1
|
Ji S, Li C, Liu M, Liu Y, Jiang L. Targeting New Functions and Applications of Bacterial Two-Component Systems. Chembiochem 2024; 25:e202400392. [PMID: 38967093 DOI: 10.1002/cbic.202400392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
Two-component signal transduction systems (TCSs) are regulatory systems widely distributed in eubacteria, archaea, and a few eukaryotic organisms, but not in mammalian cells. A typical TCS consists of a histidine kinase and a response regulator protein. Functional and mechanistic studies on different TCSs have greatly advanced the understanding of cellular phosphotransfer signal transduction mechanisms. In this concept paper, we focus on the His-Asp phosphotransfer mechanism, the ATP synthesis function, antimicrobial drug design, cellular biosensors design, and protein allostery mechanisms based on recent TCS investigations to inspire new applications and future research perspectives.
Collapse
Affiliation(s)
- Shixia Ji
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Conggang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Maili Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yixiang Liu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ling Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
2
|
Bisht R, Charlesworth PD, Sperandeo P, Polissi A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens 2024; 13:889. [PMID: 39452760 PMCID: PMC11510100 DOI: 10.3390/pathogens13100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health threat, necessitating immediate actions to develop novel antimicrobial strategies and enforce strong stewardship of existing antibiotics to manage the emergence of drug-resistant strains. This issue is particularly concerning when it comes to Gram-negative bacteria, which possess an almost impenetrable outer membrane (OM) that acts as a formidable barrier to existing antimicrobial compounds. This OM is an asymmetric structure, composed of various components that confer stability, fluidity, and integrity to the bacterial cell. The maintenance and restoration of membrane integrity are regulated by envelope stress response systems (ESRs), which monitor its assembly and detect damages caused by external insults. Bacterial communities encounter a wide range of environmental niches to which they must respond and adapt for survival, sustenance, and virulence. ESRs play crucial roles in coordinating the expression of virulence factors, adaptive physiological behaviors, and antibiotic resistance determinants. Given their role in regulating bacterial cell physiology and maintaining membrane homeostasis, ESRs present promising targets for drug development. Considering numerous studies highlighting the involvement of ESRs in virulence, antibiotic resistance, and alternative resistance mechanisms in pathogens, this review aims to present these systems as potential drug targets, thereby encouraging further research in this direction.
Collapse
Affiliation(s)
| | | | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (R.B.); (P.D.C.); (A.P.)
| | | |
Collapse
|
3
|
Dołoto A, Bąk E, Batóg G, Piątkowska-Chmiel I, Herbet M. Interactions of antidepressants with concomitant medications-safety of complex therapies in multimorbidities. Pharmacol Rep 2024; 76:714-739. [PMID: 39012418 PMCID: PMC11294384 DOI: 10.1007/s43440-024-00611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Depression is the fourth most serious disease in the world. Left untreated, it is a cause of suicide attempts, emergence or exacerbation worsening of serious diseases, bodily and mental disorders, as well as increased risk of cardiovascular diseases, stroke, diabetes, and obesity, as well as endocrine and neurological diseases. Frequent coexistence of depression and other diseases requires the simultaneous use of several drugs from different therapeutic groups, which very often interact and intensify comorbidities, sometimes unrelated mechanisms. Sufficient awareness of potential drug interactions is critical in clinical practice, as it allows both to avoid disruption of proper pharmacotherapy and achieve substantive results. Therefore, this review aims to analyze the interactions of antidepressants with other concomitant medications. Against the backdrop of experimental research and a thorough analysis of the up-to-date literature, the authors discuss in detail the mechanisms and effects of action of individual drug interactions and adaptogens, including the latest antidepressants.
Collapse
Affiliation(s)
- Anna Dołoto
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8B Street, 20-090, Lublin, Poland
| | - Ewelina Bąk
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8B Street, 20-090, Lublin, Poland
| | - Gabriela Batóg
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8B Street, 20-090, Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8B Street, 20-090, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8B Street, 20-090, Lublin, Poland.
| |
Collapse
|
4
|
Gadar K, McCarthy RR. Using next generation antimicrobials to target the mechanisms of infection. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:11. [PMID: 38686217 PMCID: PMC11057201 DOI: 10.1038/s44259-023-00011-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 05/02/2024]
Abstract
The remarkable impact of antibiotics on human health is being eroded at an alarming rate by the emergence of multidrug resistant pathogens. There is a recognised consensus that new strategies to tackle infection are urgently needed to limit the devasting impact of antibiotic resistance on our global healthcare infrastructure. Next generation antimicrobials (NGAs) are compounds that target bacterial virulence factors to disrupt pathogenic potential without impacting bacterial viability. By disabling the key virulence factors required to establish and maintain infection, NGAs make pathogens more vulnerable to clearance by the immune system and can potentially render them more susceptible to traditional antibiotics. In this review, we discuss the developing field of NGAs and how advancements in this area could offer a viable standalone alternative to traditional antibiotics or an effective means to prolong antibiotic efficacy when used in combination.
Collapse
Affiliation(s)
- Kavita Gadar
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| |
Collapse
|
5
|
Andalibi A, Veneziano R, Paige M, Buschmann M, Haymond A, Espina V, Luchini A, Liotta L, Bishop B, Van Hoek M. Drug discovery efforts at George Mason University. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:270-274. [PMID: 36921802 DOI: 10.1016/j.slasd.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
With over 39,000 students, and research expenditures in excess of $200 million, George Mason University (GMU) is the largest R1 (Carnegie Classification of very high research activity) university in Virginia. Mason scientists have been involved in the discovery and development of novel diagnostics and therapeutics in areas as diverse as infectious diseases and cancer. Below are highlights of the efforts being led by Mason researchers in the drug discovery arena. To enable targeted cellular delivery, and non-biomedical applications, Veneziano and colleagues have developed a synthesis strategy that enables the design of self-assembling DNA nanoparticles (DNA origami) with prescribed shape and size in the 10 to 100 nm range. The nanoparticles can be loaded with molecules of interest such as drugs, proteins and peptides, and are a promising new addition to the drug delivery platforms currently in use. The investigators also recently used the DNA origami nanoparticles to fine tune the spatial presentation of immunogens to study the impact on B cell activation. These studies are an important step towards the rational design of vaccines for a variety of infectious agents. To elucidate the parameters for optimizing the delivery efficiency of lipid nanoparticles (LNPs), Buschmann, Paige and colleagues have devised methods for predicting and experimentally validating the pKa of LNPs based on the structure of the ionizable lipids used to formulate the LNPs. These studies may pave the way for the development of new LNP delivery vehicles that have reduced systemic distribution and improved endosomal release of their cargo post administration. To better understand protein-protein interactions and identify potential drug targets that disrupt such interactions, Luchini and colleagues have developed a methodology that identifies contact points between proteins using small molecule dyes. The dye molecules noncovalently bind to the accessible surfaces of a protein complex with very high affinity, but are excluded from contact regions. When the complex is denatured and digested with trypsin, the exposed regions covered by the dye do not get cleaved by the enzyme, whereas the contact points are digested. The resulting fragments can then be identified using mass spectrometry. The data generated can serve as the basis for designing small molecules and peptides that can disrupt the formation of protein complexes involved in disease processes. For example, using peptides based on the interleukin 1 receptor accessory protein (IL-1RAcP), Luchini, Liotta, Paige and colleagues disrupted the formation of IL-1/IL-R/IL-1RAcP complex and demonstrated that the inhibition of complex formation reduced the inflammatory response to IL-1B. Working on the discovery of novel antimicrobial agents, Bishop, van Hoek and colleagues have discovered a number of antimicrobial peptides from reptiles and other species. DRGN-1, is a synthetic peptide based on a histone H1-derived peptide that they had identified from Komodo Dragon plasma. DRGN-1 was shown to disrupt bacterial biofilms and promote wound healing in an animal model. The peptide, along with others, is being developed and tested in preclinical studies. Other research by van Hoek and colleagues focuses on in silico antimicrobial peptide discovery, screening of small molecules for antibacterial properties, as well as assessment of diffusible signal factors (DFS) as future therapeutics. The above examples provide insight into the cutting-edge studies undertaken by GMU scientists to develop novel methodologies and platform technologies important to drug discovery.
Collapse
Affiliation(s)
- Ali Andalibi
- School for Systems Biology, George Mason University, Manassas, VA, USA
| | - Remi Veneziano
- Department of Biomedical Engineering, College of Engineering and Computing, George Mason University, Manassas, VA, USA
| | - Mikell Paige
- Department of Chemistry, College of Science, George Mason University, Fairfax, VA, USA
| | - Michael Buschmann
- Department of Biomedical Engineering, College of Engineering and Computing, George Mason University, Manassas, VA, USA
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA; School for Systems Biology, George Mason University, Manassas, VA, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA; School for Systems Biology, George Mason University, Manassas, VA, USA
| | - Barney Bishop
- Department of Chemistry, College of Science, George Mason University, Fairfax, VA, USA
| | - Monique Van Hoek
- School for Systems Biology, George Mason University, Manassas, VA, USA
| |
Collapse
|
6
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
7
|
Kantiwal U, Pandey J. Efficient Inhibition of Bacterial Biofilm Through Interference of Protein-Protein Interaction of Master Regulator Proteins: a Proof of Concept Study with SinR- SinI Complex of Bacillus subtilis. Appl Biochem Biotechnol 2023; 195:1947-1967. [PMID: 36401726 DOI: 10.1007/s12010-022-04231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Biofilm-associated microbial growth is a major cause of environmental, industrial, and public health concern. Therefore, there is a pressing need to discover and develop efficient antibiofilm strategies. Regulatory proteins vital for biofilm formation might be ideal targets for developing novel antibiofilm therapeutics. Their activities often depend on protein-protein interactions. Therefore, such targets present unique opportunities and challenges to drug discovery. In Bacillus subtilis, a model organism for studying biofilms, SinR acts as the master regulator of the biofilm formation cascade. Under favourable growth conditions, it represses the epsA-O and tapA-sipW-tasA operons, which encode for essential structural components of biofilms. Under unfavourable growth conditions, SinI, an agonist protein, inactivates SinR by forming a heterotrimeric complex. This results in derepression of epsA-O and tapA-sipW-tasA operons and leads to the phenotypic switch from planktonic to biofilm-associated form. We hypothesized that inhibiting SinR-SinI interaction might warrant repression of epsA-O and tapA-sipW-tasA operons and inhibit biofilm formation. To evaluate this hypothesis, we carried out a drug repurposing study for identifying potential inhibitors of SinI. Cefoperazone and itraconazole were identified as potential inhibitors with virtual screening. The stability of their interaction with SinI was assessed in extended MD performed over 100 ns. Both cefoperazone and itraconazole showed stable interaction. In in vitro studies, cefoperazone hindered the interaction of purified recombinant SinI and SinR. In the whole cell-based biofilm inhibition assays also cefoperazone was found to efficiently inhibited biofilm formation. These results provide proof of concept for targeting protein-protein interaction of master regulators as potential target for discovery and development of antibiofilm therapeutics. We propose that similar drug repurposing studies targeting key regulators of biofilm formation cascade could be an efficient approach for discovering novel anti-biofilm therapeutics against priority pathogens.
Collapse
Affiliation(s)
- Usha Kantiwal
- Laboratory of Molecular Microbiology, Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, NH-8, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Janmejay Pandey
- Laboratory of Molecular Microbiology, Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, NH-8, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
8
|
The role of sensory kinase proteins in two-component signal transduction. Biochem Soc Trans 2022; 50:1859-1873. [DOI: 10.1042/bst20220848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Two-component systems (TCSs) are modular signaling circuits that regulate diverse aspects of microbial physiology in response to environmental cues. These molecular circuits comprise a sensor histidine kinase (HK) protein that contains a conserved histidine residue, and an effector response regulator (RR) protein with a conserved aspartate residue. HKs play a major role in bacterial signaling, since they perceive specific stimuli, transmit the message across the cytoplasmic membrane, and catalyze their own phosphorylation, and the trans-phosphorylation and dephosphorylation of their cognate response regulator. The molecular mechanisms by which HKs co-ordinate these functions have been extensively analyzed by genetic, biochemical, and structural approaches. Here, we describe the most common modular architectures found in bacterial HKs, and address the operation mode of the individual functional domains. Finally, we discuss the use of these signaling proteins as drug targets or as sensing devices in whole-cell biosensors with medical and biotechnological applications.
Collapse
|
9
|
Chen H, Yu C, Wu H, Li G, Li C, Hong W, Yang X, Wang H, You X. Recent Advances in Histidine Kinase-Targeted Antimicrobial Agents. Front Chem 2022; 10:866392. [PMID: 35860627 PMCID: PMC9289397 DOI: 10.3389/fchem.2022.866392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
The prevalence of antimicrobial-resistant pathogens significantly limited the number of effective antibiotics available clinically, which urgently requires new drug targets to screen, design, and develop novel antibacterial drugs. Two-component system (TCS), which is comprised of a histidine kinase (HK) and a response regulator (RR), is a common mechanism whereby bacteria can sense a range of stimuli and make an appropriate adaptive response. HKs as the sensor part of the bacterial TCS can regulate various processes such as growth, vitality, antibiotic resistance, and virulence, and have been considered as a promising target for antibacterial drugs. In the current review, we highlighted the structural basis and functional importance of bacterial TCS especially HKs as a target in the discovery of new antimicrobials, and summarize the latest research progress of small-molecule HK-inhibitors as potential novel antimicrobial drugs reported in the past decade.
Collapse
Affiliation(s)
- Hongtong Chen
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengqi Yu
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Han Wu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Guoqing Li
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congran Li
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Hong
- Beijing Institute of Collaborative Innovation, Beijing, China
| | - Xinyi Yang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Xuefu You
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Liu Y, Shi Y, Cheng H, Chen J, Wang Z, Meng Q, Tang Y, Yu Z, Zheng J, Shang Y. Lapatinib Acts against Biofilm Formation and the Hemolytic Activity of Staphylococcus aureus. ACS OMEGA 2022; 7:9004-9014. [PMID: 35309438 PMCID: PMC8928509 DOI: 10.1021/acsomega.2c00174] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/23/2022] [Indexed: 05/10/2023]
Abstract
Biofilm formation and hemolytic activity are closely related to the pathogenesis of Staphylococcus aureus infections. Herein, we show that lapatinib (12.5 μM) significantly inhibits biofilm formation and hemolytic activity of both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolates. Using quantitative reverse transcription PCR, we found that the RNA levels of transcriptional regulatory genes (RNAIII, agrA, agrC, saeR, and saeS), biofilm-formation-related genes (atl, cidA, clfA, clfB, and icaA), and virulence-related genes (cap5A, hla, hld, hlg, lukDE, lukpvl-S, staphopain B, alpha-3 PSM, beta PSM, and delta PSM) of S. aureus decreased after 6 h treatment with lapatinib. Wild-type S. aureus isolates were continuously cultured in vitro in the presence of increasing concentrations of lapatinib for about 140 days. Subsequently, S. aureus isolates with reduced susceptibility to lapatinib (the inhibitory effect of lapatinib on the biofilm formation of these S. aureus isolates was significantly weakened) were selected. Mutations in the genomes of S. aureus isolates with reduced susceptibility to lapatinib were detected by whole-genome sequencing. We identified four genes with mutations: three genes with known functions (membrane protein, pyrrolidone-carboxylate peptidase, and sensor histidine kinase LytS, respectively) and one gene with unknown function (hypothetical protein). In conclusion, this study indicates that lapatinib significantly inhibits biofilm formation and the hemolytic activity of S. aureus.
Collapse
Affiliation(s)
- Yansong Liu
- Department
of Intensive Care Unit and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union
Shenzhen Hospital, Shenzhen 518052, China
- Department
of Intensive Care Unit and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Yiyi Shi
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union
Shenzhen Hospital, Shenzhen 518052, China
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Hang Cheng
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union
Shenzhen Hospital, Shenzhen 518052, China
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Junwen Chen
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union
Shenzhen Hospital, Shenzhen 518052, China
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Zhanwen Wang
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union
Shenzhen Hospital, Shenzhen 518052, China
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Qingyin Meng
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union
Shenzhen Hospital, Shenzhen 518052, China
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Yuanyuan Tang
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union
Shenzhen Hospital, Shenzhen 518052, China
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Zhijian Yu
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union
Shenzhen Hospital, Shenzhen 518052, China
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Jinxin Zheng
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union
Shenzhen Hospital, Shenzhen 518052, China
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Yongpeng Shang
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union
Shenzhen Hospital, Shenzhen 518052, China
- Department
of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the
sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| |
Collapse
|
11
|
Nutritional and therapeutic approaches for protecting human gut microbiota from psychotropic treatments. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110182. [PMID: 33232785 DOI: 10.1016/j.pnpbp.2020.110182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Emerging evidence highlighted the essential role played by the microbiota-gut-brain axis in maintaining human homeostasis, including nutrition, immunity, and metabolism. Much recent work has linked the gut microbiota to many psychiatric and neurodegenerative disorders such as depression, schizophrenia, and Alzheimer's disease. Shared gut microbiota alterations or dysbiotic microbiota have been identified in these separate disorders relative to controls. Much attention has focused on the bidirectional interplay between the gut microbiota and the brain, establishing gut dysbiotic status as a critical factor in psychiatric disorders. Still, the antibiotic-like effect of psychotropic drugs, medications used for the treatment of these disorders, on gut microbiota is largely neglected. In this review, we summarize the current findings on the impact of psychotropics on gut microbiota and how their antimicrobial potency can trigger dysbiosis. We also discuss the potential therapeutic strategies, including probiotics, prebiotics, and fecal transplantation, to attenuate the dysbiosis related to psychotropics intake.
Collapse
|
12
|
Kassinger SJ, van Hoek ML. Genetic Determinants of Antibiotic Resistance in Francisella. Front Microbiol 2021; 12:644855. [PMID: 34054749 PMCID: PMC8149597 DOI: 10.3389/fmicb.2021.644855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Tularemia, caused by Francisella tularensis, is endemic to the northern hemisphere. This zoonotic organism has historically been developed into a biological weapon. For this Tier 1, Category A select agent, it is important to expand our understanding of its mechanisms of antibiotic resistance (AMR). Francisella is unlike many Gram-negative organisms in that it does not have significant plasmid mobility, and does not express AMR mechanisms on plasmids; thus plasmid-mediated resistance does not occur naturally. It is possible to artificially introduce plasmids with AMR markers for cloning and gene expression purposes. In this review, we survey both the experimental research on AMR in Francisella and bioinformatic databases which contain genomic and proteomic data. We explore both the genetic determinants of intrinsic AMR and naturally acquired or engineered antimicrobial resistance as well as phenotypic resistance in Francisella. Herein we survey resistance to beta-lactams, monobactams, carbapenems, aminoglycosides, tetracycline, polymyxins, macrolides, rifampin, fosmidomycin, and fluoroquinolones. We also highlight research about the phenotypic AMR difference between planktonic and biofilm Francisella. We discuss newly developed methods of testing antibiotics against Francisella which involve the intracellular nature of Francisella infection and may better reflect the eventual clinical outcomes for new antibiotic compounds. Understanding the genetically encoded determinants of AMR in Francisella is key to optimizing the treatment of patients and potentially developing new antimicrobials for this dangerous intracellular pathogen.
Collapse
Affiliation(s)
| | - Monique L. van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
13
|
Unravelling the antimicrobial action of antidepressants on gut commensal microbes. Sci Rep 2020; 10:17878. [PMID: 33087796 PMCID: PMC7578019 DOI: 10.1038/s41598-020-74934-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
Over the past decade, there has been increasing evidence highlighting the implication of the gut microbiota in a variety of brain disorders such as depression, anxiety, and schizophrenia. Studies have shown that depression affects the stability of gut microbiota, but the impact of antidepressant treatments on microbiota structure and metabolism remains underexplored. In this study, we investigated the in vitro antimicrobial activity of antidepressants from different therapeutic classes against representative strains of human gut microbiota. Six different antidepressants: phenelzine, venlafaxine, desipramine, bupropion, aripiprazole and (S)-citalopram have been tested for their antimicrobial activity against 12 commensal bacterial strains using agar well diffusion, microbroth dilution method, and colony counting. The data revealed an important antimicrobial activity (bacteriostatic or bactericidal) of different antidepressants against the tested strains, with desipramine and aripiprazole being the most inhibitory. Strains affiliating to most dominant phyla of human microbiota such as Akkermansia muciniphila, Bifidobacterium animalis and Bacteroides fragilis were significantly altered, with minimum inhibitory concentrations (MICs) ranged from 75 to 800 μg/mL. A significant reduction in bacterial viability was observed, reaching 5 logs cycle reductions with tested MICs ranged from 400 to 600 μg/mL. Our findings demonstrate that gut microbiota could be altered in response to antidepressant drugs.
Collapse
|
14
|
The Sensor Kinase QseC Regulates the Unlinked PmrA Response Regulator and Downstream Gene Expression in Francisella. J Bacteriol 2020; 202:JB.00321-20. [PMID: 32839173 DOI: 10.1128/jb.00321-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
The facultative intracellular bacterial pathogen Francisella tularensis is the causative agent of tularemia in humans and animals. Gram-negative bacteria utilize two-component regulatory systems (TCS) to sense and respond to their changing environment. No classical, tandemly arranged sensor kinase and response regulator TCS genes exist in the human virulent Francisella tularensis subsp. tularensis, but orphaned members are present. PmrA is an orphan response regulator responsible for intramacrophage growth and virulence; however, the regulation of PmrA activity is not understood. We and others have shown that PmrA represses the expression of priM, described to encode an antivirulence determinant. By screening a mutant library for increased priM promoter activity, we identified the sensor kinase homolog QseC as an upstream regulator of priM expression, and this regulation is in part dependent upon the aspartate phosphorylation site of PmrA (D51). Several examined environmental signals, including epinephrine, which is reported to activate QseC in other bacteria, do not affect priM expression in a manner dependent on PmrA. Intramacrophage survival assays also question the finding that PriM is an antivirulence factor. Thus, these data suggest that the PmrA-regulated gene priM is modulated by the QseC-PmrA (QseB) TCS in Francisella IMPORTANCE The disease tularemia is caused by the highly infectious Gram-negative pathogen Francisella tularensis This bacterium encodes few regulatory factors (e.g., two-component systems [TCS]). PmrA, required for intramacrophage survival and virulence in the mouse model, is encoded by an orphan TCS response regulator gene. It is unclear how PmrA is responsive to environmental signals to regulate loci, including the PmrA-repressed gene priM We identify an orphan sensor kinase (QseC) that is required for priM repression and further explore both environmental signals that might regulate the QseC-PmrA TCS and the function of PriM.
Collapse
|
15
|
Grimsey EM, Piddock LJV. Do phenothiazines possess antimicrobial and efflux inhibitory properties? FEMS Microbiol Rev 2020; 43:577-590. [PMID: 31216574 DOI: 10.1093/femsre/fuz017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance is a global health concern; the rise of drug-resistant bacterial infections is compromising the medical advances that resulted from the introduction of antibiotics at the beginning of the 20th century. Considering that the presence of mutations within individuals in a bacterial population may allow a subsection to survive and propagate in response to selective pressure, as long as antibiotics are used in the treatment of bacterial infections, development of resistance is an inevitable evolutionary outcome. This, combined with the lack of novel antibiotics being released to the clinical market, means the need to develop alternative strategies to treat these resistant infections is critical. We discuss how the use of antibiotic adjuvants can minimise the appearance and impact of resistance. To this effect, several phenothiazine-derived drugs have been shown to potentiate the activities of antibiotics used to treat infections caused by Gram-positive and Gram-negative bacteria. Outside of their role as antipsychotic medications, we review the evidence to suggest that phenothiazines possess inherent antibacterial and efflux inhibitory properties enabling them to potentially combat drug resistance. We also discuss that understanding their mode of action is essential to facilitate the design of new phenothiazine derivatives or novel agents for use as antibiotic adjuvants.
Collapse
Affiliation(s)
- Elizabeth M Grimsey
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
16
|
van Hoek ML, Hoang KV, Gunn JS. Two-Component Systems in Francisella Species. Front Cell Infect Microbiol 2019; 9:198. [PMID: 31263682 PMCID: PMC6584805 DOI: 10.3389/fcimb.2019.00198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
Bacteria alter gene expression in response to changes in their environment through various mechanisms that include signal transduction systems. These signal transduction systems use membrane histidine kinase with sensing domains to mediate phosphotransfer to DNA-binding proteins that alter the level of gene expression. Such regulators are called two-component systems (TCSs). TCSs integrate external signals and information from stress pathways, central metabolism and other global regulators, thus playing an important role as part of the overall regulatory network. This review will focus on the knowledge of TCSs in the Gram-negative bacterium, Francisella tularensis, a biothreat agent with a wide range of potential hosts and a significant ability to cause disease. While TCSs have been well-studied in several bacterial pathogens, they have not been well-studied in non-model organisms, such as F. tularensis and its subspecies, whose canonical TCS content surprisingly ranges from few to none. Additionally, of those TCS genes present, many are orphan components, including KdpDE, QseC, QseB/PmrA, and an unnamed two-component system (FTN_1452/FTN_1453). We discuss recent advances in this field related to the role of TCSs in Francisella physiology and pathogenesis and compare the TCS genes present in human virulent versus. environmental species and subspecies of Francisella.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Ky V Hoang
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
17
|
Abstract
The concept of repurposing previously approved medications to the treatment of new indications by taking advantage of off-target effects has gained traction in recent years, particularly in areas of medicine that do not offer large profits to pharmaceutical firms. As infectious disease discovery research has declined among large pharmaceutical companies, the potential payoff of repurposing has become attractive. The concept of repurposing previously approved medications to the treatment of new indications by taking advantage of off-target effects has gained traction in recent years, particularly in areas of medicine that do not offer large profits to pharmaceutical firms. As infectious disease discovery research has declined among large pharmaceutical companies, the potential payoff of repurposing has become attractive. From these efforts, the triphenylethylene class of selective estrogen receptor modulators related to tamoxifen has shown activity against a wide range of medically important human pathogens, including bacteria, fungi, parasites, and viruses. Because it has activity against many pathogens affecting people in resource-limited areas of the world, TAM and related drugs may be particularly useful. Here, we review the in vitro, in vivo, and mechanistic studies of the anti-infective activity of tamoxifen, toremifene, clomiphene, and their analogs. We also discuss the pharmacologic properties of this privileged scaffold and its potential utility in treating infectious diseases.
Collapse
|
18
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
19
|
Kane TL, Carothers KE, Lee SW. Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics. Curr Drug Targets 2018; 19:111-127. [PMID: 27894236 PMCID: PMC5957279 DOI: 10.2174/1389450117666161128123536] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Staphylococcus aureus is a major bacterial pathogen capable of causing a range of infections in humans from gastrointestinal disease, skin and soft tissue infections, to severe outcomes such as sepsis. Staphylococcal infections in humans can be frequent and recurring, with treatments becoming less effective due to the growing persistence of antibiotic resistant S. aureus strains. Due to the prevalence of antibiotic resistance, and the current limitations on antibiotic development, an active and highly promising avenue of research has been to develop strategies to specifically inhibit the activity of virulence factors produced S. aureus as an alternative means to treat disease. OBJECTIVE In this review we specifically highlight several major virulence factors produced by S. aureus for which recent advances in antivirulence approaches may hold promise as an alternative means to treating diseases caused by this pathogen. Strategies to inhibit virulence factors can range from small molecule inhibitors, to antibodies, to mutant and toxoid forms of the virulence proteins. CONCLUSION The major prevalence of antibiotic resistant strains of S. aureus combined with the lack of new antibiotic discoveries highlight the need for vigorous research into alternative strategies to combat diseases caused by this highly successful pathogen. Current efforts to develop specific antivirulence strategies, vaccine approaches, and alternative therapies for treating severe disease caused by S. aureus have the potential to stem the tide against the limitations that we face in the post-antibiotic era.
Collapse
Affiliation(s)
- Trevor L. Kane
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn E. Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
20
|
Eklund BE, Mahdi O, Huntley JF, Collins E, Martin C, Horzempa J, Fisher NA. The orange spotted cockroach ( Blaptica dubia, Serville 1839) is a permissive experimental host for Francisella tularensis. PROCEEDINGS OF THE WEST VIRGINIA ACADEMY OF SCIENCE 2017; 89:34-47. [PMID: 29578544 PMCID: PMC5863744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Francisella tularensis is a zoonotic bacterial pathogen that causes severe disease in a wide range of host animals, including humans. Well-developed murine models of F. tularensis pathogenesis are available, but they do not meet the needs of all investigators. However, researchers are increasingly turning to insect host systems as a cost-effective alternative that allows greater increased experimental throughput without the regulatory requirements associated with the use of mammals in biomedical research. Unfortunately, the utility of previously-described insect hosts is limited because of temperature restriction, short lifespans, and concerns about the immunological status of insects mass-produced for other purposes. Here, we present a novel host species, the orange spotted (OS) cockroach (Blaptica dubia), that overcomes these limitations and is readily infected by F. tularensis. Intrahemocoel inoculation was accomplished using standard laboratory equipment and lethality was directly proportional to the number of bacteria injected. Progression of infection differed in insects housed at low and high temperatures and F. tularensis mutants lacking key virulence components were attenuated in OS cockroaches. Finally, antibiotics were delivered to infected OS cockroaches by systemic injection and controlled feeding; in the latter case, protection correlated with oral bioavailability in mammals. Collectively, these results demonstrate that this new host system provides investigators with a new tool capable of interrogating F. tularensis virulence and immune evasion in situations where mammalian models are not available or appropriate, such as undirected screens of large mutant libraries.
Collapse
Affiliation(s)
- Bridget E. Eklund
- Russel and Anna Duncan Undergraduate Research Program, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND
| | - Osama Mahdi
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND
| | - Jason F. Huntley
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH
| | - Elliot Collins
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV
| | - Caleb Martin
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV
| | - Nathan A. Fisher
- Department of Public Health, North Dakota State University, Fargo, ND
- Drug Development Division, Southern Research, Frederick, MD
| |
Collapse
|
21
|
Repurposing Toremifene for Treatment of Oral Bacterial Infections. Antimicrob Agents Chemother 2017; 61:AAC.01846-16. [PMID: 27993858 DOI: 10.1128/aac.01846-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/11/2016] [Indexed: 12/24/2022] Open
Abstract
The spread of antibiotic resistance and the challenges associated with antiseptics such as chlorhexidine have necessitated a search for new antibacterial agents against oral bacterial pathogens. As a result of failing traditional approaches, drug repurposing has emerged as a novel paradigm to find new antibacterial agents. In this study, we examined the effects of the FDA-approved anticancer agent toremifene against the oral bacteria Porphyromonas gingivalis and Streptococcus mutans We found that the drug was able to inhibit the growth of both pathogens, as well as prevent biofilm formation, at concentrations ranging from 12.5 to 25 μM. Moreover, toremifene was shown to eradicate preformed biofilms at concentrations ranging from 25 to 50 μM. In addition, we found that toremifene prevents P. gingivalis and S. mutans biofilm formation on titanium surfaces. A time-kill study indicated that toremifene is bactericidal against S. mutans Macromolecular synthesis assays revealed that treatment with toremifene does not cause preferential inhibition of DNA, RNA, or protein synthesis pathways, indicating membrane-damaging activity. Biophysical studies using fluorescent probes and fluorescence microscopy further confirmed the membrane-damaging mode of action. Taken together, our results suggest that the anticancer agent toremifene is a suitable candidate for further investigation for the development of new treatment strategies for oral bacterial infections.
Collapse
|
22
|
Kaushal A, Gupta K, Shah R, van Hoek ML. Antimicrobial activity of mosquito cecropin peptides against Francisella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:171-180. [PMID: 27235883 DOI: 10.1016/j.dci.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 06/05/2023]
Abstract
Francisella tularensis is the cause of the zoonotic disease tularemia. In Sweden and Scandinavia, epidemiological studies have implicated mosquitoes as a vector. Prior research has demonstrated the presence of Francisella DNA in infected mosquitoes but has not shown definitive transmission of tularemia from a mosquito to a mammalian host. We hypothesized that antimicrobial peptides, an important component of the innate immune system of higher organisms, may play a role in mosquito host-defense to Francisella. We established that Francisella sp. are susceptible to two cecropin antimicrobial peptides derived from the mosquito Aedes albopictus as well as Culex pipiens. We also demonstrated induced expression of Aedes albopictus antimicrobial peptide genes by Francisella infection C6/36 mosquito cell line. We demonstrate that mosquito antimicrobial peptides act against Francisella by disrupting the cellular membrane of the bacteria. Thus, it is possible that antimicrobial peptides may play a role in the inability of mosquitoes to establish an effective natural transmission of tularemia.
Collapse
Affiliation(s)
- Akanksha Kaushal
- Department of Biology, George Mason University, Manassas, VA, USA
| | - Kajal Gupta
- College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Ruhee Shah
- Thomas Jefferson School of Science and Technology, Alexandria, VA, USA
| | - Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, USA; National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
23
|
Stranava M, Martínek V, Man P, Fojtikova V, Kavan D, Vaněk O, Shimizu T, Martinkova M. Structural characterization of the heme-based oxygen sensor, AfGcHK, its interactions with the cognate response regulator, and their combined mechanism of action in a bacterial two-component signaling system. Proteins 2016; 84:1375-89. [PMID: 27273553 DOI: 10.1002/prot.25083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 01/11/2023]
Abstract
The oxygen sensor histidine kinase AfGcHK from the bacterium Anaeromyxobacter sp. Fw 109-5 forms a two-component signal transduction system together with its cognate response regulator (RR). The binding of oxygen to the heme iron of its N-terminal sensor domain causes the C-terminal kinase domain of AfGcHK to autophosphorylate at His183 and then transfer this phosphate to Asp52 or Asp169 of the RR protein. Analytical ultracentrifugation revealed that AfGcHK and the RR protein form a complex with 2:1 stoichiometry. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) suggested that the most flexible part of the whole AfGcHK protein is a loop that connects the two domains and that the heme distal side of AfGcHK, which is responsible for oxygen binding, is the only flexible part of the sensor domain. HDX-MS studies on the AfGcHK:RR complex also showed that the N-side of the H9 helix in the dimerization domain of the AfGcHK kinase domain interacts with the helix H1 and the β-strand B2 area of the RR protein's Rec1 domain, and that the C-side of the H8 helix region in the dimerization domain of the AfGcHK protein interacts mostly with the helix H5 and β-strand B6 area of the Rec1 domain. The Rec1 domain containing the phosphorylable Asp52 of the RR protein probably has a significantly higher affinity for AfGcHK than the Rec2 domain. We speculate that phosphorylation at Asp52 changes the overall structure of RR such that the Rec2 area containing the second phosphorylation site (Asp169) can also interact with AfGcHK. Proteins 2016; 84:1375-1389. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martin Stranava
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic
| | - Václav Martínek
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic.,Department of Chemical Education, Faculty of Science, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic
| | - Petr Man
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic.,Laboratory of Structure Biology and Cell Signalling, BioCeV - Institute of Microbiology, Czech Academy of Sciences, V.V.I, Prumyslova 595, Vestec, Czech Republic
| | - Veronika Fojtikova
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic
| | - Daniel Kavan
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic.,Laboratory of Structure Biology and Cell Signalling, BioCeV - Institute of Microbiology, Czech Academy of Sciences, V.V.I, Prumyslova 595, Vestec, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic
| | - Marketa Martinkova
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic.
| |
Collapse
|
24
|
Feldmann EA, Cavanagh J. Teaching old drugs new tricks: Addressing resistance in Francisella. Virulence 2016; 6:414-6. [PMID: 26055396 DOI: 10.1080/21505594.2015.1053689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Erik A Feldmann
- a Department of Molecular and Structural Biochemistry; North Carolina State University ; Raleigh , NC , USA
| | | |
Collapse
|
25
|
Ribeiro SM, Felício MR, Boas EV, Gonçalves S, Costa FF, Samy RP, Santos NC, Franco OL. New frontiers for anti-biofilm drug development. Pharmacol Ther 2016; 160:133-44. [DOI: 10.1016/j.pharmthera.2016.02.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Tsai CJY, Loh JMS, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 2016; 7:214-29. [PMID: 26730990 PMCID: PMC4871635 DOI: 10.1080/21505594.2015.1135289] [Citation(s) in RCA: 506] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galleria mellonella (greater wax moth or honeycomb moth) has been introduced as an alternative model to study microbial infections. G. mellonella larvae can be easily and inexpensively obtained in large numbers and are simple to use as they don't require special lab equipment. There are no ethical constraints and their short life cycle makes them ideal for large-scale studies. Although insects lack an adaptive immune response, their innate immune response shows remarkable similarities with the immune response in vertebrates. This review gives a current update of what is known about the immune system of G. mellonella and provides an extensive overview of how G. mellonella is used to study the virulence of Gram-positive and Gram-negative bacteria. In addition, the use of G. mellonella to evaluate the efficacy of antimicrobial agents and experimental phage therapy are also discussed. The review concludes with a critical assessment of the current limitatons of G. mellonella infection models.
Collapse
Affiliation(s)
- Catherine Jia-Yun Tsai
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| | - Jacelyn Mei San Loh
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| | - Thomas Proft
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| |
Collapse
|
27
|
Rowe HM, Huntley JF. From the Outside-In: The Francisella tularensis Envelope and Virulence. Front Cell Infect Microbiol 2015; 5:94. [PMID: 26779445 PMCID: PMC4688374 DOI: 10.3389/fcimb.2015.00094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas, no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
28
|
Weigel WA, Demuth DR. QseBC, a two-component bacterial adrenergic receptor and global regulator of virulence in Enterobacteriaceae and Pasteurellaceae. Mol Oral Microbiol 2015; 31:379-97. [PMID: 26426681 PMCID: PMC5053249 DOI: 10.1111/omi.12138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/11/2022]
Abstract
The QseBC two-component system (TCS) is associated with quorum sensing and functions as a global regulator of virulence. Based on sequence similarity within the sensor domain and conservation of an acidic motif essential for signal recognition, QseBC is primarily distributed in the Enterobacteriaceae and Pasteurellaceae. In Escherichia coli, QseC responds to autoinducer-3 and/or epinephrine/norepinephrine. Binding of epinephrine/norepinephrine is inhibited by adrenergic antagonists; hence QseC functions as a bacterial adrenergic receptor. Aggregatibacter actinomycetemcomitans QseC is activated by a combination of epinephrine/norepinephrine and iron, whereas only iron activates the Haemophilus influenzae sensor. QseC phosphorylates QseB but there is growing evidence that QseB is activated by non-cognate sensors and regulated by dephosphorylation via QseC. Interestingly, the QseBC signaling cascades and regulons differ significantly. In enterohemorrhagic E. coli, QseC induces expression of a second adrenergic TCS and phosphorylates two non-cognate response regulators, each of which induces specific sets of virulence genes. This signaling pathway integrates with other regulatory mechanisms mediated by transcriptional regulators QseA and QseD and a fucose-sensing TCS and likely controls the level and timing of virulence gene expression. In contrast, A. actinomycetemcomitans QseC signals through QseB to regulate genes involved in anaerobic metabolism and energy production, which may prime cellular metabolism for growth in an anaerobic host niche. QseC represents a novel target for therapeutic intervention and small molecule inhibitors already show promise as broad-spectrum antimicrobials. Further characterization of QseBC signaling may identify additional differences in QseBC function and inform further development of new therapeutics to control microbial infections.
Collapse
Affiliation(s)
- W A Weigel
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - D R Demuth
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA
| |
Collapse
|