1
|
Petitclerc I, Perron J, Dugas C, Mayer T, Raymond F, Di Marzo V, Veilleux A, Robitaille J. Association between gestational diabetes mellitus, maternal health and diet, and gut microbiota in mother-infant dyads. BMC Pregnancy Childbirth 2025; 25:486. [PMID: 40275186 PMCID: PMC12023395 DOI: 10.1186/s12884-025-07584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) increasingly affects women and predisposes both mothers and their infants to short- and long-term health consequences. Emerging research links GDM to maternal gut microbiota dysbiosis. However, the impact of GDM on the infant gut microbiota remains unclear. This cross-sectional study aims to explore potential associations between GDM and the gut microbiota in mothers and their infants, as well as correlations between maternal diet, cardiometabolic profile, and gut microbiota composition. METHODS Gut microbiota taxonomic composition was characterized by 16S rRNA gene sequencing on fecal samples collected at 2 months postpartum from 28 mothers, including 17 with (GDM+) and 11 without (GDM-) GDM, as well as 30 infants, 17 GDM + and 13 GDM-. Variations in overall composition and specific taxa between GDM + and GDM- were assessed. Correlations between maternal cardiometabolic profile, dietary intakes, and taxa were performed. RESULTS GDM was associated with the overall composition of gut microbiota between GDM + and GDM- in the maternal group, but not in infants. No statistically significant difference in alpha diversity between groups was found in either mothers or infants. However, 14 taxa showed significantly different abundance between GDM + and GDM- mothers, and 4 taxa differed in infants. Specific taxa at the family rank were correlated with maternal dietary and cardiometabolic variables in both mothers and infants. CONCLUSIONS GDM exposition was associated with gut microbiota composition in both mothers and infants at two months postpartum. This study enhances our understanding of how maternal health could be linked with the gut microbiota of mothers and their infants. TRIAL REGISTRATION NCT02872402 (2016-08-04, https://clinicaltrials.gov/study/NCT02872402?term=NCT02872402&rank=1 ) and NCT04263675 (2020-02-07, https://clinicaltrials.gov/study/NCT04263675?term=NCT04263675&rank=1 ).
Collapse
Affiliation(s)
- Isabelle Petitclerc
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Julie Perron
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Camille Dugas
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Thomas Mayer
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Frédéric Raymond
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Université Laval, Quebec City, QC, G1V 4G5, Canada
| | - Alain Veilleux
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Julie Robitaille
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada.
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
2
|
Deng K, Wang L, Nguyen SM, Shrubsole MJ, Cai Q, Lipworth L, Gupta DK, Zheng W, Shu XO, Yu D. A dietary pattern promoting gut sulfur metabolism is associated with increased mortality and altered circulating metabolites in low-income American adults. EBioMedicine 2025; 115:105690. [PMID: 40188743 PMCID: PMC12001102 DOI: 10.1016/j.ebiom.2025.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Excessive hydrogen sulfide in the gut, generated by sulfur-metabolising bacteria from foods, has been linked to intestinal inflammation and human diseases. We aim to investigate the interplay between diet and sulphur-metabolising bacteria in relation to mortality and circulating metabolites in understudied populations. METHODS In the Southern Community Cohort Study (SCCS), a prospective cohort of primarily low-income American adults, habitual diets were assessed using a food frequency questionnaire at baseline (2002-2009). A sulfur microbial diet score (SMDS) was developed among 514 Black/African American participants by linking habitual dietary intakes with the abundance of sulfur-metabolising bacteria profiled by faecal shotgun metagenomics. The SMDS was then constructed among all eligible SCCS participants (50,114 Black/African American and 23,923 non-Hispanic White adults), and its associations with mortality outcomes were examined by Cox proportional hazards model and Fine-Grey subdistribution hazard model. The association between SMDS and 1110 circulating metabolites was examined by linear regression among 1688 SCCS participants with untargeted metabolomic profiling of baseline plasma samples. FINDINGS Over an average 13.9-year follow-up, SMDS was associated with increased all-cause mortality (HR [95% CI] for the highest vs. lowest quartiles: 1.21 [1.15-1.27]) and cardiovascular disease (1.18 [1.08-1.29]), cancer (1.13 [1.02-1.25]), and gastrointestinal cancer-specific (1.22 [1.00-1.49]) mortality among Black/African American participants (all P-trend<0.05). The associations were largely consistent across participant subgroups. Similar results were observed among non-Hispanic White participants. The SMDS was associated with 112 circulating metabolites, which mediated 36.15% of the SMDS-mortality association (P = 0.002). INTERPRETATION A dietary pattern promoting sulfur-metabolising gut bacteria may contribute to increased total and disease mortality in low-income American adults. FUNDING This study was funded by the National Institutes of Health, United States, to Vanderbilt University Medical Center, United States, and Anne Potter Wilson Chair endowment to Vanderbilt University, United States.
Collapse
Affiliation(s)
- Kui Deng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Lei Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Sang Minh Nguyen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA; International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Loren Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Deepak K Gupta
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA.
| |
Collapse
|
3
|
Battur M, Aaqil M, Zheng J, Lin HX, Chuluunotgon B, Zorigtbaatar T, Zhao C, Tian Y. Exploring the effects of milk-enriched walnut soy sauce: Insights from GC-IMS and metagenomics approach to flavor and microbial shifts. Food Chem X 2025; 27:102364. [PMID: 40165815 PMCID: PMC11957490 DOI: 10.1016/j.fochx.2025.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
This study investigates the impact of milk addition on the fermentation of walnut soy sauce, using Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) and metagenomics to analyze flavor profiles and microbial dynamics. GC-IMS analysis showed significant increases in volatile compounds such as esters (ethyl acetate), aldehydes (hexanal), and alcohols (isoamyl alcohol), enhancing the aroma and taste. Metagenomic analysis revealed that milk increased microbial diversity, with Weissella and Lactobacillus dominating early fermentation. The milk-enriched soy sauce (SYM) exhibited higher amino acid nitrogen (2.67 g/L), and total nitrogen (7.18 g/L) compared to the control, indicating improved nutritional quality. Protease activity peaked at 2438.5 U/g for neutral protease, supporting efficient protein hydrolysis. Relative Odor Activity Value (ROAV) analysis identified 29 key flavor compounds, including 3-methyl butanol and ethyl 2-methyl butyrate, which contributed fruity and buttery notes to SYM. These results suggest that milk enhances microbial growth and improves both flavor and nutritional quality of walnut soy sauce.
Collapse
Affiliation(s)
- Munguntsetseg Battur
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Muhammad Aaqil
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jingchuan Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Huang Xiao Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | | | | | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming 650201, China
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Pu 'er University, Pu 'er 665000, China
| |
Collapse
|
4
|
da Silva Costa N, de Araujo JR, da Silva Melo MF, da Costa Mota J, Almeida PP, Coutinho-Wolino KS, Da Cruz BO, Brito ML, de Souza Carvalho T, Barreto-Reis E, de Luca BG, Mafra D, Magliano D'AC, de Souza Abboud R, Rocha RS, da Cruz AG, de Toledo Guimarães J, Stockler-Pinto MB. Effects of Probiotic-Enriched Minas Cheese (Lactobacillus acidophilus La-05) on Cardiovascular Parameters in 5/6 Nephrectomized Rats. Probiotics Antimicrob Proteins 2025; 17:873-887. [PMID: 37917394 DOI: 10.1007/s12602-023-10173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Dairy foods have become an interest in chronic kidney disease (CKD) due to their nutritional profile, which makes them a good substrate for probiotics incorporation. This study evaluated the effect of probiotic-enriched Minas cheese with Lactobacillus acidophilus La-05 in an experimental rat model for CKD on cardiac, inflammatory, and oxidative stress parameters. Male Wistar rats were divided into 4 groups (n = 7/group): 5/6 nephrectomy + conventional Minas cheese (NxC); 5/6 nephrectomy + probiotic Minas cheese (NxPC); Sham + conventional Minas cheese (ShamC); Sham + probiotic Minas cheese (ShamPC). Offering 20 g/day of Minas cheese with Lact. acidophilus La-05 (108-109 log CFU/g) for 6 weeks. The cardiomyocyte diameter was determined. Superoxide dismutase (SOD) activity in plasma, heart, kidney, and colon tissue was performed. At the end of supplementation, no significant changes in lipid profile and renal parameters were found. The NxPC group showed a decrease in cardiomyocyte diameter compared to the NxC group (16.99 ± 0.85 vs. 19.05 ± 0.56 μm, p = 0.0162); also they showed reduced plasmatic SOD activity (502.8 ± 49.12 vs. 599.4 ± 94.69 U/mL, p < 0.0001). In summary, probiotic-enriched Minas cheese (Lact. acidophilus La-05) consumption suggests a promisor cardioprotective effect and was able to downregulate SOD activity in a rat model of CKD.
Collapse
Affiliation(s)
- Nathalia da Silva Costa
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Joana Ramos de Araujo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | | | | | | | | | - Beatriz Oliveira Da Cruz
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Michele Lima Brito
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Thaís de Souza Carvalho
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Emanuelle Barreto-Reis
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Gouvêa de Luca
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - D 'Angelo Carlo Magliano
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Renato de Souza Abboud
- Morphology Department, Laboratory of Cellular and Extracellular Biomorphology Biomedic Institute, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ramon Silva Rocha
- Veterinary Hygiene and Technical Processing of Animal Products Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Adriano Gomes da Cruz
- Veterinary Hygiene and Technical Processing of Animal Products Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| | - Jonas de Toledo Guimarães
- Food Technology Department, Veterinary College, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Nutrition Faculty, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
5
|
Gong H, Duan S, Lin X, Huang S. The association between Dietary Index for Gut Microbiota and sarcopenia: the mediating role of Dietary Inflammatory Index. Front Nutr 2025; 12:1514209. [PMID: 40230720 PMCID: PMC11994312 DOI: 10.3389/fnut.2025.1514209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Background Given the global changes in environmental and dietary habits, understanding the potential impact of dietary factors and diet-related inflammation on skeletal muscle diseases, including sarcopenia, is crucial. Investigating these relationships can aid in the development of more effective prevention strategies. This study used the Dietary Index for Gut Microbiota (DI-GM) and the Dietary Inflammatory Index (DII) as diet-related variables. DI-GM is a scoring system used to assess the influence of diet on Gut Microbiota health. Additionally, DII quantifies the inflammatory potential of a diet. This study explores the association between DI-GM and sarcopenia and evaluates whether DII moderates this relationship. Methods This study conducted a cross-sectional analysis of 9,470 participants from the 2011-2018 NHANES database. Multivariable logistic regression, restricted cubic splines (RCS), and subgroup analysis were employed to examine the association between DI-GM and the prevalence of sarcopenia. Additionally, mediation analysis was performed to investigate the potential associations between DII, DI-GM, and sarcopenia. Results A total of 9,470 participants were included in this study, of whom 823 (7%) had sarcopenia. After adjusting for all variables using multivariable logistic regression, each one-unit increase in DI-GM was associated with a 15% decrease in sarcopenia prevalence (OR = 0.85, 95% CI: 0.77, 0.94), while each one-unit increase in DII was associated with a 28% increase in sarcopenia prevalence (OR = 1.28, 95% CI: 1.17, 1.41). Furthermore, the results remained robust when DI-GM and DII were divided into tertiles. RCS analysis revealed a significant linear relationship between DI-GM and sarcopenia. The results of the subgroup analysis also showed that the above relationships were robust. Mediation analysis showed that 55% of the association between DI-GM and sarcopenia was mediated by DII (P < 0.001). Conclusion Adhering to dietary recommendations based on DI-GM may reduce the prevalence of sarcopenia. Additionally, DII appears to mediate this relationship, suggesting that an anti-inflammatory diet could offer potential benefits.
Collapse
Affiliation(s)
- Hongyang Gong
- Department of Oncology Surgery, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Shuqin Duan
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaomei Lin
- Department of Orthopedics, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Shaoqun Huang
- Department of Oncology Surgery, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Taşkoparan Ş, Altınay C, Barbaros Özer H. Recent updates of probiotic dairy-based beverages. Food Funct 2025; 16:1656-1669. [PMID: 39962909 DOI: 10.1039/d4fo06322h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
There is a rapid paradigm shift in the food consumption habits of consumers globally. The interest in healthier, safer, minimally processed and nature-identical foods is the driving force of this paradigm shift. Although the roots of this consumer trend go back further, especially the Covid-19 pandemic has contributed to the acceleration of this process. The effects of probiotics on human health have been known for many years. The commercial success of some probiotic microorganism strains, supported by clinical studies, is also evident. Probiotic microorganisms can be found in commercial products in a wide range of forms including powder, tablets or incorporated into liquid or solid food matrices. Milk and dairy products are suitable vehicles for the delivery of probiotics into the human body. Apart from well-established dairy-based probiotic foods including yogurt and yogurt-type beverages, in recent years some dairy products supplemented or enhanced with postbiotics and paraprobiotics are gaining popularity. The incorporation of next-generation probiotics in probiotic beverage formulations has also attracted the attention of researchers. The current state-of-the art for the utilization of next-generation probiotics, postbiotics and paraprobiotics in dairy-based probiotic beverages is the main focus of this review. Conventional milk-, whey- and buttermilk-based probiotic beverages are also covered.
Collapse
Affiliation(s)
- Şevval Taşkoparan
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| | - Canan Altınay
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| | - H Barbaros Özer
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| |
Collapse
|
7
|
Wang W, Ma S, Wang D, Xu L, Zhang M, Yan M, Ma K, Hu Z, Shang Y, Wei J, Huang X. The Effects of Milk and Posterior Intestinal Microorganisms on the Lactation Performance of Dual-Purpose Cattle ( Bos taurus) Revealed by 16S rRNA Sequencing. Microorganisms 2025; 13:448. [PMID: 40005814 PMCID: PMC11857882 DOI: 10.3390/microorganisms13020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this research was to employ 16S rRNA high-throughput sequencing to thoroughly explore the interplay between milk and hindgut microbial communities and the effects of microorganisms in milk and the hindgut on the dairy quality of XJBC and CSC. In this study, 96 XJBC milk samples, 94 XJBC hindgut samples, 100 CSC milk samples, and 93 CSC hindgut samples were collected for microbial community analysis. The 16S rRNA sequencing data revealed that the microbial species richness in the milk of CSC exceeded that of XJBC, whereas the opposite was true for the hindgut microbial communities. A chi-square test was conducted using SPSS 19.0. The milk and posterior intestinal microbiota between individuals were analyzed with the Pearson chi-square test, maximum likelihood ratio, and Fisher's exact test. Nongenetic factors substantially influenced microbial community dynamics in both milk and the hindgut. In the milk of dairy cows, a significant negative correlation was observed between one genus and milk protein production. Nine genera were significantly negatively correlated with milk fat production, whereas one genus was positively correlated. Additionally, six genera were negatively correlated with lactose production, and two genera exhibited positive correlations. Notably, Phascolarctobacterium and Turicibacter were identified as genera originating from the hindgut, which led to reduced milk quality. In the hindgut microbial community of dairy cows, seven genera were significantly negatively associated with milk fat production, whereas one genus was positively associated with milk fat production. These findings indicate that certain mammary microorganisms may migrate from the hindgut, either endogenously or exogenously, disrupting the equilibrium of the mammary microbial community in dairy cows and potentially leading to inflammation. By enhancing feeding conditions and standardizing production practices, the invasion of harmful flora into mammary tissues can be minimized, reducing the risk of inflammation and thereby preserving the health of dairy cows and enhancing milk quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
8
|
Jung SJ, Cho K, Jung ES, Son D, Byun JS, Kim SI, Chae SW, Yang JC, Lee SO, Lim S. Augmenting Cognitive Function in the Elderly with Mild Cognitive Impairment Using Probiotic Lacticaseibacillus rhamnosus CBT-LR5: A 12-Week Randomized, Double-Blind, Parallel-Group Non-Comparative Study. Nutrients 2025; 17:691. [PMID: 40005019 PMCID: PMC11858765 DOI: 10.3390/nu17040691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Probiotics have been shown to enhance cognitive function in individuals with mild cognitive impairment (MCI), but their efficacy varies, depending on the strain and dosage. OBJECTIVES Clinical investigations are crucial to confirm their safety, efficacy, and mechanism of action. This study was designed to assess the effective dosage, safety, and efficacy of MH-Pro, a test product containing Lacticaseibacillus rhamnosus CBT-LR5 (LR5) and skim milk (non-fat dry milk), in improving cognitive function and related physiological changes in older adults suspected of MCI over 12 weeks. METHODS In total, 20 participants (mean age: 68.9 years) were randomly assigned in a 1:1 ratio to either a low-dose group (1 × 1010 CFU LR5 with 1622 mg) or a high-dose group (1 × 1010 CFU LR5 with 4055 mg skim milk) in a double-blind, parallel-group clinical trial. RESULTS After 12 weeks, the low-dose group showed significant improvements in the MOCA-K subdomains, specifically in naming (p = 0.01) and delayed recall (p = 0.003). Additionally, levels of amyloid-β1 40/42 in the blood significantly decreased (p = 0.03) following supplementation in the low-dose group. The high-dose group exhibited significant improvement in orientation (p = 0.05). Moreover, overall cognitive enhancement was observed in the low-dose group (p = 0.003), while the high-dose group showed a trend toward improvement (p = 0.06). Fecal analysis revealed significant changes in bacterial composition, with an increase in Lacticaseibacillus after 12 weeks of MH-Pro consumption. Together, these findings provide foundational evidence suggesting that MH-Pro supplementation may serve as a potential intervention for enhancing cognitive function through gut-brain axis pathways in the elderly population. However, given the small sample size and the predominance of female participants, the impact of the outcome may be limited. Further large-scale studies are necessary to validate these preliminary results. CONCLUSIONS This study provides foundational evidence to recognize the use of LR5 and skim milk to prepare a probiotic supplement that enhances cognitive function in the aging population.
Collapse
Affiliation(s)
- Su-Jin Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Kyohee Cho
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
| | - Dooheon Son
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Jong-Seon Byun
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Song-In Kim
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Jong-Chul Yang
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Seung-Ok Lee
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Gastroenterology and Hepatology, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Sanghyun Lim
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| |
Collapse
|
9
|
Chen E, Ajami NJ, White DL, Liu Y, Gurwara S, Hoffman K, Graham DY, El-Serag HB, Petrosino JF, Jiao L. Dairy Consumption and the Colonic Mucosa-Associated Gut Microbiota in Humans-A Preliminary Investigation. Nutrients 2025; 17:567. [PMID: 39940425 PMCID: PMC11820694 DOI: 10.3390/nu17030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Dairy consumption has been associated with various health outcomes that may be mediated by changes in gut microbiota. METHODS This cross-sectional study investigated the association between the colonic mucosa-associated gut microbiota and the self-reported intake of total dairy, milk, cheese, and yogurt. A total of 97 colonic mucosal biopsies collected from 34 polyp-free individuals were analyzed. Dairy consumption in the past year was assessed using a food frequency questionnaire. The 16S rRNA gene V4 region was amplified and sequenced. Operational taxonomic unit (OTU) classification was performed using the UPARSE and SILVA databases. OTU diversity and relative abundance were compared between lower vs. higher dairy consumption groups. Multivariable negative binomial regression models for panel data were used to estimate the incidence rate ratio and 95% confidence interval for bacterial counts and dairy consumption. False discovery rate-adjusted p values (q value) < 0.05 indicated statistical significance. RESULTS Higher total dairy and milk consumption and lower cheese consumption were associated with higher alpha microbial diversity (adjusted p values < 0.05). Higher total dairy and milk consumption was also associated with higher relative abundance of Faecalibacterium. Higher milk consumption was associated with higher relative abundance of Akkermansia. Higher total dairy and cheese consumption was associated with lower relative abundance of Bacteroides. CONCLUSIONS Dairy consumption may influence host health by modulating the structure and composition of the colonic adherent gut microbiota.
Collapse
Affiliation(s)
- Ellie Chen
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
| | - Nadim J. Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Donna L. White
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Yanhong Liu
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Shawn Gurwara
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
| | - Kristi Hoffman
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - David Y. Graham
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Section of Gastroenterology, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Hashem B. El-Serag
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Section of Gastroenterology, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Joseph F. Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
| |
Collapse
|
10
|
Muttiah B, Law JX. Milk-derived extracellular vesicles and gut health. NPJ Sci Food 2025; 9:12. [PMID: 39885215 PMCID: PMC11782608 DOI: 10.1038/s41538-025-00375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
Milk is a nutrient-rich liquid produced by mammals, offering various health benefits due to its composition of proteins, fats, carbohydrates, vitamins, and minerals. Beyond traditional nutritional aspects, recent research has focused on extracellular vesicles (EVs) found in milk and their potential health benefits, especially for gastrointestinal (GI) health. Milk-derived EVs have been shown to influence gut microbiota, promote gut barrier integrity, support tissue repair and regeneration, modulate immune responses, and potentially aid in managing conditions like inflammatory bowel disease (IBD) and colorectal cancer. This review discusses the current understanding of milk-EVs' effects on gut health, highlighting their potential therapeutic applications and future research directions. These findings underscore the promising role of milk-derived EVs in advancing GI health and therapeutics, paving the way for innovative approaches in oral drug delivery and targeted treatments for GI disorders.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Yadav M, Mallappa RH, Ambatipudi K. Human milk fat globule delivers entrapped probiotics to the infant's gut and acts synergistically to ameliorate oxidative and pathogenic stress. Food Chem 2025; 462:141030. [PMID: 39241685 DOI: 10.1016/j.foodchem.2024.141030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, Indian Council of Agriculture Research-National Dairy Research Institute, Karnal 132001, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
12
|
Geniselli da Silva V, Tonkie JN, Roy NC, Smith NW, Wall C, Kruger MC, Mullaney JA, McNabb WC. The effect of complementary foods on the colonic microbiota of weaning infants: a systematic review. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39682025 DOI: 10.1080/10408398.2024.2439036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The transition from breastmilk to solid foods (weaning) is a decisive stage for the development of the colonic microbiota. However, little is known about how complementary foods influence the composition and function of the colonic microbiota in infants. This systematic review collected evidence of the effect of individual foods on the fecal microbiota of weaning infants (4-12 months old) using five databases: PubMed, CENTRAL, Scopus, Web of Science, and ScienceDirect. A total of 3625 records were examined, and seven randomized clinical trials met the review's eligibility criteria. Altogether, 983 participants were enrolled, and plant-based foods, meats, and dairy products were used as interventions. Wholegrain cereal increased the fecal abundance of the order Bacteroidales in the two included studies. Pureed beef increased the fecal abundances of the genus Bacteroides and the Clostridium XIVa group, as well as microbial richness in two of the three included studies. However, the conclusions of this review are limited by the small number of studies included. No conclusions could be drawn about the impact of complementary foods on fecal metabolites. Further clinical trials assessing the effect of dietary interventions on both fecal microbial composition and function are needed to fill this knowledge gap in infant nutrition.
Collapse
Affiliation(s)
- Vitor Geniselli da Silva
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Jacqueline Nicole Tonkie
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole Clémence Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | | | - Clare Wall
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Nutrition and Dietetics, The University of Auckland, Auckland, New Zealand
| | - Marlena Cathorina Kruger
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Health Sciences, Massey University, Palmerston North, New Zealand
| | - Jane Adair Mullaney
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- AgResearch, Palmerston North, New Zealand
| | - Warren Charles McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
13
|
Ren G, He L, Liu Y, Fei Y, Liu X, Lu Q, Chen X, Song Z, Wang J. The long-term intake of milk fat does not significantly increase the blood lipid burden in normal and high-fat diet-fed mice. IMETA 2024; 3:e256. [PMID: 39742303 PMCID: PMC11683457 DOI: 10.1002/imt2.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
After 10 weeks of feeding C57BL/6J mice with a normal diet (ND) or a high-fat diet (HFD), a 7-week intervention with milk fat and whole milk was conducted to assess their long-term effects on host blood lipid levels. The results showed that milk fat and whole milk did not significantly elevate low-density lipoprotein cholesterol (LDL-C) in either ND- or HFD-fed mice. In ND mice, milk fat and whole milk improved gut microbiota diversity and Amplicon Sequence Variants. Key bacterial genera, such as Blautia, Romboutsia, and Prevotellaceae_NK3B31_group, were identified as bidirectional regulators of LDL-C and high-density lipoprotein cholesterol (HDL-C). Six unique metabolites were also linked to LDL-C and HDL-C regulation. Furthermore, an optimized machine learning model accurately predicted LDL-C (R² = 0.96) and HDL-C (R² = 0.89) based on gut microbiota data, with 80% of the top predictive features being gut metabolites influenced by milk fat and whole milk. These findings indicate that the long-term intake of milk fat does not significantly increase the blood lipid burden, and machine learning algorithms based on gut microbiota and metabolites offer novel insights for early lipid assessment and personalized nutrition strategies.
Collapse
Affiliation(s)
- Guang‐Xu Ren
- Institute of Food and Nutrition DevelopmentMinistry of Agriculture and Rural Affairs of the People's Republic of ChinaBeijingChina
| | - Liang He
- Department of Electronic Engineering, and Beijing National Research Center for Information Science and TechnologyTsinghua UniversityBeijingChina
- School of Computer Science and Technology, and School of Intelligence Science and TechnologyXinjiang UniversityUrumqiChina
| | - Yong‐Xin Liu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Yu‐Ke Fei
- Institute of Food and Nutrition DevelopmentMinistry of Agriculture and Rural Affairs of the People's Republic of ChinaBeijingChina
| | - Xiao‐Fan Liu
- Institute of Food and Nutrition DevelopmentMinistry of Agriculture and Rural Affairs of the People's Republic of ChinaBeijingChina
| | - Qiu‐Yi Lu
- School of Computer Science and Technology, and School of Intelligence Science and TechnologyXinjiang UniversityUrumqiChina
| | - Xin Chen
- School of Computer Science and Technology, and School of Intelligence Science and TechnologyXinjiang UniversityUrumqiChina
| | - Zhi‐Da Song
- School of Computer Science and Technology, and School of Intelligence Science and TechnologyXinjiang UniversityUrumqiChina
| | - Jia‐Qi Wang
- Institute of Food and Nutrition DevelopmentMinistry of Agriculture and Rural Affairs of the People's Republic of ChinaBeijingChina
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
14
|
Ağagündüz D, Yilmaz B, Cemali Ö, Šimat V, Akkus G, Kulawik P, Ozogul F. Impact of dairy food products on type 2 diabetes: Gut-pancreas axis for lower glucose level. Trends Food Sci Technol 2024; 153:104741. [DOI: 10.1016/j.tifs.2024.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Khan MN, Xie Z, Bukhari SMB, Nielsen DS, Imran M. Dairy-based multi-strain probiotic community successfully mitigated obesity-related gut microbiota dysbiosis in vitro (CoMiniGut). J Med Microbiol 2024; 73. [PMID: 39612207 DOI: 10.1099/jmm.0.001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Introduction. Obesity is a global health concern, affecting individuals of all ages and genders. One promising strategy to combat obesity is by addressing gut microbiota dysbiosis, with probiotics being a reliable intervention. However, single-strain probiotics may not effectively modulate the complex microbial communities in the gut, suggesting the need for multi-strain approaches.Gap Statement. Probiotics are known to benefit gut health; however, the efficacy of single-strain probiotics in modulating gut microbiota is limited. Multi-strain probiotic community (MSPC) may offer a more effective approach for addressing obesity-related gut dysbiosis, but its specific effects on individuals and microbial diversity require further investigation.Aim. This study aimed to evaluate the potential of a dairy-origin MSPC in modulating obesity-related gut microbiota from lean and obese Pakistani volunteers using a simulated CoMiniGut model.Methodology. Gut microbiota from lean and obese volunteers were treated with MSPC in a simulated CoMiniGut system. Bacterial counts, microbial diversity (α- and β-diversity) and microbial community composition were analysed pre- and post-treatment. The impact of MSPC on specific bacterial genera and microbial metabolites was assessed, with statistical significance determined (P≤0.05).Results. The effect of MSPC was individualized, reducing bacterial counts in lean 1 and lean 2 samples, while significantly increasing bacterial counts in obese 2 and obese 3 samples (P≤0.05). MSPC significantly improved α-diversity in lean 2, lean 3, obese 2 and obese 3 samples (P≤0.05). Proteobacteria decreased in the lean group and increased in the obese group post-MSPC treatment. In the lean group, pathogenic bacteria such as Klebsiella, Escherichia and Enterobacter were significantly reduced (P≤0.05), whereas beneficial bacteria like Bifidobacterium and Lactobacillus increased significantly in the obese group (P≤0.05). Among the selected metabolites, only butanoic acid was detected in all tested samples, with MSPC affecting metabolite concentrations and types.Conclusion. MSPC demonstrated a potential for modulating gut microbiota dysbiosis in both lean and obese individuals, with effects on bacterial counts, microbial diversity and metabolite concentrations. MSPC could serve as a promising option for personalized the modulation of gut microbiota in obesity management.
Collapse
Affiliation(s)
- Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-I-Azam University, Islamabad 45320, Pakistan
- Department of Cell Biology & Genetics, Shantou University Medical College, Shantou, PR China
- Department of Food Sciences, Section for Microbiology and Fermentation, University of Copenhagen, Copenhagen, Denmark
| | - Zhuqing Xie
- Department of Food Sciences, Section for Microbiology and Fermentation, University of Copenhagen, Copenhagen, Denmark
| | - Syeda Momna Batool Bukhari
- Faculty of Biological Sciences, Department of Microbiology, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Dennis Sandris Nielsen
- Department of Food Sciences, Section for Microbiology and Fermentation, University of Copenhagen, Copenhagen, Denmark
| | - Muhammad Imran
- Faculty of Biological Sciences, Department of Microbiology, Quaid-I-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
16
|
Kasselman LJ, Peltier MR, De Leon J, Reiss AB. Cognitive Function and the Consumption of Probiotic Foods: A National Health and Nutrition Examination Survey Study. Nutrients 2024; 16:3631. [PMID: 39519464 PMCID: PMC11547479 DOI: 10.3390/nu16213631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Impaired cognition is a key trait of the diseases of aging and is an important quality of life factor for older adults and their families. Over the past decade, there has been an increasing appreciation for the role of the microbiome in cognition, as well as emerging evidence that probiotics, such as those in yogurt and other dairy products, can have a positive impact on cognitive function. However, it is unclear to what extent the consumption of yogurt is associated with improved cognitive function in older adults. Methods: Therefore, we compared the scores for the Wechsler Adult Intelligence Scale, Digit-Symbol Substitution Test between respondents who self-reported daily yogurt/dairy consumption with those who claimed they did not in an NHANES. Results: We found that cognitive scores were significantly higher (40.03 ± 0.64 vs. 36.28 ± 1.26, p = 0.017) in respondents reporting daily yogurt/dairy consumption, though only a trend remained after adjusting for sociodemographic covariates (p = 0.074). Conclusions: Further studies are required to confirm that this is a cause-effect relationship and whether changing diets is a low-cost means of protecting aging populations from cognitive decline and improving their quality of life.
Collapse
Affiliation(s)
- Lora J. Kasselman
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA;
- Hackensack Meridian Health Research Institute, Hackensack, NJ 07601, USA
| | - Morgan R. Peltier
- Department of Psychiatry, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA;
- Department of Psychiatry, Jersey Shore University Medical Center, Neptune City, NJ 07753, USA
| | - Joshua De Leon
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA;
| | - Allison B. Reiss
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA;
| |
Collapse
|
17
|
Iannotti L, Rueda García AM, Palma G, Fontaine F, Scherf B, Neufeld LM, Zimmerman R, Fracassi P. Terrestrial Animal Source Foods and Health Outcomes for Those with Special Nutrient Needs in the Life Course. Nutrients 2024; 16:3231. [PMID: 39408199 PMCID: PMC11478082 DOI: 10.3390/nu16193231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
Background. Animal source foods are under scrutiny for their role in human health, yet some nutritionally vulnerable populations are largely absent from consideration. Methods. Applying a Population Intervention/Exposure Comparator Outcome (PICO/PECO) framework and prioritizing systematic review and meta-analyses, we reviewed the literature on terrestrial animal source foods (TASFs) and human health, by life course phase. Results. There were consistent findings for milk and dairy products on positive health outcomes during pregnancy and lactation, childhood, and among older adults. Eggs were found to promote early childhood growth, depending on context. Unprocessed meat consumption was associated with a reduced risk for anemia during pregnancy, improved cognition among school-age children, and muscle health in older adults. Milk and eggs represent a risk for food sensitivities/allergies, though prevalence is low, and individuals tend to outgrow the allergies. TASFs affect the human microbiome and associated metabolites with both positive and negative health repercussions, varying by type and quantity. Conclusions. There were substantial gaps in the evidence base for studies limiting our review, specifically for studies in populations outside high-income countries and for several TASF types (pig, poultry, less common livestock species, wild animals, and insects). Nonetheless, sufficient evidence supports an important role for TASFs in health during certain periods of the life course.
Collapse
Affiliation(s)
- Lora Iannotti
- E3 Nutrition Lab, Brown School, Washington University, St. Louis, MO 63130, USA;
| | - Ana María Rueda García
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Giulia Palma
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Fanette Fontaine
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Beate Scherf
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Lynnette M. Neufeld
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Rachel Zimmerman
- E3 Nutrition Lab, Brown School, Washington University, St. Louis, MO 63130, USA;
| | - Patrizia Fracassi
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| |
Collapse
|
18
|
Mondragon Portocarrero ADC, Lopez-Santamarina A, Lopez PR, Ortega ISI, Duman H, Karav S, Miranda JM. Substitutive Effects of Milk vs. Vegetable Milk on the Human Gut Microbiota and Implications for Human Health. Nutrients 2024; 16:3108. [PMID: 39339708 PMCID: PMC11435326 DOI: 10.3390/nu16183108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: In the last two decades, the consumption of plant-based dairy substitutes in place of animal-based milk has increased in different geographic regions of the world. Dairy substitutes of vegetable origin have a quantitative composition of macronutrients such as animal milk, although the composition of carbohydrates, proteins and fats, as well as bioactive components, is completely different from that of animal milk. Many milk components have been shown to have relevant effects on the intestinal microbiota. Methods: Therefore, the aim of this review is to compare the effects obtained by previous works on the composition of the gut microbiota after the ingestion of animal milk and/or vegetable beverages. Results: In general, the results obtained in the included studies were very positive for animal milk intake. Thus, we found an increase in gut microbiota richness and diversity, increase in the production of short-chain fatty acids, and beneficial microbes such as Bifidobacterium, lactobacilli, Akkermansia, Lachnospiraceae or Blautia. In other cases, we found a significant decrease in potential harmful bacteria such as Proteobacteria, Erysipelotrichaceae, Desulfovibrionaceae or Clostridium perfingens after animal-origin milk intake. Vegetable beverages have also generally produced positive results in the gut microbiota such as the increase in the relative presence of lactobacilli, Bifidobacterium or Blautia. However, we also found some potential negative results, such as increases in the presence of potential pathogens such as Enterobacteriaceae, Salmonella and Fusobacterium. Conclusions: From the perspective of their effects on the intestinal microbiota, milks of animal origin appear to be more beneficial for human health than their vegetable substitutes. These different effects on the intestinal microbiota should be considered in those cases where the replacement of animal milks by vegetable substitutes is recommended.
Collapse
Affiliation(s)
- Alicia del Carmen Mondragon Portocarrero
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Patricia Regal Lopez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Israel Samuel Ibarra Ortega
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico;
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| |
Collapse
|
19
|
Chowdhury B, Sharma A, Akshit FNU, Mohan MS, Salunke P, Anand S. A review of oleogels applications in dairy foods. Crit Rev Food Sci Nutr 2024; 64:9691-9709. [PMID: 37229559 DOI: 10.1080/10408398.2023.2215871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The characteristics of dairy products, such as texture, color, flavor, and nutritional profile, are significantly influenced by the presence of milk fat. However, saturated fatty acids account for 65% of total milk fat. With increased health awareness and regulatory recommendations, consumer preferences have evolved toward low/no saturated fat food products. Reducing the saturated fat content of dairy products to meet market demands is an urgent yet challenging task, as it may compromise product quality and increase production costs. In this regard, oleogels have emerged as a viable milk fat replacement in dairy foods. This review focuses on recent advances in oleogel systems and explores their potential for incorporation into dairy products as a milk fat substitute. Overall, it can be concluded that oleogel can be a potential alternative to replace milk fat fully or partially in the product matrix to improve nutritional profile by mimicking similar rheological and textural product characteristics as milk fat. Furthermore, the impact of consuming oleogel-based dairy foods on digestibility and gut health is also discussed. A thorough comprehension of the application of oleogels in dairy products will provide an opportunity for the dairy sector to develop applications that will appeal to the changing consumer needs.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Aditya Sharma
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - F N U Akshit
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Maneesha S Mohan
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Prafulla Salunke
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
20
|
Maukonen M, Koponen KK, Havulinna AS, Kaartinen NE, Niiranen T, Méric G, Pajari AM, Knight R, Salomaa V, Männistö S. Associations of plant-based foods, red and processed meat, and dairy with gut microbiome in Finnish adults. Eur J Nutr 2024; 63:2247-2260. [PMID: 38753173 PMCID: PMC11377619 DOI: 10.1007/s00394-024-03406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/16/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE Population-based studies on the associations of plant-based foods, red meat or dairy with gut microbiome are scarce. We examined whether the consumption of plant-based foods (vegetables, potatoes, fruits, cereals), red and processed meat (RPM) or dairy (fermented milk, cheese, other dairy products) are related to gut microbiome in Finnish adults. METHODS We utilized data from the National FINRISK/FINDIET 2002 Study (n = 1273, aged 25-64 years, 55% women). Diet was assessed with 48-hour dietary recalls. Gut microbiome was analyzed using shallow shotgun sequencing. We applied multivariate analyses with linear models and permutational ANOVAs adjusted for relevant confounders. RESULTS Fruit consumption was positively (beta = 0.03, SE = 0.01, P = 0.04), while a dairy subgroup including milk, cream and ice-creams was inversely associated (beta=-0.03, SE 0.01, P = 0.02) with intra-individual gut microbiome diversity (alpha-diversity). Plant-based foods (R2 = 0.001, P = 0.03) and dairy (R2 = 0.002, P = 0.01) but not RPM (R2 = 0.001, P = 0.38) contributed to the compositional differences in gut microbiome (beta-diversity). Plant-based foods were associated with several butyrate producers/cellulolytic species including Roseburia hominis. RPM associations included an inverse association with R. hominis. Dairy was positively associated with several lactic producing/probiotic species including Lactobacillus delbrueckii and potentially opportunistic pathogens including Citrobacter freundii. Dairy, fermented milk, vegetables, and cereals were associated with specific microbial functions. CONCLUSION Our results suggest a potential association between plant-based foods and dairy or their subgroups with microbial diversity measures. Furthermore, our findings indicated that all the food groups were associated with distinct overall microbial community compositions. Plant-based food consumption particularly was associated with a larger number of putative beneficial species.
Collapse
Affiliation(s)
- Mirkka Maukonen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland.
| | - Kari K Koponen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Aki S Havulinna
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | | | - Teemu Niiranen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Guillaume Méric
- Baker Heart and Diabetes Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Monash University, Melbourne, Australia
- La Trobe University, Melbourne, Australia
| | | | - Rob Knight
- University of California San Diego, La Jolla, CA, USA
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Satu Männistö
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
21
|
Huang Y, Cao J, Zhu M, Wang Z, Jin Z, Xiong Z. Nontoxigenic Bacteroides fragilis: A double-edged sword. Microbiol Res 2024; 286:127796. [PMID: 38870618 DOI: 10.1016/j.micres.2024.127796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/12/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
The contribution of commensal microbes to human health and disease is unknown. Bacteroides fragilis (B. fragilis) is an opportunistic pathogen and a common colonizer of the human gut. Nontoxigenic B. fragilis (NTBF) and enterotoxigenic B. fragilis (ETBF) are two kinds of B. fragilis. NTBF has been shown to affect the host immune system and interact with gut microbes and pathogenic microbes. Previous studies indicated that certain strains of B. fragilis have the potential to serve as probiotics, based on their observed relationship with the immune system. However, several recent studies have shown detrimental effects on the host when beneficial gut bacteria are found in the digestive system or elsewhere. In some pathological conditions, NTBF may have adverse reactions. This paper presents a comprehensive analysis of NTBF ecology from the host-microbe perspective, encompassing molecular disease mechanisms analysis, bacteria-bacteria interaction, bacteria-host interaction, and the intricate ecological context of the gut. Our review provides much-needed insights into the precise application of NTBF.
Collapse
Affiliation(s)
- Yumei Huang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiali Cao
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengpei Zhu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziwen Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze Jin
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Hajji-Louati M, Portugal B, Correia E, Laouali N, Lee PC, Artaud F, Roze E, Mancini FR, Elbaz A. Consumption of milk and other dairy products and incidence of Parkinson's disease: a prospective cohort study in French women. Eur J Epidemiol 2024; 39:1023-1036. [PMID: 39294525 DOI: 10.1007/s10654-024-01152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Previous studies showed positive associations between milk intake and Parkinson's disease (PD) in men but not in women, but few studies were available in women. Due to the long prodromal PD phase, reverse causation represents a major threat to investigations of diet in PD; cohort studies with a long follow-up are needed. We investigated associations between intake of milk and other dairy products with PD incidence in women from the E3N cohort study (1993-2018). PD diagnoses were validated using medical records and drug claim databases. Diet was assessed via a dietary questionnaire. Hazard ratios (HR) were estimated using multivariable Cox regression models. Exposures were lagged by 5y in main analyses and longer lags in sensitivity analyses. We examined the impact of adjustment for premotor symptoms (constipation/depression). During a mean follow-up of 18.8y, 845 of 71,542 women developed PD. Main analyses showed a J-shaped association between total milk intake and PD (P-non linearity = 0.045), with a significant linear positive association among drinkers (HR/1-SD = 1.09, 95% CI = 1.01-1.18, P = 0.024), that was explained in secondary analyses by a different pattern of association for plain milk (alone or with cereals) and milk added to drinks (tea/coffee/chicory). PD incidence increased significantly with plain milk consumption (HR/1-SD = 1.08 [1.02-1.14], P = 0.014). A U-shaped relation was observed for milk added to drinks (P-non linearity = 0.038), with lower PD incidence in women with moderate consumption (HR = 0.77 [0.61-0.97], P = 0.030) and no difference between non-drinkers and those with the highest consumption (HR = 0.98 [0.79-1.21], P = 0.848). Findings were similar in analyses using longer lags and adjusted for constipation/depression. Consumption of other dairy products was not associated with PD. A J-shaped association between total milk intake and PD was explained by a different pattern of association for plain milk intake and milk added to drinks. Reverse causation is unlikely to explain a positive association of plain milk with PD incidence in women. The U-shaped relation for milk added to drinks could be explained by an interaction between milk and coffee/tea/chicory. Further studies are warranted to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Mariem Hajji-Louati
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, 94805, France.
- Inserm U1018, CESP, Hôpital Paul-Brousse, bâtiment 15/16, 16, avenue Paul-Vaillant-Couturier, Villejuif cedex, 94807, France.
| | - Berta Portugal
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, 94805, France
| | - Emmanuelle Correia
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, 94805, France
| | - Nasser Laouali
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, 94805, France
| | - Pei-Chen Lee
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, 94805, France
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fanny Artaud
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, 94805, France
| | - Emmanuel Roze
- Neurology Department, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Paris, France
- INSERM U1127, CNRS 7225, Brain Institute, Paris, France
| | | | - Alexis Elbaz
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, 94805, France
| |
Collapse
|
23
|
Bai J, Wang J, Fan M, Li Y, Huang L, Wang L. In vitro fermentation reveals an interplay relationship between oat β-glucan and human gut Bacteroides and their potential role in regulating gut cytokines. Food Funct 2024; 15:7794-7811. [PMID: 38920001 DOI: 10.1039/d4fo00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Dietary oat β-glucan regulates the gut microbial composition and structure; however, the interplay relationship between oat β-glucan and the gut microbiota is unclear. In this study, we aim to investigate the interaction between oat β-glucan and human gut Bacteroides, a versatile carbohydrate utilizer, and explore the effect of their interaction on gut immunity homeostasis. The results of in vitro fermentation showed that oat β-glucan significantly increased the abundance of gut Bacteroides at the genus level. Then, Bacteroides strains were isolated from human gut microbiota and 9 strains of Bacteroides could grow on oat β-glucan and degrade oat β-glucan to reducing sugars. Notably, strains Bacteroides xylanisolvens Bac02 and Bacteroides koreensis Bac08 possessed the strongest degradation capacity towards oat β-glucan. Genome analysis and functional annotations suggested that B. xylanisolvens Bac02 and B. koreensis Bac08 contained abundant genes encoding glycoside hydrolases family 3 (GH3) and GH16, which might be responsible for β-glucan degradation. Moreover, cell experiments revealed that the metabolites from oat β-glucan fermentation by these 9 strains of Bacteroides could regulate the polarization of macrophages and maintain gut immunity homeostasis. Our study provides a novel insight into research on the interplay between dietary compounds and the gut microbiota.
Collapse
Affiliation(s)
- Junying Bai
- Citrus Research Institute, Southwest University, 2 Tiansheng Road, Chongqing 400712, China.
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
- National Citrus Engineering Research Center, Chongqing, 400712, China
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Linhua Huang
- Citrus Research Institute, Southwest University, 2 Tiansheng Road, Chongqing 400712, China.
- National Citrus Engineering Research Center, Chongqing, 400712, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
24
|
Rogalska M, Oracz J, Klewicka E, Żyżelewicz D. Effect of Encapsulated Phenolic Compounds of Cocoa on Growth of Lactic Acid Bacteria and Antioxidant Activity of Fortified Drinking Yogurt. Molecules 2024; 29:3344. [PMID: 39064922 PMCID: PMC11279641 DOI: 10.3390/molecules29143344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study was to obtain drinking yogurts enriched with ACTICOA cocoa powder (ACTICOA), its extract (EACTICOA) and pure phenolics, as well as their inclusion complexes with cyclodextrins and alginate-chitosan (A-Ch) capsules, and to evaluate the effects of these additives on the viability of lactic acid bacteria (LAB) and antioxidant properties of fresh yogurts and yogurts stored for 14 days at 4 °C. The application of cocoa phenolic compounds in free form and in the form of EACTICOA to yogurts resulted in the greatest increase in the concentration of phenolic compounds and a significant improvement in the antioxidant properties of the fortified products. The highest TPC was found in yogurts enriched with free quercetin (107.98 mg CE/g). Yogurt fortified with free gallic acid showed the highest ability to neutralize free radicals (EC50 = 2.74 mg/mg DPPH, EC50 = 5.40 mg/mg ABTS) and reduce ferric ions (183.48 µM Trolox/g). The enrichment of yogurts with the tested phenolic compounds preparations, especially in the form of encapsulates, did not affect the viability of LAB during storage.
Collapse
Affiliation(s)
- Milena Rogalska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland; (M.R.); (J.O.)
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland; (M.R.); (J.O.)
| | - Elżbieta Klewicka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska Street, 90-530 Lodz, Poland;
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland; (M.R.); (J.O.)
| |
Collapse
|
25
|
González-Campins C, Soler LF, Guasch-Niubó O, San Onofre N, Aguilar Martínez A, Martínez-García A, Manera M, Salvador G, Bach-Faig A. Nutritional Quality of the Mid-Afternoon Snack of Schooled Children between the Ages of 3 and 12 Years in Three Areas in Spain. Nutrients 2024; 16:1944. [PMID: 38931302 PMCID: PMC11206826 DOI: 10.3390/nu16121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The aim of this study was to analyze the nutritional quality of mid-afternoon snacks for schooled children aged 3 to 12 years in three areas of Catalonia (Spain). METHODS A descriptive observational study collected information on habits and the mid-afternoon snack of 782 schooled children aged 3 to 12 years in three cities, Barcelona, Girona, and Lleida, located in Catalonia (Spain). The children's families voluntarily agreed to complete an online questionnaire that collected information about demographic data and snacking habits in the afternoon, as well as a record of mid-afternoon snack intake over three school days. RESULTS A total of 2163 mid-afternoon snacks were analyzed from a sample of 764 families with 3 to 12 year-old children. Sandwiches emerged as the most prevalent choice, accounting for 41.89%, followed by pastries at 23.86%, fruit at 14.38%, and a combination of fruit and pastries at 6.29%. Of the mid-afternoon snacks recorded, 22.19% were healthy, 20.90% were quite healthy, 12.85% were quite unhealthy, and 44.06% were unhealthy. CONCLUSIONS The nutritional quality of mid-afternoon snacks for a large majority of schooled children should be improved. It is essential to develop food education programs to improve the quality of this intake from early childhood and to consider it as an opportunity to adjust the daily dietary requirements of Spanish children.
Collapse
Affiliation(s)
- Cristina González-Campins
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou, 156, 08018 Barcelona, Spain; (C.G.-C.); (L.F.S.); (O.G.-N.)
| | - Laura Ferrer Soler
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou, 156, 08018 Barcelona, Spain; (C.G.-C.); (L.F.S.); (O.G.-N.)
| | - Olívia Guasch-Niubó
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou, 156, 08018 Barcelona, Spain; (C.G.-C.); (L.F.S.); (O.G.-N.)
| | - Nadia San Onofre
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, University of Alicante, 03690 Sant Vicent del Raspeig, Spain;
- FoodLab Research Group, Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018 Barcelona, Spain; (A.A.M.); (A.B.-F.)
| | - Alicia Aguilar Martínez
- FoodLab Research Group, Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018 Barcelona, Spain; (A.A.M.); (A.B.-F.)
| | - Alba Martínez-García
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, University of Alicante, 03690 Sant Vicent del Raspeig, Spain;
| | - Maria Manera
- Agència de Salut Pública de Catalunya, Departament de Salut, Generalitat de Catalunya, 08005 Barcelona, Spain; (M.M.); (G.S.)
| | - Gemma Salvador
- Agència de Salut Pública de Catalunya, Departament de Salut, Generalitat de Catalunya, 08005 Barcelona, Spain; (M.M.); (G.S.)
| | - Anna Bach-Faig
- FoodLab Research Group, Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018 Barcelona, Spain; (A.A.M.); (A.B.-F.)
| |
Collapse
|
26
|
Paiva NML, Ribeiro SC, Rosa HJD, Silva CCG. Comparative study of the bacterial community of organic and conventional cow's milk. Food Microbiol 2024; 120:104488. [PMID: 38431314 DOI: 10.1016/j.fm.2024.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Agricultural practises such as conventional and organic farming can potentially affect the microbial communities in milk. In the present study, the bacterial diversity of milk was investigated using high-throughput sequencing on ten organic and ten conventional farms in the Azores, a region where milk production is largely based on year-round grazing systems. The microbiota of milk from both production systems was dominated by Bacillota, Pseudomonadota, Actinomycetota and Bacteroidota. The organic milk showed greater heterogeneity between farms, as reflected in the dispersion of diversity indices and the large variation in the relative abundances of the dominant genera. In contrast, conventionally produced milk showed a high degree of similarity within each season. In the conventional production system, the season also had a strong influence on the bacterial community, but this effect was not observed in the organic milk. The LEfSe analysis identified the genus Iamia as significantly (p < 0.05) more abundant in organic milk, but depending on the season, several other genera were identified that distinguished organic milk from conventionally produced milk. Of these, Bacillus, Iamia and Nocardioides were associated with the soil microbiota in organic farming.
Collapse
Affiliation(s)
- Nuno M L Paiva
- School of Agrarian and Environmental Sciences, University of the Azores, Angra do Heroísmo, Azores, Portugal
| | - Susana C Ribeiro
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, Angra do Heroísmo, Azores, Portugal
| | - Henrique J D Rosa
- School of Agrarian and Environmental Sciences, University of the Azores, Angra do Heroísmo, Azores, Portugal; Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, Angra do Heroísmo, Azores, Portugal
| | - Célia C G Silva
- School of Agrarian and Environmental Sciences, University of the Azores, Angra do Heroísmo, Azores, Portugal; Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, Angra do Heroísmo, Azores, Portugal.
| |
Collapse
|
27
|
Du X, Yan Y, Dai Y, Xu R. Yogurt Alleviates Cyclophosphamide-Induced Immunosuppression in Mice through D-Lactate. Nutrients 2024; 16:1395. [PMID: 38732641 PMCID: PMC11085661 DOI: 10.3390/nu16091395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Numerous studies have investigated the immunomodulatory effects of yogurt, but the underlying mechanism remained elusive. This study aimed to elucidate the alleviating properties of yogurt on immunosuppression and proposed the underlying mechanism was related to the metabolite D-lactate. In the healthy mice, we validated the safety of daily yogurt consumption (600 μL) or D-lactate (300 mg/kg). In immunosuppressed mice induced by cyclophosphamide (CTX), we evaluated the immune regulation of yogurt and D-lactate. The result showed that yogurt restored body weight, boosted immune organ index, repaired splenic tissue, recovered the severity of delayed-type hypersensitivity reactions and increased serum cytokines (IgA, IgG, IL-6, IFN-γ). Additionally, yogurt enhanced intestinal immune function by restoring the intestinal barrier and upregulating the abundance of Bifidobacterium and Lactobacillus. Further studies showed that D-lactate alleviated immunosuppression in mice mainly by promoting cellular immunity. D-lactate recovered body weight and organ development, elevated serum cytokines (IgA, IgG, IL-6, IFN-γ), enhanced splenic lymphocyte proliferation and increased the mRNA level of T-bet in splenic lymphocyte to bolster Th1 differentiation. Finally, CTX is a chemotherapeutic drug, thus, the application of yogurt and D-lactate in the tumor-bearing mouse model was initially explored. The results showed that both yogurt (600 μL) and D-lactate (300 mg/kg) reduced cyclophosphamide-induced immunosuppression without promoting tumor growth. Overall, this study evaluated the safety, immune efficacy and applicability of yogurt and D-lactate in regulating immunosuppression. It emphasized the potential of yogurt as a functional food for immune regulation, with D-lactate playing a crucial role in its immunomodulatory effects.
Collapse
Affiliation(s)
- Xinru Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongheng Yan
- School of Public Health, Shandong First Medical University, Jinan 271016, China
| | - Yufeng Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruijie Xu
- Global Health Institute, School of Public Health, Xi’an Jiaotong University, Xi’an 710061, China;
| |
Collapse
|
28
|
Hernandez J, Goico E, Palacios C. Associations between ultraprocessed and minimally processed snacks consumption and overweight/obesity among college students in South Florida. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2024:1-9. [PMID: 38498605 DOI: 10.1080/07448481.2024.2325938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE Evaluate the association between ultraprocessed and minimally processed snack consumption and overweight/obesity among college students. PARTICIPANTS College students. METHODS Cross-sectional study. Participants completed an online survey with questions on socio-demographics, beverages and snacks consumption, and weight status. ANCOVA and logistic regression was used; analyses were adjusted for age, sex, race/ethnicity, physical activity, and sleep duration. RESULTS A total of 435 students completed all questions in the survey. Most students were female (73.3%), Hispanics (61.1%), had a mean age of 24.7-year old and 40% had overweight/obesity. Those with overweight/obesity also had higher odds of consuming soft drinks in higher frequency and quantity than those without overweight/obesity (p < .05). Never consuming unsweetened yogurt/cheese and lower frequency and consumption of fruits were associated with higher odds of overweight/obesity (p < .05). CONCLUSION Higher frequency and consumption of soft drinks while lower frequency and consumption of unsweetened yogurt/cottage cheese and fruits were associated with overweight/obesity.
Collapse
Affiliation(s)
- Jacqueline Hernandez
- Dietetics and Nutrition Department, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Elizabeth Goico
- Dietetics and Nutrition Department, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Cristina Palacios
- Dietetics and Nutrition Department, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| |
Collapse
|
29
|
Warren M, O'Connor C, Lee JE, Burton J, Walton D, Keathley J, Wammes M, Osuch E. Predispose, precipitate, perpetuate, and protect: how diet and the gut influence mental health in emerging adulthood. Front Nutr 2024; 11:1339269. [PMID: 38505265 PMCID: PMC10948435 DOI: 10.3389/fnut.2024.1339269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
Medicine often employs the 4Ps of predisposing, precipitating, perpetuating, and protective factors to identify salient influences on illness states, and to help guide patient care. Mental illness is a significant cause of morbidity and mortality worldwide. Mental health is a complex combination of biological, psychological, environmental, and social factors. There is growing interest in the gut-brain-microbiome (GBM) axis and its impact on mental health. We use the medical model of the 4Ps to explore factors involving the connection between nutrition and the GBM axis and their associated risks with mental health problems in emerging adults (EAs), a life stage when mental illness onset is the most common. We review the impact of current dietary trends on the GBM and on mental health, and the role that gut microbiome-based interventions can have in modulating the GBM axis of EAs. We discuss the implications of gut health on the GBM and areas for clinical intervention.
Collapse
Affiliation(s)
- Michael Warren
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Colleen O'Connor
- School of Food and Nutritional Sciences, Brescia University College, London, ON, Canada
| | - Ju Eun Lee
- Geriatrics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jeremy Burton
- Department of Surgery, Microbiology and Immunology, Lawson Health Research Institute, Western University, London, ON, Canada
| | - David Walton
- School of Physical Therapy, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Justine Keathley
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Michael Wammes
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Elizabeth Osuch
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- First Episode Mood and Anxiety Program, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
30
|
Sato M, Hishinuma E, Matsukawa N, Shima Y, Saigusa D, Motoike IN, Kogure M, Nakaya N, Hozawa A, Kuriyama S, Yamamoto M, Koshiba S, Kinoshita K. Dietary habits and plasma lipid concentrations in a general Japanese population. Metabolomics 2024; 20:34. [PMID: 38441752 PMCID: PMC10914877 DOI: 10.1007/s11306-024-02087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/02/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Accumulating data on the associations between food consumption and lipid composition in the body is essential for understanding the effects of dietary habits on health. OBJECTIVES As part of omics research in the Tohoku Medical Megabank Community-Based Cohort Study, this study sought to reveal the dietary impact on plasma lipid concentration in a Japanese population. METHODS We conducted a correlation analysis of food consumption and plasma lipid concentrations measured using mass spectrometry, for 4032 participants in Miyagi Prefecture, Japan. RESULTS Our analysis revealed 83 marked correlations between six food categories and the concentrations of plasma lipids in nine subclasses. Previously reported associations, including those between seafood consumption and omega-3 fatty acids, were validated, while those between dairy product consumption and odd-carbon-number fatty acids (odd-FAs) were validated for the first time in an Asian population. Further analysis suggested that dairy product consumption is associated with odd-FAs via sphingomyelin (SM), which suggests that SM is a carrier of odd-FAs. These results are important for understanding odd-FA metabolism with regards to dairy product consumption. CONCLUSION This study provides insight into the dietary impact on plasma lipid concentration in a Japanese population.
Collapse
Affiliation(s)
- Mitsuharu Sato
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Eiji Hishinuma
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Yoshiko Shima
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Mana Kogure
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Naoki Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- International Research Institute of Disaster Science, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
31
|
Zhang Y, Fang H, Wang T, Zhang Z, Zhu T, Xiong L, Hu H, Liu H. Lactobacillus acidophilus-Fermented Jujube Juice Ameliorates Chronic Liver Injury in Mice via Inhibiting Apoptosis and Improving the Intestinal Microecology. Mol Nutr Food Res 2024; 68:e2300334. [PMID: 38150643 DOI: 10.1002/mnfr.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Indexed: 12/29/2023]
Abstract
SCOPE Chronic liver diseases are clinically silent and responsible for significant morbidity and mortality worldwide. Jujube has displayed various biological activities. Here, the therapeutic effect of Lactobacillus acidophilus (L. acidophilus)-fermented jujube juice (FJJ) and the possible mechanism against chronic liver injury (CLI) in mice are further studied. METHODS AND RESULTS After the CCl4 -induced CLI mice are separately treated with L. acidophilus (LA), unfermented jujube juice (UFJJ), and FJJ, FJJ but not LA or UFJJ suppresses the liver index. By using H&E staining, immunofluorescence staining, RT-PCR, and western blotting, it is shown that LA, UFJJ, and FJJ intervention ameliorate hepatocyte necrosis, inhibit the mRNA levels of pro-inflammatory (NLRP3, Caspase-1, IL-1β, and TNF-α) and fibrosis-associated factors (TGF-β1, LXRα, and MMP2). Also, FJJ displays significant protection against mucosal barrier damage in CLI mice. Among the three interventions, FJJ exhibits the best therapeutic effect, followed by UFJJ and LA. Furthermore, FJJ improves dysbiosis in CLI mice. CONCLUSIONS This study suggests that FJJ exhibits a protective effect against CCl4 -induced CLI mice by inhibiting apoptosis and oxidative stress, regulating liver lipid metabolism, and improving gut microecology. Jujube juice fermentation with L. acidophilus can be a food-grade supplement in treating CLI and related liver diseases.
Collapse
Affiliation(s)
- Yu Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, College of Food and Wine, Ningxia University, Yinchuan, 750021, P. R. China
| | - Tong Wang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, College of Food and Wine, Ningxia University, Yinchuan, 750021, P. R. China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| | - Tianxiang Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| | - Lei Xiong
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, P. R. China
| |
Collapse
|
32
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
33
|
McGrail L, Vargas-Robles D, Correa MR, Merrill LC, Noel SE, Velez M, Maldonado-Contreras A, Mangano KM. Daily yogurt consumption does not affect bone turnover markers in men and postmenopausal women of Caribbean Latino descent: a randomized controlled trial. BMC Nutr 2024; 10:12. [PMID: 38212847 PMCID: PMC10785535 DOI: 10.1186/s40795-023-00800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Caribbean Latino adults are at high risk for osteoporosis yet remain underrepresented in bone research. This increased risk is attributed to genetics, diet, and lifestyle known to drive inflammation and microbial dysbiosis. OBJECTIVE The primary objective of this study was to determine whether consuming 5 oz of yogurt daily for 8wks improves bone turnover markers (BTMs) among Caribbean Latino adults > 50 years; and secondarily to determine the impact on the gut microbiota and markers of intestinal integrity and inflammation. METHODS Following a 4wk baseline period, participants were randomized to an 8wk whole fat yogurt intervention (n = 10) daily, containing only Streptococcus thermophilus and Lactobacillus bulgaricus, or to an untreated control group that did not consume yogurt (n = 10). Blood and stool samples collected at week-0 and week-8 were used to assess BTMs, inflammation, intestinal integrity biomarkers, and gut microbiota composition, short chain fatty acids (SCFAs), respectively. Data were evaluated for normality and statistical analyses were performed. RESULTS Participants were 55% women, with a mean age of 70 ± 9 years, BMI 30 ± 6 kg/m2, and serum C-reactive protein 4.8 ± 3.6 mg/L, indicating chronic low-grade inflammation. Following 8wks of yogurt intake, absolute change in BTMs did not differ significantly between groups (P = 0.06-0.78). Secondarily, absolute change in markers of inflammation, intestinal integrity, and fecal SCFAs did not differ significantly between groups (P range 0.13-1.00). Yogurt intake for 8wks was significantly associated with microbial compositional changes of rare taxa (P = 0.048); however, no significant alpha diversity changes were observed. CONCLUSIONS In this study, daily yogurt did not improve BTMs, inflammation, intestinal integrity, nor SCFAs. However, yogurt did influence beta diversity, or the abundance of rare taxa within the gut microbiota of the yogurt group, compared to controls. Additional research to identify dietary approaches to reduce osteoporosis risk among Caribbean Latino adults is needed. TRIAL REGISTRATION This study is registered to ClinicalTrials.gov, NCT05350579 (28/04/2022).
Collapse
Affiliation(s)
- Lindsay McGrail
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, 3 Solomont Way, Lowell, MA, 01832, USA
- Center for Population Health, UMass Movement Research Center, University of Massachusetts, Lowell, MA, USA
| | - Daniela Vargas-Robles
- Department of Microbiology and Physiological Systems, Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mayra Rojas Correa
- Department of Microbiology and Physiological Systems, Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lisa C Merrill
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, 3 Solomont Way, Lowell, MA, 01832, USA
- Center for Population Health, UMass Movement Research Center, University of Massachusetts, Lowell, MA, USA
| | - Sabrina E Noel
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, 3 Solomont Way, Lowell, MA, 01832, USA
- Center for Population Health, UMass Movement Research Center, University of Massachusetts, Lowell, MA, USA
| | - Martha Velez
- Department of Health and Human Services, City of Lawrence, Lawrence, MA, USA
| | - Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems, Program of Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kelsey M Mangano
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, 3 Solomont Way, Lowell, MA, 01832, USA.
- Center for Population Health, UMass Movement Research Center, University of Massachusetts, Lowell, MA, USA.
| |
Collapse
|
34
|
Lerma-Aguilera AM, Pérez-Burillo S, Navajas-Porras B, León ED, Ruíz-Pérez S, Pastoriza S, Jiménez-Hernández N, Cämmerer BM, Rufián-Henares JÁ, Gosalbes MJ, Francino MP. Effects of different foods and cooking methods on the gut microbiota: an in vitro approach. Front Microbiol 2024; 14:1334623. [PMID: 38260868 PMCID: PMC10800916 DOI: 10.3389/fmicb.2023.1334623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
To support personalized diets targeting the gut microbiota, we employed an in vitro digestion-fermentation model and 16S rRNA gene sequencing to analyze the microbiota growing on representative foods of the Mediterranean and Western diets, as well as the influence of cooking methods. Plant- and animal-derived foods had significantly different impacts on the abundances of bacterial taxa. Animal and vegetable fats, fish and dairy products led to increases in many taxa, mainly within the Lachnospiraceae. In particular, fats favored increases in the beneficial bacteria Faecalibacterium, Blautia, and Roseburia. However, butter, as well as gouda cheese and fish, also resulted in the increase of Lachnoclostridium, associated to several diseases. Frying and boiling produced the most distinct effects on the microbiota, with members of the Lachnospiraceae and Ruminococcaceae responding the most to the cooking method employed. Nevertheless, cooking effects were highly individualized and food-dependent, challenging the investigation of their role in personalized diets.
Collapse
Affiliation(s)
- Alberto M. Lerma-Aguilera
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
| | - E. Daniel León
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
| | - Sonia Ruíz-Pérez
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Nuria Jiménez-Hernández
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Bettina-Maria Cämmerer
- Department of Food Chemistry and Analytics, Technische Universität Berlin, Berlin, Germany
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - María José Gosalbes
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - M. Pilar Francino
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Luo K, Chen GC, Zhang Y, Moon JY, Xing J, Peters BA, Usyk M, Wang Z, Hu G, Li J, Selvin E, Rebholz CM, Wang T, Isasi CR, Yu B, Knight R, Boerwinkle E, Burk RD, Kaplan RC, Qi Q. Variant of the lactase LCT gene explains association between milk intake and incident type 2 diabetes. Nat Metab 2024; 6:169-186. [PMID: 38253929 PMCID: PMC11097298 DOI: 10.1038/s42255-023-00961-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Cow's milk is frequently included in the human diet, but the relationship between milk intake and type 2 diabetes (T2D) remains controversial. Here, using data from the Hispanic Community Health Study/Study of Latinos, we show that in both sexes, higher milk intake is associated with lower risk of T2D in lactase non-persistent (LNP) individuals (determined by a variant of the lactase LCT gene, single nucleotide polymorphism rs4988235 ) but not in lactase persistent individuals. We validate this finding in the UK Biobank. Further analyses reveal that among LNP individuals, higher milk intake is associated with alterations in gut microbiota (for example, enriched Bifidobacterium and reduced Prevotella) and circulating metabolites (for example, increased indolepropionate and reduced branched-chain amino acid metabolites). Many of these metabolites are related to the identified milk-associated bacteria and partially mediate the association between milk intake and T2D in LNP individuals. Our study demonstrates a protective association between milk intake and T2D among LNP individuals and a potential involvement of gut microbiota and blood metabolites in this association.
Collapse
Affiliation(s)
- Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Guo-Chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yanbo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiaqian Xing
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mykhaylo Usyk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Jun Li
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
36
|
Ortega RM, Jiménez-Ortega AI, Martínez García RM, Cervera-Muñoz A, Salas-González MD. [Properties of milk in sleep induction]. NUTR HOSP 2023; 40:12-15. [PMID: 37929912 DOI: 10.20960/nh.04947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction Sleep induction and its quality are issues of growing concern because its deterioration affects a large number of people and poses a risk to their well-being and quality of life and long-term health. There are several factors involved in the problem, but nutrition is one of them and in particular milk consumption has often been linked to sleep habits, sometimes as a promoter and sometimes as an inhibitor. The purpose of this review is to examine the matter further. On reaching the brain, tryptophan is the basis for the synthesis of serotonin and melatonin, which improve the induction and quality of sleep. But there is competition between tryptophan and other long-chain neutral amino acids (LNAA) (valine, leucine, isoleucine, tyrosine and phenylalanine) to cross the blood-brain barrier and reach the brain. In this sense, milk proteins with a high tryptophan content and the highest ratio between tryptophan and LNAA are very useful in promoting sleep. Moreover, milk also provides various micronutrients that help in the transformation of tryptophan into serotonin and melatonin, as well as antioxidant components, anti-inflammatory and bioactive peptides, and recent studies indicate that it favorably modulates the composition of the intestinal microbiota. Studies show that increasing milk consumption, up to the recommended intake and within a correct diet, favors the achievement and maintenance of quality sleep.
Collapse
Affiliation(s)
- Rosa M Ortega
- Departamento de Nutrición y Ciencia de los Alimentos. Universidad Complutense de Madrid. Grupo de Investigación UCM-VALORNUT
| | | | | | - Adrián Cervera-Muñoz
- Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid
| | - María Dolores Salas-González
- Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid. Grupo de Investigación VALORNUT-UCM (920030)
| |
Collapse
|
37
|
Mahdavi A, Trottier J, Barbier O, Lebel M, Rudkowska I. Dairy Intake Modifies the Level of the Bile Acid Precursor and Its Correlation with Serum Proteins Associated with Cholesterol Clearance in Subjects with Hyperinsulinemia. Nutrients 2023; 15:4707. [PMID: 38004101 PMCID: PMC10675775 DOI: 10.3390/nu15224707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bile acids regulate glucose homeostasis and lipid metabolism. Further, the levels of bile acids can be influenced by the intake of dairy products. Although the serum proteome can provide information on the biological pathways associated with different metabolites, it is unknown whether the intake of dairy modifies such associations between bile acids and the proteome. The objectives of this study were to examine plasma bile acid profiles, find the correlations between bile acids and lipid as well as glycemic markers, and to uncover the correlation between bile acids and proteins after high dairy (HD) and adequate dairy (AD) intake among 25 overweight individuals with hyperinsulinemia. In this randomized crossover-trial study, hyperinsulinemia adults were randomized to both HD (≥4 servings/day) and AD (≤2 servings/day) for 6 weeks. Measurements and analyses were performed on before- as well as after- AD and HD conditions. The results indicated that plasma 7α-hydroxy-4-cholesten-3-one (7AC4) increased after HD in comparison with before HD intake (p = 0.03). After adjusting for BMI, age, and sex, 7AC4 positively correlated with triglyceride levels in the pre-AD (r = 0.44; p = 0.03) and post-HD (r = 0.42; p = 0.04). Further, 7AC4 correlated positively with proteins associated with high-density lipoprotein particle remodeling pathway and reverse cholesterol transport only after HD consumption. Thus, the consumption of higher dairy intake modifies the association between 7AC4-a biomarker for bile acid synthesis-and serum proteins involved in cholesterol clearance. Overall, higher dairy consumption may have a positive effect on cholesterol metabolism in subjects at risk of type 2 diabetes.
Collapse
Affiliation(s)
- Atena Mahdavi
- Endocrinology and Nephrology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada;
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada; (J.T.); (O.B.)
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada; (J.T.); (O.B.)
- Faculty of Pharmacy, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Michel Lebel
- Endocrinology and Nephrology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada;
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada;
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| |
Collapse
|
38
|
Dinić M, Jakovljević S, Popović N, Radojević D, Veljović K, Golić N, Terzić-Vidojević A. Assessment of stability and bioactive compounds in yogurt containing novel natural starter cultures with the ability to promote longevity in Caenorhabditis elegans. J Dairy Sci 2023; 106:7447-7460. [PMID: 37641316 DOI: 10.3168/jds.2023-23342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/26/2023] [Indexed: 08/31/2023]
Abstract
Yogurt represent one of the oldest fermented foods containing viable lactic acid bacteria and many bioactive compounds that could exhibit beneficial effects on human health and train our immune system to better respond to invading pathogens. Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus are commonly used for yogurt preparation under controlled temperature and environmental conditions. In this study, we investigated probiotic features of S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 strains isolated from artisanal sour milk and yogurt by using Caenorhabditis elegans as an in vivo model system. Further, we evaluated content of total fat, saturated fatty acids, proteins, and lactose, as well as vitamins and AA of yogurt prepared from above-mentioned starter cultures during 21 d of storage at 4°C to get insights of final product stability. We showed that S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 strains applied in combination upregulated the expression of autophagy-related genes in C. elegans. Beside autophagy, we observed activation of TIR-1-dependent transcription of lysozyme-like antimicrobial genes involved in the immune defense of C. elegans. Upregulation of these genes strongly correlates with an increase in the longevity of the worms fed with yogurt culture bacteria. Further, we showed that yogurt prepared with S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21, as a final product, is rich with vitamin B2 and dominant AA known by their prolongevity properties. Taken together, our study pointed to the beneficial features of the tested starter cultures and yogurt and highlighted their potential to be used as a fermented food with added-value properties.
Collapse
Affiliation(s)
- Miroslav Dinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| | - Stefan Jakovljević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| |
Collapse
|
39
|
Sumi K, Tagawa R, Yamazaki K, Nakayama K, Ichimura T, Sanbongi C, Nakazato K. Nutritional Value of Yogurt as a Protein Source: Digestibility/Absorbability and Effects on Skeletal Muscle. Nutrients 2023; 15:4366. [PMID: 37892442 PMCID: PMC10609537 DOI: 10.3390/nu15204366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Yogurt is a traditional fermented food that is accepted worldwide for its high palatability and various health values. The milk protein contained in yogurt exhibits different physical and biological properties from those of non-fermented milk protein due to the fermentation and manufacturing processes. These differences are suggested to affect the time it takes to digest and absorb milk protein, which in turn will influence the blood levels of amino acids and/or hormones, such as insulin, and thereby, the rate of skeletal muscle protein synthesis via the activation of intracellular signaling, such as the mTORC1 pathway. In addition, based on the relationship between gut microbiota and skeletal muscle conditions, yogurt, including lactic acid bacteria and its metabolites, has been evaluated for its role as a protein source. However, the substantial value of yogurt as a protein source and the additional health benefits on skeletal muscle are not fully understood. The purpose of this review is to summarize the research to date on the digestion and absorption characteristics of yogurt protein, its effect on skeletal muscle, and the contribution of lactic acid bacterial fermentation to these effects.
Collapse
Affiliation(s)
- Koichiro Sumi
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Ryoichi Tagawa
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Kae Yamazaki
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Kyosuke Nakayama
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Takefumi Ichimura
- Next Generation Monozukuri Research Department, Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Chiaki Sanbongi
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sports Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo 158-8508, Japan;
| |
Collapse
|
40
|
Miao J, Lai P, Wang K, Fang G, Li X, Zhang L, Jiang M, Bao Y. Characteristics of intestinal microbiota in children with idiopathic short stature: a cross-sectional study. Eur J Pediatr 2023; 182:4537-4546. [PMID: 37522979 DOI: 10.1007/s00431-023-05132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Idiopathic short stature (ISS) accounts for more than 70% of childhood short stature cases, with an undefined etiology and pathogenesis, leading to limited treatment. However, recent studies have shown that intestinal microbiota may be associated with ISS. This study aimed to characterize the intestinal microbiota in children with ISS, effect of treatment with growth hormones, and association between specific bacterial species and ISS. This study enrolled 55 children, comprising 40 diagnosed with ISS at Jinhua Hospital, Zhejiang University, and 15 healthy controls. The subjects with ISS were divided into the untreated ISS group (UISS group, 22 children who had not been treated with recombinant human growth hormone [rhGH]), treated ISS group (TISS group, 18 children treated with rhGH for 1 year), and control group (NC group, 15 healthy children). High-throughput sequencing was used to determine the intestinal microbiota characteristics. Higher abundances of Bacteroides, Prevotella, Alistipes, Parabacteroides, Agathobacter and Roseburia were found in the UISS and TISS groups than in the control group, whereas Bifidobacterium, Subdoligranulum, and Romboutsia were less abundant. The composition of intestinal microbiota in the UISS and TISS groups was almost identical, except for Prevotella. The TISS group had significantly lower levels of Prevotella than did the UISS group, which were closer to those of the NC group. Receiver operating characteristic curve analysis revealed that the abundances of Prevotella, Bifidobacterium, Bacteroides, and Subdoligranulum were effective in differentiating between the UISS and NC groups. CONCLUSION Alterations in intestinal microbiota may be associated with ISS. Specific bacterial species, such as Prevotella, may be potential diagnostic markers for ISS. WHAT IS KNOWN • ISS is associated with the GH-IGF-1 axis. • Recent studies indicated an association between the GH-IGF-1 axis and intestinal microbiota. WHAT IS NEW • Children with ISS showed alterations in intestinal microbiota, with a relative increase in the abundance of gut inflammation-related bacteria. • The relative abundances of Prevotella, Bacteroides, Bifidobacterium, and Subdoligranulum may serve as potential diagnostic markers.
Collapse
Affiliation(s)
- Jing Miao
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
- Department of Pediatrics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Panjian Lai
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Kan Wang
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Guoxing Fang
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Xiaobing Li
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Linqian Zhang
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Mizu Jiang
- Department of Pediatrics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yunguang Bao
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China.
| |
Collapse
|
41
|
Mandal RK, Schmidt NW. Mechanistic insights into the interaction between the host gut microbiome and malaria. PLoS Pathog 2023; 19:e1011665. [PMID: 37824458 PMCID: PMC10569623 DOI: 10.1371/journal.ppat.1011665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Malaria is a devastating infectious disease and significant global health burden caused by the bite of a Plasmodium-infected female Anopheles mosquito. Gut microbiota was recently discovered as a risk factor of severe malaria. This review entails the recent advances on the impact of gut microbiota composition on malaria severity and consequence of malaria infection on gut microbiota in mammalian hosts. Additionally, this review provides mechanistic insight into interactions that might occur between gut microbiota and host immunity which in turn can modulate malaria severity. Finally, approaches to modulate gut microbiota composition are discussed. We anticipate this review will facilitate novel hypotheses to move the malaria-gut microbiome field forward.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indiana, United States of America
| | - Nathan W. Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indiana, United States of America
| |
Collapse
|
42
|
Lares-Michel M, Reyes-Castillo Z, Housni FE. Towards the characterisation of sustainable diet's gut microbiota composition and functions: A narrative review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e15. [PMID: 39295901 PMCID: PMC11406369 DOI: 10.1017/gmb.2023.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2024]
Abstract
The gut microbiome is a key element for health preservation and disease prevention. Nevertheless, defining a healthy gut microbiome is complex since it is modulated by several factors, such as host genetics, sex, age, geographical zone, drug use, and, especially, diet. Although a healthy diet has proven to increase microbial alpha and beta diversity and to promote the proliferation of health-related bacteria, considering the current environmental and nutritional crisis, such as climate change, water shortage, loss of diversity, and the obesity pandemic, it should be highlighted that a healthy diet is not always sustainable. Sustainable diets are dietary patterns that promote all dimensions of people's health and well-being while exerting low pressure on the environment, and being accessible, affordable, safe, equitable, and culturally acceptable. Examples of diets that tend to be sustainable are the Planetary Health Diet of the EAT-Lancet Commission or territorial diets such as the Mediterranean and the Traditional Mexican diet (milpa diet), adapted to specific contexts. These diets are principally plant-based but include small or moderate amounts of animal-based foods. Characterising the effects of sustainable diets on gut microbiota is urgent to ensure that the benefits for human health are aligned with environmental preservation and respect the sociocultural aspects of individuals.
Collapse
Affiliation(s)
- Mariana Lares-Michel
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avenida del Conocimiento S/N, Parque Tecnológico de la Salud, Armilla, 18071 Granada, Spain
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición (IICAN), Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva 883, Col. Centro. 49000, Cd. Guzmán, Jalisco, México
| | - Zyanya Reyes-Castillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición (IICAN), Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva 883, Col. Centro. 49000, Cd. Guzmán, Jalisco, México
| | - Fatima Ezzahra Housni
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición (IICAN), Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva 883, Col. Centro. 49000, Cd. Guzmán, Jalisco, México
| |
Collapse
|
43
|
Lee C, Lee J, Eor JY, Kwak MJ, Huh CS, Kim Y. Effect of Consumption of Animal Products on the Gut Microbiome Composition and Gut Health. Food Sci Anim Resour 2023; 43:723-750. [PMID: 37701742 PMCID: PMC10493557 DOI: 10.5851/kosfa.2023.e44] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
The gut microbiome is critical in human health, and various dietary factors influence its composition and function. Among these factors, animal products, such as meat, dairy, and eggs, represent crucial sources of essential nutrients for the gut microbiome. However, the correlation and characteristics of livestock consumption with the gut microbiome remain poorly understood. This review aimed to delineate the distinct effects of meat, dairy, and egg products on gut microbiome composition and function. Based on the previous reports, the impact of red meat, white meat, and processed meat consumption on the gut microbiome differs from that of milk, yogurt, cheese, or egg products. In particular, we have focused on animal-originated proteins, a significant nutrient in each livestock product, and revealed that the major proteins in each food elicit diverse effects on the gut microbiome. Collectively, this review highlights the need for further insights into the interactions and mechanisms underlying the impact of animal products on the gut microbiome. A deeper understanding of these interactions would be beneficial in elucidating the development of dietary interventions to prevent and treat diseases linked to the gut microbiome.
Collapse
Affiliation(s)
- Chaewon Lee
- WCU Biomodulation Major, Department of
Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul
National University, Seoul 08826, Korea
| | - Junbeom Lee
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Chul Sung Huh
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
44
|
Golzarand M, Toolabi K, Douraghi M, Mirmiran P, Djafarian K. Changes in the Gut Microbiota Composition and Their Relation to Dietary Intake After Bariatric Surgery. Obes Surg 2023; 33:2866-2873. [PMID: 37530921 DOI: 10.1007/s11695-023-06760-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Prior studies have demonstrated that both dietary components and bariatric surgery modify the gut microbiota's composition. However, there is a scarcity of research that has examined the relationship between post-surgical dietary intake and changes in the gut microbiota. The aim of this study was to assess changes in gut microbiota following bariatric surgery and examine their association with postoperative dietary intake. MATERIALS AND METHODS The present study involved a sample of 42 adult women who were potential candidates for bariatric surgery, i.e., laparoscopic Roux-en-Y gastric bypass (LRYGB) or sleeve gastrectomy (LSG). The assessment of dietary intake was conducted through the use of three-day food records, both at baseline and six months following the surgical procedure. The gut microbiota was determined through the detection of 16S ribosomal RNA (16S rRNA) gene sequencing. RESULTS After six months, a significant increase in abundance of Firmicutes (P = 0.01), Bifidobacterium (P = 0.01), and Ruminococcus (P = 0.04) in the LSG group was found. In contrast to the observed rise in Enterobacteria (P = 0.02) levels in the LRYGB group, no significant changes were detected in the composition of other gut microbiota over the 6-month monitoring period subsequent to LRYGB. The results of our study indicate that there is not a statistically significant relationship between dietary consumption and changes in the composition of the gut microbiota in individuals who have undergone LRYGB and LSG. CONCLUSION Our findings suggest that there may not be a significant correlation between dietary intake following LRYGB and LSG, and the observed alterations in the gut microbiota during a six-month period of observation. Nevertheless, it is important to acknowledge that the sample size utilized in our study was limited, potentially leading to reduced statistical power and the possibility of yielding findings that do not accurately reflect reality.
Collapse
Affiliation(s)
- Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Karamollah Toolabi
- Department of Surgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoomeh Douraghi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Korush Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Shelling AN, Ahmed Nasef N. The Role of Lifestyle and Dietary Factors in the Development of Premature Ovarian Insufficiency. Antioxidants (Basel) 2023; 12:1601. [PMID: 37627595 PMCID: PMC10451748 DOI: 10.3390/antiox12081601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a condition that arises from dysfunction or early depletion of the ovarian follicle pool accompanied by an earlier-than-normal loss of fertility in young women. Oxidative stress has been suggested as an important factor in the decline of fertility in women and POI. In this review, we discuss the mechanisms of oxidative stress implicated in ovarian ageing and dysfunction in relation to POI, in particular mitochondrial dysfunction, apoptosis and inflammation. Genetic defects, autoimmunity and chemotherapy, are some of the reviewed hallmarks of POI that can lead to increased oxidative stress. Additionally, we highlight lifestyle factors, including diet, low energy availability and BMI, that can increase the risk of POI. The final section of this review discusses dietary factors associated with POI, including consumption of oily fish, mitochondria nutrient therapy, melatonin, dairy and vitamins that can be targeted as potential interventions, especially for at-risk women and in combination with personalised nutrition. Understanding the impact of lifestyle and its implications for POI and oxidative stress holds great promise in reducing the burden of this condition.
Collapse
Affiliation(s)
- Andrew N. Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Centre for Cancer Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Noha Ahmed Nasef
- Riddet Research Institute, Massey University, Palmerston North 4474, New Zealand
- School of Food and Advanced Technology, College of Science, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
46
|
Liu X, Yu Y, Hou L, Yu Y, Wu Y, Wu S, He Y, Ge Y, Wei Y, Luo Q, Qian F, Feng Y, Li H, Xue F. Association between dietary habits and the risk of migraine: a Mendelian randomization study. Front Nutr 2023; 10:1123657. [PMID: 37351190 PMCID: PMC10282154 DOI: 10.3389/fnut.2023.1123657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Objective The important contribution of dietary triggers to migraine pathogenesis has been recognized. However, the potential causal roles of many dietary habits on the risk of migraine in the whole population are still under debate. The objective of this study was to determine the potential causal association between dietary habits and the risk of migraine (and its subtypes) development, as well as the possible mediator roles of migraine risk factors. Methods Based on summary statistics from large-scale genome-wide association studies, we conducted two-sample Mendelian randomization (MR) and bidirectional MR to investigate the potential causal associations between 83 dietary habits and migraine and its subtypes, and network MR was performed to explore the possible mediator roles of 8 migraine risk factors. Results After correcting for multiple testing, we found evidence for associations of genetically predicted coffee, cheese, oily fish, alcohol (red wine), raw vegetables, muesli, and wholemeal/wholegrain bread intake with decreased risk of migraine, those odds ratios ranged from 0.78 (95% CI: 0.63-0.95) for overall cheese intake to 0.61 (95% CI: 0.47-0.80) for drinks usually with meals among current drinkers (yes + it varies vs. no); while white bread, cornflakes/frosties, and poultry intake were positively associated with the risk of migraine. Additionally, genetic liability to white bread, wholemeal/wholegrain bread, muesli, alcohol (red wine), cheese, and oily fish intake were associated with a higher risk of insomnia and (or) major depression disorder (MDD), each of them may act as a mediator in the pathway from several dietary habits to migraine. Finally, we found evidence of a negative association between genetically predicted migraine and drinking types, and positive association between migraine and cups of tea per day. Significance Our study provides evidence about association between dietary habits and the risk of migraine and demonstrates that some associations are partly mediated through one or both insomnia and MDD. These results provide new insights for further nutritional interventions for migraine prevention.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuanyuan Yu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lei Hou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yifan Yu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yutong Wu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Sijia Wu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yina He
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yilei Ge
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yun Wei
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qingxin Luo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fengtong Qian
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yue Feng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongkai Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
47
|
Ashkar F, Wu J. Effects of Food Factors and Processing on Protein Digestibility and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267055 DOI: 10.1021/acs.jafc.3c00442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein is an essential macronutrient. The nutritional needs of dietary proteins are met by digestion and absorption in the small intestine. Indigestible proteins are further metabolized in the gut and produce metabolites via protein fermentation. Thus, protein indigestibility exerts a wide range of effects on gut microbiota composition and function. This review aims to discuss protein digestibility, the effects of food factors, such as protein sources, intake level, and amino acid composition, and making meat analogues. Besides, it provides an inventory of antinutritional factors and processing techniques that influence protein digestibility and, consequently, the diversity and composition of intestinal microbiota. Future studies are warranted to understand the implication of plant-based analogues on protein digestibility and gut microbiota and to elucidate the mechanisms concerning protein digestibility to host gut microbiota using various omics techniques.
Collapse
Affiliation(s)
- Fatemeh Ashkar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
48
|
Wiącek J, Karolkiewicz J. Different Approaches to Ergogenic, Pre-, and Probiotic Supplementation in Sports with Different Metabolism Characteristics: A Mini Review. Nutrients 2023; 15:nu15061541. [PMID: 36986269 PMCID: PMC10056922 DOI: 10.3390/nu15061541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Sport disciplines with different metabolic characteristics require different dietary approaches. Bodybuilders or sprinters ("anaerobic" athletes) need a high-protein diet (HPD) in order to activate muscle protein synthesis after exercise-induced muscle damage and use nitric oxide enhancers (such as citrulline and nitrates) to increase vasodilatation, whereas endurance athletes, such as runners or cyclists ("aerobic" athletes), prefer a high-carbohydrate diet (HCHD), which aims to restore the intramuscular glycogen, and supplements containing buffering agents (such as sodium bicarbonate and beta-alanine). In both cases, nutrient absorption, neurotransmitter and immune cell production and muscle recovery depend on gut bacteria and their metabolites. However, there is still insufficient data on the impact of an HPD or HCHD in addition to supplements on "anaerobic" and "aerobic" athletes' gut microbiota and how this impact could be affected by nutritional interventions such as pre- and probiotic therapy. Additionally, little is known about the role of probiotics in the ergogenic effects of supplements. Based on the results of our previous research on an HPD in amateur bodybuilders and an HCHD in amateur cyclists, we reviewed human and animal studies on the effects of popular supplements on gut homeostasis and sport performance.
Collapse
Affiliation(s)
- Jakub Wiącek
- Food and Nutrition Department, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| | - Joanna Karolkiewicz
- Food and Nutrition Department, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| |
Collapse
|
49
|
St-Onge MP, Zuraikat FM, Neilson M. Exploring the Role of Dairy Products In Sleep Quality: From Population Studies to Mechanistic Evaluations. Adv Nutr 2023; 14:283-294. [PMID: 36774251 DOI: 10.1016/j.advnut.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Poor sleep quality and insufficient sleep affect a large portion of the population. This is concerning given increasing evidence that poor sleep health is a behavioral risk factor for the development of cardiometabolic diseases. A healthy diet is associated with a plethora of favorable health outcomes, and emerging research now highlights diet as a potential determinant of sleep health that could be leveraged to improve sleep quality. Dairy products are notably rich in tryptophan (Trp), a key substrate for serotonin and melatonin production, which are instrumental for initiating and maintaining sleep. Furthermore, dairy products provide a range of micronutrients that serve as cofactors in the synthesis of melatonin from Trp, which could contribute to sleep-promoting effects. In this review, we evaluate population studies and clinical trials to examine a possible link between dairy consumption and sleep. Available epidemiologic studies illustrate positive associations between dairy intake and sleep outcomes. Moreover, some intervention studies support a causal effect of dairy intake on sleep. Given these data, we discuss potential mechanisms, invite additional clinical research on this topic, and provide insights on how limitations of current studies can be addressed in future trials.
Collapse
Affiliation(s)
- Marie-Pierre St-Onge
- Center of Excellence in Sleep and Circadian Research, Columbia University Irving Medical Center, New York, NY, USA; Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA.
| | - Faris M Zuraikat
- Center of Excellence in Sleep and Circadian Research, Columbia University Irving Medical Center, New York, NY, USA; Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Mackenzie Neilson
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
50
|
The Gut-Prostate Axis: A New Perspective of Prostate Cancer Biology through the Gut Microbiome. Cancers (Basel) 2023; 15:cancers15051375. [PMID: 36900168 PMCID: PMC10000196 DOI: 10.3390/cancers15051375] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Obesity and a high-fat diet are risk factors associated with prostate cancer, and lifestyle, especially diet, impacts the gut microbiome. The gut microbiome plays important roles in the development of several diseases, such as Alzheimer's disease, rheumatoid arthritis, and colon cancer. The analysis of feces from patients with prostate cancer by 16S rRNA sequencing has uncovered various associations between altered gut microbiomes and prostate cancer. Gut dysbiosis caused by the leakage of gut bacterial metabolites, such as short-chain fatty acids and lipopolysaccharide results in prostate cancer growth. Gut microbiota also play a role in the metabolism of androgen which could affect castration-resistant prostate cancer. Moreover, men with high-risk prostate cancer share a specific gut microbiome and treatments such as androgen-deprivation therapy alter the gut microbiome in a manner that favors prostate cancer growth. Thus, implementing interventions aiming to modify lifestyle or altering the gut microbiome with prebiotics or probiotics may curtail the development of prostate cancer. From this perspective, the "Gut-Prostate Axis" plays a fundamental bidirectional role in prostate cancer biology and should be considered when screening and treating prostate cancer patients.
Collapse
|