 DOI: 10.1016/j.jim.2021.113147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 01/23/2023]
Abstract
Immunogenicity is one major challenge to the successful development of biotherapeutics because it could adversely affect PK/PD, safety, and efficacy. Preclinical immunogenicity risk assessment strategies and assays have been developed and implemented to screen and optimize discovery molecules. Internalization by antigen presenting cells (APC) and innate immune activation are initial prerequisite steps in eliciting immune responses to biotherapeutics. Dendritic cells (DC)- and monocyte-based assays are employed to interrogate such risks, and their value has been well documented in the literature. However, these assays have limited throughput, exhibit higher variability, and entail lengthy and complex procedures as they are based on primary cells such as peripheral blood mononuclear cells (PBMC) from individual donors. Herein, we investigated THP1 cells as surrogate cells to study APC internalization and innate immune activation. Comparability studies showed that THP1 cells could resemble innate immune responses of monocyte-derived DC and primary CD14+ monocytes using a panel of therapeutic antibodies. In addition, an automated high throughput THP1 internalization assay was qualified to enable risk assessment at pre‑lead stages. The results demonstrated that THP1 cells can be utilized to assess immunogenicity risk in a high throughput manner.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xiaoli Wang
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Suntara Cahya
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Paul Anderson
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Candyd Velasquez
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Carina Torres
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Andrea Ferrante
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | | |
Collapse
|
21
|
Dyson MR, Masters E, Pazeraitis D, Perera RL, Syrjanen JL, Surade S, Thorsteinson N, Parthiban K, Jones PC, Sattar M, Wozniak-Knopp G, Rueker F, Leah R, McCafferty J. Beyond affinity: selection of antibody variants with optimal biophysical properties and reduced immunogenicity from mammalian display libraries. MAbs 2021; 12:1829335. [PMID: 33103593 PMCID: PMC7592150 DOI: 10.1080/19420862.2020.1829335] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The early phase of protein drug development has traditionally focused on target binding properties leading to a desired mode of therapeutic action. As more protein therapeutics pass through the development pipeline; however, it is clear that non-optimal biophysical properties can emerge, particularly as proteins are formulated at high concentrations, causing aggregation or polyreactivity. Such late-stage "developability" problems can lead to delay or failure in traversing the development process. Aggregation propensity is also correlated with increased immunogenicity, resulting in expensive, late-stage clinical failures. Using nucleases-directed integration, we have constructed large mammalian display libraries where each cell contains a single antibody gene/cell inserted at a single locus, thereby achieving transcriptional normalization. We show a strong correlation between poor biophysical properties and display level achieved in mammalian cells, which is not replicated by yeast display. Using two well-documented examples of antibodies with poor biophysical characteristics (MEDI-1912 and bococizumab), a library of variants was created based on surface hydrophobic and positive charge patches. Mammalian display was used to select for antibodies that retained target binding and permitted increased display level. The resultant variants exhibited reduced polyreactivity and reduced aggregation propensity. Furthermore, we show in the case of bococizumab that biophysically improved variants are less immunogenic than the parental molecule. Thus, mammalian display helps to address multiple developability issues during the earliest stages of lead discovery, thereby significantly de-risking the future development of protein drugs.
Collapse
Affiliation(s)
| | | | | | | | - Johanna L Syrjanen
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory , NY, USA
| | | | | | | | | | | | - Gordana Wozniak-Knopp
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences , Vienna, Austria
| | - Florian Rueker
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences , Vienna, Austria
| | | | | |
Collapse
|
22
|
In vitro immunogenicity prediction: bridging between innate and adaptive immunity. Bioanalysis 2021; 13:1071-1081. [PMID: 34124935 DOI: 10.4155/bio-2021-0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of antidrug antibodies (ADAs) is an undesirable potential outcome of administration of biotherapeutics and involves the innate and adaptive immune systems. ADAs can have detrimental clinical consequences: they can reduce biotherapeutic efficacy or produce adverse events. Because animal models are considered poor predictors of immunogenicity in humans, in vitro assays with human innate and adaptive immune cells are commonly used alternatives that can reveal cell-mediated unwanted immune responses. Multiple methods have been developed to assess the immune cell response following exposure to biotherapeutics and estimate the potential immunogenicity of biotherapeutics. This review highlights the role of innate and adaptive immune cells as the drivers of immunogenicity and summarizes the use of these cells in assays to predict clinical ADA.
Collapse
|
23
|
Bray-French K, Hartman K, Steiner G, Marban-Doran C, Bessa J, Campbell N, Martin-Facklam M, Stubenrauch KG, Solier C, Singer T, Ducret A. Managing the Impact of Immunogenicity in an Era of Immunotherapy: From Bench to Bedside. J Pharm Sci 2021; 110:2575-2584. [PMID: 33812888 DOI: 10.1016/j.xphs.2021.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Biotherapeutics have revolutionized our ability to treat life-threatening diseases. Despite clinical success, the use of biotherapeutics has sometimes been limited by the immune response mounted against them in the form of anti-drug antibodies (ADAs). The multifactorial nature of immunogenicity has prevented a standardized approach for assessing this and each of the assessment methods developed so far does not exhibit high enough reliability to be used alone, due to limited predictiveness. This prompted the Roche Pharma Research and Early Development (pRED) Immunogenicity Working Group to establish an internal preclinical immunogenicity toolbox of in vitro/in vivo approaches and accompanying guidelines for a harmonized assessment and management of immunogenicity in early development. In this article, the complex factors influencing immunogenicity and their associated clinical ramifications are discussed to highlight the importance of an end-to-end approach conducted from lead optimization to clinical candidate selection. We then examine the impact of the resulting lead candidate categorization on the design and implementation of a multi-tiered ADA/immunogenicity assay strategy prior to phase I (entry into human) through early clinical development. Ultimately, the Immunogenicity Toolbox ensures that Roche pRED teams are equipped to address immunogenicity in a standardized manner, paving the way for lifesaving products with improved safety and efficacy.
Collapse
Affiliation(s)
- Katharine Bray-French
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Katharina Hartman
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Guido Steiner
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Céline Marban-Doran
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Juliana Bessa
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Neil Campbell
- Global Product Strategy, Pharma Division, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Meret Martin-Facklam
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Kay-Gunnar Stubenrauch
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Munich, Germany
| | - Corinne Solier
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Thomas Singer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Axel Ducret
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Cohen S, Myneni S, Batt A, Guerrero J, Brumm J, Chung S. Immunogenicity risk assessment for biotherapeutics through in vitro detection of CD134 and CD137 on T helper cells. MAbs 2021; 13:1898831. [PMID: 33729092 PMCID: PMC7993230 DOI: 10.1080/19420862.2021.1898831] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Biotherapeutics, which are biologic medications that are natural or bioengineered products of living cells, have revolutionized the treatment of many diseases. However, unwanted immune responses still present a major challenge to their widespread adoption. Many patients treated with biotherapeutics develop antigen-specific anti-drug antibodies (ADAs) that may reduce the efficacy of the therapy or cross-react with the endogenous counterpart of a protein therapeutic, or both. Here, we describe an in vitro method for assessing the immunogenic risk of a biotherapeutic. We found a correlation between clinical immunogenicity and the frequency with which a biotherapeutic stimulated an increase in CD134, CD137, or both cell surface markers on CD4+ T cells. Using high-throughput flow cytometry, we examined the effects of 14 biotherapeutics with diverse rates of clinical immunogenicity on peripheral blood mononuclear cells from 120 donors with diverse human leukocyte antigen class II-encoding alleles. Biotherapeutics with high rates of ADA development in the clinic had higher proportions of CD4+ T cells positive for CD134 or CD137 than biotherapeutics with low clinical immunogenicity. This method provides a rapid and simple preclinical test of the immunogenic potential of a new candidate biotherapeutic or biosimilar. Implementation of this approach during biotherapeutic research and development enables rapid elimination of candidates that are likely to cause ADA-related adverse events and detrimental consequences.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Srividya Myneni
- Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Anna Batt
- Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Joyce Guerrero
- Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Jochen Brumm
- Department of Biostatistics, Genentech Inc, South San Francisco, CA, USA
| | - Shan Chung
- Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
25
|
The Impact of Product and Process Related Critical Quality Attributes on Immunogenicity and Adverse Immunological Effects of Biotherapeutics. J Pharm Sci 2020; 110:1025-1041. [PMID: 33316242 DOI: 10.1016/j.xphs.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
The pharmaceutical industry has experienced great successes with protein therapeutics in the last two decades and with novel modalities, including cell therapies and gene therapies, more recently. Biotherapeutics are complex in structure and present challenges for discovery, development, regulatory, and life cycle management. Biotherapeutics can interact with the immune system that may lead to undesired immunological responses, including immunogenicity, hypersensitivity reactions (HSR), injection site reactions (ISR), and others. Many product and process related critical quality attributes (CQAs) have the potential to trigger or augment such immunological responses to the product. Tremendous efforts, both clinically and preclinically, have been invested to understand the impact of product and process related CQAs on adverse immunological effects. The information and knowledge are critical for the implementation of Quality by Design (QbD), which requires risk assessment and establishment of specifications and control strategies for CQAs. A quality target product profile (QTPP) that identifies the key CQAs through process development can help assign severity scores based on safety, immunogenicity, pharmacokinetics (PK) and pharmacodynamics (PD) of the molecule. Gaps and future directions related to biotherapeutics and emerging novel modalities are presented.
Collapse
|
26
|
Knierman MD, Lannan MB, Spindler LJ, McMillian CL, Konrad RJ, Siegel RW. The Human Leukocyte Antigen Class II Immunopeptidome of the SARS-CoV-2 Spike Glycoprotein. Cell Rep 2020; 33:108454. [PMID: 33220791 PMCID: PMC7664343 DOI: 10.1016/j.celrep.2020.108454] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/16/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Precise elucidation of the antigen sequences for T cell immunosurveillance greatly enhances our ability to understand and modulate humoral responses to viral infection or active immunization. Mass spectrometry is used to identify 526 unique sequences from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein extracellular domain in a complex with human leukocyte antigen class II molecules on antigen-presenting cells from a panel of healthy donors selected to represent a majority of allele usage from this highly polymorphic molecule. The identified sequences span the entire spike protein, and several sequences are isolated from a majority of the sampled donors, indicating promiscuous binding. Importantly, many peptides derived from the receptor binding domain used for cell entry are identified. This work represents a precise and comprehensive immunopeptidomic investigation with the SARS-CoV-2 spike glycoprotein and allows detailed analysis of features that may aid vaccine development to end the current coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Michael D Knierman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Megan B Lannan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Laura J Spindler
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Carl L McMillian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| |
Collapse
|
27
|
Wickramarachchi D, Steeno G, You Z, Shaik S, Lepsy C, Xue L. Fit-for-Purpose Validation and Establishment of Assay Acceptance and Reporting Criteria of Dendritic Cell Activation Assay Contributing to the Assessment of Immunogenicity Risk. AAPS JOURNAL 2020; 22:114. [PMID: 32839919 DOI: 10.1208/s12248-020-00491-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023]
Abstract
Validation of key analytical and functional performance characteristics of in vitro immunogenicity risk assessment assays increases our confidence in utilizing them for screening biotherapeutics. Herein, we present a fit-for-purpose (FFP) validation of a dendritic cell (DC) activation assay designed to assess the immunogenicity liability of protein biotherapeutics. Characterization of key assay parameters was achieved using monocyte-derived DCs (MoDCs) treated with cell culture medium only (i.e., background control (BC)), keyhole limpet hemocyanin (KLH) as system positive control (SPC), and 2 therapeutic monoclonal antibodies (mAbs) with known clinical immunogenicity profiles (bococizumab and TAM163) as therapeutic controls (TCs). In the absence of established validation guidelines for primary cell-based assays, the present DC activation assay was validated using a novel FFP approach which allows more flexibility in selection of validation parameters and designing of experiments based on the intended use of the assay. The present FFP validation allowed us to understand the impact of experimental variables on assay precision, develop a clear concise readout for DC activation results, establish a reliable response threshold to define a result as a positive DC activation response, and define in-study donor acceptance criteria and cohort size. FFP validation of this DC activation assay indicated that the assay is sufficient to support its context of use, a preclinical immunogenicity risk management tool.
Collapse
Affiliation(s)
- Dilki Wickramarachchi
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA
| | - Gregory Steeno
- Nonclinical Biostatistics, Early Clinical Development, Worldwide Research, Development & Medical, Pfizer Inc., Groton, Connecticut, USA
| | - Zhiping You
- Nonclinical Biostatistics, Early Clinical Development, Worldwide Research, Development & Medical, Pfizer Inc., Groton, Connecticut, USA
| | - Saleem Shaik
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA
| | - Christopher Lepsy
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA
| | - Li Xue
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA.
| |
Collapse
|