1
|
Jia L, Ke Y, Zhao S, Liu J, Luo X, Cao J, Liu Y, Guo Q, Chen WH, Chen F, Wang J, Wu H, Ding J, Zhao XM. Metagenomic analysis characterizes stage-specific gut microbiota in Alzheimer's disease. Mol Psychiatry 2025:10.1038/s41380-025-02973-7. [PMID: 40164697 DOI: 10.1038/s41380-025-02973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 02/12/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a decade-long preclinical pathological period that can be divided into several stages. Emerging evidence has revealed that the microbiota-gut-brain axis plays an important role in AD pathology. However, the role of gut microbiota in different AD stages has not been well characterized. In this study, we performed fecal shotgun metagenomic analysis on a Chinese cohort with 476 participants across five stages of AD pathology to characterize stage-specific alterations in gut microbiota and evaluate their diagnostic potential. We discovered extensive gut dysbiosis that is associated with neuroinflammation and neurotransmitter dysregulation, with over 10% of microbial species and gene families showing significant alterations during AD progression. Furthermore, we demonstrated that microbial gene families exhibited strong diagnostic capabilities, evidenced by an average AUC of 0.80 in cross-validation and 0.75 in independent external validation. In the optimal model, the most discriminant gene families are primarily involved in the metabolism of carbohydrates, amino acids, energy, glycan and vitamins. We found that stage-specific microbial gene families in AD pathology could be validated by an in vitro gut simulator and were associated with specific genera. We also observed that the gut microbiota could affect the progression of cognitive decline in 5xFAD mice through fecal microbiota transplantation, which could be used for early intervention of AD. Our multi-stage large cohort metagenomic analysis demonstrates that alterations in gut microbiota occur from the very early stages of AD pathology, offering important etiological and diagnostic insights.
Collapse
Affiliation(s)
- Longhao Jia
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yize Ke
- Fudan Microbiome Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, and Center for Obesity and Hernia Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shuo Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jinxin Liu
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Xiaohui Luo
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Jixin Cao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yujia Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Hao Wu
- Fudan Microbiome Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, and Center for Obesity and Hernia Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Lingang Laboratory, Shanghai, 200031, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- MOE Key Laboratory of Computational Neuroscience and Brain‑Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
2
|
Zhang Y, Luo K, Peters BA, Mossavar-Rahmani Y, Moon JY, Wang Y, Daviglus ML, Van Horn L, McClain AC, Cordero C, Floyd JS, Yu B, Walker RW, Burk RD, Kaplan RC, Qi Q. Sugar-sweetened beverage intake, gut microbiota, circulating metabolites, and diabetes risk in Hispanic Community Health Study/Study of Latinos. Cell Metab 2025; 37:578-591.e4. [PMID: 39892390 PMCID: PMC11885037 DOI: 10.1016/j.cmet.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/17/2024] [Accepted: 12/12/2024] [Indexed: 02/03/2025]
Abstract
No population-based studies examined gut microbiota and related metabolites associated with sugar-sweetened beverage (SSB) intake among US adults. In this cohort of US Hispanic/Latino adults, higher SSB intake was associated with nine gut bacterial species, including lower abundances of several short-chain-fatty-acid producers, previously shown to be altered by fructose and glucose in animal studies, and higher abundances of fructose- and glucose-utilizing Clostridium bolteae and Anaerostipes caccae. Fifty-six serum metabolites were correlated with SSB intake and a gut microbiota score based on these SSB-related species in consistent directions. These metabolites were clustered into several modules, including a glycerophospholipid module, two modules comprising branched-chain amino acid (BCAA) and aromatic amino acid (AAA) derivatives from microbial metabolism, etc. Higher glycerophospholipid and BCAA derivative levels and lower AAA derivative levels were associated with higher incident diabetes risk during follow-up. These findings suggest a potential role of gut microbiota in the association between SSB intake and diabetes.
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Amanda C McClain
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Christina Cordero
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - James S Floyd
- Department of Medicine, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Ryan W Walker
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Pediatrics, Microbiology & Immunology, and Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Westerbeke FHM, Rios-Morales M, Attaye I, Nieuwdorp M. Fructose catabolism and its metabolic effects: Exploring host-microbiota interactions and the impact of ethnicity. J Physiol 2025. [PMID: 39805044 DOI: 10.1113/jp287316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis. Moreover, the fermentation of fructose by the gut microbiota can produce metabolites such as ethanol and acetate, both which serve as potential substrates for de novo lipogenesis (DNL) and could therefore contribute to the development of these metabolic conditions. Significant inter-ethnic differences in gut microbiota composition have been observed. Moreover, fructose consumption varies across ethnic groups, and fructose intake has been demonstrated to significantly alter gut microbiota composition, which can influence its fermenting properties and metabolic effects. Therefore, ethnic differences in gut microbiota composition, which may be influenced by variations in fructose consumption, could contribute to the observed health disparities. This review provides an overview of the complex interactions between host and microbial fructose catabolism, the role of ethnicity in shaping these metabolic processes and their impact on host health. Understanding these interactions could provide insights into the mechanisms driving ethnic health disparities to improve personalized nutrition strategies. KEY POINTS: Dietary fructose consumption has increased substantially over recent decades, which has been associated with the rising prevalence of obesity and non-communicable diseases (NCDs) such as type 2 diabetes and metabolic dysfunction-associated steatotic liver disease. Pronounced disparities among different ethnic groups in NCD prevalence and dietary fructose consumption underscore the need to elucidate the underlying mechanisms of fructose catabolism and its health effects. Together with the well-known toxic effects of hepatic fructose catabolism, emerging evidence highlights a role for the small intestinal microbiota in fermenting sugars like fructose into various bacterial products with potential deleterious metabolic effects. There are significant ethnic differences in gut microbiota composition that, combined with varying fructose consumption, could mediate the observed health disparities. To comprehensively understand the role of the gut microbiota in mediating fructose-induced adverse metabolic effects, future research should focus on the small intestinal microbiota. Future research on fructose - microbiota - host interactions should account for ethnic differences in dietary habits and microbial composition to elucidate the potential role of the gut microbiota in driving the mentioned health disparities.
Collapse
Affiliation(s)
- Florine H M Westerbeke
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Melany Rios-Morales
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Zhou Z, Kleis L, Depetris-Chauvin A, Jaskulski S, Damerell V, Michels KB, Gigic B, Nöthlings U, Panagiotou G. Beneficial microbiome and diet interplay in early-onset colorectal cancer. EMBO Mol Med 2025; 17:9-30. [PMID: 39653811 PMCID: PMC11730345 DOI: 10.1038/s44321-024-00177-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 01/15/2025] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide. Although the risk of developing CRC increases with age, approximately 10% of newly diagnosed cases occur in individuals under the age of 50. Significant changes in dietary habits in young adults since industrialization create a favorable microenvironment for colorectal carcinogenesis. We aim here to shed light on the complex interplay between diet and gut microbiome in the pathogenesis and prevention of early-onset CRC (EO-CRC). We provide an overview of dietary risk factors associated with EO-CRC and contrast them with the general trends for CRC. We delve into gut bacteria, fungi, and phages with potential benefits against CRC and discuss the underlying molecular mechanisms. Furthermore, based on recent findings from human studies, we offer insights into how dietary modifications could potentially enhance gut microbiome composition to mitigate CRC risk. All together, we outline the current research landscape in this area and propose directions for future investigations that could pave the way for novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Linda Kleis
- Institute of Nutritional and Food Sciences-Nutritional Epidemiology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Ana Depetris-Chauvin
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Stefanie Jaskulski
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Victoria Damerell
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Karin B Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Nöthlings
- Institute of Nutritional and Food Sciences-Nutritional Epidemiology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany.
- Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany.
- Friedrich Schiller University, Jena University Hospital, Jena, Germany.
| |
Collapse
|
5
|
Huang J, Lu Y, Tian F, Ni Y. Association of body index with fecal microbiome in children cohorts with ethnic-geographic factor interaction: accurately using a Bayesian zero-inflated negative binomial regression model. mSystems 2024; 9:e0134524. [PMID: 39570024 DOI: 10.1128/msystems.01345-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
The exponential growth of high-throughput sequencing (HTS) data on the microbial communities presents researchers with an unparalleled opportunity to delve deeper into the association of microorganisms with host phenotype. However, this growth also poses a challenge, as microbial data are complex, sparse, discrete, and prone to zero inflation. Herein, by utilizing 10 distinct counting models for analyzing simulated data, we proposed an innovative Bayesian zero-inflated negative binomial (ZINB) regression model that is capable of identifying differentially abundant taxa associated with distinctive host phenotypes and quantifying the effects of covariates on these taxa. Our proposed model exhibits excellent accuracy compared with conventional Hurdle and INLA models, especially in scenarios characterized by inflation and overdispersion. Moreover, we confirm that dispersion parameters significantly affect the accuracy of model results, with defects gradually alleviating as the number of analyzed samples increases. Subsequently applying our model to amplicon data in real multi-ethnic children cohort, we found that only a subset of taxa were identified as having zero inflation in real data, suggesting that the prevailing understanding and processing of microbial count data in most previous microbiome studies were overly dogmatic. In practice, our pipeline of integrating bacterial differential abundance in microbiome data and relevant covariates is effective and feasible. Taken together, our method is expected to be extended to the microbiota studies of various multi-cohort populations. IMPORTANCE The microbiome is closely associated with physical indicators of the body, such as height, weight, age and BMI, which can be used as measures of human health. Accurately identifying which taxa in the microbiome are closely related to indicators of physical development is valuable as microbial markers of regional child growth trajectory. Zero-inflated negative binomial (ZINB) model, a type of Bayesian generalized linear model, can be effectively modeled in complex biological systems. We present an innovative ZINB regression model that is capable of identifying differentially abundant taxa associated with distinctive host phenotypes and quantifying the effects of covariates on these taxa, and demonstrate that its accuracy is superior to traditional Hurdle and INLA models. Our pipeline of integrating bacterial differential abundance in microbiome data and relevant covariates is effective and feasible.
Collapse
Affiliation(s)
- Jian Huang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yanzhuan Lu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
6
|
Zhao Y, Guo H. The relationship between carbohydrate intake and sleep patterns. Front Nutr 2024; 11:1491999. [PMID: 39698252 PMCID: PMC11652137 DOI: 10.3389/fnut.2024.1491999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Background A healthy dietary habit may contribute to good sleep quality. The present study investigates the correlation between the quality and quantity of daily carbohydrate consumption and poor sleep patterns. Methods The exposures of interest included low-and high-quality carbohydrate consumption and total daily carbohydrate consumption. Subjects were classified into four different carbohydrate consumption patterns: Pattern 1 was characterized by high-quality carbohydrates below the median and low-quality carbohydrates above the median; Pattern 2 included both high-and low-quality carbohydrates below the median; Pattern 3 was defined as high-and low-quality carbohydrates above the median; Pattern 4 referred to high-quality carbohydrates above the median and low-quality carbohydrates below the median. The comprehensive sleep patterns included three different sleep behaviors: sleep duration, daytime sleepiness, and snoring, which were used to score sleep patterns. A score ranging from 0 to 1 was classified as having a healthy sleep pattern, while a score between 2 and 3 showed poor sleep patterns. Survey-weighted multivariable logistic regression analyses were adopted. Results In the multivariate analysis, individuals who consumed more high-quality carbohydrates were linked to a decreased likelihood of experiencing poor sleep patterns [odds ratio (OR) 0.71; 95% confidence interval (CI) 0.62-0.81], while increased consumption of low-quality carbohydrates (OR 1.39; 95%CI 1.20-1.61) and total daily carbohydrates (OR 1.31; 95%CI 1.10-1.57) was related to an elevated risk of poor sleep patterns. Participants who adhered to carbohydrate intake pattern 4 exhibited a 36% lower risk of poor sleep patterns than those who followed carbohydrate intake pattern 1 (OR 0.64; 95%CI 0.56-0.74). There was a positive correlation between elevated added sugar consumption and an increased probability of developing poor sleep patterns. In contrast, an elevated intake of whole grains, fruits, or non-starchy vegetables was related to a decreased likelihood of experiencing poor sleep patterns. Conclusion The increased consumption of low-quality carbohydrates may heighten the susceptibility to poor sleep patterns, whereas the increased consumption of high-quality carbohydrates may mitigate the risk of developing poor sleep patterns.
Collapse
Affiliation(s)
- Yan Zhao
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Hailong Guo
- Health Management Center, The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Liao X, Chen X, Zhou Y, Xing L, Shi Y, Huang G. Added sugars and risk of osteoarthritis in adults: A case-control study based on National Health and Nutrition Examination Survey 2007-2018. PLoS One 2024; 19:e0313754. [PMID: 39541365 PMCID: PMC11563403 DOI: 10.1371/journal.pone.0313754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Added sugars have been associated with a variety of adverse health consequences, but their relationship with osteoarthritis is unclear. This study aimed to demonstrate the association between added sugars and osteoarthritis. METHODS We used the National Health and Nutrition Examination Survey (NHANES) database from 2007 to 2018 to explore the association between added sugars and osteoarthritis. RESULTS In our study, 2,746 adults were included. The average age of the chosen participants was 43.77 years, with 52.33% males and 47.67% females. There were 2,152 in the osteoarthritis group and 594 in the non-osteoarthritis group, weighted to represent 11,854,966 participants. In the fully adjusted multivariable model 3, added sugars were found as a risk factor for osteoarthritis (OR = 1.01; 95% CI 1.00 to 1.01), with populations in the fourth quartile having a greater prevalence of osteoarthritis (OR = 1.40; 95% CI 1.09 to 1.81). When added sugars were treated as a continuous variable in subgroup analysis, the results indicated that never consumed alcohol (OR = 1.02; 95% CI 1.01 to 1.04) and no history of diabetes (OR = 1.02; 95% CI 1.01 to 1.04)were more Likely tend to osteoarthritis. When added sugars were treated as a categorical variable in subgroup analysis, the results indicated that compared to the first group, in the fourth quartile population, females (OR = 1.44; 95% CI 1.02 to 2.02), low BMI (OR = 1.88; 95% CI 1.06 to 3.33), never smoking (OR = 1.55; 95% CI 1.05 to 2.30), never consumed alcohol (OR = 3.31; 95% CI 1.42 to 7.74), no history of hypertension (OR = 1.51; 95% CI 1.00 to 2.27), and no history of diabetes (OR = 1.44; 95% CI 1.11 to 1.87) were more likely tend to osteoarthritis. CONCLUSION Added sugars are a risk factor for osteoarthritis, especially in females, low BMI, never smoking, never consumed alcohol, no history of hypertension, and no history of diabetes.
Collapse
Affiliation(s)
- Xiaolong Liao
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Xiali Chen
- Department of Nursing, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Yumei Zhou
- Department of Nursing, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Limin Xing
- Department of Nursing, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Yihua Shi
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Guoxin Huang
- Department of Evidence-Based Medicine Center, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| |
Collapse
|
8
|
Hong W, Wu Y, Sun Z, Yang S, Cheng Q, Liu H, Lin X, Ni R, Yao Y, Wang S, Zheng Z, Sun A, Xi C, Song L. Sterile Diet Causes Gut Microbiome Collapse of Cancer Patients Post Hematopoietic Cell Transplantation, But Normal Diet Recovers Them. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403991. [PMID: 38973355 PMCID: PMC11425903 DOI: 10.1002/advs.202403991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Though sterile diet, post-transplantation surgery is a clinical strategy for patient care to prevent the infiltration of gut pathogens, less is known about its effects on the gut microbiome. Here, the gut microbiome dynamics of leukemia patients following a 120-day "sterile-normal" diet strategy posthematopoietic cell transplantation are examined. In contrast to the traditional idea, a sterile diet leads to the lowest gut microbiota diversity (p < 0.05) and short-chain fatty acids, promoted the proliferation of potential pathogens such as Streptococcus (up by 16.93%) and Lactobacillus (up by 40.30%), and 43.32% reduction in nodes and an 85.33% reduction in edges within the microbial interaction's network. Interestingly, a normal diet allows the gut microbiome recovery and significantly promotes the abundance of beneficial bacteria. These results indicate that a sterile diet leads to a collapse of the patient's gut microbiome and promoted the proliferation of potential pathogens. This assay is a starting point for a more sophisticated assessment of the effects of a sterile diet. The work also suggests a basic principle for the re-establishment of microbial equilibrium that supplementation of microbial taxa may be the key to the restoration of the degraded ecosystem.
Collapse
Affiliation(s)
- Wenqing Hong
- School of Resources and Environmental EngineeringAnhui UniversityHefei230601China
| | - Yun Wu
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefei230001China
| | - Zimin Sun
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefei230001China
- Blood and Cell Therapy InstituteDivision of Life Sciences and MedicineAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefei230027China
| | - Shu Yang
- Institute of Public Health SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Qing Cheng
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefei230001China
| | - Huilan Liu
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefei230001China
| | - Xiaoxing Lin
- School of Resources and Environmental EngineeringAnhui UniversityHefei230601China
| | - Renjie Ni
- School of Resources and Environmental EngineeringAnhui UniversityHefei230601China
| | - Yuping Yao
- School of Resources and Environmental EngineeringAnhui UniversityHefei230601China
| | - Shuijing Wang
- School of Resources and Environmental EngineeringAnhui UniversityHefei230601China
| | - Zihao Zheng
- School of Resources and Environmental EngineeringAnhui UniversityHefei230601China
| | - Anyi Sun
- School of Resources and Environmental EngineeringAnhui UniversityHefei230601China
| | - Chuanwu Xi
- Department of Environmental Health SciencesUniversity of MichiganAnn ArborMI48109USA
| | - Liyan Song
- School of Resources and Environmental EngineeringAnhui UniversityHefei230601China
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of ScienceChongqing400714China
| |
Collapse
|
9
|
Ingram K, Gregg C, Tegge A, Elison JT, Lin W, Howell BR. Metagenomic assessment of the bacterial breastfeeding microbiome in mature milk across lactation. Front Pediatr 2024; 11:1275436. [PMID: 39092171 PMCID: PMC11292495 DOI: 10.3389/fped.2023.1275436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/25/2023] [Indexed: 08/04/2024] Open
Abstract
Introduction Research has illustrated the presence of a diverse range of microbiota in human milk. The composition of the milk microbiome varies across different stages of lactation, emphasizing the need to consider the lactation stage when studying its composition. Additionally, the transfer of both milk and skin microbiota during breastfeeding is crucial for understanding their collective impact on infant health and development. Further exploration of the complete breastfeeding microbiome is necessary to unravel the role these organisms play in infant development. We aim to longitudinally assess the bacterial breastfeeding microbiome across stages of lactation. This includes all the bacteria that infants are exposed to during breastfeeding, such as bacteria found within human milk and any bacteria found on the breast and nipple. Methods Forty-six human milk samples were collected from 15 women at 1, 4, 7, and 10 months postpartum. Metagenomic analysis of the bacterial microbiome for these samples was performed by CosmosID (Rockville, MD) via deep sequencing. Results Staphylococcus epidermidis and Propionibacteriaceae species are the most abundant bacterial species from these samples. Samples collected at 10 months showed higher abundances of Proteobacteria, Streptococcaceae, Lactobacillales, Streptococcus, and Neisseria mucosa compared to other timepoints. Alpha diversity varied greatly between participants but did not change significantly over time. Discussion As the bacterial breastfeeding microbiome continues to be studied, bacterial contributions could be used to predict and reduce health risks, optimize infant outcomes, and design effective management strategies, such as altering the maternal flora, to mitigate adverse health concerns.
Collapse
Affiliation(s)
- Kelly Ingram
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Collin Gregg
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Allison Tegge
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Jed T. Elison
- Institute for Child Development, University of Minnesota, Minneapolis, MN, United States
- Masonic Institute for the Developing Brain, University of Minnesota, St. Paul, MN, United States
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brittany R. Howell
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Lodge M, Dykes R, Kennedy A. Regulation of Fructose Metabolism in Nonalcoholic Fatty Liver Disease. Biomolecules 2024; 14:845. [PMID: 39062559 PMCID: PMC11274671 DOI: 10.3390/biom14070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Elevations in fructose consumption have been reported to contribute significantly to an increased incidence of obesity and metabolic diseases in industrial countries. Mechanistically, a high fructose intake leads to the dysregulation of glucose, triglyceride, and cholesterol metabolism in the liver, and causes elevations in inflammation and drives the progression of nonalcoholic fatty liver disease (NAFLD). A high fructose consumption is considered to be toxic to the body, and there are ongoing measures to develop pharmaceutical therapies targeting fructose metabolism. Although a large amount of work has summarized the effects fructose exposure within the intestine, liver, and kidney, there remains a gap in our knowledge regarding how fructose both indirectly and directly influences immune cell recruitment, activation, and function in metabolic tissues, which are essential to tissue and systemic inflammation. The most recent literature demonstrates that direct fructose exposure regulates oxidative metabolism in macrophages, leading to inflammation. The present review highlights (1) the mechanisms by which fructose metabolism impacts crosstalk between tissues, nonparenchymal cells, microbes, and immune cells; (2) the direct impact of fructose on immune cell metabolism and function; and (3) therapeutic targets of fructose metabolism to treat NAFLD. In addition, the review highlights how fructose disrupts liver tissue homeostasis and identifies new therapeutic targets for treating NAFLD and obesity.
Collapse
Affiliation(s)
| | | | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall Campus, Box 7622, Raleigh, NC 27695, USA
| |
Collapse
|
11
|
Guo X, Han J, Hong L, Huang Y, Li S, Zhang L, Yan W, Dong P, Yang Y, Cao Y. Associations of Early Gut Microbiome and Metabolome with Growth and Body Composition of Preterm Infants Within the First 6 Months. Breastfeed Med 2024; 19:435-444. [PMID: 38501370 DOI: 10.1089/bfm.2023.0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Objectives: This study aimed to explore the associations of growth and body composition with gut microbiome and metabolome in preterm infants. Materials and Methods: A prospective cohort study including 73 human milk-fed very preterm infants was conducted. During hospitalization, fecal samples were collected to detect microbes and metabolites using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry. Growth and body composition indices were measured at term equivalent age (TEA) and 6 months of corrected age (CA). Associations of the fecal microbiome and metabolome profiles with growth and body composition indices, as well as their changes, were analyzed. Results: A higher abundance of Streptococcus was associated with a lower fat-free mass (FFM) z-score at 6 months of CA (p = 0.002) and a smaller increase in FFM z-score from TEA to 6 months of CA (p = 0.018). Higher levels of 3'-sialyllactose and 6'-sialyllactose (6'-SL) in feces were correlated with a lower z-score of percentage body fat (PBF) (p = 0.018 and 0.020, respectively) and a lower z-score of fat mass (p = 0.044 and 0.043, respectively) at 6 months of CA. A higher level of 6'-SL in feces was correlated with a greater increase in FFM z-score from TEA to 6 months of CA (p = 0.021). Conclusions: This study sheds light on the role of specific microbial-host interactions in metabolic changes in preterm infants, indicating the potential role of sialylated human milk oligosaccharides in optimizing body composition.
Collapse
Affiliation(s)
- Xinhui Guo
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Junyan Han
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Luyang Hong
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Yihuang Huang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Shujuan Li
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Lan Zhang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Weili Yan
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Ping Dong
- Department of Child Healthcare, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Yi Yang
- NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yun Cao
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
- NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Distefano JK, Gerhard GS. Effects of dietary sugar restriction on hepatic fat in youth with obesity. Minerva Pediatr (Torino) 2024; 76:439-448. [PMID: 37284808 PMCID: PMC11229704 DOI: 10.23736/s2724-5276.23.07209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in children. Like adults, children can develop the progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), which is characterized by hepatic inflammation, often in the presence of fibrosis. Children with NAFLD are at higher risk of liver-related complications, metabolic dysfunction, and cardiovascular disease in adulthood. Many factors contribute to the escalating prevalence of NAFLD in the pediatric population, among which are an array of dietary patterns such as overnutrition, poor diet quality, and heavy consumption of fat and sugar, including fructose. Findings from an increasing number of epidemiological studies support a connection between high habitual sugar consumption and NAFLD, especially within the context of obesity, but these studies are not able to demonstrate whether sugar is a contributing factor or instead an indicator of an overall poor diet (or lifestyle) quality. To date, only four randomized controlled dietary interventions assessing the effects of sucrose/fructose restriction on hepatic fat fraction in youth with obesity have been published. The objectives of this review are to summarize the key findings from these dietary interventions to achieve a better understanding of the strength of the relationship between dietary sugar restriction and liver fat reduction, despite their inherent limitations, and to discuss the potential impact of weight loss and fat mass reduction on improvement in hepatic steatosis.
Collapse
Affiliation(s)
- Johanna K Distefano
- Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA -
| | - Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
13
|
Gan Q, Song G, Fang W, Wang Y, Qi W. Fructose dose-dependently influences colon barrier function by regulation of some main physical, immune, and biological factors in rats. J Nutr Biochem 2024; 126:109582. [PMID: 38242179 DOI: 10.1016/j.jnutbio.2024.109582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Little is known about the effects of fructose on colonic function. Here, forty-eight 7-week-old male SD rats were randomly divided into four groups and given 0, 7.5%, 12.75%, and 35% fructose in diet for 8 weeks respectively to investigate the regulatory influence of fructose on colonic barrier function. The exact amount of fructose intake was tracked and recorded. We showed that fructose affects colonic barrier function in a dose-dependent manner. High-fructose at a dose of 1.69±0.23 g/kg/day could damage the physical barrier function of the colon by down-regulating expression of tight junction proteins (ZO-1 and occludin) and mucus layer biomarkers (MUC2 and TFF3). High fructose reduced sIgA and the anti-inflammatory cytokine (IL-10), induced abdominal fat accumulation and pro-inflammatory cytokines (IL-6 and IL-8), leading to colon inflammation and immune barrier dysfunction. In addition, high-fructose altered the biological barrier of the colon by decreasing the abundance of Blautia, Ruminococcus, and Lactobacillius, and increasing the abundance of Allobaculum at the genus level, leading to a reduction in short-chain fatty acids (SCFAs), amino acids, and carbohydrates, etc. Low fructose at a dose of 0.31±0.05 g/kg/day showed no adverse effects on the colonic barrier. The ability of fructose to affect the colonic barrier through physical, immune, and biological pathways provides additional insight into the intestinal disorders caused by high-fructose diets.
Collapse
Affiliation(s)
- Qianyun Gan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China;; Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Wei Fang
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Wentao Qi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China;; Academy of National Food and Strategic Reserves Administration, Beijing, China.
| |
Collapse
|
14
|
Liu X, Dong Q. Associations between gut microbiota and three prostate diseases: a bidirectional two-sample Mendelian randomization study. Sci Rep 2024; 14:4019. [PMID: 38369514 PMCID: PMC10874943 DOI: 10.1038/s41598-024-54293-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/10/2024] [Indexed: 02/20/2024] Open
Abstract
According to previous observational researches and clinical trials, the gut microbiota is related to prostate diseases. However, the potential association between gut microbiota and prostate disorders is still uncertain. We first identified groups of gut microbiota based on the phylum, class, order, family, and genus levels from consortium MiBioGen. And we acquired prostate diseases statistics from the FINNGEN study and PRACTICAL consortium. Next, two-sample Mendelian randomization was used to investigate the potential associations between three prevalent prostate disease and gut microbiota. In addition, we performed a reverse MR analysis and Benjamini-Hochberg (BH) test for further research. We investigated the connection between 196 gut microbiota and three prevalent prostate diseases. We identified 42 nominally significant associations and 2 robust causative links. Upon correction for multiple comparisons using the Benjamini-Hochberg procedure, our analysis revealed a positive correlation between the risk of prostatitis and the presence of the taxonomic order Gastranaerophilales. Conversely, the risk of prostate cancer exhibited an inverse correlation with the presence of the taxonomic class Alphaproteobacteria. Our study revealed the potential association between gut microbiota and prostate diseases. The results may be useful in providing new insights for further mechanistic and clinical studies of prostate diseases.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Mokhtari P, Holzhausen EA, Chalifour BN, Schmidt KA, Babaei M, Machle CJ, Adise S, Alderete TL, Goran MI. Associations between Dietary Sugar and Fiber with Infant Gut Microbiome Colonization at 6 Mo of Age. J Nutr 2024; 154:152-162. [PMID: 37717629 PMCID: PMC10808822 DOI: 10.1016/j.tjnut.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND The taxonomic composition of the gut microbiome undergoes rapid development during the first 2-3 y of life. Poor diet during complementary feeding has been associated with alterations in infant growth and compromised bone, immune system, and neurodevelopment, but how it may affect gut microbial composition is unknown. OBJECTIVES This cross-sectional study aimed to examine the associations between early-life nutrition and the developing infant gut microbiota at 6 mo of age. METHODS Latino mother-infant pairs from the Mother's Milk Study (n = 105) were included. Infant gut microbiota and dietary intake were analyzed at 6 mo of age using 16S ribosomal RNA amplicon sequencing and 24-h dietary recalls, respectively. Poisson generalized linear regression analysis was performed to examine associations between dietary nutrients and microbial community abundance while adjusting for infants' mode of delivery, antibiotics, infant feeding type, time of introduction of solid foods, energy intake, and body weight. A P value of <0.05 was used to determine the statistical significance in the study. RESULTS Infants with higher consumption of total sugar exhibited a lower relative abundance of the genera Bacteroides (β = -0.01; 95% CI: -0.02, -0.00; P = 0.03) and genus Clostridium belonging to the Lachnospiraceae family (β = -0.02; 95% CI: -0.03, -0.00; P = 0.01). In addition, a higher intake of free sugar (which excludes sugar from milk, dairy, and whole fruit) was associated with several bacteria at the genus level, including Parabacteroides genus (β = 0.03; 95% CI: 0.01, 0.05; P = 0.001). Total insoluble fiber intake was associated with favorable bacteria at the genus level such as Faecalibacterium (β = 0.28; 95% CI: 0.03, 0.52; P = 0.02) and Coprococcus (β = 0.28; 95% CI: 0.02, 0.52; P = 0.03). CONCLUSION These findings demonstrate that early-life dietary intake at 6 mo impacts the developing gut microbiome associated with the presence of both unfavorable gut microbes and dietary fiber-associated commensal microbes.
Collapse
Affiliation(s)
- Pari Mokhtari
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Elizabeth A Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey A Schmidt
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Mahsa Babaei
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Christopher J Machle
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Shana Adise
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Michael I Goran
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
16
|
Duncanson K, Williams G, Hoedt EC, Collins CE, Keely S, Talley NJ. Diet-microbiota associations in gastrointestinal research: a systematic review. Gut Microbes 2024; 16:2350785. [PMID: 38725230 PMCID: PMC11093048 DOI: 10.1080/19490976.2024.2350785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Interactions between diet and gastrointestinal microbiota influence health status and outcomes. Evaluating these relationships requires accurate quantification of dietary variables relevant to microbial metabolism, however current dietary assessment methods focus on dietary components relevant to human digestion only. The aim of this study was to synthesize research on foods and nutrients that influence human gut microbiota and thereby identify knowledge gaps to inform dietary assessment advancements toward better understanding of diet-microbiota interactions. Thirty-eight systematic reviews and 106 primary studies reported on human diet-microbiota associations. Dietary factors altering colonic microbiota included dietary patterns, macronutrients, micronutrients, bioactive compounds, and food additives. Reported diet-microbiota associations were dominated by routinely analyzed nutrients, which are absorbed from the small intestine but analyzed for correlation to stool microbiota. Dietary derived microbiota-relevant nutrients are more challenging to quantify and underrepresented in included studies. This evidence synthesis highlights advancements needed, including opportunities for expansion of food composition databases to include microbiota-relevant data, particularly for human intervention studies. These advances in dietary assessment methodology will facilitate translation of microbiota-specific nutrition therapy to practice.
Collapse
Affiliation(s)
- Kerith Duncanson
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Georgina Williams
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Emily C. Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Clare E. Collins
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
17
|
Yang Z, Yang M, Deehan EC, Cai C, Madsen KL, Wine E, Li G, Li J, Liu J, Zhang Z. Dietary fiber for the prevention of childhood obesity: a focus on the involvement of the gut microbiota. Gut Microbes 2024; 16:2387796. [PMID: 39163556 PMCID: PMC11340751 DOI: 10.1080/19490976.2024.2387796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Given the worldwide epidemic of overweight and obesity among children, evidence-based dietary recommendations are fundamentally important for obesity prevention. Although the significance of the human gut microbiome in shaping the physiological effects of diet and obesity has been widely recognized, nutritional therapeutics for the mitigation of pediatric obesity globally are only just starting to leverage advancements in the nutritional microbiology field. In this review, we extracted data from PubMed, EMBASE, Scopus, Web of Science, Google Scholar, CNKI, Cochrane Library and Wiley online library that focuses on the characterization of gut microbiota (including bacteria, fungi, viruses, and archaea) in children with obesity. We further review host-microbe interactions as mechanisms mediating the physiological effects of dietary fibers and how fibers alter the gut microbiota in children with obesity. Contemporary nutritional recommendations for the prevention of pediatric obesity are also discussed from a gut microbiological perspective. Finally, we propose an experimental framework for integrating gut microbiota into nutritional interventions for children with obesity and provide recommendations for the design of future studies on precision nutrition for pediatric obesity.
Collapse
Affiliation(s)
- Zhongmin Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Mingyue Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Edward C. Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, USA
| | - Chenxi Cai
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Karen L. Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Eytan Wine
- Division of Pediatric Gastroenterology, Departments of Pediatrics and Physiology, University of Alberta, Edmonton, AB, Canada
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian, China
| |
Collapse
|
18
|
Smiliotopoulos T, Zampelas A, Houliaras G, Sgouros SN, Michas G, Bamias G, Panagiotakos D, Cholopoulos N, Chrousos GP, Roma E, Magriplis E. Association of fructose consumption with prevalence of functional gastrointestinal disorders manifestations: results from Hellenic National Nutrition and Health Survey (HNNHS). Br J Nutr 2023; 130:1961-1972. [PMID: 37197939 PMCID: PMC10630147 DOI: 10.1017/s0007114523001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
The study aimed to assess the total prevalence of functional gastrointestinal disorders (FGID), and separately, irritable bowel syndrome (IBS) among adults and to determine their potential association with fructose consumption. Data from the Hellenic National Nutrition and Health Survey were included (3798 adults; 58·9 % females). Information regarding FGID symptomatology was assessed using self-reported physician diagnosis questionnaires the reliability of which were screened using the ROME III, in a sample of the population. Fructose intake was estimated from 24 h recalls, and the MedDiet score was used to assess adherence to the Mediterranean diet. The prevalence of FGID symptomatology was 20·2 %, while 8·2 % had IBS (representing 40·2 % of total FGID). The likelihood of FGID was 28 % higher (95 %CI: 1·03-1·6) and of IBS 49 % (95 %CI: 1·08-2·05) in individuals with higher fructose intake than with lower intake (3rd tertile compared with 1st). When area of residence was accounted for, individuals residing in the Greek islands had a significantly lower probability of FGID and IBS compared with those residing in Mainland and the main Metropolitan areas, with Islanders also achieving a higher MedDiet score and lower added sugar intake, comparatively to inhabitants of the main metropolitan areas. FGID and IBS symptomatology was most prominent among individuals with higher fructose consumption, and this was most conspicuous in areas with a lower Mediterranean diet adherence, suggesting that the dietary source of fructose rather than total fructose should be examined in relation to FGID.
Collapse
Affiliation(s)
- Theodoros Smiliotopoulos
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855Athens, Greece
| | - Antonis Zampelas
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855Athens, Greece
| | - George Houliaras
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Spiros N. Sgouros
- Department of Gastroenterology, Athens Naval Hospital, 7011528Athens, Greece
| | - George Michas
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855Athens, Greece
| | - George Bamias
- Department of Gastroenterology, Athens Naval Hospital, 7011528Athens, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Science and Education Harokopio University, 17676Athens, Greece
| | - Nikolaos Cholopoulos
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124Thessaloniki, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Eleftheria Roma
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Emmanuella Magriplis
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855Athens, Greece
| |
Collapse
|
19
|
Ribeiro PVDM, Veloso TG, de Oliveira LL, Mendes NP, Alfenas RDCG. Consumption of yacon flour and energy-restricted diet increased the relative abundance of intestinal bacteria in obese adults. Braz J Microbiol 2023; 54:3085-3099. [PMID: 37807018 PMCID: PMC10689717 DOI: 10.1007/s42770-023-01140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Prebiotics can alter the gastrointestinal environment, favoring the growth of health-promoting bacteria. Although yacon is a functional food, with prebiotic properties (fructooligosaccharides), its effects on the intestinal microbiota have not been investigated yet. The objective of this study was to evaluate the effects of yacon flour consumption and energy-restricted diet in the intestinal microbiota in adults with excess body weight. Twenty-one adults with excess body weight were included in this randomized, parallel, double-blind, placebo-controlled, 6-week clinical trial. Subjects daily consumed at breakfast a drink containing 25 g of yacon flour (n = 11) or not containing yacon (n = 10) and received the prescription of energy-restricted diets. Fecal samples were collected on the first and on last day of the study. 16S rRNA sequencing was assessed to evaluate the effect of yacon fermentation on intestinal microbiota bacterial composition. There was an increase in the genera Bifidobacterium, Blautia, Subdoligranulum, and Streptococcus after the consumption of yacon and energy-restricted diet. In the yacon group, we also observed a positive correlation between the concentrations of short-chain fatty acids versus the genera Coprococcus and Howardella, besides a negative correlation between the concentrations of advanced glycation end products and early glycation products versus the genera Ruminococcus and Prevotella, respectively. Consumption of yacon flour and energy-restricted diet selectively changed the intestinal microbiota composition in adults with excess body weight. TRIAL REGISTRATION: Register number: RBR-6YH6BQ. Registered 23 January, 2018.
Collapse
Affiliation(s)
- Priscila Vaz de Melo Ribeiro
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Tomas Gomes Veloso
- Department of Microbiology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Leandro Licursi de Oliveira
- Department of General Biology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Nélia Pinheiro Mendes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Rita de Cássia Gonçalves Alfenas
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
20
|
Hu F, Sun X, Su Y, Huang M. The Dynamic Changes in the Composition and Diversity of Vaginal Microbiota in Women of Different Pregnancy Periods. Microorganisms 2023; 11:2686. [PMID: 38004698 PMCID: PMC10673304 DOI: 10.3390/microorganisms11112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The vaginal microbiota undergoes subtle changes during pregnancy, which may affect different pregnancy responses. This study used the Illumina MiSeq high-throughput sequencing method to analyze the 16S rRNA gene amplicons of pregnant women and the vaginal microbiota structure of pregnant women at different pregnancy periods. There were a total of 15 pregnant women, with 45 samples were taken from these women, within half a year before becoming pregnant, in the last trimester, and 42 days postpartum. Before and after pregnancy, the female vaginal microbiota was mainly composed of Firmicutes, followed by Actinobacteriota and Proteobacteria. The abundance of Lactobacillus was relatively high. The α-diversity and microbial abundance were relatively low, and there was no significant difference in microbial composition between the two. After childbirth, the diversity and abundance of women's vaginal bacterial communities were higher, with a decrease in the number of Firmicutes and a higher abundance of Actinobacteria, Proteobacteria, and Bacteroidota. There was a significant difference in the microbial community structure before and after pregnancy. This study showed that the microbiota structure of the vagina of pregnant women was similar to before pregnancy, but after childbirth, there were significant changes in the microbiota of the vagina, with a decrease in the number of probiotics and an increase in the number of harmful bacteria, increasing the risk of illness.
Collapse
Affiliation(s)
| | | | | | - Mingli Huang
- Department of Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (F.H.); (X.S.); (Y.S.)
| |
Collapse
|
21
|
Zhang D, Wang H, Liu A, Wang S, Xu C, Lan K, Xiang W, Zhu K, Xiao Y, Fu J, Jiang R, Chen W, Ni Y. The chronic consumption of dietary fructose promotes the gut Clostridium species imbalance and bile acid alterations in developing nonalcoholic fatty liver disease. J Nutr Biochem 2023; 121:109434. [PMID: 37661068 DOI: 10.1016/j.jnutbio.2023.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Excessive fructose intake is associated with the rising prevalence of nonalcoholic fatty liver disease (NAFLD). The gut microbiome (GM) and bile acids (BAs) are involved in the pathogenesis of NAFLD, but the impact of fructose on their cross-talk is unclear. In this study, adult male C57BL/6J mice were fed a normal diet with tap water (ND) or with 4% fructose in the drinking water (Fru), 60% high-fat diet with tap water (HF) or with 4% fructose solution (HFF) for 12 weeks. Targeted BA analysis was performed in five anatomical sites including the liver, ileum contents, portal serum, cecum contents, and feces. Metagenomic sequencing was performed to explore gut dysbiosis. Within 12 weeks, the 4% fructose diet could initially stimulate gut dysbiosis and BA upregulation in the ileum, portal serum, and cecum when the intestinal and hepatic transport system remained stable without hepatic lipid accumulation. However, the chronic consumption of fructose promoted HF-induced NAFLD, with significantly increased body weight, impaired glucose tolerance, and advanced liver steatosis. BA transporters were inhibited in HFF, causing the block of internal BA circulation and increased BA secretion via cecum contents and feces. Notably, lithocholic acid (LCA) and its taurine conjugates were elevated within the enterohepatic circulation. Meanwhile, the Clostridium species were significantly altered in both Fru and HFF groups and were closely associated with fructose and BA metabolism. In summary, excessive fructose caused gut dysbiosis and BA alterations, promoting HF-induced NAFLD. The crosstalk between Clostridium sp. and LCA species were potential targets in fructose-mediated NAFLD.
Collapse
Affiliation(s)
- Danni Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China; Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Huiying Wang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ana Liu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shan Wang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Cuifang Xu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ke Lan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Wenqing Xiang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junfen Fu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Medical School of Nanjing University, Nanjing, China
| | - Wenlian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Ni
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China; Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, China.
| |
Collapse
|
22
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
23
|
Rook GAW. The old friends hypothesis: evolution, immunoregulation and essential microbial inputs. FRONTIERS IN ALLERGY 2023; 4:1220481. [PMID: 37772259 PMCID: PMC10524266 DOI: 10.3389/falgy.2023.1220481] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
In wealthy urbanised societies there have been striking increases in chronic inflammatory disorders such as allergies, autoimmunity and inflammatory bowel diseases. There has also been an increase in the prevalence of individuals with systemically raised levels of inflammatory biomarkers correlating with increased risk of metabolic, cardiovascular and psychiatric problems. These changing disease patterns indicate a broad failure of the mechanisms that should stop the immune system from attacking harmless allergens, components of self or gut contents, and that should terminate inappropriate inflammation. The Old Friends Hypothesis postulates that this broad failure of immunoregulation is due to inadequate exposures to the microorganisms that drive development of the immune system, and drive the expansion of components such as regulatory T cells (Treg) that mediate immunoregulatory mechanisms. An evolutionary approach helps us to identify the organisms on which we are in a state of evolved dependence for this function (Old Friends). The bottom line is that most of the organisms that drive the regulatory arm of the immune system come from our mothers and family and from the natural environment (including animals) and many of these organisms are symbiotic components of a healthy microbiota. Lifestyle changes that are interrupting our exposure to these organisms can now be identified, and many are closely associated with low socioeconomic status (SES) in wealthy countries. These insights will facilitate the development of education, diets and urban planning that can correct the immunoregulatory deficit, while simultaneously reducing other contributory factors such as epithelial damage.
Collapse
Affiliation(s)
- Graham A. W. Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, United Kingdom
| |
Collapse
|
24
|
Liang Y, Zeng W, Hou T, Yang H, Wu B, Pan R, Huang L. Gut microbiome and reproductive endocrine diseases: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1164186. [PMID: 37600687 PMCID: PMC10436605 DOI: 10.3389/fendo.2023.1164186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/12/2023] [Indexed: 08/22/2023] Open
Abstract
Background Observation studies have confirmed the association between the gut microbiome and reproductive endocrine diseases (REDs), namely, polycystic ovary syndrome (PCOS), endometriosis, and female infertility. However, their association has never been confirmed by a two-sample Mendelian randomization (MR) analysis. Methods We conducted a two-sample MR analysis to evaluate the relationship between the gut microbiome and the three aforementioned REDs. In order to get more comprehensive results, two different thresholds were adopted to select instrumental variables (IVs): one was a locus-wide significance threshold (P <1.0×10-5) and the other was a genome-wide significance level (P< 5×10-8). Summary-level statistics for the gut microbiome and REDs were collected from public databases. Inverse-variance weighted (IVW) was the main method used to estimate causality, and sensitivity analyses were conducted to validate the MR results. Results At the locus-wide significance level, we identified that the genera Streptococcus (OR=1.52, 95%CI: 1.13-2.06, P=0.006) and RuminococcaceaeUCG005 (OR=1.39, 95%CI: 1.04-1.86, P=0.028) were associated with a high risk of PCOS, while Sellimonas (OR= 0.69, 95%CI: 0.58-0.83, P=0.0001) and RuminococcaceaeUCG011(OR=0.76, 95%CI: 0.60-0.95, P=0.017) were linked to a low PCOS risk. The genus Coprococcus2 (OR=1.20, 95%CI: 1.01-1.43, P=0.039) was correlated with an increased risk of female infertility, while Ruminococcus torques (OR=0.69, 95%CI: 0.54-0.88, P=0.002) were negatively associated with the risk of female infertility. The genera Olsenella (OR= 1.11, 95%CI: 1.01-1.22, P=0.036), Anaerotruncus (OR= 1.25, 95%CI: 1.03-1.53, P=0.025), and Oscillospira (OR= 1.21, 95%CI: 1.01-1.46, P=0.035) were linked to a high risk of endometriosis. However, the results showed that the gut microbiome did not possess a causal link with REDs risk based on the genome-wide significance level. Sensitivity analyses further confirmed the robustness of the MR results. Conclusion Our study provides evidence that gut microbiome is closely related with REDs. Subsequent studies should be conducted to promote microbiome-orientated therapeutic strategies for managing REDs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lishan Huang
- Department of Gynecology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| |
Collapse
|
25
|
Kim S, Li H, Jin Y, Armad J, Gu H, Mani S, Cui JY. Maternal PBDE exposure disrupts gut microbiome and promotes hepatic proinflammatory signaling in humanized PXR-transgenic mouse offspring over time. Toxicol Sci 2023; 194:209-225. [PMID: 37267213 PMCID: PMC10375318 DOI: 10.1093/toxsci/kfad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Developmental exposure to the persistent environmental pollutant, polybrominated diphenyl ethers (PBDEs), is associated with increased diabetes prevalence. The microbial tryptophan metabolite, indole-3-propionic acid (IPA), is associated with reduced risk of type 2 diabetes and lower-grade inflammation and is a pregnane X receptor (PXR) activator. To explore the role of IPA in modifying the PBDE developmental toxicity, we orally exposed humanized PXR-transgenic (hPXR-TG) mouse dams to vehicle, 0.1 mg/kg/day DE-71 (an industrial PBDE mixture), DE-71+IPA (20 mg/kg/day), or IPA, from 4 weeks preconception to the end of lactation. Pups were weaned at 21 days of age and IPA supplementation continued in the corresponding treatment groups. Tissues were collected at various ages until 6 months of age (n = 5 per group). In general, the effect of maternal DE-71 exposure on the gut microbiome of pups was amplified over time. The regulation of hepatic cytokines and prototypical xenobiotic-sensing transcription factor target genes by DE-71 and IPA was age- and sex-dependent, where DE-71-mediated mRNA increased selected cytokines (Il10, Il12p40, Il1β [both sexes], and [males]). The hepatic mRNA of the aryl hydrocarbon receptor (AhR) target gene Cyp1a2 was increased by maternal DE-71 and DE-71+IPA exposure at postnatal day 21 but intestinal Cyp1a1 was not altered by any of the exposures and ages. Maternal DE-71 exposure persistently increased serum indole, a known AhR ligand, in age- and sex-dependent manner. In conclusion, maternal DE-71 exposure produced a proinflammatory signature along the gut-liver axis, including gut dysbiosis, dysregulated tryptophan microbial metabolism, attenuated PXR signaling, and elevated AhR signaling in postweaned hPXR-TG pups over time, which was partially corrected by IPA supplementation.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Hao Li
- Departments of Medicine, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987-2352, USA
| | - Jasmine Armad
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987-2352, USA
| | - Sridhar Mani
- Departments of Medicine, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Julia Y Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
26
|
Anzà S, Schneider D, Daniel R, Heistermann M, Sangmaneedet S, Ostner J, Schülke O. The long-term gut bacterial signature of a wild primate is associated with a timing effect of pre- and postnatal maternal glucocorticoid levels. MICROBIOME 2023; 11:165. [PMID: 37501202 PMCID: PMC10373267 DOI: 10.1186/s40168-023-01596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/11/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND During development, elevated levels of maternal glucocorticoids (GCs) can have detrimental effects on offspring morphology, cognition, and behavior as well as physiology and metabolism. Depending on the timing of exposure, such effects may vary in strength or even reverse in direction, may alleviate with age, or may concern more stable and long-term programming of phenotypic traits. Maternal effects on gut bacterial diversity, composition, and function, and the persistence of such effects into adulthood of long-lived model species in the natural habitats remain underexplored. RESULTS In a cross-sectional sample of infant, juvenile, and adult Assamese macaques, the timing of exposure to elevated maternal GCs during ontogeny was associated with the gut bacterial community of the offspring. Specifically, naturally varying maternal GC levels during early but not late gestation or lactation were associated with reduced bacterial richness. The overall effect of maternal GCs during early gestation on the gut bacterial composition and function exacerbated with offspring age and was 10 times stronger than the effect associated with exposure during late prenatal or postnatal periods. Instead, variation in maternal GCs during the late prenatal or postnatal period had less pronounced or less stable statistical effects and therefore a weaker effect on the entire bacterial community composition, particularly in adult individuals. Finally, higher early prenatal GCs were associated with an increase in the relative abundance of several potential pro-inflammatory bacteria and a decrease in the abundance of Bifidobacterium and other anti-inflammatory taxa, an effect that exacerbated with age. CONCLUSIONS In primates, the gut microbiota can be shaped by developmental effects with strong timing effects on plasticity and potentially detrimental consequences for adult health. Together with results on other macaque species, this study suggests potential detrimental developmental effects similar to rapid inflammaging, suggesting that prenatal exposure to high maternal GC concentrations is a common cause underlying both phenomena. Our findings await confirmation by metagenomic functional and causal analyses and by longitudinal studies of long-lived, ecologically flexible primates in their natural habitat, including developmental effects that originate before birth. Video Abstract.
Collapse
Affiliation(s)
- Simone Anzà
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany.
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Somboon Sangmaneedet
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Julia Ostner
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Oliver Schülke
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| |
Collapse
|
27
|
Bloemendaal M, Veniaminova E, Anthony DC, Gorlova A, Vlaming P, Khairetdinova A, Cespuglio R, Lesch KP, Arias Vasquez A, Strekalova T. Serotonin Transporter (SERT) Expression Modulates the Composition of the Western-Diet-Induced Microbiota in Aged Female Mice. Nutrients 2023; 15:3048. [PMID: 37447374 PMCID: PMC10346692 DOI: 10.3390/nu15133048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background. The serotonin transporter (SERT), highly expressed in the gut and brain, is implicated in metabolic processes. A genetic variant of the upstream regulatory region of the SLC6A4 gene encoding SERT, the so-called short (s) allele, in comparison with the long (l) allele, results in the decreased function of this transporter, altered serotonergic regulation, an increased risk of psychiatric pathology and type-2 diabetes and obesity, especially in older women. Aged female mice with the complete (Sert-/-: KO) or partial (Sert+/-: HET) loss of SERT exhibit more pronounced negative effects following their exposure to a Western diet in comparison to wild-type (Sert+/+: WT) animals. Aims. We hypothesized that these effects might be mediated by an altered gut microbiota, which has been shown to influence serotonin metabolism. We performed V4 16S rRNA sequencing of the gut microbiota in 12-month-old WT, KO and HET female mice that were housed on a control or Western diet for three weeks. Results. The relative abundance of 11 genera was increased, and the abundance of 6 genera was decreased in the Western-diet-housed mice compared to the controls. There were correlations between the abundance of Streptococcus and Ruminococcaceae_UCG-014 and the expression of the pro-inflammatory marker Toll-like-Receptor 4 (Tlr4) in the dorsal raphe, as well as the expression of the mitochondrial activity marker perixome-proliferator-activated-receptor-cofactor-1b (Ppargc1b) in the prefrontal cortex. Although there was no significant impact of genotype on the microbiota in animals fed with the Control diet, there were significant interactions between diet and genotype. Following FDR correction, the Western diet increased the relative abundance of Intestinimonas and Atopostipes in the KO animals, which was not observed in the other groups. Erysipelatoclostridium abundance was increased by the Western diet in the WT group but not in HET or KO animals. Conclusions. The enhanced effects of a challenge with a Western diet in SERT-deficient mice include the altered representation of several gut genera, such as Intestinimonas, Atopostipes and Erysipelatoclostridium, which are also implicated in serotonergic and lipid metabolism. The manipulation of these genera may prove useful in individuals with the short SERT allele.
Collapse
Affiliation(s)
- Mirjam Bloemendaal
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | | | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Priscilla Vlaming
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Adel Khairetdinova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
- Neuroscience Research Center of Lyon, Claude-Bernard Lyon-1 University, 69500 Bron, France
| | - Klaus Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Alejandro Arias Vasquez
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
28
|
Levkova M, Chervenkov T, Pancheva R. Genus-Level Analysis of Gut Microbiota in Children with Autism Spectrum Disorder: A Mini Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1103. [PMID: 37508600 PMCID: PMC10377934 DOI: 10.3390/children10071103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Autism is a global health problem, probably due to a combination of genetic and environmental factors. There is emerging data that the gut microbiome of autistic children differs from the one of typically developing children and it is important to know which bacterial genera may be related to autism. We searched different databases using specific keywords and inclusion criteria and identified the top ten bacterial genera from the selected articles that were significantly different between the studied patients and control subjects studied. A total of 34 studies that met the inclusion criteria were identified. The genera Bacteroides, Bifidobacterium, Clostridium, Coprococcus, Faecalibacterium, Lachnospira, Prevotella, Ruminococcus, Streptococcus, and Blautia exhibited the most substantial data indicating that their fluctuations in the gastrointestinal tract could be linked to the etiology of autism. It is probable that autism symptoms are influenced by both increased levels of harmful bacteria and decreased levels of beneficial bacteria. Interestingly, these genera demonstrated varying patterns of increased or decreased levels across different articles. To validate and eliminate the sources of this fluctuation, further research is needed. Consequently, future investigations on the causes of autism should prioritize the examination of the bacterial genera discussed in this publication.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, 9000 Varna, Bulgaria
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
| | - Trifon Chervenkov
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
- Laboratory of Clinical Immunology, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
| | - Rouzha Pancheva
- Department of Hygiene and Epidemiology, Medical University Varna, Marin Drinov Str 55, 9000 Varna, Bulgaria
| |
Collapse
|
29
|
Baek GH, Yoo KM, Kim SY, Lee DH, Chung H, Jung SC, Park SK, Kim JS. Collagen Peptide Exerts an Anti-Obesity Effect by Influencing the Firmicutes/Bacteroidetes Ratio in the Gut. Nutrients 2023; 15:nu15112610. [PMID: 37299573 DOI: 10.3390/nu15112610] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Alterations in the intestinal microbial flora are known to cause various diseases, and many people routinely consume probiotics or prebiotics to balance intestinal microorganisms and the growth of beneficial bacteria. In this study, we selected a peptide from fish (tilapia) skin that induces significant changes in the intestinal microflora of mice and reduces the Firmicutes/Bacteroidetes ratio, which is linked to obesity. We attempted to verify the anti-obesity effect of selected fish collagen peptides in a high-fat-diet-based obese mouse model. As anticipated, the collagen peptide co-administered with a high-fat diet significantly inhibited the increase in the Firmicutes/Bacteroidetes ratio. It increased specific bacterial taxa, including Clostridium_sensu_stricto_1, Faecalibaculum, Bacteroides, and Streptococcus, known for their anti-obesity effects. Consequently, alterations in the gut microbiota resulted in the activation of metabolic pathways, such as polysaccharide degradation and essential amino acid synthesis, which are associated with obesity inhibition. In addition, collagen peptide also effectively reduced all obesity signs caused by a high-fat diet, such as abdominal fat accumulation, high blood glucose levels, and weight gain. Ingestion of collagen peptides derived from fish skin induced significant changes in the intestinal microflora and is a potential auxiliary therapeutic agent to suppress the onset of obesity.
Collapse
Affiliation(s)
- Ga Hyeon Baek
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Ki Myeong Yoo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seon-Yeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Da Hee Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hayoung Chung
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Suk-Chae Jung
- Sempio Fermentation Research Center, Sempio Foods Company, Cheongju 28156, Republic of Korea
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
30
|
Chen J, Radjabzadeh D, Medina-Gomez C, Voortman T, van Meurs JBJ, Ikram MA, Uitterlinden AG, Kraaij R, Zillikens MC. Advanced Glycation End Products (AGEs) in Diet and Skin in Relation to Stool Microbiota: The Rotterdam Study. Nutrients 2023; 15:nu15112567. [PMID: 37299529 DOI: 10.3390/nu15112567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) are involved in age-related diseases, but the interaction of gut microbiota with dietary AGEs (dAGEs) and tissue AGEs in the population is unknown. OBJECTIVE Our objective was to investigate the association of dietary and tissue AGEs with gut microbiota in the population-based Rotterdam Study, using skin AGEs as a marker for tissue accumulation and stool microbiota as a surrogate for gut microbiota. DESIGN Dietary intake of three AGEs (dAGEs), namely carboxymethyl-lysine (CML), N-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MGH1), and carboxyethyl-lysine (CEL), was quantified at baseline from food frequency questionnaires. Following up after a median of 5.7 years, skin AGEs were measured using skin autofluorescence (SAF), and stool microbiota samples were sequenced (16S rRNA) to measure microbial composition (including alpha-diversity, beta-dissimilarity, and taxonomic abundances) as well as predict microbial metabolic pathways. Associations of both dAGEs and SAF with microbial measures were investigated using multiple linear regression models in 1052 and 718 participants, respectively. RESULTS dAGEs and SAF were not associated with either the alpha-diversity or beta-dissimilarity of the stool microbiota. After multiple-testing correction, dAGEs were not associated with any of the 188 genera tested, but were nominally inversely associated with the abundance of Barnesiella, Colidextribacter, Oscillospiraceae UCG-005, and Terrisporobacter, in addition to being positively associated with Coprococcus, Dorea, and Blautia. A higher abundance of Lactobacillus was associated with a higher SAF, along with several nominally significantly associated genera. dAGEs and SAF were nominally associated with several microbial pathways, but none were statistically significant after multiple-testing correction. CONCLUSIONS Our findings did not solidify a link between habitual dAGEs, skin AGEs, and overall stool microbiota composition. Nominally significant associations with several genera and functional pathways suggested a potential interaction between gut microbiota and AGE metabolism, but validation is required. Future studies are warranted, to investigate whether gut microbiota modifies the potential impact of dAGEs on health.
Collapse
Affiliation(s)
- Jinluan Chen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
31
|
Wu J, Shen S, Gao Q, Yu C, Cheng H, Pan H, Chen S, Ye X, Chen J. RG-I Domain Matters to the In Vitro Fermentation Characteristics of Pectic Polysaccharides Recycled from Citrus Canning Processing Water. Foods 2023; 12:foods12050943. [PMID: 36900460 PMCID: PMC10000670 DOI: 10.3390/foods12050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Canned citrus is a major citrus product that is popular around the world. However, the canning process discharges large amounts of high-chemical oxygen demand wastewater, which contains many functional polysaccharides. Herein, we recovered three different pectic polysaccharides from citrus canning processing water and evaluated their prebiotic potential as well as the relationship between the RG-I domain and fermentation characteristics using an in vitro human fecal batch fermentation model. Structural analysis showed a large difference among the three pectic polysaccharides in the proportion of the rhamnogalacturonan-I (RG-I) domain. Additionally, the fermentation results showed that the RG-I domain was significantly related to pectic polysaccharides' fermentation characteristics, especially in terms of short-chain fatty acid generation and modulation of gut microbiota. The pectins with a high proportion of the RG-I domain performed better in acetate, propionate, and butyrate production. It was also found that Bacteroides, Phascolarctobacterium, and Bifidobacterium are the main bacteria participating in their degradation. Furthermore, the relative abundance of Eubacterium_eligens_group and Monoglobus was positively correlated with the proportion of the RG-I domain. This study emphasizes the beneficial effects of pectic polysaccharides recovered from citrus processing and the roles of the RG-I domain in their fermentation characteristics. This study also provides a strategy for food factories to realize green production and value addition.
Collapse
Affiliation(s)
- Jiaxiong Wu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Sihuan Shen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Qiang Gao
- Shandong Huihuang Food Co., Ltd., Linyi 276000, China
| | - Chengxiao Yu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Huan Cheng
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Correspondence:
| |
Collapse
|
32
|
Gillespie KM, Kemps E, White MJ, Bartlett SE. The Impact of Free Sugar on Human Health-A Narrative Review. Nutrients 2023; 15:889. [PMID: 36839247 PMCID: PMC9966020 DOI: 10.3390/nu15040889] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The importance of nutrition in human health has been understood for over a century. However, debate is ongoing regarding the role of added and free sugars in physiological and neurological health. In this narrative review, we have addressed several key issues around this debate and the major health conditions previously associated with sugar. We aim to determine the current evidence regarding the role of free sugars in human health, specifically obesity, diabetes, cardiovascular diseases, cognition, and mood. We also present some predominant theories on mechanisms of action. The findings suggest a negative effect of excessive added sugar consumption on human health and wellbeing. Specific class and source of carbohydrate appears to greatly influence the impact of these macronutrients on health. Further research into individual effects of carbohydrate forms in diverse populations is needed to understand the complex relationship between sugar and health.
Collapse
Affiliation(s)
- Kerri M. Gillespie
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Eva Kemps
- College of Education, Psychology and Social Work, Flinders University, Bedford Park, SA 5042, Australia
| | - Melanie J. White
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Selena E. Bartlett
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
33
|
Ameliorating Effects of Vitamin K2 on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Int J Mol Sci 2023; 24:ijms24032986. [PMID: 36769323 PMCID: PMC9917520 DOI: 10.3390/ijms24032986] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic recurrent inflammatory illness of the gastrointestinal system. The purpose of this study was to explore the alleviating effect of vitamin K2 (VK2) on UC, as well as its mechanism. C57BL/6J mice were given 3% DSS for seven days to establish UC, and they then received VK2 (15, 30, or 60 mg/kg·bw) and 5-aminosalicylic acid (100 mg/kg·bw) for two weeks. We recorded the clinical signs, body weights, colon lengths, and histological changes during the experiment. We detected the inflammatory factor expressions using enzyme-linked immunosorbent assay (ELISA) kits, and we detected the tight junction proteins using Western blotting. We analyzed the intestinal microbiota alterations and short-chain fatty acids (SCFAs) using 16S rRNA sequencing and targeted metabolomics. According to the results, VK2 restored the colon lengths, improved the colonic histopathology, reduced the levels of proinflammatory cytokines (such as IL-1β, TNF-α, and IL-6), and boosted the level of the immunosuppressive cytokine IL-10 in the colon tissues of the colitis mice. Moreover, VK2 promoted the expression of mucin and tight junction proteins (such as occludin and zonula occludens-1) in order to preserve the intestinal mucosal barrier function and prevent UC in mice. Additionally, after the VK2 intervention, the SCFAs and SCFA-producing genera, such as Eubacterium_ruminantium_group and Faecalibaculum, were elevated in the colon. In conclusion, VK2 alleviated the DSS-induced colitis in the mice, perhaps by boosting the dominant intestinal microflora, such as Faecalibaculum, by reducing intestinal microflora dysbiosis, and by modulating the expression of SCFAs, inflammatory factors, and intestinal barrier proteins.
Collapse
|
34
|
Wu J, Yu C, Shen S, Ren Y, Cheng H, Xiao H, Liu D, Chen S, Ye X, Chen J. RGI-Type Pectic Polysaccharides Modulate Gut Microbiota in a Molecular Weight-Dependent Manner In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2160-2172. [PMID: 36648986 DOI: 10.1021/acs.jafc.2c07675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, the fermentation characteristics of high rhamnogalacturonan I pectic polysaccharides (RGI) and free-radical degraded RGI (DRGI) were evaluated by a human fecal batch-fermentation model, and their structural properties were also investigated. As a result, the Mw of RGI decreased from 246.8 to 11.6 kDa, and the branches were broken dramatically. Fermentation showed that RGI degraded faster and produced more acetate and propionate than DRGI. Both of them reduced the Firmicutes/Bacteroidetes ratio and promoted the development of Bacteroides, Bifidobacterium, and Lactobacillus, bringing benefits to the gut ecosystem. However, the composition and metabolic pathways of the microbiota in RGI and DRGI were different. Most of the dominant bacteria of RGI (such as [Eubacterium]_eligens_group) participated in carbohydrate utilization, leading to better performance in glucolipid metabolism and energy metabolism. This work elucidated that large molecular weight matters in the gut microbiota modulatory effect of RGI-type pectic polysaccharides in vitro.
Collapse
Affiliation(s)
- Jiaxiong Wu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Chengxiao Yu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Sihuan Shen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- NingboTech University, Ningbo315100, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| |
Collapse
|
35
|
Vecchiato CG, Golinelli S, Pinna C, Pilla R, Suchodolski JS, Tvarijonaviciute A, Rubio CP, Dorato E, Delsante C, Stefanelli C, Pagani E, Fracassi F, Biagi G. Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Front Microbiol 2023; 13:1050474. [PMID: 36713218 PMCID: PMC9878458 DOI: 10.3389/fmicb.2022.1050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Obesity is the most common nutritional disease in dogs, and is generally managed by caloric restriction. Gut microbiota alteration could represent a predisposing factor for obesity development, which has been associated with a low-grade inflammatory condition and an impaired antioxidant status. Besides, weight loss has been shown to influence the gut microbiota composition and reduce the inflammatory response and oxidative stress. Method However, these insights in canine obesity have not been fully elucidated. The aim of this study was to assess the differences in serum and inflammatory parameters, antioxidant status, fecal microbiota and bacterial metabolites in 16 obese and 15 lean client-owned dogs and how these parameters in obese may be influenced by caloric restriction. First, for 30 days, all dogs received a high-protein, high-fiber diet in amounts to maintain their body weight; later, obese dogs were fed for 180 days the same diet in restricted amounts to promote weight loss. Results Before the introduction of the experimental diet (T0), small differences in fecal microbial populations were detected between obese and lean dogs, but bacterial diversity and main bacterial metabolites did not differ. The fecal Dysbiosis Index (DI) was within the reference range (< 0) in most of dogs of both groups. Compared to lean dogs, obese dogs showed higher serum concentrations of acute-phase proteins, total thyroxine (TT4), and antioxidant capacity. Compared to T0, dietary treatment affected the fecal microbiota of obese dogs, decreasing the abundance of Firmicutes and increasing Bacteroides spp. However, these changes did not significantly affect the DI. The caloric restriction failed to exert significative changes on a large scale on bacterial populations. Consequently, the DI, bacterial diversity indices and metabolites were unaffected in obese dogs. Caloric restriction was not associated with a reduction of inflammatory markers or an improvement of the antioxidant status, while an increase of TT4 has been observed. Discussion In summary, the present results underline that canine obesity is associated with chronic inflammation. This study highlights that changes on fecal microbiota of obese dogs induced by the characteristics of the diet should be differentiated from those that are the consequence of the reduced energy intake.
Collapse
Affiliation(s)
- Carla Giuditta Vecchiato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy,*Correspondence: Carla Giuditta Vecchiato, ✉
| | - Stefania Golinelli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Carlo Pinna
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Rachel Pilla
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Camila Peres Rubio
- Department of Animal and Food Science, School of Veterinary Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Elisa Dorato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Costanza Delsante
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Claudio Stefanelli
- Dipartimento di Scienze per la Qualità della Vita, University of Bologna, Rimini, Italy
| | - Elena Pagani
- Monge & C. S.p.A., Monasterolo di Savigliano, Italy
| | - Federico Fracassi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Biagi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Genth J, Kaleja P, Treitz C, Schäfer K, Graspeuntner S, Rupp J, Tholey A. The intracellular proteome of the gut bacterium Bacteroides thetaiotaomicron is widely unaffected by a switch from glucose to sucrose as main carbohydrate source. Proteomics 2022; 22:e2200189. [PMID: 35906788 DOI: 10.1002/pmic.202200189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 12/29/2022]
Abstract
Bacteroides thetaiotaomicron is a gram negative bacterium within the human gut microbiome that metabolizes a wide range of dietary and mucosal polysaccharides. Here, we analyze the proteome response of B. thetaiotaomicron cultivated on two different carbon sources, glucose and sucrose. Two quantitative LC-MS based proteomics approaches, encompassing label free quantification and isobaric labeling by tandem mass tags were applied. The results obtained by both workflows were compared with respect to the number of identified and quantified proteins, peptides supporting identification and quantification, sequence coverage, and reproducibility. A total of 1719 and 1696 proteins, respectively, were quantified, covering 35 % of the predicted B. thetaiotaomicron proteome. The data show that B. thetaiotaomicron widely maintains its intracellular proteome upon change of the carbohydrates and that major changes are observed solely in the machinery necessary to make use of the carbon sources provided. With respect to the central role of carbohydrates on gut health these data contribute to the understanding of how different carbohydrates contribute to shape bacterial community in the gut microbiome. All proteomics raw data have been uploaded to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD033704.
Collapse
Affiliation(s)
- Jerome Genth
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Patrick Kaleja
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christian Treitz
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kathrin Schäfer
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
37
|
Dong Y, Zhang Y, Feng Y, An W. The protective roles of augmenter of liver regeneration in hepatocytes in the non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:928606. [PMID: 36304168 PMCID: PMC9592723 DOI: 10.3389/fphar.2022.928606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) occurs in 25% of the global population and manifests as lipid deposition, hepatocyte injury, activation of Kupffer and stellate cells, and steatohepatitis. Predominantly expressed in hepatocytes, the augmenter of liver regeneration (ALR) is a key factor in liver regulation that can alleviate fatty liver disease and protect the liver from abnormal liver lipid metabolism. ALR has three isoforms (15-, 21-, and 23-kDa), amongst which 23-kDa ALR is the most extensively studied. The 23-kDa ALR isoform is a sulfhydryl oxidase that resides primarily in the mitochondrial intermembrane space (IMS), whereby it protects the liver against various types of injury. In this review, we describe the role of ALR in regulating hepatocytes in the context of NAFLD. We also discuss questions about ALR that remain to be explored in the future. In conclusion, ALR appears to be a promising therapeutic target for treating NAFLD.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuejie Zhang
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| | - Wei An
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| |
Collapse
|
38
|
Wang Z, Zeng X, Zhang C, Wang Q, Zhang W, Xie J, Chen J, Hu Q, Wang Q, Yang H, Yin Y. Higher niacin intakes improve the lean meat rate of Ningxiang pigs by regulating lipid metabolism and gut microbiota. Front Nutr 2022; 9:959039. [PMID: 36276825 PMCID: PMC9582987 DOI: 10.3389/fnut.2022.959039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
As one of the local pig breeds in China with a high fat rate, improving the lean meat rate of Ningxiang pigs through nutritional intervention is an urgent issue to be solved. As an important feed additive, niacin plays an important role in lipid metabolism. The purpose of this study was to investigate the regulation and mechanism of niacin on fat deposition in Ningxiang pigs. Thirty-four Ningxiang pigs (53.34 ± 2.78 kg) were randomly divided into two groups with five replicates each, with three to four Ningxiang pigs per replicate. The control group was fed a basal diet (contained 22 mg/kg niacin), and the experimental group was fed the same diet supplemented with an additional 100 mg/kg of niacin. The experimental period lasted 60 days. One Ningxiang pig was selected for slaughter sampling for each replicate. This study found that lean meat percentage of Ningxiang pigs in the experimental group was significantly increased (P < 0.05), accompanied by a significant decrease in fat percentage (P < 0.05). 16S rRNA sequencing analysis found an abundance of Streptococcus in the experimental group (P < 0.05), along with significantly decreased levels of Lactobacillus (P < 0.05). The changes in some OTUs belonging to Firmicutes, Bacteroidota, and Actinobacteriota were closely related to the changes in the fat rate and lean meat rate of Ningxiang pigs (P < 0.05). LC–MS metabolomics analysis found that about 43.75% of the differential metabolites were related to lipids and lipid-like molecules in the liver (P < 0.05). Spearman's correlation analysis showed correlations between the carcass traits, microbiota, and liver metabolites. In conclusion, niacin improves lean meat percentage and reduces fat deposition by regulating lipid metabolism and gut microbiota composition in Ningxiang pigs.
Collapse
Affiliation(s)
- Zhaobin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China,Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xianglin Zeng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Cheng Zhang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qianqian Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Weidong Zhang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Junyan Xie
- Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiashun Chen
- Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qin Hu
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China,Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,*Correspondence: Qiye Wang
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China,Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,Huansheng Yang
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China,Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
39
|
Wei S, Wang J, Wang C, Wang Y, Jin M. Inulin mitigates high fructose-induced gut dysbiosis and metabolic dysfunction in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Arnone D, Chabot C, Heba AC, Kökten T, Caron B, Hansmannel F, Dreumont N, Ananthakrishnan AN, Quilliot D, Peyrin-Biroulet L. Sugars and Gastrointestinal Health. Clin Gastroenterol Hepatol 2022; 20:1912-1924.e7. [PMID: 34902573 DOI: 10.1016/j.cgh.2021.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
Sugar overconsumption is linked to a rise in the incidence of noncommunicable diseases such as diabetes, cardiovascular diseases, and cancer. This increased incidence is becoming a real public health problem that is more severe than infectious diseases, contributing to 35 million deaths annually. Excessive intake of free sugars can cause many of the same health problems as excessive alcohol consumption. Many recent international recommendations have expressed concerns about sugar consumption in Westernized societies, as current consumption levels represent quantities with no precedent during hominin evolution. In both adults and children, the World Health Organization strongly recommends reducing free sugar intake to <10% of total energy intake and suggests a further reduction to below 5%. Most studies have focused on the deleterious effects of Western dietary patterns on global health and the intestine. Whereas excessive dietary fat consumption is well studied, the specific impact of sugar is poorly described, while refined sugars represent up to 40% of caloric intake within industrialized countries. However, high sugar intake is associated with multiple tissue and organ dysfunctions. Both hyperglycemia and excessive sugar intake disrupt the intestinal barrier, thus increasing gut permeability and causing profound gut microbiota dysbiosis, which results in a disturbance in mucosal immunity that enhances infection susceptibility. This review aims to highlight the roles of different types of dietary carbohydrates and the consequences of their excessive intake for intestinal homeostasis.
Collapse
Affiliation(s)
- Djésia Arnone
- Délégation à la Recherche Clinique et de l'Innovation, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France; Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Caroline Chabot
- Inserm U1256, Pediatric Hepato-Gastroenterology and Nutrition Unit, Department of Child Medicine and Clinical Genetics, Université de Lorraine, Nancy, France
| | - Anne-Charlotte Heba
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Tunay Kökten
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France
| | - Franck Hansmannel
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Natacha Dreumont
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | | | - Didier Quilliot
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France; Department of Diabetology-Endocrinology-Nutrition, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France
| | - Laurent Peyrin-Biroulet
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France; Department of Gastroenterology, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France.
| |
Collapse
|
41
|
Supplementation with galacto-oligosaccharides in early life persistently facilitates the microbial colonization of the rumen and promotes growth of preweaning Holstein dairy calves. ANIMAL NUTRITION 2022; 10:223-233. [PMID: 35785255 PMCID: PMC9207549 DOI: 10.1016/j.aninu.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/18/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022]
Abstract
We aimed to determine the effects of dietary supplementation with galacto-oligosaccharides (GOS) on the growth performance, serum parameters, and the rumen microbial colonization and fermentation of pre-weaning dairy calves. The study comprised 2 phases of 28 and 42 d, respectively. During phase 1, 24 newborn female Holstein dairy calves were randomly allocated to consume a diet supplemented with 10 g/d GOS (GOS, n = 12) or not (CON, n = 12). Thereafter, during phase 2, the GOS group was further divided into 2 groups: one that continued to consume GOS (GOSC, n = 6) and one that no longer consumed GOS (GOSS, n = 6), alongside the CON group. Galacto-oligosaccharides increased the average daily gain (ADG), body weight, feed efficiency, and serum high-density lipoprotein-cholesterol concentration of dairy calves during phase 1 (P < 0.05). Supplementation with GOS for the entire study reduced the incidence of diarrhea and increased the serum total protein and Ca concentrations (P < 0.05) compared with the CON group. The effect of GOS supplementation persisted after it was stopped because the ADG and final body weight of the GOSS group were higher than those of the CON group (P < 0.05). Furthermore, the GOSS group showed a persistently lower incidence of diarrhea and greater colonization of the rumen with probiotics, at the expense of less beneficial bacteria, which would promote ruminal fermentation and microbial protein synthesis. These findings provide a theoretical basis for the rational application of prebiotics and have important practical implications for the design of early life dietary interventions in dairy calf rearing.
Collapse
|
42
|
Burakova I, Smirnova Y, Gryaznova M, Syromyatnikov M, Chizhkov P, Popov E, Popov V. The Effect of Short-Term Consumption of Lactic Acid Bacteria on the Gut Microbiota in Obese People. Nutrients 2022; 14:3384. [PMID: 36014890 PMCID: PMC9415828 DOI: 10.3390/nu14163384] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity is a problem of modern health care that causes the occurrence of many concomitant diseases: arterial hypertension, diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. New strategies for the treatment and prevention of obesity are being developed that are based on using probiotics for modulation of the gut microbiota. Our study aimed to evaluate the bacterial composition of the gut of obese patients before and after two weeks of lactic acid bacteria (Lactobacillus acidophilus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and Lactobacillus delbrueckii) intake. The results obtained showed an increase in the number of members of the phylum Actinobacteriota in the group taking nutritional supplements, while the number of phylum Bacteroidota decreased in comparison with the control group. There has also been an increase in potentially beneficial groups: Bifidobacterium, Blautia, Eubacterium, Anaerostipes, Lactococcus, Lachnospiraceae ND3007, Streptococcus, Escherichia-Shigella, and Lachnoclostridium. Along with this, a decrease in the genera was demonstrated: Faecalibacterium, Pseudobutyrivibrio, Subdoligranulum, Faecalibacterium, Clostridium sensu stricto 1 and 2, Catenibacterium, Megasphaera, Phascolarctobacterium, and the Oscillospiraceae NK4A214 group, which contribute to the development of various metabolic disorders. Modulation of the gut microbiota by lactic acid bacteria may be one of the ways to treat obesity.
Collapse
Affiliation(s)
- Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Evgeny Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
43
|
Merino-Ribas A, Araujo R, Pereira L, Campos J, Barreiros L, Segundo MA, Silva N, Costa CFFA, Quelhas-Santos J, Trindade F, Falcão-Pires I, Alencastre I, Dumitrescu IB, Sampaio-Maia B. Vascular Calcification and the Gut and Blood Microbiome in Chronic Kidney Disease Patients on Peritoneal Dialysis: A Pilot Study. Biomolecules 2022; 12:biom12070867. [PMID: 35883423 PMCID: PMC9313079 DOI: 10.3390/biom12070867] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 12/13/2022] Open
Abstract
Vascular calcification (VC) is a frequent condition in chronic kidney disease (CKD) and a well-established risk factor for the development of cardiovascular disease (CVD). Gut dysbiosis may contribute to CVD and inflammation in CKD patients. Nonetheless, the role of gut and blood microbiomes in CKD-associated VC remains unknown. Therefore, this pilot study aimed to explore the link between gut and blood microbiomes and VC in CKD patients on peritoneal dialysis (CKD-PD). Our results showed relative changes in specific taxa between CKD-PD patients with and without VC, namely Coprobacter, Coprococcus 3, Lactobacillus, and Eubacterium eligens group in the gut, and Cutibacterium, Pajaroellobacter, Devosia, Hyphomicrobium, and Pelomonas in the blood. An association between VC and all-cause mortality risk in CKD-PD patients was also observed, and patients with higher mortality risk corroborate the changes of Eubacterium eligens in the gut and Devosia genus in the blood. Although we did not find differences in uremic toxins, intestinal translocation markers, and inflammatory parameters among CKD-PD patients with and without VC, soluble CD14 (sCD14), a nonspecific marker of monocyte activation, positively correlated with VC severity. Therefore, gut Eubacterium eligens group, blood Devosia, and circulating sCD14 should be further explored as biomarkers for VC, CVD, and mortality risk in CKD.
Collapse
Affiliation(s)
- Ana Merino-Ribas
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Departament de Medicina, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain;
- Nephrology Department, Hospital Universitari de Girona Doctor Josep Trueta, 17007 Girona, Spain
| | - Ricardo Araujo
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
| | - Luciano Pereira
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Nephrology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal;
| | - Joana Campos
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
| | - Luísa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (L.B.); (M.A.S.)
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (L.B.); (M.A.S.)
| | - Nádia Silva
- Nephrology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal;
| | - Carolina F. F. A. Costa
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Janete Quelhas-Santos
- UnIC@RISE- Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.Q.-S.); (F.T.); (I.F.-P.)
| | - Fábio Trindade
- UnIC@RISE- Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.Q.-S.); (F.T.); (I.F.-P.)
| | - Inês Falcão-Pires
- UnIC@RISE- Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.Q.-S.); (F.T.); (I.F.-P.)
| | - Ines Alencastre
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
| | - Ioana Bancu Dumitrescu
- Departament de Medicina, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain;
- Fresenius Nephrocare, 110372 Pitesti, Romania
| | - Benedita Sampaio-Maia
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Faculdade de Medicina Dentária, Universidade do Porto, 4200-393 Porto, Portugal
- Correspondence: ; Tel.: +351-220-901-100
| |
Collapse
|
44
|
Jiang TM, Liang Y, Liu B, Liu BY, Li X, Zhao JY, Li JT, Liu YP, Chen LJ. Changes in the intestinal microbiota of healthy adults induced by brown yogurt and relationships of bacterial taxa with specific components. Food Funct 2022; 13:5701-5714. [PMID: 35521810 DOI: 10.1039/d1fo03885k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Yogurt consumption shows a wide range of effects on the gut microbial composition, and correlation of components in yogurt with the changes of gut microbia remains largely uncharacterized. We aimed to determine the effect of brown yogurt (SSN) on the composition of the gut microbiota and to explore the effects of the major components. We performed a randomized study of 70 healthy adults to compare the effects of SSN and standard probiotic-containing yogurt (YJD) during a 28-day intervention and a 10-day follow-up period. The results showed that the SSN group showed significant increases in the butyrate-producer Akkermansia muciniphila, Ruminococcus, and Veillonella (p < 0.05), whereas the YJD group showed increases in the butyrate-producer Megasphaera, Anaerostipes, and Eubacterium. There were reductions in the potential pathogens Haemophilus parainfluenzae and Gemmiger formicilis in both groups (p < 0.05). The SSN group had more Faecalibacterium prausnitzii, Prevotella copri, Bifidobacterium and B. longum than the YJD group (p < 0.001), but fewer Bacteroides, unspecified Clostridiales and Coprococcus eutactus (p < 0.01). These differences might be at least in part explained by the higher concentrations of monosaccharide, palmitoleic acid, and glutamine synthetase adenyltransferase in the SSN product (p < 0.05), which were positively associated with F. prausnitzii (p ≤ 0.001) and B. longum (p < 0.05), and negatively associated with C. eutactus (p < 0.01). The single strain of starter culture and lower content of polyunsaturated fatty acids (PUFA) in the SSN product were also related to the different changes of gut microbia, and the taxa F. prausnitzii, Bifidobacterium and B. longum were negatively associated with starter culture and PUFA (p < 0.01). These findings suggested that SSN is rich in prebiotic components and might be beneficial for healthy adults. Furthermore, bacterial taxa with potential health benefits could be encouraged through improving the formulation and technology used to produce the dairy products.
Collapse
Affiliation(s)
- Tie Min Jiang
- South Asia Branch of National Engineering Center of Dairy Health for Maternal and Child, Guilin University of Technology, Guilin, China.
| | - Yi Liang
- South Asia Branch of National Engineering Center of Dairy Health for Maternal and Child, Guilin University of Technology, Guilin, China.
| | - Bin Liu
- National Engineering Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing, China.
| | - Bi Yuan Liu
- Department of Immunology, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xia Li
- South Asia Branch of National Engineering Center of Dairy Health for Maternal and Child, Guilin University of Technology, Guilin, China.
| | - Jun Ying Zhao
- National Engineering Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing, China.
| | - Jian Tao Li
- National Engineering Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing, China.
| | - Yan Pin Liu
- National Engineering Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing, China.
| | - Li Jun Chen
- National Engineering Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing, China.
| |
Collapse
|
45
|
Overall Structural Alteration of Gut Microbiota and Relationships with Risk Factors in Patients with Metabolic Syndrome Treated with Inulin Alone and with Other Agents: An Open-Label Pilot Study. Mediators Inflamm 2022; 2022:2078520. [PMID: 35633654 PMCID: PMC9136633 DOI: 10.1155/2022/2078520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Objective The relative contribution of some products with prebiotic effects, such as inulin, together with medications specific to the human gut microbiome has not been comprehensively studied. The present study determined the potential for manipulating populations in the gut microbiome using inulin alone and combined with other agents in individuals with metabolic syndrome (MetS). The study also assessed whether there is relationship variability in multiple clinical parameters in response to intervention with the changes in the gut milieu. Participants/Methods. This single-centre, single-blinded, randomised community-based pilot trial randomly assigned 60 patients (mean age, 46.3 y and male, 43%) with MetS to receive either inulin, inulin+traditional Chinese medicine (TCM), or inulin+metformin for 6 months. Lipid profiles, blood glucose, and uric acid (UA) levels were analysed in venous blood samples collected after overnight fast of 8 h at baseline and at the end of the follow-up period. Microbiota from stool samples were taxonomically analysed using 16S RNA amplicon sequencing, and an integrative analysis was conducted on microbiome and responsiveness data at 6 months. Results The results of 16S rRNA sequencing showed that inulin resulted in a higher proportion of Bacteroides at the endpoint compared with inulin+TCM and inulin+metformin (p = 0.024). More Romboutsia (p = 0.043), Streptococcus (p < 0.001), and Holdemanella (p = 0.011) were found in inulin+TCM and inulin+metformin samples. We further identified gut microbiota relationships with lipids, UA, and glucose that impact the development of MetS. Conclusion Among the groups, inulin alone or combined with metformin or TCM altered specific gut microbiota taxa but not the general diversity. Accordingly, we analysed metabolites associated with microbiota that might provide more information about intrinsic differences. Consequently, a reliable method could be developed for treating metabolic syndrome in the future.
Collapse
|
46
|
Strober JW, Fernandez S, Ye H, Brady MJ. Differential effects of acute versus chronic dietary fructose consumption on metabolic responses in FVB/N mice. Am J Physiol Regul Integr Comp Physiol 2022; 323:R255-R266. [PMID: 35580305 PMCID: PMC9306790 DOI: 10.1152/ajpregu.00174.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased human consumption of hgh fructose corn syrup has been linked to the marked increase in obesity and metabolic syndrome. Previous studies on the rapid effects of a high fructose diet in mice have largely been confined to the C57Bl6 strains. In the current studied, the FVB/N strain of mice that are resistant to diet induced weight gain were utilized and fed a control or high fructose diet for 48 hours or 12 weeks. Many of the previously reported changes that occurred upon high fructose feeding for 48 hours in C57Bl6 mice were recapitulated in the FVB/N mice. However, the acute increases in fructolytic and lipogenic gene expression were completely lost during the 12 week dietary intervention protocol. Furthermore, there was no significant weight gain in FVB/N mice fed a high fructose diet for 12 weeks, despite an overall increase in caloric consumption and an increase in average epididymal adipocyte cell size. These findings may be in part explained by a commensurate increase in energy expenditure and in carbohydrate utilization in high fructose fed animals. Overall, these findings demonstrate that FVB/N mice are a suitable model for the study of the effects of dietary intervention on metabolic and molecular parameters. Furthermore, the rapid changes in hepatic gene expression that have been widely reported were not sustained over a longer time course. Compensatory changes in energy expenditure and utilization may be in part responsible for the differences obtained between acute and chronic high fructose feeding protocols.
Collapse
Affiliation(s)
- Jordan W Strober
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States
| | - Sully Fernandez
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States
| | - Honggang Ye
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, United States
| | - Matthew J Brady
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States.,Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, United States
| |
Collapse
|
47
|
Yuan X, Chen R, Zhang Y, Lin X, Yang X. Altered Gut Microbiota in Children With Hyperuricemia. Front Endocrinol (Lausanne) 2022; 13:848715. [PMID: 35574004 PMCID: PMC9091909 DOI: 10.3389/fendo.2022.848715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background In adults, gut dysbiosis may contribute to the pathogenesis of gout. However, the characteristics of gut microbiota in children with hyperuricemia (HUA) in the absence of clinical gout have not been explored. Objective This present study analyzed the gut microbiota in children with HUA as compared to controls (Con) and explored bacterial associations that may account for differences. Methods A total of 80 children were enrolled in this study; they were divided into HUA and Con according to the level of serum uric acid (UA). The composition of gut microbiota was investigated by 16S rRNA high-throughput sequencing. Results Principal coordinate analysis revealed that gut microbiota of the HUA group was clustered together and separated partly from the Con group. There was no difference in alpha-diversity between the two groups. However, Spearman's correlation analysis revealed that serum UA level positively correlated with genera Actinomyces, Morganella, and Streptococcus, and negatively associated with the producers of short-chain fatty acids (SCFAs), such as Alistipes, Faecalibacterium, and Oscillospira, and the sulfidogenic bacteria Bilophila. The members of the genera Alistipes and Bilophila in the Con group were significantly more prevalent than the HUA subjects. Compared to the Con cohort, metabolic pathway predictions found that the superpathways of purine nucleotide de novo biosynthesis were decreased in HUA subjects, whereas the superpathway of purine deoxyribonucleoside de gradation was increased. Conclusion The composition of the gut microbiota in children with HUA differs from Con. Although causality cannot be established, modification in the microbiota that produces SCFA and sulfide may promote HUA.
Collapse
Affiliation(s)
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | | | | | | |
Collapse
|
48
|
Zha H, Li Q, Chang K, Xia J, Li S, Tang R, Li L. Characterising the Intestinal Bacterial and Fungal Microbiome Associated With Different Cytokine Profiles in Two Bifidobacterium strains Pre-Treated Rats With D-Galactosamine-Induced Liver Injury. Front Immunol 2022; 13:791152. [PMID: 35401547 PMCID: PMC8987000 DOI: 10.3389/fimmu.2022.791152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple probiotics have protective effects against different types of liver injury. Different intestinal microbes could be beneficial to the protective effects of the probiotics on the treated cohorts in different aspects. The current study was designed to determine the intestinal bacterial and fungal microbiome associated with different cytokine profiles in the Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10 pretreated rats with D-galactosamine-induced liver injury. In this study, partition around medoids clustering analysis determined two distinct cytokine profiles (i.e., CP1 and CP2) comprising the same 11 cytokines but with different levels among the LI09, LI10, positive control (PC), and negative control (NC) cohorts. All rats in PC and NC cohorts were determined with CP1 and CP2, respectively, while the rats with CP1 in LI09 and LI10 cohorts had more severe liver injury than those with CP2, suggesting that CP2 represented better immune status and was the “better cytokine profile” in this study. PERMANOVA analyses showed that the compositions of both bacterial and fungal microbiome were different in the LI10 cohorts with different cytokine profiles, while the same compositions were similar between LI09 cohorts with different cytokine profiles. The phylotype abundances of both bacteria and fungi were different in the rats with different cytokine profiles in LI09 or LI10 cohorts according to similarity percentage (SIMPER) analyses results. At the composition level, multiple microbes were associated with different cytokine profiles in LI09 or LI10 cohorts, among which Flavonifractor and Penicillium were the bacterium and fungus most associated with LI09 cohort with CP2, while Parabacteroides and Aspergillus were the bacterium and fungus most associated with LI10 cohort with CP2. These microbes were determined to influence the cytokine profiles of the corresponding cohorts. At the structure level, Corynebacterium and Cephalotrichiella were determined as the two most powerful gatekeepers in the microbiome networks of LI09 cohort CP2, while Pseudoflavonifractor was the most powerful gatekeeper in LI10 cohort with CP2. These identified intestinal microbes were likely to be beneficial to the effect of probiotic Bifidobacterium on the immunity improvement of the treated cohorts, and they could be potential microbial biomarkers assisting with the evaluation of immune status of probiotics-treated cohorts.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Lanjuan Li,
| |
Collapse
|
49
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) can develop in lean individuals. Despite a better metabolic profile, the risk of disease progression to hepatic inflammation, fibrosis, and decompensated cirrhosis in the lean is similar to that in obesity-related NAFLD and lean individuals may experience more severe hepatic consequences and higher mortality relative to those with a higher body mass index (BMI). In the absence of early symptoms and abnormal laboratory findings, lean individuals are not likely to be screened for NAFLD or related comorbidities; however, given the progressive nature of the disease and the increased risk of morbidity and mortality, a clearer understanding of the natural history of NAFLD in lean individuals, as well as efforts to raise awareness of the potential health risks of NAFLD in lean individuals, are warranted. In this review, we summarize available data on NAFLD prevalence, clinical characteristics, outcomes, and mortality in lean individuals and discuss factors that may contribute to the development of NAFLD in this population, including links between dietary and genetic factors, menopausal status, and ethnicity. We also highlight the need for greater representation of lean individuals in NAFLD-related clinical trials, as well as more studies to better characterize lean NAFLD, develop improved screening algorithms, and determine specific treatment strategies based on underlying etiology.
Collapse
Affiliation(s)
- Johanna K. DiStefano
- Diabetes and Fibrotic Disease Research Unit, Translational Genomics Research Institute, Phoenix, USA
| | - Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA 19140 USA
| |
Collapse
|
50
|
Abstract
Healthy development and function of essentially all physiological systems and organs, including the brain, require exposure to the microbiota of our mothers and of the natural environment, especially in early life. We also know that some infections, if we survive them, modulate the immune system in relevant ways. If we study the evolution of the immune and metabolic systems, we can understand how these requirements developed and the nature of the organisms that we need to encounter. We can then begin to identify the mechanisms of the beneficial effects of these exposures. Against this evolutionary background, we can analyze the ways in which the modern urban lifestyle, particularly for individuals experiencing low socioeconomic status (SES), results in deficient or distorted microbial exposures and microbiomes. Thus, an evolutionary approach facilitates the identification of practical solutions to the growing scandal of health disparities linked to inequality.
Collapse
|