1
|
Washington EJ. Developing the trehalose biosynthesis pathway as an antifungal drug target. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:30. [PMID: 40229515 PMCID: PMC11997177 DOI: 10.1038/s44259-025-00095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/18/2025] [Indexed: 04/16/2025]
Abstract
Invasive fungal infections are responsible for millions of deaths worldwide each year. Therefore, focusing on innovative approaches to developing therapeutics that target fungal pathogens is critical. Here, we discuss targeting the fungal trehalose biosynthesis pathway with antifungal therapeutics, which may lead to the improvement of human health globally, especially as fungal pathogens continue to emerge due to fluctuations in the climate.
Collapse
Affiliation(s)
- Erica J Washington
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA.
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Reitler P, DeJarnette CA, Kumar R, Tucker KM, Peters TL, Twarog NR, Shelat AA, Palmer GE. A screen to identify antifungal antagonists reveals a variety of pharmacotherapies induce echinocandin tolerance in Candida albicans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638903. [PMID: 40027746 PMCID: PMC11870487 DOI: 10.1101/2025.02.18.638903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Through screening a comprehensive collection of drugs approved for human use, we identified over 20 that oppose the antifungal activity of the echinocandins upon the infectious yeast, Candida albicans . More detailed evaluation of five such drugs, including the atypical antipsychotic aripiprazole and the tyrosine kinase inhibitor ponatinib, indicated they promote C. albicans survival following exposure to the echinocandin antifungals. The activity of the five selected antagonists was dependent upon the Mkc1p MAPK pathway, however, ponatinib was paradoxically shown to suppress phosphorylation and therefore activation of Mkc1p itself. Components of several other signaling pathways are also required, including those of calcineurin and casein kinase-2, suggesting the observed antagonism required much of the cell wall stress responses previously described for C. albicans . Transcriptome analysis revealed that the antagonists stimulated the expression of genes involved in xenobiotic and antifungal resistance, and suppressed the expression of genes associated with hyphal growth. Thus, the echinocandin antagonistic drugs modulate C. albicans physiology in ways that could impact its pathogenicity and/or response to therapeutic intervention. Finally, a mutant lacking the Efg1p transcription factor, which has a central role in the activation of C. albicans hyphal growth was found to have intrinsically high levels of echinocandin tolerance, suggesting a link between modulation of morphogenesis related signaling and echinocandin tolerance. Importance We report a substantial number of previously unknown drug interactions that modulate the echinocandin sensitivity of one of the most prevalent human fungal pathogens, Candida albicans . The echinocandins are the first line therapy for treating disseminated and often lethal Candida infections, that account for >75% of invasive fungal infections in the U.S.. For largely unknown reasons, a substantial number of patients with invasive candidiasis fail to respond to treatment with these drugs. The finding of this study suggest that co-administered medications have the potential to influence the therapeutic outcomes of invasive fungal infections through modulating antifungal drug tolerance and/or fungal pathogenicity. The potential for echinocandin antagonistic medications to influence therapeutic outcomes is discussed.
Collapse
Affiliation(s)
- Parker Reitler
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, USA
| | - Christian A. DeJarnette
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, USA
| | - Ravinder Kumar
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, USA
| | - Katie M. Tucker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, USA
| | - Tracy L. Peters
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nathaniel R Twarog
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Anang A. Shelat
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Glen E. Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, USA
| |
Collapse
|
3
|
Reginatto P, Joaquim AR, Teixeira ML, Andrade SFD, Fuentefria AM. 8-Hydroxyquinoline derivative as a promising antifungal agent to combat ocular fungal infections. J Med Microbiol 2025; 74. [PMID: 39787291 DOI: 10.1099/jmm.0.001952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Introduction. Ocular fungal infections are pathologies of slow progression, occurring mainly in the cornea, but can also affect the entire structure of the eyeball. The main aetiological agents are species of the genera Candida and Fusarium. Both diagnosis and treatment require speed and effectiveness. However, the currently available therapy basically consists of the use of azoles and polyenes, known for their low penetration into the ocular tissue and the associated toxicity.Hypothesis. Thus, new strategies to combat these infections are needed, such as the development of new antifungals or the use of associations.Aim. Thus, the compound PH151, derived from a promising class of 8-hydroxyquinolines, and natamycin, amphotericin B (AMB) and voriconazole (VRC), the main antifungals used in ocular antifungal therapy, were considered against Candida spp. and Fusarium spp.Methodology. The MICs of compound PH151 ranged from 1.0 to 16.0 µg ml-1, according to CLSI protocols.Results. The association of PH151 with AMB and VRC showed a synergistic effect for more than 50% of the strains tested.Conclusion. Both the compound alone and its association (VRC-AMB-PH151) demonstrated promising potential as an antifungal agent in ocular infections, since the evaluated ocular toxicity profile was positive and the compounds presented low toxicity.
Collapse
Affiliation(s)
- Paula Reginatto
- Programa de Ps-Graduao em Cincias Farmacuticas, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angélica Rocha Joaquim
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Faculty of Pharmacy of the Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Saulo Fernandes de Andrade
- Programa de Ps-Graduao em Cincias Farmacuticas, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Anlises, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Ps-Graduao em Cincias Farmacuticas, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Produo de Matria-Prima, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Sun C, Li Y, Kidd JM, Han J, Ding L, May AE, Zhou L, Liu Q. Characterization of a New Hsp110 Inhibitor as a Potential Antifungal. J Fungi (Basel) 2024; 10:732. [PMID: 39590652 PMCID: PMC11595998 DOI: 10.3390/jof10110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024] Open
Abstract
Fungal infections present a significant global health challenge, prompting ongoing research to discover innovative antifungal agents. The 110 kDa heat shock proteins (Hsp110s) are molecular chaperones essential for maintaining cellular protein homeostasis in eukaryotes. Fungal Hsp110s have emerged as a promising target for innovative antifungal strategies. Notably, 2H stands out as a promising candidate in the endeavor to target Hsp110s and combat fungal infections. Our study reveals that 2H exhibits broad-spectrum antifungal activity, effectively disrupting the in vitro chaperone activity of Hsp110 from Candida auris and inhibiting the growth of Cryptococcus neoformans. Pharmacokinetic analysis indicates that oral administration of 2H may offer enhanced efficacy compared to intravenous delivery, emphasizing the importance of optimizing the AUC/MIC ratio for advancing its clinical therapy.
Collapse
Affiliation(s)
- Cancan Sun
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yi Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Justin M. Kidd
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jizhong Han
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Liangliang Ding
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Aaron E. May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
5
|
Abbod M, Safaie N, Gholivand K. Genetic algorithm multiple linear regression and machine learning-driven QSTR modeling for the acute toxicity of sterol biosynthesis inhibitor fungicides. Heliyon 2024; 10:e36373. [PMID: 39247303 PMCID: PMC11378891 DOI: 10.1016/j.heliyon.2024.e36373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Sterol Biosynthesis Inhibitors (SBIs) are a major class of fungicides used globally. Their widespread application in agriculture raises concerns about potential harm and toxicity to non-target organisms, including humans. To address these concerns, a quantitative structure-toxicity relationship (QSTR) modeling approach has been developed to assess the acute toxicity of 45 different SBIs. The genetic algorithm (GA) was used to identify key molecular descriptors influencing toxicity. These descriptors were then used to build robust QSTR models using multiple linear regression (MLR), support vector regression (SVR), and artificial neural network (ANN) algorithms. The Cross-validation, Y-randomization test, applicability domain methods, and external validation were carried out to evaluate the accuracy and validity of the generated models. The MLR model exhibited satisfactory predictive performance, with an R2 of 0.72. The SVR and ANN models obtained R2 values of 0.7 and 0.8, respectively. ANN model demonstrated superior performance compared to other models, achieving R2 cv and R2 test values of 0.74 and 0.7, respectively. The models passed both internal and external validation, indicating their robustness. These models offer a valuable tool for risk assessment, enabling the evaluation of potential hazards associated with future applications of SBIs.
Collapse
Affiliation(s)
- Mohsen Abbod
- Department of Plant Protection, Faculty of Agriculture, Al-Baath University, Homs, Syria
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, P.O.B. 14115-336, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, P.O.B. 14115-336, Tehran, Iran
| | - Khodayar Gholivand
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O.B. 14115-175, Tehran, Iran
| |
Collapse
|
6
|
Butassi E, Blanc AR, Svetaz LA. Phytolacca tetramera berries extracts and its main constituents as potentiators of antifungal drugs against Candida spp. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155569. [PMID: 38795695 DOI: 10.1016/j.phymed.2024.155569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Extensive antifungal drug use has enhanced fungal resistance, resulting in persistent mycoses. Combining antifungal plant extracts/compounds with these drugs offers good alternatives to increase the activity of both partners, minimize side effects, and overcome drug resistance. In our previous study, Phytolacca tetramera berries extracts demonstrated activity against Candida spp., correlating with the amount of the main constituent phytolaccoside B and its genin, phytolaccagenin. The extracts and phytolaccagenin altered the fungal plasma membrane by binding to ergosterol, whereas phytolaccoside B increased chitin synthase activity. However, the presence of triterpenoid saponins in Phytolacca spp. has been linked to acute toxicity in humans. PURPOSE This study aimed to evaluate combinations of P. tetramera berries extracts, phytolaccoside B and phytolaccagenin, together with commercial antifungals [amphotericin B, fluconazole, itraconazole, posaconazole, and caspofungin] against Candida albicans and Candida glabrata, to find synergistic effects with multi-target actions, in which the doses of both partners are reduced, and therefore their toxicity. Additionally, we intended to explore their anti-virulence capacity, thereby hindering the development of drug-resistant strains. METHODS The effects of these combinations were evaluated using both the checkerboard and isobologram methods. Fractional Inhibitory Concentration Index and Dose Reduction Index were calculated to interpret the combination results. To confirm the multi-target effect, studies on mechanisms of action of synergistic mixtures were performed using ergosterol-binding and quantification assays. The ability to inhibit Candida virulence factors, including biofilm formation and eradication from inert surfaces, was also evaluated. Quantification of active markers was performed using a validated UHPLC-ESI-MS method. RESULTS Eight synergistic combinations of P. tetramera extracts or phytolaccagenin (but not phytolaccoside B) with itraconazole or posaconazole were obtained against C. albicans, including a resistant strain. These mixtures acted by binding to ergosterol, decreasing its whole content, and inhibiting Candida biofilm formation in 96-well microplates and feeding tubes in vitro, but were unable to eradicate preformed biofilms. CONCLUSIONS This study demonstrated the synergistic and anti-virulence effects of P. tetramera berries extracts and phytolaccagenin with antifungal drugs against Candida spp., providing novel treatment avenues for fungal infections with reduced doses of both natural products and commercial antifungals, thereby mitigating potential human toxicity concerns.
Collapse
Affiliation(s)
- Estefanía Butassi
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Alan Roy Blanc
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Laura Andrea Svetaz
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
7
|
Reitler P, Regan J, DeJarnette C, Srivastava A, Carnahan J, Tucker KM, Meibohm B, Peters BM, Palmer GE. The atypical antipsychotic aripiprazole alters the outcome of disseminated Candida albicans infections. Infect Immun 2024; 92:e0007224. [PMID: 38899880 PMCID: PMC11238555 DOI: 10.1128/iai.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Invasive fungal infections impose an enormous clinical, social, and economic burden on humankind. One of the most common species responsible for invasive fungal infections is Candida albicans. More than 30% of patients with disseminated candidiasis fail therapy with existing antifungal drugs, including the widely used azole class. We previously identified a collection of 13 medications that antagonize the activity of the azoles on C. albicans. Although gain-of-function mutations responsible for antifungal resistance are often associated with reduced fitness and virulence, it is currently unknown how exposure to azole antagonistic drugs impacts C. albicans physiology, fitness, or virulence. In this study, we examined how exposure to seven azole antagonists affects C. albicans phenotype and capacity to cause disease. Most of the azole antagonists appear to have little impact on fungal growth, morphology, stress tolerance, or gene transcription. However, aripiprazole had a modest impact on C. albicans hyphal growth and increased cell wall chitin content. It also aggravated the disseminated C. albicans infections in mice. This effect was abrogated in immunosuppressed mice, indicating that it is at least in part dependent upon host immune responses. Collectively, these data provide proof of principle that unanticipated drug-fungus interactions have the potential to influence the incidence and outcomes of invasive fungal disease.
Collapse
Affiliation(s)
- Parker Reitler
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jessica Regan
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Christian DeJarnette
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Ashish Srivastava
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jen Carnahan
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Katie M. Tucker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Glen E. Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Wang X, Jin X, Zhao F, Xu Z, Tan W, Zhang J, Xu Y, Luan X, Fang M, Xie Z, Chang W, Lou H. Structure-Based Optimization of Novel Sterol 24-C-Methyltransferase Inhibitors for the Treatment of Candida albicans Infections. J Med Chem 2024; 67:9318-9341. [PMID: 38764175 DOI: 10.1021/acs.jmedchem.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Interfering with sterol biosynthesis is an important strategy for developing safe and effective antifungal drugs. We previously identified compound H55 as an allosteric inhibitor of the fungal-specific C-24 sterol methyltransferase Erg6 for treating Candida albicans infections. Herein, 62 derivatives of H55 were designed and synthesized based on target-ligand interactions to identify more active candidates. Among them, d28 displayed the most potent antivirulence ability (MHIC50 = 0.25 μg/mL) by targeting Erg6, exhibiting an 8-fold increase in potency compared with H55. Moreover, d28 significantly outperformed H55 in inhibiting cell adhesion and biofilm formation, and exhibited minimal cytotoxicity and negligible potential to induce drug resistance. Of note, the coadministration of d28 and other sterol biosynthesis inhibitors, such as tridemorph or terbinafine, demonstrated a strong synergistic antifungal action in vitro and in vivo in a murine skin infection model. These results support the potential application of d28 in the treatment of C. albicans infections.
Collapse
Affiliation(s)
- Xue Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zejun Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenzhuo Tan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuliang Xu
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China
| | - Xiaoyi Luan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Min Fang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461002, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
9
|
Katta CB, Bahuguna D, Veerabomma H, Gollapalli S, Shaikh AS, Bhale NA, Dikundwar AG, Kaki VR, Singh PK, Madan J. Naringenin-Zinc Oxide Nanocomposites Amalgamated Polymeric Gel Augmented Drug Delivery and Attenuated Experimental Cutaneous Candidiasis in Balb/c Mice: In Vitro and In Vivo Studies. AAPS PharmSciTech 2024; 25:130. [PMID: 38844611 DOI: 10.1208/s12249-024-02841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 09/05/2024] Open
Abstract
Naringenin (NRG) inhibits the fungal 17β-hydroxysteroid dehydrogenase accountable for ergosterol synthesis in Candida albicans (C. albicans), a causative agent for cutaneous candidiasis. In present research, NRG was complexed with ZnO nanomaterial (NRG-Zn2+) to synthesize NRG-Zn2+ nanocomposites. The particle size and ζ-potential of NRG-Zn2+ nanocomposites were respectively estimated to be 180.33 ± 1.22-nm and - 3.92 ± 0.35-mV. In silico data predicted the greater affinity of NRG-Zn2+ nanocomposite for 14α-demethylase and ceramide in comparison to NRG alone. Later, NRG-Zn2+ nanocomposites solution was transformed in to naringenin-zinc oxide nanocomposites loaded chitosan gel (NRG-Zn-CS-Gel) with viscosity and firmness of 854806.7 ± 52386.43 cP and 698.27 ± 10.35 g, respectively. The ex-vivo skin permeation demonstrated 70.49 ± 5.22% skin retention, significantly greater (P < 0.05) than 44.48 ± 3.06% of naringenin loaded chitosan gel (NRG-CS-Gel) and 31.24 ± 3.28% of naringenin solution (NRG Solution). NRG-Zn-CS-Gel demonstrated 6.71 ± 0.84% permeation of NRG with a flux value of 0.046 ± 0.01-µg/cm2/h. The MIC50 of NRG-Zn-CS-Gel against C. albicans was estimated to be 0.156-µg/mL with FICI (fractional inhibitory concentration index) of 0.018 that consequently exhibited synergistic efficacy. Further, NRG-Zn-CS-Gel demonstrated superior antifungal efficacy in C. albicans induced cutaneous candidiasis infection in Balb/c mice. The fungal burden in NRG-Zn-CS-Gel treated group was 109 ± 25 CFU/mL, significantly lower (P < 0.05) than positive control (2260 ± 446 CFU/mL), naringenin loaded chitosan gel (NRG-CS-Gel; 928 ± 127 CFU/mL) and chitosan gel (CS-Gel; 2116 ± 186 CFU/mL) treated mice. Further, histopathology examination and cytokine profiling of TNF-α, IL-1β and IL-10 revealed the healing of skin and inflammation associated with cutaneous candidiasis infection. In conclusion, NRG-Zn-CS-Gel may be a potential candidate for translating in to a clinical viable topical nanotherapeutic.
Collapse
Affiliation(s)
- Chanti Babu Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Deepankar Bahuguna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Harithasree Veerabomma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Spandana Gollapalli
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Venkat Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Kaden T, Alonso-Roman R, Akbarimoghaddam P, Mosig AS, Graf K, Raasch M, Hoffmann B, Figge MT, Hube B, Gresnigt MS. Modeling of intravenous caspofungin administration using an intestine-on-chip reveals altered Candida albicans microcolonies and pathogenicity. Biomaterials 2024; 307:122525. [PMID: 38489910 DOI: 10.1016/j.biomaterials.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Candida albicans is a commensal yeast of the human intestinal microbiota that, under predisposing conditions, can become pathogenic and cause life-threatening systemic infections (candidiasis). Fungal-host interactions during candidiasis are commonly studied using conventional 2D in vitro models, which have provided critical insights into the pathogenicity. However, microphysiological models with a higher biological complexity may be more suitable to mimic in vivo-like infection processes and antifungal drug efficacy. Therefore, a 3D intestine-on-chip model was used to investigate fungal-host interactions during the onset of invasive candidiasis and evaluate antifungal treatment under clinically relevant conditions. By combining microbiological and image-based analyses we quantified infection processes such as invasiveness and fungal translocation across the epithelial barrier. Additionally, we obtained novel insights into fungal microcolony morphology and association with the tissue. Our results demonstrate that C. albicans microcolonies induce injury to the epithelial tissue by disrupting apical cell-cell contacts and causing inflammation. Caspofungin treatment effectively reduced the fungal biomass and induced substantial alterations in microcolony morphology during infection with a wild-type strain. However, caspofungin showed limited effects after infection with an echinocandin-resistant clinical isolate. Collectively, this organ-on-chip model can be leveraged for in-depth characterization of pathogen-host interactions and alterations due to antimicrobial treatment.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH, Jena, Germany; Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Raquel Alonso-Roman
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Parastoo Akbarimoghaddam
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | | | | | - Bianca Hoffmann
- Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Marc T Figge
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany.
| |
Collapse
|
11
|
Reginatto P, Agostinetto GDJ, Teixeira ML, de Andrade SF, Fuentefria AM. Synergistic activity of clioquinol with voriconazole and amphotericin B against fungi of interest in eye infections. J Mycol Med 2024; 34:101462. [PMID: 38290229 DOI: 10.1016/j.mycmed.2024.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Keratoplasty represents a risk factor for fungal eye infections, despites the antibacterial actives in the corneal tissue preservation means, it does not contain active substances with antifungal action. Among the most commonly associated fungal agents are the species belonging to the genera Fusarium and Candida. These agents can trigger an infectious process characterized by swift progression associated with high rates of morbidity, causing irreversible damage. Polyene and azole antifungals are the main agents of ocular therapy, however, they demonstrate some limitations, such as their toxicity and fungal resistance. In this context, drug repositioning and the combination of antifungals may be an alternative. Hence, the goal of this study was to investigate the potential activity of clioquinol (CLQ), a derivative of 8-hydroxyquinoline with previously described antifungal activity, along with its triple and quadruple combinations with antifungal agents commonly used in ophthalmic fungal therapy, natamycin (NAT), voriconazole (VRC), and amphotericin B (AMB), against main fungal pathogens in eye infections. The MICs for CLQ ranged from 0.25 to 2.0 μg/mL, for NAT from 4.0 to 32.0 μg/mL, for AMB it ranged from 0.25 to 16.0 μg/mL and for VRC from 0.03125 to 512.0 µg/mL. Among the tested combinations, the VRC-AMB-CLQ combination stands out, which showed a synergistic effect for more than 50 % of the tested strains and did not present antagonistic results against any of them. Toxicity data were similar to those antifungals already used, even with lower potential toxicity. Therefore, both clioquinol and the triple combination VCR-AMB-CLQ exhibited promising profiles for use as active components in corneal tissue preservation medium.
Collapse
Affiliation(s)
- Paula Reginatto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | - Saulo Fernandes de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Yang X, Jin X, Yang Z, Wang Y, Wei A, Yang X. Isolated Cutaneous Granuloma Caused by Candida Parapsilosis: Case Report and Literature Review. Mycopathologia 2024; 189:20. [PMID: 38407662 DOI: 10.1007/s11046-023-00812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 02/27/2024]
Abstract
Candidal granuloma is an uncommon type of deep chronic cutaneous candidiasis. Candida albican is the most common causative pathogen for candidal granuloma. We report herein the original case of a 69-year-old Chinese woman presented with a 3-year of painful cutaneous lesion on the back of left hand. Physical examination revealed a 4 × 5 cm large infiltrative reddish plaque with unclear boundaries. The yellow-white crusts were observed on the uneven surface of plaque. Histopathological examination of biopsy tissue revealed that yeast cells and the horizontal section of hyphae in the dermis by hematoxylin eosin staining and periodic acid-Schiff staining. Finally, the pathogen was identified as Candida parapsilosis by mycological examination and molecular identification. The patient was treated with itraconazole oral 200 mg twice daily combined with topical terbinafine hydrochloride cream for 2 months. The lesions were fully resolved and no recurrence was observed. Since the cutaneous infection caused by C. parasilosis were rarely reported, we also reviewed all 11 cases of cutaneous infection caused by C. parapsilosis in the PubMed. Our study highlighted that chronic unilateral infiltrated plaques or ulcers should be aware of the occurrence of fungal granuloma including candidal granuloma especially in immunocompromised patients.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Dongcheng District, Beijing, China
| | - Xingji Jin
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Dongcheng District, Beijing, China
| | - Zhusheng Yang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Dongcheng District, Beijing, China
| | - Youxue Wang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Dongcheng District, Beijing, China
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Dongcheng District, Beijing, China
| | - Xiumin Yang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Dongcheng District, Beijing, China.
| |
Collapse
|
13
|
Reitler P, Regan J, DeJarnette C, Srivastava A, Carnahan J, Tucker KM, Meibohm B, Peters BM, Palmer GE. The atypical antipsychotic aripiprazole alters the outcome of disseminated Candida albicans infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580133. [PMID: 38405954 PMCID: PMC10888916 DOI: 10.1101/2024.02.13.580133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Invasive fungal infections (IFIs) impose an enormous clinical, social, and economic burden on humankind. For many IFIs, ≥ 30% of patients fail therapy with existing antifungal drugs, including the widely used azole class. We previously identified a collection of 13 approved medications that antagonize azole activity. While gain-of-function mutants resulting in antifungal resistance are often associated with reduced fitness and virulence, it is currently unknown how exposure to azole antagonistic drugs impact C. albicans physiology, fitness, or virulence. In this study, we examined how exposure to azole antagonists affected C. albicans phenotype and capacity to cause disease. We discovered that most of the azole antagonists had little impact on fungal growth, morphology, stress tolerance, or gene transcription. However, aripiprazole had a modest impact on C. albicans hyphal growth and increased cell wall chitin content. It also worsened the outcome of disseminated infections in mice at human equivalent concentrations. This effect was abrogated in immunosuppressed mice, indicating an additional impact of aripiprazole on host immunity. Collectively, these data provide proof-of-principle that unanticipated drug-fungus interactions have the potential to influence the incidence and outcomes of invasive fungal disease.
Collapse
Affiliation(s)
- Parker Reitler
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jessica Regan
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Christian DeJarnette
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Ashish Srivastava
- Department of Pharmaceutical Sciences College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Jen Carnahan
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Katie M. Tucker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Glen E. Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
14
|
Janeczko M, Kochanowicz E. Biochanin A Inhibits the Growth and Biofilm of Candida Species. Pharmaceuticals (Basel) 2024; 17:89. [PMID: 38256922 PMCID: PMC10818846 DOI: 10.3390/ph17010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this study was to investigate the antifungal activity of biochanin A (BCA) against planktonic growth and biofilms of six Candida species, including C. albicans, C. parapsilosis, C. glabrata, C. tropicalis, C. auris, and C. krusei. We applied various assays that determined (a) the antimicrobial effect on growth of Candida species, (b) the effect on formation of hyphae and biofilm, (c) the effect on the expression of genes related to hyphal growth and biofilm formation, (d) the influence on cell wall structure, and (e) the effect on cell membrane integrity and permeability. Moreover, disk diffusion tests were used to investigate the effect of a combination of BCA with fluconazole to assess their possible synergistic effect on drug-resistant C. albicans, C. glabrata, and C. auris. Our results showed that the BCA MIC50 values against Candida species ranged between 125 µg/mL and 500 µg/mL, and the MIC90 values were in a concentration range from 250 µg/mL to 1000 µg/mL. The treatment with BCA inhibited adhesion of cells, cell surface hydrophobicity (CSH), and biofilm formation and reduced hyphal growth in all the analyzed Candida species. Real-time qRT-PCR revealed that BCA down-regulated the expression of biofilm-specific genes in C. albicans. Furthermore, physical destruction of C. albicans cell membranes and cell walls as a result of the treatment with BCA was observed. The combination of BCA and fluconazole did not exert synergistic effects against fluconazole-resistant Candida.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland;
| | | |
Collapse
|
15
|
Liang X, Chen D, Wang J, Liao B, Shen J, Ye X, Wang Z, Zhu C, Gou L, Zhou X, Cheng L, Ren B, Zhou X. Artemisinins inhibit oral candidiasis caused by Candida albicans through the repression on its hyphal development. Int J Oral Sci 2023; 15:40. [PMID: 37699886 PMCID: PMC10497628 DOI: 10.1038/s41368-023-00245-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Candida albicans is the most abundant fungal species in oral cavity. As a smart opportunistic pathogen, it increases the virulence by switching its forms from yeasts to hyphae and becomes the major pathogenic agent for oral candidiasis. However, the overuse of current clinical antifungals and lack of new types of drugs highlight the challenges in the antifungal treatments because of the drug resistance and side effects. Anti-virulence strategy is proved as a practical way to develop new types of anti-infective drugs. Here, seven artemisinins, including artemisinin, dihydroartemisinin, artemisinic acid, dihydroartemisinic acid, artesunate, artemether and arteether, were employed to target at the hyphal development, the most important virulence factor of C. albicans. Artemisinins failed to affect the growth, but significantly inhibited the hyphal development of C. albicans, including the clinical azole resistant isolates, and reduced their damage to oral epithelial cells, while arteether showed the strongest activities. The transcriptome suggested that arteether could affect the energy metabolism of C. albicans. Seven artemisinins were then proved to significantly inhibit the productions of ATP and cAMP, while reduced the hyphal inhibition on RAS1 overexpression strain indicating that artemisinins regulated the Ras1-cAMP-Efg1 pathway to inhibit the hyphal development. Importantly, arteether significantly inhibited the fungal burden and infections with no systemic toxicity in the murine oropharyngeal candidiasis models in vivo caused by both fluconazole sensitive and resistant strains. Our results for the first time indicated that artemisinins can be potential antifungal compounds against C. albicans infections by targeting at its hyphal development.
Collapse
Affiliation(s)
- Xiaoyue Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiawei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengguang Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Rathee A, Solanki P, Verma S, Vohora D, Ansari MJ, Aodah A, Kohli K, Sultana Y. Simultaneous Determination of Posaconazole and Hemp Seed Oil in Nanomicelles through RP-HPLC via a Quality-by-Design Approach. ACS OMEGA 2023; 8:30057-30067. [PMID: 37636934 PMCID: PMC10448652 DOI: 10.1021/acsomega.3c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
The present study involves the development of a reverse-phase HPLC method employing the quality-by-design methodology for the estimation of posaconazole and hemp seed oil simultaneously in nanomicelles formulation. The successful separation of posaconazole and hemp seed oil was achieved together, and this is the first study to develop and quantify posaconazole and hemp seed oil nanomicelles with linoleic acid as the internal standard and developed a dual drug analytical method employing a quality-by-design approach. The study was performed on a Shimadzu Prominence-I LC-2030C 3D Plus HPLC system with a PDA detector and the Shim-pack Solar C8 column (250 mm × 4.6 mm × 5 μm) for analysis with a mobile phase ratio of methanol:water (80:20% v/v) maintaining the flow rate of 1.0 mL/min. The final wavelength was selected as 240 nm and the elution of hemp seed oil and posaconazole was obtained at 2.7 and 4.6 min, respectively, with a maximum run time of 8.0 min. Box Behnken design was employed to optimize the method, keeping the retention time, peak area, and theoretical plates as dependent variables, while the mobile phase composition, flow rate, and wavelengths were chosen as independent variables. Parameters such as specificity, accuracy, robustness, linearity, sensitivity, precision, ruggedness, and forced degradation study were performed to validate the method. The calibration curves of posaconazole and hemp seed oil were determined to be linear throughout the range for concentration. The suggested approach can be effectively utilized for estimating the content of drugs from their nanoformulation and proved suitable for both in vivo and in vitro research.
Collapse
Affiliation(s)
- Anjali Rathee
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Pavitra Solanki
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp Vihar, Sec-III, New Delhi 110017, India
| | - Surajpal Verma
- Department
of Pharmaceutical Analysis, Delhi Pharmaceutical
Sciences and Research University, Pushp Vihar, Sec-III, New Delhi 110017, India
| | - Divya Vohora
- Department
of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Javed Ansari
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdul Aziz University, Al-kharj 11231, Saudi Arabia
| | - Alhussain Aodah
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdul Aziz University, Al-kharj 11231, Saudi Arabia
| | - Kanchan Kohli
- Lloyd Institute
of Management and Technology, Greater Noida, Uttar Pradesh 201306, India
| | - Yasmin Sultana
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
17
|
Katta C, Shaikh AS, Bhale N, Jyothi VGSS, Kaki VR, Dikundwar AG, Singh PK, Shukla R, Mishra K, Madan J. Naringenin-Capped Silver Nanoparticles Amalgamated Gel for the Treatment of Cutaneous Candidiasis. AAPS PharmSciTech 2023; 24:126. [PMID: 37226032 DOI: 10.1208/s12249-023-02581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
The current research was aimed to synthesize a phytomolecule, naringenin (NRG)-mediated silver nanoparticles (NRG-SNPs) to study their antifungal potential against Candida albicans (C. albicans) and Candida glabrata (C. glabrata). The NRG-SNPs were synthesized by using NRG as a reducing agent. The synthesis of NRG-SNPs was confirmed by a color change and surface plasmon resonance (SPR) peak at 425 nm. Furthermore, the NRG-SNPs were analyzed for size, PDI, and zeta potential, which were found to be 35 ± 0.21 nm, 0.19 ± 0.03, and 17.73 ± 0.92 mV, respectively. In silico results demonstrated that NRG had a strong affinity towards the sterol 14α-demethylase. The docking with ceramide revealed the skin permeation efficiency of the NRG-SNPs. Next, the NRG-SNPs were loaded into the topical dermal dosage form (NRG-SNPs-TDDF) by formulating a gel using Carbopol Ultrez 10 NF. The MIC50 of NRG solution and TSC-SNPs against C. albicans was found to be 50 µg/mL and 4.8 µg/mL, respectively, significantly (P < 0.05) higher than 0.3625 µg/mL of NRG-SNPs-TDDF. Correspondingly, MIC50 results were calculated against C. glabrata and the results of NRG, TSC-SNPs, NRG-SNPs-TDDF, and miconazole nitrate were found to be 50 µg/mL, 9.6 µg/mL, 0.3625 µg/mL, and 3-µg/mL, respectively. Interestingly, MIC50 of NRG-SNPs-TDDF was significantly (P < 0.05) lower than MIC50 of miconazole nitrate against C. glabrata. The FICI (fractional inhibitory concentration index) value against both the C. albicans and C. glabrata was found to be 0.016 and 0.011, respectively, which indicated the synergistic antifungal activity of NRG-SNPs-TDDF. Thus, NRG-SNPs-TDDF warrants further in depth in vivo study under a set of stringent parameters for translating in to a clinically viable antifungal product.
Collapse
Affiliation(s)
- Chantibabu Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nagesh Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Renu Shukla
- Department of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Krishnaveni Mishra
- Department of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
18
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
19
|
Liu N, Tu J, Huang Y, Yang W, Wang Q, Li Z, Sheng C. Target- and prodrug-based design for fungal diseases and cancer-associated fungal infections. Adv Drug Deliv Rev 2023; 197:114819. [PMID: 37024014 DOI: 10.1016/j.addr.2023.114819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Invasive fungal infections (IFIs) are emerging as a serious threat to public health and are associated with high incidence and mortality. IFIs also represent a frequent complication in patients with cancer who are undergoing chemotherapy. However, effective and safe antifungal agents remain limited, and the development of severe drug resistance further undermines the efficacy of antifungal therapy. Therefore, there is an urgent need for novel antifungal agents to treat life-threatening fungal diseases, especially those with new mode of action, favorable pharmacokinetic profiles, and anti-resistance activity. In this review, we summarize new antifungal targets and target-based inhibitor design, with a focus on their antifungal activity, selectivity, and mechanism. We also illustrate the prodrug design strategy used to improve the physicochemical and pharmacokinetic profiles of antifungal agents. Dual-targeting antifungal agents offer a new strategy for the treatment of resistant infections and cancer-associated fungal infections.
Collapse
|
20
|
Antypenko L, Meyer F, Sadyk Z, Shabelnyk K, Kovalenko S, Steffens KG, Garbe LA. Combined Application of Tacrolimus with Cyproconazole, Hymexazol and Novel {2-(3-R-1 H-1,2,4-triazol-5-yl)phenyl}amines as Antifungals: In Vitro Growth Inhibition and In Silico Molecular Docking Analysis to Fungal Chitin Deacetylase. J Fungi (Basel) 2023; 9:79. [PMID: 36675900 PMCID: PMC9866229 DOI: 10.3390/jof9010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Agents with antifungal activity play a vital role as therapeutics in health care, as do fungicides in agriculture. Effectiveness, toxicological profile, and eco-friendliness are among the properties used to select suitable substances. Furthermore, a steady supply of new agents with different modes of action is required to counter the well-known potential of human and phyto-pathogenic fungi to develop resistance against established antifungals. Here, we use an in vitro growth assay to investigate the activity of the calcineurin inhibitor tacrolimus in combination with the commercial fungicides cyproconazole and hymexazol, as well as with two earlier reported novel {2-(3-R-1H-1,2,4-triazol-5-yl)phenyl}amines, against the fungi Aspergillus niger, Colletotrichum higginsianum, Fusarium oxysporum and the oomycete Phytophthora infestans, which are notoriously harmful in agriculture. When tacrolimus was added in a concentration range from 0.25 to 25 mg/L to the tested antifungals (at a fixed concentration of 25 or 50 mg/L), the inhibitory activities were distinctly enhanced. Molecular docking calculations revealed triazole derivative 5, (2-(3-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-4-chloroaniline), as a potent inhibitor of chitin deacetylases (CDA) of Aspergillus nidulans and A. niger (AnCDA and AngCDA, respectively), which was stronger than the previously reported polyoxorin D, J075-4187, and chitotriose. The results are discussed in the context of potential synergism and molecular mode of action.
Collapse
Affiliation(s)
- Lyudmyla Antypenko
- Faculty of Agriculture and Food Science, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany
| | - Fatuma Meyer
- Faculty of Agriculture and Food Science, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany
| | - Zhanar Sadyk
- Faculty of Agriculture and Food Science, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany
- Faculty of Applied Natural Sciences, TH Köln-University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - Konstyantyn Shabelnyk
- Pharmaceutical Chemistry, Organic and Bioorganic Chemistry Department, Zaporizhzhia State Medical University, Mayakovs’ky Ave. 26, 69035 Zaporizhzhia, Ukraine
| | - Sergiy Kovalenko
- Pharmaceutical Chemistry, Organic and Bioorganic Chemistry Department, Zaporizhzhia State Medical University, Mayakovs’ky Ave. 26, 69035 Zaporizhzhia, Ukraine
| | - Karl Gustav Steffens
- Faculty of Agriculture and Food Science, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany
| | - Leif-Alexander Garbe
- Faculty of Agriculture and Food Science, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany
- ZELT–Center for Nutrition and Food Technology, Seestrasse 7A, 17033 Neubrandenburg, Germany
| |
Collapse
|
21
|
Afzal S, Yadav AK, Poonia AK, Choure K, Yadav AN, Pandey A. Antimicrobial therapeutics isolated from algal source: retrospect and prospect. Biologia (Bratisl) 2023; 78:291-305. [PMID: 36159744 PMCID: PMC9486765 DOI: 10.1007/s11756-022-01207-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023]
Abstract
In the last few decades, attention on new natural antimicrobial compounds has arisen due to a change in consumer preferences and the increase in the number of resistant microorganisms. Algae are defined as photosynthetic organisms that demonstrate a wide range of adaptability to adverse environmental conditions like temperature extremes, photo-oxidation, high or low salinity, and osmotic stress. Algae are primarily known to produce large amounts of secondary metabolite against various kinds of pathogenic microbes. Among these algae, micro and microalgae of river, lake, and algae of oceanic origin have been reported to have antimicrobial activity against the bacteria and fungi of pathogenic nature. Various polar and non- polar extracts of micro- and macro algae have been used for the suppression of these pathogenic fungi. Apart from these, certain algal derivatives have also been isolated from these having antibacterial and antifungal potential. Among the bioactive molecules of algae, polysaccharides, sulphated polysaccharides, phyco-cyanobilins polyphenols, lectins, proteins lutein, vitamin E, B12 and K1, peptides, polyunsaturated fatty acids and pigments can be highlighted. In the present review, we will discuss the biological activity of these derived compounds as antifungal/ antibacterial agents and their most promising applications. A brief outline is also given for the prospects of these isolated phytochemicals and using algae as therapeutic in the dietary form. We have also tried to answer whether alga-derived metabolites can serve as potential therapeutics for the treatment of SARS-CoV-2 like viral infections too.
Collapse
Affiliation(s)
- Shadma Afzal
- Department of Biotechnology, Motilal Nehru national Institute of Technology Allahabad, Prayagraj, UP India
| | - Alok Kumar Yadav
- Department of Biotechnology, Motilal Nehru national Institute of Technology Allahabad, Prayagraj, UP India
| | - Anuj Kumar Poonia
- University Institute of Biotechnology , Chandigarh University, Chandigarh, Punjab India
| | - Kamlesh Choure
- Faculty of Life Science and Technology, Department of Biotechnology, AKS University, Satna, MP India
| | - Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib Sirmour, HP India
| | - Ashutosh Pandey
- Faculty of Life Science and Technology, Department of Biotechnology, AKS University, Satna, MP India
| |
Collapse
|
22
|
Jothi R, Sangavi R, Raja V, Kumar P, Pandian SK, Gowrishankar S. Alteration of Cell Membrane Permeability by Cetyltrimethylammonium Chloride Induces Cell Death in Clinically Important Candida Species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010027. [PMID: 36612353 PMCID: PMC9819714 DOI: 10.3390/ijerph20010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 05/25/2023]
Abstract
The increased incidence of healthcare-related Candida infection has necessitated the use of effective disinfectants/antiseptics in healthcare settings as a preventive measure to decontaminate the hospital environment and stop the persistent colonization of the offending pathogens. Quanternary ammonium surfactants (QASs), with their promising antimicrobial efficacy, are considered as intriguing and appealing candidates for disinfectants. From this perspective, the present study investigated the antifungal efficacy and action mechanism of the QAS cetyltrimethylammonium chloride (CTAC) against three clinically important Candida species: C. albicans, C. tropicalis, and C. glabrata. CTAC exhibited phenomenal antifungal activity against all tested Candida spp., with minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) between 2 and 8 µg/mL. The time−kill kinetics of CTAC (at 2XMIC) demonstrated that an exposure time of 2 h was required to kill 99.9% of the inoculums in all tested strains. An important observation was that CTAC treatment did not influence intracellular reactive oxygen species (ROS), signifying that its phenomenal anticandidal efficacy was not mediated via oxidative stress. In addition, sorbitol supplementation increased CTAC’s MIC values against all tested Candida strains by three times (8−32 μg/mL), indicating that CTAC’s possible antifungal activity involves fungus cell membrane destruction. Interestingly, the increased fluorescence intensity of CTAC-treated cells in both propidium iodide (PI) and DAPI staining assays indicated the impairment of cell plasma membrane and nuclear membrane integrity by CTAC, respectively. Additionally, CTAC at MIC and 2XMIC was sufficient (>80%) to disrupt the mature biofilms of all tested spp., and it inhibited the yeast-to-hyphae transition at sub-MIC in C. albicans. Finally, the non-hemolytic activity of CTAC (upto 32 µg/mL) in human blood cells and HBECs signified its non-toxic nature at the investigated concentrations. Furthermore, thymol and citral, two phytocompounds, together with CTAC, showed synergistic fungicidal effectiveness against C. albicans planktonic cells. Altogether, the data of the present study appreciably broaden our understanding of the antifungal action mechanism of CTAC and support its future translation as a potential disinfectant against Candida-associated healthcare infections.
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Ravichellam Sangavi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Veerapandian Raja
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| |
Collapse
|
23
|
Vigbedor BY, Osei Akoto C, Kwakye R, Osei-Owusu J, Neglo D, Kwashie P. Antioxidant, antibacterial, antifungal activities and gas chromatographic fingerprint of fractions from the root bark of Afzelia africana. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 13:60-76. [PMID: 36721842 PMCID: PMC9884338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Afzelia africana is a tropical plant with numerous ethno-medicinal benefits. The plant has been used for the treatment of pain, hernia, fever, malaria, inflammation and microbial infections. OBJECTIVES To perform bioassay-guided fractionation, antioxidant and antimicrobial activities of the bark of Afzelia africana. METHODS Column chromatography fractionation, antioxidant activity (% (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl picrylhydrazyl (DPPH) scavenging activity))), antimicrobial activity (microbroth dilution: Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), MBC/MIC ratio), and synergistic activities (Checkerboard assay: Fraction Inhibitory Concentration Index (FICI)). RESULTS Bioassay-guided fractionation of A. africana produced four fractions that displayed promising free radical scavenging activities in the ABTS (54-93)% and the DPPH (35-76)% assays in the ranking order of F1(93-54)>F4(81-58)>F2(74-58)>F3(72-55) and F3(77-42)>F1(64-46)>F4(55-44)>F2(47-35) respectively at a concentration range of 1.0-0.01 mg/mL. The fraction F1 (MBC: 2.5-5.0 mg/mL) and F4 (MBC: 1.25-10.0 mg/mL) exhibited broad spectrum of superior bactericidal effects than F2 (MBC≥100.0 mg/mL) and F3 (MBC: 12.5-100.0 mg/mL) against Staphylococcus mutans, Staphylococcus aureus, Escherichia coli, fluconazole-resistant Candida albicans, methicillin-resistant S. aureus, Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella typhi, and Candida albicans (standard strain). The two most active fractions (F1 and F4) reported synergistic effects (FICI≤0.5) against S. typhi whilst the F4 reported additional synergism against E. coli, K. pneumonia, and S. typhi when combined with ciprofloxacin. Furthermore, the two fractions reported synergistic effects against Escherichia coli, Klebsiella pneumonia, Salmonella typhi, and Pseudomonas aeruginosa when combined with tetracycline whilst F1 reported antifungal synergism against fluconazole resistant Candida albicans when combined with fluconazole and ketoconazole. CONCLUSION The study has confirmed the antioxidant, antimicrobial and synergistic uses of A. africana for the treatment of both infectious and non-infectious disease.
Collapse
Affiliation(s)
- Bright Yaw Vigbedor
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| | - Clement Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and TechnologyKumasi, Ghana
| | - Ralph Kwakye
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable DevelopmentPMB, Somanya, Ghana
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| | - Pius Kwashie
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| |
Collapse
|
24
|
Characteristics of antifungal utilization for hospitalized children in the United States. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2022; 2:e190. [PMID: 36505943 PMCID: PMC9726632 DOI: 10.1017/ash.2022.338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022]
Abstract
Objective To characterize antifungal prescribing patterns, including the indication for antifungal use, in hospitalized children across the United States. Design We analyzed antifungal prescribing data from 32 hospitals that participated in the SHARPS Antibiotic Resistance, Prescribing, and Efficacy among Children (SHARPEC) study, a cross-sectional point-prevalence survey conducted between June 2016 and December 2017. Methods Inpatients aged <18 years with an active systemic antifungal order were included in the analysis. We classified antifungal prescribing by indication (ie, prophylaxis, empiric, targeted), and we compared the proportion of patients in each category based on patient and antifungal characteristics. Results Among 34,927 surveyed patients, 2,095 (6%) received at least 1 systemic antifungal and there were 2,207 antifungal prescriptions. Most patients had an underlying oncology or bone marrow transplant diagnosis (57%) or were premature (13%). The most prescribed antifungal was fluconazole (48%) and the most common indication for antifungal use was prophylaxis (64%). Of 2,095 patients receiving antifungals, 79 (4%) were prescribed >1 antifungal, most often as targeted therapy (48%). The antifungal prescribing rate ranged from 13.6 to 131.2 antifungals per 1,000 patients across hospitals (P < .001). Conclusions Most antifungal use in hospitalized children was for prophylaxis, and the rate of antifungal prescribing varied significantly across hospitals. Potential targets for antifungal stewardship efforts include high-risk, high-utilization populations, such as oncology and bone marrow transplant patients, and specific patterns of utilization, including prophylactic and combination antifungal therapy.
Collapse
|
25
|
Kubiński K, Masłyk M, Janeczko M, Goldeman W, Nasulewicz-Goldeman A, Psurski M, Martyna A, Boguszewska-Czubara A, Cebula J, Goszczyński TM. Metallacarborane Derivatives as Innovative Anti- Candida albicans Agents. J Med Chem 2022; 65:13935-13945. [PMID: 36217958 DOI: 10.1021/acs.jmedchem.2c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infections caused by Candida species have increased significantly in the past decades and are among the leading causes of morbidity and mortality worldwide, resulting in serious public health problems. Currently, conventional antifungals are often ineffective as Candida spp. have developed growing resistance to systemic drugs. Since inorganic metallacarboranes are known to affect cellular events, new derivatives of these abiotic compounds were tested against Candida albicans. Compounds based on cobalt bis-dicarbollide [COSAN] were studied on Candida albicans strains, including a panel of 100 clinical isolates. The presented data prove that metallacarborane derivatives are effective against clinical isolates of Candida albicans, even those resistant to systemic drugs, and show synergistic potential in combination with amphotericin B, and low toxicity against human cells and Danio rerio embryos. This paper is a consequential step in the investigations of the broad spectrum and valuable future medical applications of metallacarboranes, especially in the fight against drug-resistant pathogens.
Collapse
Affiliation(s)
- Konrad Kubiński
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland
| | - Monika Janeczko
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Anna Nasulewicz-Goldeman
- Laboratory of Experimental Anticancer Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Mateusz Psurski
- Laboratory of Experimental Anticancer Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4A Street, 20-093 Lublin, Poland
| | - Jakub Cebula
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Tomasz M Goszczyński
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| |
Collapse
|
26
|
da Silva Neto JX, Dias LP, Lopes de Souza LA, Silva da Costa HP, Vasconcelos IM, Pereira ML, de Oliveira JTA, Cardozo CJP, Gonçalves Moura LFW, de Sousa JS, Carneiro RF, Lopes TDP, Bezerra de Sousa DDO. Insights into the structure and mechanism of action of the anti-candidal lectin Mo-CBP2 and evaluation of its synergistic effect and antibiofilm activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Kamli MR, Alzahrani EA, Albukhari SM, Ahmad A, Sabir JSM, Malik MA. Combination Effect of Novel Bimetallic Ag–Ni Nanoparticles with Fluconazole against Candida albicans. J Fungi (Basel) 2022; 8:jof8070733. [PMID: 35887488 PMCID: PMC9316949 DOI: 10.3390/jof8070733] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing frequency of antifungal drug resistance among pathogenic yeast “Candida” has posed an immense global threat to the public healthcare sector. The most notable species of Candida causing most fungal infections is Candida albicans. Furthermore, recent research has revealed that transition and noble metal combinations can have synergistic antimicrobial effects. Therefore, a one-pot seedless biogenic synthesis of Ag-Ni bimetallic nanoparticles (Ag–Ni NPs) using Salvia officinalis aqueous leaf extract is described. Various techniques, such as UV–vis, FTIR, XRD, SEM, EDX, and TGA, were used to validate the production of Ag-Ni NPs. The antifungal susceptibility of Ag-Ni NPs alone and in combination with fluconazole (FLZ) was tested against FLZ-resistant C. albicans isolate. Furthermore, the impacts of these NPs on membrane integrity, drug efflux pumps, and biofilms formation were evaluated. The MIC (1.56 μg/mL) and MFC (3.12 μg/mL) results indicated potent antifungal activity of Ag-Ni NPs against FLZ-resistant C. albicans. Upon combination, synergistic interaction was observed between Ag-Ni NPs and FLZ against C. albicans 5112 with a fractional inhibitory concentration index (FICI) value of 0.31. In-depth studies revealed that Ag-Ni NPs at higher concentrations (3.12 μg/mL) have anti-biofilm properties and disrupt membrane integrity, as demonstrated by scanning electron microscopy results. In comparison, morphological transition was halted at lower concentrations (0.78 μg/mL). From the results of efflux pump assay using rhodamine 6G (R6G), it was evident that Ag-Ni NPs blocks the efflux pumps in the FLZ-resistant C. albicans 5112. Targeting biofilms and efflux pumps using novel drugs will be an alternate approach for combatting the threat of multi-drug resistant (MDR) stains of C. albicans. Therefore, this study supports the usage of Ag-Ni NPs to avert infections caused by drug resistant strains of C. albicans.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (J.S.M.S.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elham A. Alzahrani
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
| | - Soha M. Albukhari
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (J.S.M.S.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
- Correspondence:
| |
Collapse
|
28
|
Priya A, Pandian SK. Biofilm and hyphal inhibitory synergistic effects of phytoactives piperine and cinnamaldehyde against Candida albicans. Med Mycol 2022; 60:6602366. [PMID: 35661216 DOI: 10.1093/mmy/myac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/11/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
Oral candidiasis, the most common mycotic infection of the human oral cavity is non-life-threatening yet if untreated may advance as systemic infections. Ability of Candida albicans to adapt sessile lifestyle imparts resistance to drugs and host immunity. Consequently, due to limited effectiveness of conventional antifungal treatment, novel therapeutic strategies are required. In the present study, synergistic interaction of phytochemicals, piperine and cinnamaldehyde against the biofilm and hyphal of C. albicans was evaluated. Minimum inhibitory concentration (MIC) and biofilm inhibitory concentration (BIC) of piperine and cinnamaldehyde against C. albicans were analysed through microbroth dilution assay and crystal violet staining method, respectively. Combinatorial biofilm and hyphal inhibitory effect were investigated through checkerboard assay. In vitro results were validated through gene expression analysis. BIC of piperine and cinnamaldehyde was determined to be 32 µg/mL and 64 µg/mL, respectively. Interaction between these two phytocomponents was found to be synergistic and six different synergistic antibiofilm combinations were identified. Microscopic analysis of biofilm architecture also evidenced the biofilm and surface adherence inhibitory potential of piperine and cinnamaldehyde combinations. Phenotypic switching between yeast and hyphal morphological forms was influenced by synergistic combinations. qPCR analysis corroborated the results of in vitro activities. nrg1 and trp1, the negative transcriptional regulators of filamentous growth were upregulated whereas other genes that are involved in biofilm formation, filamentous growth, adhesion etc were found to be downregulated. These proficient phytochemical combinations provide a new therapeutic avenue for the treatment of biofilm associated oral candidiasis and to combat the recurrent infections due to antibiotic resistance.
Collapse
Affiliation(s)
- Arumugam Priya
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, Tamil Nadu, India
| | | |
Collapse
|
29
|
Prakash SMU, Kabir MA. Repurposing vilanterol as a novel potential antifungal for Candida albicans: In-silico & in-vitro approach. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Yang L, Zhong L, Ma Z, Sui Y, Xie J, Liu X, Ma T. Antifungal effects of alantolactone on Candida albicans: An in vitro study. Biomed Pharmacother 2022; 149:112814. [PMID: 35290888 DOI: 10.1016/j.biopha.2022.112814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
The human fungal pathogen Candida albicans can cause many kinds of infections, including biofilm infections on medical devices, while the available antifungal drugs are limited to only a few. In this study, alantolactone (Ala) demonstrated antifungal activities against C. albicans, as well as other Candida species, with a MIC of 72 μg/mL. Ala could also inhibit the adhesion, yeast-to-hyphal transition, biofilm formation and development of C. albicans. The exopolysaccharide of biofilm matrix and extracellular phospholipase production could also be reduced by Ala treatment. Ala could increase permeability of C. albicans cell membrane and ROS contribute to the anti-biofilm activity of Ala. Overall, the present study suggests that Ala may provide a promising candidate for developing antifungal drugs against C. albicans infections.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jia'nan Xie
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Tonghui Ma
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
31
|
Inhibitory effect of a combination of baicalein and quercetin flavonoids against Candida albicans strains isolated from the female reproductive system. Fungal Biol 2022; 126:407-420. [DOI: 10.1016/j.funbio.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
|
32
|
Wu X, Abbas K, Yang Y, Li Z, Tedesco AC, Bi H. Photodynamic Anti-Bacteria by Carbon Dots and Their Nano-Composites. Pharmaceuticals (Basel) 2022; 15:487. [PMID: 35455484 PMCID: PMC9032997 DOI: 10.3390/ph15040487] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
The misuse of many types of broad-spectrum antibiotics leads to increased antimicrobial resistance. As a result, the development of a novel antibacterial agent is essential. Photodynamic antimicrobial chemotherapy (PACT) is becoming more popular due to its advantages in eliminating drug-resistant strains and providing broad-spectrum antibacterial resistance. Carbon dots (CDs), zero-dimensional nanomaterials with diameters smaller than 10 nm, offer a green and cost-effective alternative to PACT photosensitizers. This article reviewed the synthesis methods of antibacterial CDs as well as the recent progress of CDs and their nanocomposites in photodynamic sterilization, focusing on maximizing the bactericidal impact of CDs photosensitizers. This review establishes the base for future CDs development in the PACT field.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Khurram Abbas
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Yuxiang Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China;
| | - Antonio Claudio Tedesco
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China;
| |
Collapse
|
33
|
Kalimuthu S, Alshanta OA, Krishnamoorthy AL, Pudipeddi A, Solomon AP, McLean W, Leung YY, Ramage G, Neelakantan P. Small molecule based anti-virulence approaches against Candida albicans infections. Crit Rev Microbiol 2022; 48:743-769. [PMID: 35232325 DOI: 10.1080/1040841x.2021.2025337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fungi are considered "silent killers" due to the difficulty of, and delays in diagnosis of infections and lack of effective antifungals. This challenge is compounded by the fact that being eukaryotes, fungi share several similarities with human cellular targets, creating obstacles to drug discovery. Candida albicans, a ubiquitous microbe in the human body is well-known for its role as an opportunistic pathogen in immunosuppressed people. Significantly, C. albicans is resistant to all the three classes of antifungals that are currently clinically available. Over the past few years, a paradigm shift has been recommended in the management of C. albicans infections, wherein anti-virulence strategies are considered an alternative to the discovery of new antimycotics. Small molecules, with a molecular weight <900 Daltons, can easily permeate the cell membrane and modulate the signal transduction pathways to elicit desired virulence inhibitory actions against pathogens. This review dissects in-depth, the discoveries that have been made with small-molecule anti-virulence approaches to tackle C. albicans infections.
Collapse
Affiliation(s)
| | - Om Alkhir Alshanta
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Akshaya Lakshmi Krishnamoorthy
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Akhila Pudipeddi
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - William McLean
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Yiu Yan Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Gordon Ramage
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | | |
Collapse
|
34
|
Senthilganesh J, Kuppusamy S, Durairajan R, Subramanian S, Veerappan A, Paramasivam N. Phytolectin nanoconjugates in combination with standard antifungals curb multi-species biofilms and virulence of Vulvovaginal Candidiasis (VVC) causing Candida albicans and Non albicans Candida. Med Mycol 2021; 60:6484805. [PMID: 34958385 DOI: 10.1093/mmy/myab083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 12/23/2021] [Indexed: 11/15/2022] Open
Abstract
Vulvovaginal Candidiasis (VVC) is commonly occurring yeast infection caused by Candida species in women. Among Candida species, C. albicans is the predominant member that causes vaginal candidiasis followed by Candida glabrata. Biofilm formation by Candida albicans on the vaginal mucosal tissue leads to VVC infection and is one of the factors for a commensal organism to get into virulent form leading to disease. In addition to that, morphological switching from yeast to hyphal form increases the risk of pathogenesis as it aids in tissue invasion. In this study, jacalin, a phyto-lectin complexed Copper sulfide nanoparticles (NPs) have been explored to eradicate the mono and mixed species biofilms formed by fluconazole resistant C. albicans and C. glabrata isolated from VVC patients. NPs along with standard antifungals like micafungin and amphotericin B have been evaluated to explore interaction behaviour and we observed synergistic interactions between them. Microscopic techniques like light microscopy, phase contrast microscopy, scanning electron microscopy, confocal laser scanning microscopy were used to visualize the inhibition of biofilm by NPs and in synergistic combinations with standard antifungals. Real time PCR analysis was carried out to study the expression pattern of the highly virulent genes which are responsible for yeast to hyphal switch, drug resistance and biofilm formation upon treatment with NPs in combination with standard antifungals. The current study shows that lectin conjugated NPs with standard antifungals might be a different means to disrupt the mixed species population of Candida spp. that causes VVC.
Collapse
Affiliation(s)
- Jayasankari Senthilganesh
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Shruthi Kuppusamy
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Rubini Durairajan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Sivabala Subramanian
- Chemical Biology laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Anbazhagan Veerappan
- Chemical Biology laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| |
Collapse
|
35
|
Jothi R, Sangavi R, Kumar P, Pandian SK, Gowrishankar S. Catechol thwarts virulent dimorphism in Candida albicans and potentiates the antifungal efficacy of azoles and polyenes. Sci Rep 2021; 11:21049. [PMID: 34702898 PMCID: PMC8548306 DOI: 10.1038/s41598-021-00485-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
The present study was deliberately focused to explore the antivirulence efficacy of a plant allelochemical-catechol against Candida albicans, and attempts were made to elucidate the underlying mechanisms as well. Catechol at its sub-MIC concentrations (2-256 μg/mL) exhibited a dose dependent biofilm as well as hyphal inhibitory efficacies, which were ascertained through both light and fluorescence microscopic analyses. Further, sub-MICs of catechol displayed remarkable antivirulence efficacy, as it substantially inhibited C. albicans' virulence enzymes i.e. secreted hydrolases. Notably, FTIR analysis divulged the potency of catechol in effective loosening of C. albicans' exopolymeric matrix, which was further reinforced using EPS quantification assay. Although, catechol at BIC (256 μg/mL) did not disrupt the mature biofilms of C. albicans, their initial adherence was significantly impeded by reducing their hydrophobic nature. Besides, FTIR analysis also unveiled the ability of catechol in enhancing the production of farnesol-a metabolite of C. albicans, whose accumulation naturally blocks yeast-hyphal transition. The qPCR data showed significant down-regulation of candidate genes viz., RAS1, HWP1 and ALS3 which are the key targets of Ras-cAMP-PKA pathway -the pathway that contribute for C. albicans' pathogenesis. Interestingly, the up-regulation of TUP1 (a gene responsible for farnesol-mediated hyphal inhibition) during catechol exposure strengthen the speculation of catechol triggered farnesol-mediated hyphal inhibition. Furthermore, catechol profusely enhanced the fungicidal efficacy of certain known antifungal agent's viz., azoles (ketoconazole and miconazole) and polyenes (amphotericin-B and nystatin).
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Ravichellam Sangavi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Ponnuchamy Kumar
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | | | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
36
|
Tong Y, Zhang J, Wang L, Wang Q, Huang H, Chen X, Zhang Q, Li H, Sun N, Liu G, Zhang B, Song F, Alterovitz G, Dai H, Zhang L. Hyper-Synergistic Antifungal Activity of Rapamycin and Peptide-Like Compounds against Candida albicans Orthogonally via Tor1 Kinase. ACS Infect Dis 2021; 7:2826-2835. [PMID: 34514778 DOI: 10.1021/acsinfecdis.1c00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Candida albicans is a life-threatening, opportunistic fungal pathogen with a high mortality rate, especially within the immunocompromised populations. Multidrug resistance combined with limited antifungal drugs even worsens the situation. Given the facts that the current drug discovery strategies fail to deliver sufficient antifungals for the emerging multidrug resistance, we urgently need to develop novel approaches. By systematically investigating what caused the different antifungal activity of rapamycin in RPMI 1640 and YPD, we discovered that peptide-like compounds can generate a hyper-synergistic antifungal effect with rapamycin on both azole-resistant and sensitive clinical C. albicans isolates. The minimum inhibitory concentration (MIC) of rapamycin reaches as low as 2.14 nM (2-9 μg/mL), distinguishing this drug combination as a hyper-synergism by having a fractional inhibitory concentration (FIC) index ≤ 0.05 from the traditional defined synergism with an FIC index < 0.5. Further studies reveal that this hyper-synergism orthogonally targets the protein Tor1 and affects the TOR signaling pathway in C. albicans, very likely without crosstalk to the stress response, Ras/cAMP/PKA, or calcineurin signaling pathways. These results lead to a novel strategy of controlling drug resistant C. albicans infection in the immunocompromised populations. Instead of prophylactically administering other antifungals with undesirable side-effects for extended durations, we now only need to coadminister some nontoxic peptide additives. The novel antifungal strategy approached in this study not only provides a new therapeutic method to control fungal infections in rapamycin-taking immunocompromised patients but also mitigates the immunosuppressive side-effects of rapamycin, repurposing rapamycin as an antifungal agent with wide applications.
Collapse
Affiliation(s)
- Yaojun Tong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Luoqiang Wang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Beijing 100101, China
- Anhui University, Hefei 230601, China
| | - Qinqin Wang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Beijing 100101, China
| | - Huang Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangyin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hantian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nuo Sun
- Georgetown University Medical Center, Department of Microbiology and Immunology, Washington, DC 20057, United States
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | - Fuhang Song
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Beijing 100101, China
| | - Gil Alterovitz
- National Artificial Intelligence Institute, U.S. Department of Veterans Affairs, Washington, DC 20420, United States
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
37
|
Multilayer Films Based on Chitosan/Pectin Polyelectrolyte Complexes as Novel Platforms for Buccal Administration of Clotrimazole. Pharmaceutics 2021; 13:pharmaceutics13101588. [PMID: 34683881 PMCID: PMC8538955 DOI: 10.3390/pharmaceutics13101588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
Buccal films are recognized as easily applicable, microbiologically stable drug dosage forms with good retentivity at the mucosa intended for the therapy of oromucosal conditions, especially infectious diseases. Multilayer films composed of layers of oppositely charged polymers separated by ionically interacting polymeric chains creating polyelectrolyte complexes represent very interesting and relatively poorly explored area. We aimed to develop the antifungal multilayer systems composed of cationic chitosan and anionic pectin as potential platforms for controlled delivery of clotrimazole. The systems were pharmaceutically characterized with regard to inter alia their release kinetics under different pH conditions, physicomechanical, or mucoadhesion properties with using an animal model of the buccal mucosa. The antifungal activity against selected Candida sp. and potential cytotoxicity with regard to human gingival fibroblasts were also evaluated. Interactions between polyions were characterized with Fourier transform infrared spectroscopy. Different clotrimazole distribution in the films layers highly affected their in vitro dissolution profile. The designed films were recognized as intelligent pH-responsive systems with strong antifungal effect and satisfactory safety profile. As addition of chitosan resulted in the improved antifungal behavior of the drug, the potential utilization of the films in resistant cases of oral candidiasis might be worth of further exploration.
Collapse
|
38
|
Fatahi Dehpahni M, Chehri K, Azadbakht M. Effect of Silver Nanoparticles and L-Carnitine Supplement on Mixed Vaginitis Caused by Candida albicans/ Staphylococcus aureus in Mouse Models: An Experimental Study. Curr Microbiol 2021; 78:3945-3956. [PMID: 34542662 DOI: 10.1007/s00284-021-02652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
The evolution of antimicrobial-resistant pathogens is a global health and development threat. Nanomedicine is rapidly becoming the main driving force behind ongoing changes in antimicrobial studies. Among nanoparticles, silver (AgNPs) have attracted attention due to their versatile properties. The study aimed to investigate the effects of AgNPs and L-carnitine (LC) on mixed Candida albicans and Staphylococcus aureus in the mice vaginitis model. Study of antimicrobial activity of AgNPs evaluated by Minimum Inhibitory Concentration (MIC) and Minimum Biocidal Concentration (MBC) assays. AgNPs inhibited biofilm formation of microbial strains, which was tested by using crystal violet staining. In the current study, we evaluated the effects of AgNPs and LC in NMRI mice infected intravaginally with C. albicans/ S. aureus for two weeks. The proportion of mice in each stage of the estrous cycle (proestrus, estrus, metestrus, and diestrus) was examined. Histological properties were assessed by hematoxylin/ eosin (H&E) staining of formalin-fixed, paraffin-embedded vaginal tissue sections. Based on the results, MICs of AgNPs against S. aureus, C. albicans, and their combination were 252.3, 124.8, and 501.8 ppm, and their minimum biofilm inhibitory concentration (MBIC) was 500, 250, and 1000 ppm, respectively. The estrous cycle in the treated group was similar to the control. Vaginal histology and cytology showed that LC can improve tissue damages caused by vaginitis and AgNPs. This study demonstrates the promising use of AgNPs as antimicrobial agents and the combination of AgNPs/ LC could be a great future alternative in the control of vaginitis.
Collapse
Affiliation(s)
| | - Khosrow Chehri
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Mehri Azadbakht
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
39
|
Darwish RM, AlKawareek MY, Bulatova NR, Alkilany AM. Silver nanoparticles, a promising treatment against clinically important fluconazole-resistant Candida glabrata. Lett Appl Microbiol 2021; 73:718-724. [PMID: 34510497 DOI: 10.1111/lam.13560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Resistance to azole antifungal agents is a challenging limitation in Candida glabrata treatment. It is associated with decreased intracellular concentrations of antifungal agents as a result of overexpression of efflux pumps on the cellular plasma membranes. This work evaluates the potential of silver nanoparticles (AgNPs) to reverse the resistance of fungal cells to fluconazole. Silver nanoparticles were prepared using wet chemical method and characterised by UV-Vis spectrophotometry, dynamic light scattering, and zeta potential. Broth microdilution and pour plates methods were used to study the anticandidal activity using two C. glabrata fluconazole-resistant strains (DSY565 and CBS138) known to overexpress active efflux pumps, and a standard fluconazole sensitive strain ATCC 22553. Silver nanoparticles-fluconazole combinations decreased concentrations of fluconazole substantially without compromising the activity. These findings suggest that AgNPs enhance the efficacy of fluconazole and offer a promising application in therapy of C. glabrata infections.
Collapse
Affiliation(s)
- R M Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - M Y AlKawareek
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - N R Bulatova
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - A M Alkilany
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
40
|
Šimon P, Tichotová M, García Gallardo M, Procházková E, Baszczyňski O. Phosphate-Based Self-Immolative Linkers for Tuneable Double Cargo Release. Chemistry 2021; 27:12763-12775. [PMID: 34058033 DOI: 10.1002/chem.202101805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Phosphorus-based self-immolative (SI) linkers offer a wide range of applications, such as smart materials and drug-delivery systems. Phosphorus SI linkers are ideal candidates for double-cargo delivery platforms because they have a higher valency than carbon. A series of substituted phosphate linkers was designed for releasing two phenolic cargos through SI followed by chemical hydrolysis. Suitable modifications of the lactate spacer increased the cargo release rate significantly, from 1 day to 2 hours or 5 minutes, as shown for linkers containing p-fluoro phenol. In turn, double cargo linkers bearing p-methyl phenol released their cargo more slowly (4 days, 4 hours, and 15 minutes) than their p-fluoro analogues. The α-hydroxyisobutyrate linker released both cargos in 25 minutes. Our study expands the current portfolio of SI constructs by providing a double cargo delivery option, which is crucial to develop universal SI platforms.
Collapse
Affiliation(s)
- Petr Šimon
- Faculty of Science, Charles University, Prague, 128 43, Czech Republic
| | - Markéta Tichotová
- Faculty of Science, Charles University, Prague, 128 43, Czech Republic.,Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, 166 10, Czech Republic
| | | | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, 166 10, Czech Republic
| | - Ondřej Baszczyňski
- Faculty of Science, Charles University, Prague, 128 43, Czech Republic.,Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, 166 10, Czech Republic
| |
Collapse
|
41
|
Bhattacharya R, Rolta R, Dev K, Sourirajan A. Synergistic potential of essential oils with antibiotics to combat fungal pathogens: Present status and future perspectives. Phytother Res 2021; 35:6089-6100. [PMID: 34324240 DOI: 10.1002/ptr.7218] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
The steady rise in the emergence of antibiotic-resistant fungal pathogens has rendered most of the clinical antibiotics available in the market to be ineffective. Therefore, alternative strategies are required to tackle drug-resistant fungal infections. An effective solution is to combine the available antibiotics with adjuvants such as phytochemicals or essential oils to enhance the efficacy and activity of antibiotics. The present review aims to summarize the studies on synergistic combinations of essential oils and anti-fungal antibiotics. The current findings, methods used for measuring synergistic effects, possible mechanisms of synergism, and future perspectives for developing synergistic EO-antibiotic therapeutic formulations are discussed in this study. Several essential oils exhibit synergistic effect in combination with antibiotics against human fungal pathogens such as Candida albicans. The possible mechanisms of synergy exhibited by essential oil- antibiotic combinations in fungi include disruption of cell wall structure/ ergosterol biosynthesis pathway, enhanced transdermal penetration of antibiotics, alterations in membrane permeability, intracellular leakage of cellular contents, inhibition of germ tube formation or fungal biofilm formation, and competition for a primary target. Synergistic combination of essential oils and antibiotics can prove to be a valid and pragmatic alternative to develop drugs with increased drug-efficacy, and low toxicity.
Collapse
Affiliation(s)
- Riya Bhattacharya
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
42
|
Zhou C, Peng C, Shi C, Jiang M, Chau JHC, Liu Z, Bai H, Kwok RTK, Lam JWY, Shi Y, Tang BZ. Mitochondria-Specific Aggregation-Induced Emission Luminogens for Selective Photodynamic Killing of Fungi and Efficacious Treatment of Keratitis. ACS NANO 2021; 15:12129-12139. [PMID: 34181408 DOI: 10.1021/acsnano.1c03508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development of effective antifungal agents remains a big challenge in view of the close evolutionary relationship between mammalian cells and fungi. Moreover, rapid mutations of fungal receptors at the molecular level result in the emergence of drug resistance. Here, with low tendency to develop drug-resistance, the subcellular organelle mitochondrion is exploited as an alternative target for efficient fungal killing by photodynamic therapy (PDT) of mitochondrial-targeting luminogens with aggregation-induced emission characteristics (AIEgens). With cationic isoquinolinium (IQ) moiety and proper hydrophobicity, three AIEgens, namely, IQ-TPE-2O, IQ-Cm, and IQ-TPA, can preferentially accumulate at the mitochondria of fungi over the mammalian cells. Upon white light irradiation, these AIEgens efficiently generate reactive 1O2, which causes irreversible damage to fungal mitochondria and further triggers the fungal death. Among them, IQ-TPA shows the highest PDT efficiency against fungi and negligible toxicity to mammalian cells, achieving the selective and highly efficient killing of fungi. Furthermore, we tested the clinical utility of this PDT strategy by treating fungal keratitis on a fungus-infected rabbit model. It was demonstrated that IQ-TPA presents obviously better therapeutic effects as compared with the clinically used rose bengal, suggesting the success of this PDT strategy and its great potential for clinical treatment of fungal infections.
Collapse
Affiliation(s)
- Chengcheng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Chen Peng
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chunzi Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Meijuan Jiang
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Joe H C Chau
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Zhiyang Liu
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Haotian Bai
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ben Zhong Tang
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Shenzhen Institute of Aggregate Science and Technology, School of Science & Engineering, The Chinese University of Hong Kong, Shenzhen, Longgang, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| |
Collapse
|
43
|
Sartain E, Schoeppler K, Crowther B, Smith JB, Abidi MZ, Grazia TJ, Steele M, Gleason T, Porter K, Gray A. Perioperative anidulafungin combined with triazole prophylaxis for the prevention of early invasive candidiasis in lung transplant recipients. Transpl Infect Dis 2021; 23:e13692. [PMID: 34270137 DOI: 10.1111/tid.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Invasive candidiasis (IC) is a substantial cause of morbidity and mortality among lung transplant recipients (LTRs). Postoperative factors include prolonged hospital stay, central lines, delayed chest closure, and dehiscence increase IC risk. Correspondingly, current guidelines propose targeted IC coverage early posttransplant with fluconazole or an echinocandin. METHODS This retrospective analysis was performed on LTRs from January 2016 to January 2020 and evaluated effectiveness of a recent protocol utilizing perioperative anidulafungin for early IC prevention in addition to long-term triazole antifungal prophylaxis. Prior to this protocol, patients were primarily established on itraconazole prophylaxis alone. The primary endpoint was proven or probable IC within 90 days after transplant. Multivariable logistic regression modeling was used to assess risk factors for invasive fungal infection (IFI). RESULTS Among 144 LTRs, there was a numerically lower incidence of IC in the protocol group, although not statistically significant (6% vs. 13%, p = 0.16). Incidence of proven or probable IFI was 7.5% in the protocol cohort and 19.5% in the pre-protocol cohort (p = 0.038). In multivariable analysis, when controlling for lung allocation score (OR 1.04, 95% CI 1.01-1.08), donor perioperative culture with fungal growth (OR 2.92, 95% CI 1.02-8.92), and dehiscence (OR 3.54, 95% CI 1.14-10.85), protocol cohort was not significantly associated with IFI (OR 0.41, 95% CI 0.12-1.23). CONCLUSIONS To our knowledge, this is the first study investigating combination triazole/echinocandin use in the early post-lung transplant period. These findings demonstrate that in-hospital anidulafungin offers unclear benefit for early IC prevention when used in combination with triazole prophylaxis.
Collapse
Affiliation(s)
- Emily Sartain
- Department of Pharmacy, University of Colorado Hospital, Aurora, Colorado, USA
| | - Kelly Schoeppler
- Department of Pharmacy, University of Colorado Hospital, Aurora, Colorado, USA
| | - Barrett Crowther
- Department of Pharmacy, University of Colorado Hospital, Aurora, Colorado, USA
| | - Joshua B Smith
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Maheen Z Abidi
- Division of Infectious Disease, Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Todd J Grazia
- Division of Pulmonary Diseases, Section of Advanced Lung Disease and Lung Transplantation, Baylor University Medical Center, Dallas, Texas, USA
| | - Mark Steele
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Terri Gleason
- Transplant Center, University of Colorado Hospital, Aurora, Colorado, USA
| | - Krista Porter
- Transplant Center, University of Colorado Hospital, Aurora, Colorado, USA
| | - Alice Gray
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado, Denver, Colorado, USA
| |
Collapse
|
44
|
Nelson BN, Beakley SG, Posey S, Conn B, Maritz E, Seshu J, Wozniak KL. Antifungal activity of dendritic cell lysosomal proteins against Cryptococcus neoformans. Sci Rep 2021; 11:13619. [PMID: 34193926 PMCID: PMC8245489 DOI: 10.1038/s41598-021-92991-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Cryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.
Collapse
Affiliation(s)
- Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Savannah G Beakley
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Sierra Posey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Brittney Conn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Emma Maritz
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Janakiram Seshu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, San Antonio, TX, USA
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA.
| |
Collapse
|
45
|
Lokočová K, Maťátková O, Vaňková E, Kolouchová I, Čejková A, Masák J. Synergistic Inhibitory Effect of Chitosan and Amphotericin B on Planktonic and Biofilm Populations of C. albicans, C. parapsilosis and C. krusei. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Giacone L, Cordisco E, Garrido MC, Petenatti E, Sortino M. Photodynamic activity of Tagetes minuta extracts against superficial fungal infections. Med Mycol 2021; 58:797-809. [PMID: 31724710 DOI: 10.1093/mmy/myz114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/28/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
Candida and dermatophyte species are the most common causes of superficial mycoses because their treatment can be difficult due to limitations of current antifungal drugs in terms of toxicity, bioavailability, interactions, narrow-spectrum activity, and development of resistance. Photodynamic therapy (PDT) involves the topical administration of a photosensitizer in combination with light of an appropriate wavelength and molecular oxygen that produces reactive oxygen species (ROS), which promote damage to several vital components of the microorganism. Tagetes species are known as a source of thiophenes, biologically active compounds whose antifungal activity is enhanced by irradiation with UVA. The present investigation evaluated Tagetes minuta extracts as a photosensitizer on growth of Candida and dermatophytes and their effect on Candida virulence factors. T. minuta root hexane and dichloromethane extracts demonstrated high photodynamic antifungal activity. Bioautographic assays and chromatographic analysis revealed the presence of five thiophenes with reported photodynamic antifungal activities under UVA. Analysis of ROS production indicated that both type I and II reactions were involved in the activity of the extracts. In addition, the extracts inhibited virulence factors of Candida, such as adherence to epithelial surfaces and germ tube formation and showed efficacy against different Candida morphologies: budding cells, cells with germ tube and biofilms. Results suggested that PDT with T. minuta extracts might become a valuable alternative to the already established antifungal drugs for the treatment of superficial fungal infections.
Collapse
Affiliation(s)
- Lucía Giacone
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Estefanía Cordisco
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - María Clara Garrido
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Elisa Petenatti
- Herbario, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
| | - Maximiliano Sortino
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.,Centro de Referencia de Micología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
47
|
Rhimi W, Aneke CI, Annoscia G, Otranto D, Boekhout T, Cafarchia C. Effect of chlorogenic and gallic acids combined with azoles on antifungal susceptibility and virulence of multidrug-resistant Candida spp. and Malassezia furfur isolates. Med Mycol 2021; 58:1091-1101. [PMID: 32236482 DOI: 10.1093/mmy/myaa010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023] Open
Abstract
Chlorogenic acid (CHA) and gallic acid (GA) are safe natural phenolic compounds that are used as enhancers of some drugs in influencing antioxidant, anticancer, and antibacterial activities. Among fungi, Candida spp. and Malassezia spp. are characterized by an increasing prevalence of multidrug resistance phenomena and by a high morbidity and mortality of their infections. No data are available about the efficacy of CHA and GA combined with azoles on the antifungal susceptibility and on the virulence of both fungi. Therefore, their antifungal and antivirulence effects have been tested in combination with fluconazole (FLZ) or ketoconazole (KTZ) on 23 Candida spp. and 8 M. furfur isolates. Broth microdilution chequerboard, time-kill studies, and extracellular enzymes (phospholipase and hemolytic) activities were evaluated, displaying a synergistic antifungal action between CHA or GA and FLZ or KTZ on C. albicans, C. bovina, and C. parapsilosis, and antagonistic antifungal effects on M. furfur and Pichia kudriavzevii (Candida krusei) isolates. The time-kill studies confirmed the chequerboard findings, showing fungicidal inhibitory effect only when the GA was combined with azoles on Candida strains. However, the combination of phenolics with azoles had no effect on the virulence of the tested isolates. Our study indicates that the combination between natural products and conventional drugs could be an efficient strategy for combating azole resistance and for controlling fungistatic effects of azole drugs.
Collapse
Affiliation(s)
- Wafa Rhimi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Aldo Moro, Bari, Italy
| | - Chioma Inyang Aneke
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Aldo Moro, Bari, Italy.,Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Giada Annoscia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Aldo Moro, Bari, Italy
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Aldo Moro, Bari, Italy
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,The Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.,Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Aldo Moro, Bari, Italy
| |
Collapse
|
48
|
Silver nanoparticles offer a synergistic effect with fluconazole against fluconazole-resistant Candida albicans by abrogating drug efflux pumps and increasing endogenous ROS. INFECTION GENETICS AND EVOLUTION 2021; 93:104937. [PMID: 34029724 DOI: 10.1016/j.meegid.2021.104937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES A frequent emergence of drug resistance has been observed and posed great threat to global public health recently. This work aimed to investigate the potential synergistic effect and the underlying mechanisms of AgNPs-fluconazole combination more extensively through 2 clinically isolated fluconazole-resistant Candida albicans (C. albicans) strains. METHODS Antifungal properties of AgNPs and fluconazole alone or together against planktonic cells and biofilms were tested. Cellular and molecular targets associated with fluconazole resistance were monitored after AgNPs treatment. Antifungal potential of AgNPs-fluconazole combination was also explored in vivo using a mouse model of disseminated candidiasis. Tissue burden and survival rate were analyzed. RESULTS The results indicated that AgNPs worked synergistically with fluconazole against both planktonic cells of fluconazole-resistant C. albicans and biofilms formed <12 h. AgNPs treatment down-regulated ERG1, ERG11, ERG25, and CDR2, decreased membrane ergosterol levels and membrane fluidity, reduced membrane content of Cdr1p, Cdr2p, and thus efflux bump activity. The elevated ROS production was also a likely cause of the synergistic effect. In vivo, AgNPs and fluconazole combination significantly decreased the fungal burden and improved the survival rate of infected mice. CONCLUSION In conclusion, these results further confirm that AgNPs-fluconazole combination is a hopeful strategy for the treatment of fluconazole-resistant fungal infections.
Collapse
|
49
|
Uppar V, Chandrashekharappa S, Shivamallu C, P S, Kollur SP, Ortega-Castro J, Frau J, Flores-Holguín N, Basarikatti AI, Chougala M, Mohan M M, Banuprakash G, Jayadev, Venugopala KN, Nandeshwarappa BP, Veerapur R, Al-Kheraif AA, Elgorban AM, Syed A, Mudnakudu-Nagaraju KK, Padmashali B, Glossman-Mitnik D. Investigation of Antifungal Properties of Synthetic Dimethyl-4-Bromo-1-(Substituted Benzoyl) Pyrrolo[1,2-a] Quinoline-2,3-Dicarboxylates Analogues: Molecular Docking Studies and Conceptual DFT-Based Chemical Reactivity Descriptors and Pharmacokinetics Evaluation. Molecules 2021; 26:2722. [PMID: 34066433 PMCID: PMC8124935 DOI: 10.3390/molecules26092722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, frequently colonizes immune-compromised patients and causes mild to severe systemic reactions. Only few antifungal drugs are currently in use for therapeutic treatment. However, evolution of a drug-resistant C. albicans fungal pathogen is of major concern in the treatment of patients, hence the clinical need for novel drug design and development. In this study, in vitro screening of novel putative pyrrolo[1,2-a]quinoline derivatives as the lead drug targets and in silico prediction of the binding potential of these lead molecules against C. albicans pathogenic proteins, such as secreted aspartic protease 3 (SAP3; 2H6T), surface protein β-glucanase (3N9K) and sterol 14-alpha demethylase (5TZ1), were carried out by molecular docking analyses. Further, biological activity-based QSAR and theoretical pharmacokinetic analysis were analyzed. Here, in vitro screening of novel analogue derivatives as drug targets against C. albicans showed inhibitory potential in the concentration of 0.4 µg for BQ-06, 07 and 08, 0.8 µg for BQ-01, 03, and 05, 1.6 µg for BQ-04 and 12.5 µg for BQ-02 in comparison to the standard antifungal drug fluconazole in the concentration of 30 µg. Further, in silico analysis of BQ-01, 03, 05 and 07 analogues docked on chimeric 2H6T, 3N9K and 5TZ1 revealed that these analogues show potential binding affinity, which is different from the therapeutic antifungal drug fluconazole. In addition, these molecules possess good drug-like properties based on the determination of conceptual Density Functional Theory (DFT)-based descriptors, QSAR and pharmacokinetics. Thus, the study offers significant insight into employing pyrrolo[1,2-a]quinoline analogues as novel antifungal agents against C. albicans that warrants further investigation.
Collapse
Affiliation(s)
- Vijayakumar Uppar
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi 591156, Karnataka, India; (V.U.); (A.I.B.)
| | - Sandeep Chandrashekharappa
- Institute for Stem Cell Science and Regenerative Medicine, NCBS, TIFR, GKVK-Campus Bellary road, Bengaluru 560065, Karnataka, India;
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) 226002, India;
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India; (C.S.); (M.M.M.)
| | - Sushma P
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) 226002, India;
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru 570026, Karnataka, India;
| | - Joaquín Ortega-Castro
- Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Malllorca, Spain; (J.O.-C.); (J.F.)
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Malllorca, Spain; (J.O.-C.); (J.F.)
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih 31136, Mexico; (N.F.-H.); (D.G.-M.)
| | - Atiyaparveen I. Basarikatti
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi 591156, Karnataka, India; (V.U.); (A.I.B.)
| | - Mallikarjun Chougala
- Department of Biotechnology, JSS College of Arts, Commerce and Science (Autonomous), Mysore 570025, Karnataka, India;
| | - Mrudula Mohan M
- Department of Biotechnology & Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India; (C.S.); (M.M.M.)
| | - Govindappa Banuprakash
- Department of Chemistry, SJB Institute of Technology, Bengaluru 560060, Kengeri, India; (G.B.); (J.)
| | - Jayadev
- Department of Chemistry, SJB Institute of Technology, Bengaluru 560060, Kengeri, India; (G.B.); (J.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Belakatte P. Nandeshwarappa
- Department of Studies in Chemistry, Shivagangothri, Davangere University, Davangere 577007, Karnataka, India;
| | - Ravindra Veerapur
- Department of Metallurgy and Materials Engineering, Malawi Institute of Technology, Malawi University of Science and Technology, P.O. Box-5916 Limbe, Malawi;
| | - Abdulaziz A. Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.E.); (A.S.)
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.E.); (A.S.)
| | - Kiran K. Mudnakudu-Nagaraju
- Department of Biotechnology & Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India; (C.S.); (M.M.M.)
| | - Basavaraj Padmashali
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi 591156, Karnataka, India; (V.U.); (A.I.B.)
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih 31136, Mexico; (N.F.-H.); (D.G.-M.)
| |
Collapse
|
50
|
Tefiani I, Lahbib Seddiki SM, Yassine Mahdad M. In vitro activities of Traganum nudatum and Mentha pulegium extracts combined with amphotericin B against Candida albicans in production of hydrolytic enzymes. Curr Med Mycol 2021; 6:27-32. [PMID: 33834140 PMCID: PMC8018827 DOI: 10.18502/cmm.6.3.4499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose : Candida albicans is an important microorganism in the normal flora of a healthy subject; however, it has an expedient pathogenic character that induces hydrolytic virulence. Regarding this, the present study aimed to find an in vitro alternative that could reduce the virulence of this yeast. Materials and Methods: For the purpose of the study, the effect of amphotericin B (AmB) combined with the extract of Traganum nudatum (E1) or Mentha pulegium (E2) was evaluated against the hydrolytic activities of esterase, protease, and phospholipase. This effect was determined by calculating the minimum inhibitory concentration (MIC), used to adjust the extract/AmB mixtures in culture media. Results: The evaluated Pz values, which corresponded to the different enzymatic activities, showed a decrease in the hydrolytic activities of C. albicans strains after the addition of E1/AmB and E2/AmB combinations at descending concentrations (lower than the obtained MICs). Conclusion: Based on the findings, it would be possible to reduce the pathogenesis of this species without destabilizing the balance of the flora.
Collapse
Affiliation(s)
- Ikram Tefiani
- Department of Antifungal Antibiotic, Physico-Chemical Synthesis, and Biological Activity, University of Tlemcen, Tlemcen, Algeria
| | - Sidi Mohammed Lahbib Seddiki
- Department of Antifungal Antibiotic, Physico-Chemical Synthesis, and Biological Activity, University of Tlemcen, Tlemcen, Algeria.,University Center of Naâma, Naâma, Algeria
| | - Moustafa Yassine Mahdad
- University Center of Naâma, Naâma, Algeria.,Department of Physiology, Physiopathology, and Biochemistry of Nutrition, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|