1
|
Delicati A, Marcante B, Catelan D, Biggeri A, Caenazzo L, Tozzo P. Hand-to-surface bacterial transfer and healthcare-associated infections prevention: a pilot study on skin microbiome in a molecular biology laboratory. Front Med (Lausanne) 2025; 12:1546298. [PMID: 40190580 PMCID: PMC11970135 DOI: 10.3389/fmed.2025.1546298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Background Healthcare-associated infections (HAIs) are a major global public health problem, contributing significantly to patient morbidity and mortality. This study analyses differences in type and amounts of bacteria transferred from volunteers' dominant palm to two healthcare-relevant surfaces (glass and laminate table), both before and after hand washing with water and antibacterial soap. The aim was to understand hand-to-surface microbial contamination and support the development of HAI prevention strategies. Methods Microbial DNA was extracted and sequenced to identify bacteria species. Taxonomic and statistical analyses were performed to evaluate bacterial diversity and abundance across the experimental groups. Results The results confirmed greater bacteria abundance and species richness on palm compared to surfaces, with a significant reduction after hand washing, especially on glass. Taxa analysis highlighted the increased persistence of Gram-negative HAIs-related bacteria on laminate surface, while Gram-positive opportunistic bacteria were more abundant on palms and glass surface. Beta diversity confirmed significant differences in microbial composition between the groups, highlighting the importance of bacteria-surface characteristics in designing preventive measures. Conclusion Despite some limitations, our study emphasizes the importance of microbiological surveillance for all opportunistic bacteria with pathogenic potential. These findings can contribute to more effective guidelines for surface disinfection and hand washing, key elements in preventing HAIs.
Collapse
Affiliation(s)
- Arianna Delicati
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Beatrice Marcante
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Dolores Catelan
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Annibale Biggeri
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Luciana Caenazzo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Pamela Tozzo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Hu J, Sun J, Zhong Q, Chen S, Yin W, Wei X, Li L, Li K, Ali M, Sun W, Rajput SA, Abdullah M, Si H, Wu Y. Edgeworthia gardneri (Wall.) Meisn Mitigates CCL4-induced liver injury in mice by modulating gut microbiota, boosting antioxidant defense, and reducing inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118042. [PMID: 40086032 DOI: 10.1016/j.ecoenv.2025.118042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Herbal medicine has become an area of growing global scientific interest. The prime objective of this study was to investigate the protective role of Edgeworthia gardneri (Wall.) Meisn (EGM polysaccharide) against carbon tetrachloride (CCl4)-induced liver injury in mice. Forty-five ICR mice were randomly divided into three groups (n = 15): IC, IM, and IT. The IT group received EGM polysaccharide solution (50 mg/kg) daily, while the IC and IM groups were administered an equivalent volume of normal saline. The IT and IM groups were intraperitoneally injected with a mixture of CCl4 and olive oil at 1:1 (v/v) (2 mL/kg) every 3 days. Our results showed that EGM polysaccharide significantly (p < 0.05) reduced pathological hepatic alterations and an increased liver index caused by CCl4. Moreover, EGM polysaccharide therapy significantly (p < 0.001) increased levels of antioxidant enzymes, such as glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) and reduced malondialdehyde (MDA) content in a dose-dependent manner. Notably, EGM polysaccharide alleviated the inflammatory cascades as evidenced by decreased serum levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor- α (TNF-α) under CCl4 administration. Furthermore, 16 s rRNA gene sequencing results exhibited that EGM polysaccharide increased the abundance of probiotics bacteria, such as Unclassified_Lachnospiraceae, and decreased the abundance of pathogenic bacterial texas like Brevundimonas and Candidatus_Nitrocosmicu. Conclusively, EGM polysaccharide protects against CCl4-induced oxidative stress and inflammation in the liver and alleviates hepatic injury through beneficial gut microbiota modulations. The current study suggests that EGM polysaccharide is an effective agent in counteracting CCl4-induced hepatic damage.
Collapse
Affiliation(s)
- Jiashu Hu
- College of Veterinary Medicine, Yunan Agricultural University, Kunming 650201, PR China; School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266000, PR China
| | - Jitao Sun
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Qiu Zhong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Shouhai Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wen Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xi Wei
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, PR China
| | - Linzhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, PR China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjing Sun
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hongbin Si
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Yi Wu
- College of Veterinary Medicine, Yunan Agricultural University, Kunming 650201, PR China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Ovis-Sánchez JO, Vital-Jácome M, Buitrón G, Cervantes-Avilés P, Carrillo-Reyes J. Antibiotic resistance reduction mechanisms during thermophilic anaerobic digestion of microalgae-bacteria aggregates. BIORESOURCE TECHNOLOGY 2025; 419:132037. [PMID: 39756663 DOI: 10.1016/j.biortech.2025.132037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Microalgae-bacteria-based systems are an emerging and promising approach for wastewater treatment plants (WWTP), having nutrient and antibiotic resistance removal comparable to conventional technologies. Still, antibiotic-resistance genes and bacteria (ARG and ARB) can proliferate in microalga-bacteria aggregates (MABA), a concern to control. Different temperature regimes of MABA continuous anaerobic digestion (AD), thermophilic (55 °C), and mesophilic (35 °C) were evaluated in this study as a strategy to eliminate ARB and ARGs. Plate counting techniques and metagenomic-based analysis revealed that thermophilic temperature had a better performance, achieving ARB log reductions of 1.1 to 1.7 for various antibiotics and significantly reduced ARG abundance up to 19.5 ± 0.8 ppm. The microbiome selection, the mobilome restriction, and directed functionality to thermal stress resistance were the main mechanisms responsible for resistome reduction at thermophilic conditions. Thermophilic AD effectively manages antibiotic resistance in microalgae-bacteria aggregates, which has important implications for wastewater treatment and reduces environmental risks.
Collapse
Affiliation(s)
- Julián O Ovis-Sánchez
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Miguel Vital-Jácome
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Germán Buitrón
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453 Puebla, México
| | - Julián Carrillo-Reyes
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México.
| |
Collapse
|
4
|
Sheikh M, Gholipour S, Ghodsi S, Nikaeen M. Co-selection of antibiotic and disinfectant resistance in environmental bacteria: Health implications and mitigation strategies. ENVIRONMENTAL RESEARCH 2025; 267:120708. [PMID: 39732420 DOI: 10.1016/j.envres.2024.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND The rapid emergence of co-selection between antimicrobials, including antibiotics and disinfectants, presents a significant challenge to healthcare systems. This phenomenon exacerbates contamination risks and limits the effectiveness of strategies to combat antibiotic resistance in clinical settings. This study aimed to investigate the prevalence and characteristics of bacteria in hospital environments that exhibit co-selection mechanisms and their potential implications for patient health, framed within the One Health perspective. METHODS Air and surface samples were collected from seven large hospitals and analyzed to detect antibiotic-resistant bacteria (ARB). The resistance profiles of isolated ARB to various disinfectants were determined. Bacterial species were identified using 16S rRNA gene sequencing, and the presence of antibiotic resistance genes (ARGs) and class 1 integrons (intI1) was investigated. RESULTS A high percentage (85%) of samples contained ARB, with β-lactam resistance being the most frequently observed. Alarmingly, 94% of isolated ARB exhibited resistance to at least one disinfectant, and 91% demonstrated resistance to three or more disinfectants. Staphylococcus and Bacillus emerged as the dominant genera displaying co-selection. The presence of ARGs, including mecA (associated with methicillin resistance) and qacB (associated with disinfectant resistance), along with intI1, provided further evidence supporting co-selection mechanisms. CONCLUSION These findings underscore the critical need for robust antimicrobial resistance surveillance and the prudent use of disinfectants in healthcare settings. Further research into co-selection mechanisms is essential to inform the development of effective infection control strategies and minimize the spread of resistant bacteria.
Collapse
Affiliation(s)
- Mina Sheikh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soudabeh Ghodsi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Thareja SK, Luo S, Carballo S. A Sneaky Culprit: Secondary Infectious Keratitis Due to Brevundimonas diminuta. Eye Contact Lens 2025; 51:244-246. [PMID: 39874493 DOI: 10.1097/icl.0000000000001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/30/2025]
Abstract
PURPOSE To describe a rare case of infectious keratitis secondary to Brevundimonas diminuta , a gram-negative bacillus with fluoroquinolone resistance and rare clinical isolation. METHODS A 50-year-old man with contact lens overuse presented with a large corneal ulcer and hand motion visual acuity. Initial treatment with fortified topical tobramycin and vancomycin yielded slow improvement, and initial culture grew Staphylococcus epidermidis , Staphylococcus hominis , and Corynebacterium bovis . Therapy was tapered to topical moxifloxacin. Loteprednol was added to reduce corneal inflammation after presumed sterilization. Persistent epithelial defect and worsening infiltrate after 3 weeks prompted repeat culture and corneal punch biopsy. RESULTS Repeat culture revealed B. diminuta resistant to moxifloxacin. Treatment was modified to tobramycin, and therapeutic penetrating keratoplasty was pursued to prevent further stromal loss. Four months postoperatively, the cornea remained clear without recurrence or neovascularization. CONCLUSION To our knowledge, this is the second reported culture-positive case of secondary infectious keratitis with B. diminuta , highlighting its rarity and potential for delayed identification. The atypical response to initial therapy underscores the importance of repeat cultures and corneal biopsy in persistent cases. This case contributes to the growing understanding of rare ocular pathogens, advocating for a vigilant clinical approach.
Collapse
|
6
|
Cubillejo I, Theis KR, Panzer J, Luo X, Banerjee S, Thummel R, Withey JH. Vibrio cholerae Gut Colonization of Zebrafish Larvae Induces a Dampened Sensorimotor Response. Biomedicines 2025; 13:226. [PMID: 39857809 PMCID: PMC11761238 DOI: 10.3390/biomedicines13010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Cholera is a diarrheal disease prevalent in populations without access to clean water. Cholera is caused by Vibrio cholerae, which colonizes the upper small intestine in humans once ingested. A growing number of studies suggest that the gut microbiome composition modulates animal behavior. Zebrafish are an established cholera model that can maintain a complex, mature gut microbiome during infection. Larval zebrafish, which have immature gut microbiomes, provide the advantage of high-throughput analyses for established behavioral models. Methods: We identified the effects of V. cholerae O1 El Tor C6706 colonization at 5 days post-fertilization (dpf) on larval zebrafish behavior by tracking startle responses at 10 dpf. We also characterized the larval gut microbiome using 16S rRNA sequencing. V. cholerae-infected or uninfected control groups were exposed to either an alternating light/dark stimuli or a single-tap stimulus, and average distance and velocity were tracked. Results: While there was no significant difference in the light/dark trial, we report a significant decrease in distance moved for C6706-colonized larvae during the single-tap trial. Conclusion: This suggests that early V. cholerae colonization of the larval gut microbiome has a dampening effect on sensorimotor function, supporting the idea of a link between the gut microbiome and behavior.
Collapse
Affiliation(s)
- Isabella Cubillejo
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Kevin R. Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Jonathan Panzer
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Xixia Luo
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shreya Banerjee
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| |
Collapse
|
7
|
Zhai X, Lin D, Shen Y, Zhai N, Yu F, Zhang J, Lin Y, Wang Y, Zhou Q, Zheng X. A novel interplay between bacteria and metabolites in different early-stage lung cancer: an integrated microbiome and metabolome analysis. Front Oncol 2025; 14:1492571. [PMID: 39839794 PMCID: PMC11746054 DOI: 10.3389/fonc.2024.1492571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 01/23/2025] Open
Abstract
Background The carcinogenesis mechanism of early-stage lung cancer (ESLC) remains unclear. Microbial dysbiosis is closely related to tumor development. This study aimed to analyze the relationship between microbiota dysbiosis in ESLC. Methods We investigated a total of 108 surgical specimens of lung nodules, including ground glass nodules (GGN) diagnosed as lung adenocarcinoma (n = 25), solid nodules (SN) diagnosed as lung adenocarcinoma (n = 27), lung squamous carcinoma (LUSC) presenting as solid nodules (n = 26), and benign pulmonary nodules (BPD) (n = 30) that were collected. 16S rDNA amplicon sequencing and non-targeted metabolomics analysis were performed in all of the specimens. Results We found a significantly lower microbiota richness in SN than in the GGN and LUSC. Ralstonia may be an important flora promoting the development of early lung adenocarcinoma, while Feacalibacterium and Blautia play a protective role in the progression of GGN to SN. Akkermansia, Escherichia-shigella, and Klebsiella exhibited high abundance in early lung squamous carcinoma. Compared with BPD, the differential metabolites of both early adenocarcinomas (SN and GGN) are mainly involved in energy metabolic pathways, while early LUSC is mainly involved in glutathione metabolism, producing and maintaining high levels of intracellular redox homeostasis. A correlation analysis revealed that different microbiota in GGN may function in energy metabolism via N-acetyl-1-aspartylglutamic acid (NAAG) when compared to BPD, while creatine and N-acetylmethionine were the main relevant molecules for the function of differential microbiota in LUSC. Conclusion Our study identified that early-stage lung adenocarcinoma and squamous carcinoma differ in microbial composition and metabolic status. Ralstonia may be an important flora promoting the development of early lung adenocarcinoma, while Feacalibacterium and Blautia play a protective role in the progression of GGN to SN. Conversely, Akkermansia, Escherichia-shigella, and Klebsiella exhibited high abundance in early lung squamous carcinoma. The metabolites of both early adenocarcinomas (SN and GGN) are mainly involved in energy metabolic pathways, while early LUSC is mainly involved in glutathione metabolism. Our study provides new insights into the carcinogenesis of ESLC.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongqi Lin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Shen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Thoracic Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ni Zhai
- Neurosurgery Intensive Care Unit, The 987th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Baoji, Shanxi, China
| | - Fan Yu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Yiyun Lin
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center UT Health, Houston, TX, United States
| | - Yuqing Wang
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zhang J, Li W, Guo X, Zhang X, Wang X, Lv L. Chlorine and UV combination sequence: Effects on antibiotic resistance control and health risks of ARGs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123780. [PMID: 39708685 DOI: 10.1016/j.jenvman.2024.123780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The effective control of antibiotic resistance in aquatic environments is urgent. The combined chlorine and UV processes (Cl2-UV, UV/Cl2, and UV-Cl2) are considered potential control processes for controlling antibiotic resistance. This study compared the effectiveness of these three processes in real water bodies and the potential health risks associated with antibiotic resistance genes (ARGs) after treatments. The removal of various antibiotic-resistant bacteria (ARB) and ARGs by the combined processes was analysed. The UV/Cl2 process was less effective than the others in inactivating β-lactam-resistant bacteria (BRB) and sulfamethoxazole-resistant bacteria (SRB), which are more challenging to remove, though its performance might improve with increased UV fluence. Nevertheless, the UV/Cl2 process showed an advantage in removing ARGs. The absolute abundance of aminoglycoside resistance genes (AmRGs), sulfonamide resistance genes (SRGs), macrolide resistance genes (MRGs), and multidrug efflux-associated ARGs detected after the UV/Cl2 process was relatively low, and this process outperformed the others in removing a greater number of ARGs. Additionally, certain ARGs and bacterial genera were found to be enriched after the combined processes, with lower and more similar abundance levels of ARGs and genera observed after UV/Cl2 and UV-Cl2 processes compared to the Cl2-UV process. Health risk assessments indicated that the Cl2-UV process posed the highest risk, followed by UV/Cl2 and UV-Cl2 processes. Overall, the UV/Cl2 process may offer the most practical advantages for controlling antibiotic resistance.
Collapse
Affiliation(s)
- Jingyi Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xinming Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xuhui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
9
|
Ferreira Caceres MM, Veliz Caceres E, Alvarez Silva MA, Rosas LA. Brevundimonas diminuta Bacteremia in a Case of Adrenal Insufficiency: A Case Report and Literature Review. Cureus 2024; 16:e75943. [PMID: 39830549 PMCID: PMC11740636 DOI: 10.7759/cureus.75943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Brevundimonas diminuta is an uncommon Gram-negative bacteria rarely isolated from clinical samples. There are few reports of infections caused by this microorganism, especially in immunocompromised patients. We present a case of a 69-year-old male with a history of adrenal insufficiency who presented with B. diminuta bacteremia. The patient's immunocompromised state, resulting from chronic corticosteroid use, likely predisposed him to this rare infection. The limited number of reported cases highlights the need for awareness of this pathogen, especially in vulnerable populations. To the best of our knowledge, this is the first case report of a B. diminuta infection in a patient with bacteremia in the setting of adrenal insufficiency in the United States.
Collapse
Affiliation(s)
| | - Ezequiel Veliz Caceres
- Family Medicine, University of Texas Rio Grande Valley/Knapp Medical Center, Mercedes, USA
| | | | - Luis A Rosas
- Infectious Disease, University of Texas Rio Grande Valley/Knapp Medical Center, Mercedes, USA
| |
Collapse
|
10
|
Yusuf F, Ahmed SM, Dy D, Baney K, Waseem H, Gilbride KA. Occurrence and characterization of plasmid-encoded qnr genes in quinolone-resistant bacteria across diverse aquatic environments in southern Ontario. Can J Microbiol 2024; 70:492-506. [PMID: 39083844 DOI: 10.1139/cjm-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Antimicrobial resistance is an ever-increasing threat. The widespread usage of ciprofloxacin has led to the manifestation of resistance due to chromosomal mutations or the acquisition of plasmid-mediated quinolone resistance (PMQR) traits. Some particular PMQR traits, qnr genes, have been identified globally in clinical and environmental isolates. This study aimed to determine the prevalence of ciprofloxacin-resistant bacteria in aquatic environments in southern Ontario and investigate the extent of dissemination of ciprofloxacin resistance traits among the bacterial communities. We surveyed the prevalence of plasmid encoding qnr genes using a multiplex PCR assay of associated PMQR genes, qnrA, qnrB, and qnrS, on 202 isolates. Despite the absence of significant impacts on minimum inhibitory concentration levels, the presence of qnr genes correlates with heightened resistance to quinolones and nalidixic acid in some isolates. Taxonomic analysis highlights distinct differences in the composition and diversity of ciprofloxacin-sensitive (CipS) and ciprofloxacin-resistant (CipR) populations, with Proteobacteria dominating both groups. Importantly, CipR populations exhibit lower genetic diversity but higher prevalence of multiple antibiotic resistances, suggesting co-selection mechanisms. Co-occurrence analysis highlights significant associations between ciprofloxacin resistance and other antibiotic resistances, implicating complex genetic linkages. The results of our study signified the critical role of environmental monitoring in public health.
Collapse
Affiliation(s)
- Farhan Yusuf
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Saher M Ahmed
- Urban Water, Toronto Metropolitan University, Toronto, ON, Canada
| | - Danica Dy
- Department of Molecular and Cell Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katherine Baney
- Department of Cell Biology and Physiology, University of California, Berkeley, CA, USA
| | - Hassan Waseem
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Kimberley A Gilbride
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
- Urban Water, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
11
|
Menon AG, Bhaskar H, Gopal KS, M R, Subramanian SM. Symbiotic and Nonsymbiotic Bacteria Associated With the Entomo-Pathogenic Nematode, Heterorhabditis spp (Rhabditida: Heterorhabditidae) From South India. J Basic Microbiol 2024; 64:e2400108. [PMID: 39239913 DOI: 10.1002/jobm.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Sixteen isolates of bacteria obtained from the entomopathogenic nematode (Heterorhabditis sp.) infected cadavers of Galleria mellonella larvae were identified following phenotypic characterization and molecular analysis of 16S rRNA. Two isolates were identified as the symbiotic bacterium, Photothabdus luminescens, while 14 other isolates were represented by nine species of nonsymbiotic bacteria viz., Stenotrophomonas maltophilia, Alcaligenes aquatilis, Brevundimonas diminuta, Brucella pseudointermedia, Ochrobactrum sp., Brucella pseudogrignonensis, Brucella anthropic, Pseudomonas azatoformans and Pseudomonas lactis. The phylogenetic analysis confirmed the evolutionary relationship between P. luminescens and Pseudomonas spp. The study also found a close relationship among the nonsymbiotic bacteria such as A. aquatilis, B. diminuta, Ochrobactrum sp., and Brucella spp. P. luminescens has been documented for its insecticidal effects against a wide range of insects. The two local isolates obtained in this study may be explored for their biocontrol potential against major pests of the region. Further, the association of nonsymbiotic bacteria with the EPN may be investigated.
Collapse
Affiliation(s)
- Athira G Menon
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala, India
| | - Haseena Bhaskar
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala, India
| | - K Surendra Gopal
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala, India
| | - Rajkumar M
- Crop Protection, ICAR-Central Plantation Crops Research Institute, Kudlu, Kerala, India
| | - Smitha M Subramanian
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala, India
| |
Collapse
|
12
|
Maltman C, Messner K, Kyndt JA, Yurkov V. Brevundimonas aurifodinae, sp. nov., an Aerobic Anoxygenic Phototroph Resistant to Metalloid Oxyanions Isolated from Gold Mine Tailings. Microorganisms 2024; 12:2167. [PMID: 39597555 PMCID: PMC11596915 DOI: 10.3390/microorganisms12112167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
A polyphasic taxonomic study was carried out on the rod-shaped, orange-pigmented strain C11T, isolated from gold mine tailings. Sequencing of the 16S rRNA gene showed a relatedness to Brevundimonas, with a 98.4% and 98.2% similarity to Brevundimonas bacteroides and Brevundimonas variabilis, respectively. The average nucleotide identity and a digital DNA-DNA hybridization with the closest phylogenetic neighbor of strain C11T indicate distinction at the species level, further confirmed by the differences in physiology. C18:1 ω7c is the dominant cellular fatty acid. Its DNA G + C content is 68.3 mol %. Its predominant ubiquinone is Q-10; 1,2-Di-O-acyl-3-O-α-D-glucopyranuronosyl glycerol, phosphatidylglycerol, 1,2-di-O-acyl-3-O-α-D-glucopyranosyl glycerol, and 1,2-di-O-acyl-3-O-[D-glucopyranosyl-(1→4)-α-D-glucopyranuronosyl] glycerol are its major polar lipid constituents. This bacterium produces bacteriochlorophyll a and tolerates high concentrations of (μg/mL) the following: tellurium (>1500), selenium (1000 to >5000), and vanadium (>5000) oxyanions. The data support the inclusion of the strain C11T into the genus Brevundimonas as a new species with the proposed name Brevundimonas aurifodinae sp. nov. (C11T = NRRL B-61758T; =DSM 118059T).
Collapse
Affiliation(s)
- Chris Maltman
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.M.); (K.M.)
- Department of Biology, Slippery Rock University, Slippery Rock, PA 16057, USA
| | - Katia Messner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.M.); (K.M.)
| | - John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
| | - Vladimir Yurkov
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.M.); (K.M.)
| |
Collapse
|
13
|
Xu Y, Wu C, Wang P, Han X, Yang J, Zhai S. Effects of Dietary Inclusion of Enzymatically Hydrolyzed Compound Soy Protein on the Growth Performance and Intestinal Health of Juvenile American Eels ( Anguilla rostrata). Animals (Basel) 2024; 14:3096. [PMID: 39518819 PMCID: PMC11545088 DOI: 10.3390/ani14213096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The enzymatic hydrolysis of soybeans could enhance their application as an ingredient and alternative to fishmeal in aquafeeds. Here, a 10-week feeding trial was conducted to evaluate the impacts of different dietary inclusion levels of enzymatically hydrolyzed compound soy protein (EHCS) on the growth performance and intestinal health of juvenile American eels (Anguilla rostrata). Five experimental diets were formulated with graded EHCS inclusion levels at 0% (EHCS0), 8% (EHCS8), 16% (EHCS16), 24% (EHCS24), and 32% (EHCS32). Each diet was randomly assigned to four replicate tanks. The results showed that eels fed the EHCS8 diet exhibited superior growth performance, decreased serum lipid content, and increased immunity compared to those fed the EHCS0 diet. Eels fed the EHCS8 diet also displayed improved intestinal histology, enhanced antioxidant capacity and balance of intestinal microbiota as well as an enhanced proliferation of probiotics compared to those receiving the EHCS0 diet. Compared with eels fed the EHCS0 diet, those fed the EHCS16 diet exhibited comparable growth performance and values for the aforementioned markers. The quadratic regression analysis of weight gain rate and feed efficiency against the dietary EHCS inclusion levels determined the maximum levels of dietary EHCS inclusion for American eels range from 17.59% to 17.77%.
Collapse
Affiliation(s)
- Yichuang Xu
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Chengyao Wu
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Pan Wang
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Xiaozhao Han
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| | - Jinyue Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| | - Shaowei Zhai
- Fisheries College, Jimei University, Xiamen 361021, China; (Y.X.); (C.W.); (P.W.); (X.H.)
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of China, Xiamen 361021, China
| |
Collapse
|
14
|
Ochmian I, Przemieniecki SW, Błaszak M, Twarużek M, Lachowicz-Wiśniewska S. Antioxidant, Nutritional Properties, Microbiological, and Health Safety of Juice from Organic and Conventional 'Solaris' Wine ( Vitis vinifera L.) Farming. Antioxidants (Basel) 2024; 13:1214. [PMID: 39456467 PMCID: PMC11503995 DOI: 10.3390/antiox13101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the technological parameters, microbiological, and functional properties of juice from Solaris grapes grown under conventional and organic farming systems to assess how these cultivation methods influence juice quality. The one-year study focused on key aspects such as the levels of health-promoting polyphenols, the presence of mycotoxins, and pesticide residues. Organic grapes showed greater bacterial and fungal diversity, with significant differences in dominant genera. Sphingomonas and Massilia were the predominant bacteria across both systems, while Erysiphe was more common in conventional grapes, and Aureobasidium was abundant in both. Despite the presence of genes for mycotoxin production, no mycotoxins were detected in the juice or pomace. Organic juice exhibited significantly higher levels of polyphenols, leading to enhanced antioxidant properties and improved technological characteristics, including lower acidity and higher nitrogen content. However, residues of sulfur and copper, used in organic farming, were detected in the juice, while conventional juice contained synthetic pesticide residues like cyprodinil and fludioxonil. These findings highlight that while organic juice offers better quality and safety in terms of polyphenol content and antioxidant activity, it also carries risks related to residues from organic treatments, and conventional juice poses risks due to synthetic pesticide contamination.
Collapse
Affiliation(s)
- Ireneusz Ochmian
- Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Street, 71-434 Szczecin, Poland
| | - Sebastian W. Przemieniecki
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Magdalena Błaszak
- Department of Bioengineering, West Pomeranian University of Technology Szczecin, Słowackiego 17, 71-434 Szczecin, Poland;
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland;
| | - Sabina Lachowicz-Wiśniewska
- Department of Medical and Health Sciences, Calisia University, 4 Nowy Świat Street, 62-800 Kalisz, Poland;
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| |
Collapse
|
15
|
Sun H, Wang L, Chen F, Meng X, Zheng W, Peng H, Hao H, Chen H, Wang KJ. The modulation of intestinal commensal bacteria possibly contributes to the growth and immunity promotion in Epinephelus akaara after feeding the antimicrobial peptide Scy-hepc. Anim Microbiome 2024; 6:54. [PMID: 39380116 PMCID: PMC11459891 DOI: 10.1186/s42523-024-00342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Our previous study revealed that feeding the antimicrobial peptide (AMP) product Scy-hepc significantly enhances the growth of mariculture fish through the activation of the GH-Jak2-STAT5-IGF1 axis. However, the contribution of gut microbiota to this growth enhancement remains unclear. This study aimed to elucidate the potential mechanism involved in intestinal absorption and modulation of gut microbiota in Epinephelus akaara following Scy-hepc feeding. RESULTS The results showed that a 35 day regimen of Scy-hpec markedly promoted the growth of E. akaara compared to groups supplemented with either florfenicol, B. subtilis, or a vector. The growth enhancement is likely attributed to alterations in microbiota colonization in the foregut and midgut, characterized by an increasing abundance of potential probiotics (Rhizobiaceae and Lysobacter) and a decreased abundance of opportunistic pathogens (Psychrobacter and Brevundimonas) as determined by 16S rRNA analysis. Additionally, similar to the effect of florfenicol feeding, Scy-hepc significantly improved host survival rate by over 20% in response to a lethal dose challenge with Edwardsiella tarda. Further investigations demonstrated that Scy-hepc is absorbed by the fish foregut (20-40 min) and midgut (20-30 min) as confirmed by Western blot, ELISA, and Immunofluorescence. The absorption of Scy-hepc affected the swimming, swarming and surfing motility of Vibrio harveyi and Bacillus thuringiensis isolated from E. akaara's gut. Moreover, Scy-hepc induced the downregulation of 40 assembly genes and the upregulation expression of 5, with the most significant divergence in gene expression between opportunistic pathogens and probiotics concentrated in their motility genes (PomA/B, MotA/B). CONCLUSIONS In summary, this study shows that feeding AMP Scy-hepc can promote growth and bolster immunity in E. akaara. These beneficial effects are likely due to the absorption of Scy-hepc in the fish's foregut and midgut, which modulates the colonization and motility of commensal bacteria, leading to favorable changes in the composition of the foregut and midgut microbiota. Therefore, a profound understanding of the mechanisms by which antimicrobial peptides affect host gut microbiota will contribute to a comprehensive assessment of their advantages and potential application prospects as substitutes for antibiotics in fish health and improving aquaculture practices.
Collapse
Affiliation(s)
- Hang Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
| | - Luxi Wang
- Department of Physiology, School of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiangyu Meng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
| | - Wenbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huiyun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen, 361102, Fujian, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
16
|
Bagagnan S, Jusselme MD, Alphonse V, Guerin-Rechdaoui S, Marconi A, Rocher V, Moilleron R. Assessing the effectiveness of performic acid disinfection on effluents: focusing on bacterial abundance and diversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58252-58262. [PMID: 39292307 PMCID: PMC11467000 DOI: 10.1007/s11356-024-34958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Poorly-treated wastewater harbors harmful microorganisms, posing risks to both the environment and public health. To mitigate this, it is essential to implement robust disinfection techniques in wastewater treatment plants. The use of performic acid (PFA) oxidation has emerged as a promising alternative, due to its powerful disinfection properties and minimal environmental footprint. While PFA has been used to inactivate certain microbial indicators, its potential to tackle the entire microbial community in effluents, particularly resistant bacterial strains, remains largely unexplored. The present study evaluates the efficacy of PFA disinfection on the microbial communities of a WWTP effluent, through microbial resistance mechanisms due to their membrane structure. The effluent microbiome was quantified and identified. The results showed that the number of damaged cells increases with CT, reaching a maximum for CT = 240 mg/L•min and plateauing around 60 mg/L•min, highlighting the optimal conditions for PFA-disinfection against microbial viability. A low PFA level with a 10-min contact time significantly affected the microbial composition. It is worth noting the sensitivity of several bacterial genera such as Flavobacterium, Pedobacter, Massilia, Exiguobacterium, and Sphingorhabdus to PFA, while others, Acinetobacter, Leucobacter, Thiothrix, Paracoccus, and Cloacibacterium, showed resistance. The results detail the resistance and sensitivity of bacterial groups to PFA, correlated with their Gram-positive or Gram-negative membrane structure. These results underline PFA effectiveness in reducing microbial levels and remodeling bacterial composition, even with minimal concentrations and short contact times, demonstrating its suitability for widespread application in WWTPs.
Collapse
Affiliation(s)
- Sadia Bagagnan
- Laboratoire Eau Environnement Et Systèmes Urbains (Leesu), Univ Paris Est Creteil, Ecole Des Ponts, 61 Avenue du Général de Gaulle, 94000, Créteil, France
| | - My Dung Jusselme
- Laboratoire Eau Environnement Et Systèmes Urbains (Leesu), Univ Paris Est Creteil, Ecole Des Ponts, 61 Avenue du Général de Gaulle, 94000, Créteil, France.
| | - Vanessa Alphonse
- Laboratoire Eau Environnement Et Systèmes Urbains (Leesu), Univ Paris Est Creteil, Ecole Des Ponts, 61 Avenue du Général de Gaulle, 94000, Créteil, France
| | | | | | - Vincent Rocher
- Direction de L'Innovation, SIAAP, 92700, Colombes, France
| | - Regis Moilleron
- Laboratoire Eau Environnement Et Systèmes Urbains (Leesu), Univ Paris Est Creteil, Ecole Des Ponts, 61 Avenue du Général de Gaulle, 94000, Créteil, France
| |
Collapse
|
17
|
Lee JH, An Y, Kim SY. Florfenicol-resistant Brevundimonas sanguinis sp. nov., a novel bacterium isolated from patient blood in South Korea. Antonie Van Leeuwenhoek 2024; 118:11. [PMID: 39325059 PMCID: PMC11427616 DOI: 10.1007/s10482-024-02020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/31/2024] [Indexed: 09/27/2024]
Abstract
An aerobic, Gram-stain-negative, non-motile, non-spore-forming, short rod-shaped bacterial strain, designated NCCP 15609 T, was isolated from the blood sample of a patient in the Republic of Korea. The strain was identified as Brevundimonas diminuta using MALDI-TOF. A phylogenetic tree constructed using 16S rRNA gene sequences revealed that the isolate was of the genus Brevundimonas with 99.8% similarity to B. naejangsanensis. The strain NCCP 15609T genome consisted of one contig with 3,063,090 bp, and had a G+C content of 67.4%. The genome contained 2,949 protein-coding sequences, 52 tRNAs, and 6 rRNAs. The DNA-DNA hybridisation between NCCP 15609T and B. naejangsanensis yielded 92.5% and 49.5% ± 2.6%, respectively, using the average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH). The predominant fatty acids of strain NCCP 15609T were summed feature 8 (C18:1 ω7c/C18:1 ω6c) and C16:0. The isolate contained polar lipids and quinone, corresponding to phosphatidylglycerol, 1,2-di-O-acyl-3-O-[D-glycopyranosyl (1 → 4)-α-D-glucopyranuronosyl] glycerol, and ubiquinone-10, respectively. Based on its phylogenetic, physiological, and chemotaxonomic characteristics, we suggest that NCCP 15609T represents a novel pathogen resource of the genus Brevundimonas and propose to name it Brevundimonas sanguinis sp. nov. The type strain is NCCP 15609T (= DSM 116005T).
Collapse
Affiliation(s)
- Ji Hee Lee
- Division of Pathogen Resource Management, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency (KDCA), Cheongju, 28160, Republic of Korea
| | - Yewon An
- Division of Pathogen Resource Management, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency (KDCA), Cheongju, 28160, Republic of Korea
| | - Su Yeon Kim
- Division of Pathogen Resource Management, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency (KDCA), Cheongju, 28160, Republic of Korea.
| |
Collapse
|
18
|
Zou H, Tian M, Xu J, Li G, Chen H, Yang J, Ling P, Shen Z, Guo S. Distinct bacterial signature in the raw coal with different heating value. Front Microbiol 2024; 15:1459596. [PMID: 39301188 PMCID: PMC11410599 DOI: 10.3389/fmicb.2024.1459596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction Coal represents a significant natural resource in our world, and its quality and commercial value is primarily determined by its heating capacity. Numerous scientists worldwide have attempted to explore the impact of various environmental factors on coal rank, yet their conclusions are often inconsistent. Methods In this study, the Illumina MiSeq sequencing approach was used to analyze the bacterial community from a low-rank coal mine as well as a high-rank mine. Moreover, we investigated the relationship between the physical and chemical properties of the coal and the bacterial composition. Results Overall, we found that the high-rank coal exhibited higher heating value but higher total sulfur and lead levels. Considering the community of bacteria, the abundances of Phascolarctobacterium and Anaerostipes were highly elevated in the high-rank coal group. Most interestingly, the Anaerostipes abundance was correlated with coal quality positively. Additionally, the co-occurrence network of the bacterial community in the high-rank coal group showed much higher complexity. The bacterial functional potential predictions indicated elevated levels of phosphoenolpyruvate carboxykinase ATP, succinate dehydrogenase fumarate reductase flavoprotein subunit, and methylenetetrahydrofolate dehydrogenase NADP methenyltetrahydrofolate cyclohydrolase pathways. Conclusion This study revealed that high-rank coal had more complicated co-occurrence network and elevated Anaerostipes abundance, which may suggest a potential biological pathway that can be explored to enhance coal quality.
Collapse
Affiliation(s)
- Haijiang Zou
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Coalbed Methane Development Co., Shaanxi Coal and Chemical Industry Group Co., Ltd., Xi'an, Shaanxi, China
| | - Miaomiao Tian
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianmin Xu
- Shaanxi Coalbed Methane Development Co., Shaanxi Coal and Chemical Industry Group Co., Ltd., Xi'an, Shaanxi, China
| | - Guowei Li
- Shaanxi Coal Industry Company Limited, Xi'an, Shaanxi, China
| | - Hui Chen
- Xijing Hospital of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, China
| | - Junjun Yang
- Shaanxi Coal Industry Company Limited, Xi'an, Shaanxi, China
| | - Pengtao Ling
- Shaanxi Coal Industry Company Limited, Xi'an, Shaanxi, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Siyu Guo
- Department of Civil Engineering, Xi'an Jiaotong University, Xi'an, China
- School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
19
|
Iglesias A, Martínez L, Torrent D, Porcar M. The microwave bacteriome: biodiversity of domestic and laboratory microwave ovens. Front Microbiol 2024; 15:1395751. [PMID: 39176272 PMCID: PMC11338789 DOI: 10.3389/fmicb.2024.1395751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Abstract
Microwaves have become an essential part of the modern kitchen, but their potential as a reservoir for bacterial colonization and the microbial composition within them remain largely unexplored. In this study, we investigated the bacterial communities in microwave ovens and compared the microbial composition of domestic microwaves, microwaves used in shared large spaces, and laboratory microwaves, using next-generation sequencing and culturing techniques. The microwave oven bacterial population was dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, similar to the bacterial composition of human skin. Comparison with other environments revealed that the bacterial composition of domestic microwaves was similar to that of kitchen surfaces, whereas laboratory microwaves had a higher abundance of taxa known for their ability to withstand microwave radiation, high temperatures and desiccation. These results suggest that different selective pressures, such as human contact, nutrient availability and radiation levels, may explain the differences observed between domestic and laboratory microwaves. Overall, this study provides valuable insights into microwave ovens bacterial communities and their potential biotechnological applications.
Collapse
Affiliation(s)
- Alba Iglesias
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Lorena Martínez
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | | | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
- Darwin Bioprospecting Excellence S.L., Valencia, Spain
| |
Collapse
|
20
|
Chibwe K, Sundararaju S, Zhang L, Tsui C, Tang P, Ling F. Intra-hospital microbiome variability is driven by accessibility and clinical activities. Microbiol Spectr 2024; 12:e0029624. [PMID: 38940596 PMCID: PMC11302010 DOI: 10.1128/spectrum.00296-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
The hospital environmental microbiome, which can affect patients' and healthcare workers' health, is highly variable and the drivers of this variability are not well understood. In this study, we collected 37 surface samples from the neonatal intensive care unit (NICU) in an inpatient hospital before and after the operation began. Additionally, healthcare workers collected 160 surface samples from five additional areas of the hospital. All samples were analyzed using 16S rRNA gene amplicon sequencing, and the samples collected by healthcare workers were cultured. The NICU samples exhibited similar alpha and beta diversities before and after opening, which indicated that the microbiome there was stable over time. Conversely, the diversities of samples taken after opening varied widely by area. Principal coordinate analysis (PCoA) showed the samples clustered into two distinct groups: high alpha diversity [the pediatric intensive care unit (PICU), pathology lab, and microbiology lab] and low alpha diversity [the NICU, pediatric surgery ward, and infection prevention and control (IPAC) office]. Least absolute shrinkage and selection operator (LASSO) classification models identified 156 informative amplicon sequence variants (ASVs) for predicting the sample's area of origin. The testing accuracy ranged from 86.37% to 100%, which outperformed linear and radial support vector machine (SVM) and random forest models. ASVs of genera that contain emerging pathogens were identified in these models. Culture experiments had identified viable species among the samples, including potential antibiotic-resistant bacteria. Though area type differences were not noted in the culture data, the prevalences and relative abundances of genera detected positively correlated with 16S sequencing data. This study brings to light the microbial community temporal and spatial variation within the hospital and the importance of pathogenic and commensal bacteria to understanding dispersal patterns for infection control. IMPORTANCE We sampled surface samples from a newly built inpatient hospital in multiple areas, including areas accessed by only healthcare workers. Our analysis of the neonatal intensive care unit (NICU) showed that the microbiome was stable before and after the operation began, possibly due to access restrictions. Of the high-touch samples taken after opening, areas with high diversity had more potential external seeds (long-term patients and clinical samples), and areas with low diversity and had fewer (short-term or newborn patients). Classification models performed at high accuracy and identified biomarkers that could be used for more targeted surveillance and infection control. Though culturing data yielded viability and antibiotic-resistance information, it disproportionately detected the presence of genera relative to 16S data. This difference reinforces the utility of 16S sequencing in profiling hospital microbiomes. By examining the microbiome over time and in multiple areas, we identified potential drivers of the microbial variation within a hospital.
Collapse
Affiliation(s)
- Kaseba Chibwe
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Lin Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Clement Tsui
- Department of Pathology, Sidra Medicine, Doha, Qatar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Infectious Diseases Research Laboratory, National Centre for Infectious Diseases, Singapore
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Fangqiong Ling
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Division of Biological and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Lancaster E, Winston R, Martin J, Lee J. Urban stormwater green infrastructure: Evaluating the public health service role of bioretention using microbial source tracking and bacterial community analyses. WATER RESEARCH 2024; 259:121818. [PMID: 38815337 DOI: 10.1016/j.watres.2024.121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Bioretention cells (BRCs) control stormwater flow on-site during precipitation, reducing runoff and improving water quality through chemical, physical, and biological processes. While BRCs are effective in these aspects, they provide habitats for wildlife and may face microbial hazards from fecal shedding, posing a potential threat to human health and the nearby environment. However, limited knowledge exists regarding the ability to control microbial hazards (e.g., beyond using typical indicator bacteria) through stormwater biofiltration. Therefore, the purpose of this study is to characterize changes in the bacterial community of urban stormwater undergoing bioretention treatment, with the goal of assessing the public health implications of these green infrastructure solutions. Samples from BRC inflow and outflow in Columbus, Ohio, were collected post-heavy storms from October 2021 to March 2022. Conventional culture-based E. coli monitoring and microbial source tracking (MST) were conducted to identify major fecal contamination extent and its sources (i.e., human, canine, avian, and ruminant). Droplet digital polymerase chain reaction (ddPCR) was utilized to quantify the level of host-associated fecal contamination in addition to three antibiotic resistant genes (ARGs): tetracycline resistance gene (tetQ), sulfonamide resistance gene (sul1), and Klebsiella pneumoniae carbapenemase resistance gene (blaKPC). Subsequently, 16S rRNA gene sequencing was conducted to characterize bacterial community differences between stormwater BRC inflow and outflow. Untreated urban stormwater reflects anthropogenic contamination, suggesting it as a potential source of contamination to waterbodies and urban environments. When comparing inlet and outlet BRC samples, urban stormwater treated via biofiltration did not increase microbial hazards, and changes in bacterial taxa and alpha diversity were negligible. Beta diversity results reveal a significant shift in bacterial community structure, while simultaneously enhancing the water quality (i.e., reduction of metals, total suspended solids, total nitrogen) of urban stormwater. Significant correlations were found between the bacterial community diversity of urban stormwater with fecal contamination (e.g. dog) and ARG (sul1), rainfall intensity, and water quality (hardness, total phosphorous). The study concludes that bioretention technology can sustainably maintain urban microbial water quality without posing additional public health risks, making it a viable green infrastructure solution for heavy rainfall events exacerbated by climate change.
Collapse
Affiliation(s)
- Emma Lancaster
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ryan Winston
- Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Jay Martin
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Chen Y, Liang Z, Li G, An T. Indoor/Outdoor airborne microbiome characteristics in residential areas across four seasons and its indoor purification. ENVIRONMENT INTERNATIONAL 2024; 190:108857. [PMID: 38954924 DOI: 10.1016/j.envint.2024.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Bioaerosols are more likely to accumulate in the residential environment, and long-term inhalation may lead to a variety of diseases and allergies. Here, we studied the distribution, influencing factors and diffusion characteristics of indoor and outdoor microbiota pollution in six residential buildings in Guangzhou, southern China over a period of one year. The results showed that the particle sizes of bioaerosol were mainly in the range of inhalable particle size (<4.7 μm) with a small difference among four seasons (74.61 % ± 2.17 %). The microbial communities showed obvious seasonal differences with high abundance in summer, but no obvious geographical differences. Among them, the bacteria were more abundant than the fungi. The dominant microbes in indoor and outdoor environments were similar, with Anoxybacillu, Brevibacillus and Acinetobacter as the dominant bacteria, and Cladosporium, Penicillium and Alternaria as the dominant fungi. The airborne microbiomes were more sensitive to temperature and particulate matter (PM2.5, PM10) concentrations. Based on the Sloan neutral model, bacteria were more prone to random diffusion than fungi, and the airborne microbiome can be randomly distributed in indoor and outdoor environments and between the two environments in each season. Bioaerosol in indoor was mainly from outdoor. The health risk evaluation showed that the indoor inhalation risks were higher than those outdoor. The air purifier had a better removal efficiency on 1.1-4.7 μm microorganisms, and the removal efficiency on Gram-negative bacteria was better than that on Gram-positive bacteria. This study is of great significance for the risk assessment and control of residential indoor bioaerosol exposure.
Collapse
Affiliation(s)
- Yuying Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
Bekkar AA, Zaim S. Newly isolated Brevundimonas naejangsanensis as a biocontrol agent against Fusarium redolens the causal of Fusarium yellows of chickpea. Folia Microbiol (Praha) 2024; 69:835-846. [PMID: 38175463 DOI: 10.1007/s12223-023-01126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Three endophytic bacteria, namely BvV, BvP and BvL, were newly isolated from the root nodules of bean, pea and lentil plants respectively cultivated in Mascara the northwest of Algeria, and identified by 16S ribosomal RNA gene sequencing as Brevundimonas naejangsanensis. These strains were able to produce hydrolytic enzymes and hydrogen cyanide. All strains produced a growth-promoting hormone, indole acetic acid, varying in concentration from 83.2 to 171.7 µg/mL. The phosphate solubilizing activity of BvV, BvP and BvL varied from 25.5 to 42.02 µg/mL for tricalcium phosphate. The three antagonistic Brevundimonas spp. showed in vitro the most inhibitory effect on mycelial growth of Fusarium redolens FRC (from 78.33 to 85.55%). Strain BvV, BvP and BvL produced also volatile metabolites which inhibited mycelial FRC growth up to 39.2%. All strains showed significant disease reduction in pot experiments. Chickpea Fusarium yellows severity caused by FRC was reduced significantly from 89.3 to 96.6% in the susceptible cultivar ILC 482 treated with antagonistic B. naejangsanensis. The maximum stimulatory effect on chickpea plants growth was observed by inoculation of strain BvV. This treatment resulted in a 7.40-26.21% increase in shoot height as compared to the control plants. It is concluded that the endophytic bacterial strains of B. naejangsanensis having different plant growth promoting (PGP) activities can be considered as beneficial microbes for sustainable agriculture. To our knowledge, this is the first report to use B. naejangsanensis strains as a new biocontrol agent against F. redolens, a new pathogen of chickpea plants causing Fusarium yellows disease in Algeria.
Collapse
Affiliation(s)
- Ahmed Amine Bekkar
- Laboratory of Research on Biological Systems and Geomatics (L.R.S.B.G), Department of Agronomy, Faculty of Life and Natural Sciences, University Mustapha Stambouli of Mascara, Mascara, Algeria.
| | - Souad Zaim
- Laboratory of Research on Biological Systems and Geomatics (L.R.S.B.G), Department of Agronomy, Faculty of Life and Natural Sciences, University Mustapha Stambouli of Mascara, Mascara, Algeria
| |
Collapse
|
24
|
Ji G, Huan C, Zeng Y, Lyu Q, Du Y, Liu Y, Xu L, He Y, Tian X, Yan Z. Microbiologically induced calcite precipitation (MICP) in situ remediated heavy metal contamination in sludge nutrient soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134600. [PMID: 38759409 DOI: 10.1016/j.jhazmat.2024.134600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Microbiologically induced calcite precipitation (MICP), as a newly developing bioremediation technology, could redeem heavy metal contamination in diverse scenarios. In this study, MICP bacterium Sporosarcina ureilytica ML-2 was employed to suppress the pollution of Pb, Cd and Zn in municipal sludge nutrient soil. After MICP remediation, the exchangeable Cd and Zn in sludge nutrient soil were correspondingly reduced by 31.02 % and 6.09 %, while the carbonate-bound Pb, Cd and Zn as well as the residual fractions were increased by 16.12 %, 6.63 %, 13.09 % and 6.10 %, 45.70 %, 3.86 %, respectively. In addition, the extractable Pb, Cd and Zn either by diethylenetriaminepentaacetic acid (DTPA) or toxicity characteristic leaching procedure (TCLP) in sludge nutrient soil were significantly reduced. These results demonstrated that the bio-calcite generated via MICP helped to immobilize heavy metals. Furthermore, MICP treatment improved the abundance of functional microorganisms related to urea cycle, while reduced the overall abundance of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). This work confirmed the feasibility of MICP in remediation of heavy metal in sludge nutrient soil, which expanded the application field of MICP and provided a promising way for heavy metal pollution management.
Collapse
Affiliation(s)
- Gaosheng Ji
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Chenchen Huan
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shanxi Province 710064, China
| | - Yong Zeng
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qingyang Lyu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yaling Du
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishan Xu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yue He
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Xueping Tian
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| | - Zhiying Yan
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| |
Collapse
|
25
|
Yuan M, Zhang Z, Liu T, Feng H, Liu Y, Chen K. The Role of Nondigestible Oligosaccharides in Alleviating Human Chronic Diseases by Regulating the Gut Microbiota: A Review. Foods 2024; 13:2157. [PMID: 38998662 PMCID: PMC11241040 DOI: 10.3390/foods13132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
The gut has been a focus of chronic disease research. The gut microbiota produces metabolites that act as signaling molecules and substrates, closely influencing host health. Nondigestible oligosaccharides (NDOs), as a common dietary fiber, play an important role in regulating the structure and function of the gut microbiota. Their mechanism of action is mainly attributed to providing a carbon source as specific probiotics, producing related metabolites, and regulating the gut microbial community. However, due to the selective utilization of oligosaccharides, some factors, such as the type and structure of oligosaccharides, have different impacts on the composition of microbial populations and the production of metabolites in the colon ecosystem. This review systematically describes the key factors influencing the selective utilization of oligosaccharides by microorganisms and elaborates how oligosaccharides affect the host's immune system, inflammation levels, and energy metabolism by regulating microbial diversity and metabolic function, which in turn affects the onset and progress of chronic diseases, especially diabetes, obesity, depression, intestinal inflammatory diseases, and constipation. In this review, we re-examine the interaction mechanisms between the gut microbiota and its associated metabolites and diseases, and we explore new strategies for promoting human health and combating chronic diseases through dietary interventions.
Collapse
Affiliation(s)
- Meiyu Yuan
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Tongying Liu
- Jiangxi Maternel and Child Health Hospital, Nanchang 330108, China;
| | - Hua Feng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
26
|
Ramos EDSF, Tozetto-Mendoza TR, Bortoletto P, Ferreira NE, Honorato L, Barbosa EMG, Luchs A, Linhares IM, Spandorfer SD, Leal E, da Costa AC, Witkin SS, Mendes-Correa MC. Characterization of CRESS-DNA viruses in human vaginal secretions: An exploratory metagenomic investigation. J Med Virol 2024; 96:e29750. [PMID: 38953413 DOI: 10.1002/jmv.29750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
The Phylum Cressdnaviricota consists of a large number of circular Rep-encoding single-stranded (CRESS)-DNA viruses. Recently, metagenomic analyzes revealed their ubiquitous distribution in a diverse range of eukaryotes. Data relating to CRESS-DNA viruses in humans remains scarce. Our study investigated the presence and genetic diversity of CRESS-DNA viruses in human vaginal secretions. Vaginal swabs were collected from 28 women between 29 and 43 years old attending a fertility clinic in New York City. An exploratory metagenomic analysis was performed and detection of CRESS-DNA viruses was confirmed through analysis of near full-length sequences of the viral isolates. A phylogenetic tree was based on the REP open reading frame sequences of the CRESS-DNA virus genome. Eleven nearly complete CRESS-DNA viral genomes were identified in 16 (57.1%) women. There were no associations between the presence of these viruses and any demographic or clinical parameters. Phylogenetic analysis indicated that one of the sequences belonged to the genus Gemycircularvirus within the Genomoviridae family, while ten sequences represented previously unclassified species of CRESS-DNA viruses. Novel species of CRESS-DNA viruses are present in the vaginal tract of adult women. Although they be transient commensal agents, the potential clinical implications for their presence at this site cannot be dismissed.
Collapse
Affiliation(s)
- Endrya do Socorro Foro Ramos
- Laboratório de diversidade Viral, Instituto de Ciências Biológicas, Departamento de Virologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Tania Regina Tozetto-Mendoza
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pietro Bortoletto
- Fertility department, Boston IVF-The Eugin Group, Waltham, Massachusetts, USA
- Medicine department, Harvard Medical School, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Noely Evangelista Ferreira
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Layla Honorato
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Erick Matheus Garcia Barbosa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Luchs
- Virology department, Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Sao Paulo, Brazil
| | - Iara M Linhares
- Department of Gynecology and Obstetrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Steven D Spandorfer
- Department of Gynecology and Obstetrics, Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York City, New York, USA
| | - Elcio Leal
- Laboratório de diversidade Viral, Instituto de Ciências Biológicas, Departamento de Virologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Antonio Charlys da Costa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Steven S Witkin
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York City, New York, USA
| | - Maria Cassia Mendes-Correa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Gholipour S, Nikaeen M, Mohammadi F, Rabbani D. Antibiotic resistance pattern of waterborne causative agents of healthcare-associated infections: A call for biofilm control in hospital water systems. J Infect Public Health 2024; 17:102469. [PMID: 38838607 DOI: 10.1016/j.jiph.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND In recent years, the global spread of antimicrobial resistance has become a concerning issue, often referred to as a "silent pandemic". Healthcare-associated infections (HAIs) caused by antibiotic-resistant bacteria (ARB) are a recurring problem, with some originating from waterborne route. The study aimed to investigate the presence of clinically relevant opportunistic bacteria and antibiotic resistance genes (ARGs) in hospital water distribution systems (WDSs). METHODS Water and biofilm samples (n = 192) were collected from nine hospitals in Isfahan and Kashan, located in central Iran, between May 2022 and June 2023. The samples were analyzed to determine the presence and quantities of opportunistic bacteria and ARGs using cultural and molecular methods. RESULTS Staphylococcus spp. were highly detected in WDS samples (90 isolates), with 33 % of them harboring mecA gene. However, the occurrences of E. coli (1 isolate), Acinetobacter baumannii (3 isolates), and Pseudomonas aeruginosa (14 isolates) were low. Moreover, several Gram-negative bacteria containing ARGs were identified in the samples, mainly belonging to Stenotrophomonas, Sphingomonas and Brevundimonas genera. Various ARGs, as well as intI1, were found in hospital WDSs (ranging from 14 % to 60 %), with higher occurrences in the biofilm samples. CONCLUSION Our results underscore the importance of biofilms in water taps as hotspots for the dissemination of opportunistic bacteria and ARG within hospital environments. The identification of multiple opportunistic bacteria and ARGs raises concerns about the potential exposure and acquisition of HAIs, emphasizing the need for proactive measures, particularly in controlling biofilms, to mitigate infection risks in healthcare settings.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
28
|
Viquez C, Rojas-Gätjens D, Mesén-Porras E, Avendaño R, Sasa M, Lomonte B, Chavarría M. Venom-microbiomics of eight species of Neotropical spiders from the Theraphosidae family. J Appl Microbiol 2024; 135:lxae113. [PMID: 38692848 DOI: 10.1093/jambio/lxae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
AIM Tarantulas are one of the largest predatory arthropods in tropical regions. Tarantulas though not lethal to humans, their venomous bite kills small animals and insect upon which they prey. To understand the abiotic and biotic components involved in Neotropical tarantula bites, we conducted a venom-microbiomics study in eight species from Costa Rica. METHODS AND RESULTS We determined that the toxin profiles of tarantula venom are highly diverse using shotgun proteomics; the most frequently encountered toxins were ω-Ap2 toxin, neprilysin-1, and several teraphotoxins. Through culture-independent and culture-dependent methods, we determined the microbiota present in the venom and excreta to evaluate the presence of pathogens that could contribute to primary infections in animals, including humans. The presence of opportunistic pathogens with hemolytic activity was observed, with a prominence of Stenotrophomonas in the venoms. Other bacteria found in venoms and excreta with hemolytic activity included members of the genera Serratia, Bacillus, Acinetobacter, Microbacterium, and Morganella. CONCLUSIONS Our data shed light on the venom- and gut-microbiome associated with Neotropical tarantulas. This information may be useful for treating bites from these arthropods in both humans and farm animals, while also providing insight into the toxins and biodiversity of this little-explored microenvironment.
Collapse
Affiliation(s)
- Carlos Viquez
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Oficina subregional de Alajuela, Sistema Nacional de Áreas de Conservación (SINAC), Ministerio Ambiente y Energía (MINAE), Alajuela 20101, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Esteve Mesén-Porras
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Museo de Zoología, Centro de Investigación de Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
29
|
Sagerfors S, Edslev S, Lindblad BE, Lilje B, Stegger M, Söderquist B. In the eye of the ophthalmologist: the corneal microbiome in microbial keratitis. Graefes Arch Clin Exp Ophthalmol 2024; 262:1579-1589. [PMID: 37993692 PMCID: PMC11031470 DOI: 10.1007/s00417-023-06310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
PURPOSE To describe the bacterial findings by a targeted sequencing approach from corneal samples of patients with microbial keratitis and factors influencing culture outcome of indirectly inoculated corneal specimen. METHODS Prospective inclusion of patients fulfilling predefined criteria of microbial keratitis. Samples from the corneal lesion were collected and dispensed in liquid transport medium, from which both culture and targeted amplification and sequencing of the V3-V4 region of the 16S rRNA gene were carried out. Additional standard corneal culture from the corneal lesions was also performed. Factors influencing culture outcome of indirectly inoculated corneal samples were identified by a multivariate regression model incorporating quantitative data from sequencing. RESULTS Among the 94 included patients with microbial keratitis, contact lens wear (n = 69; 73%) was the most common risk factor. Contact lens wearers displayed significant differences in the bacterial community composition of the corneal lesion compared to no lens wearers, with higher abundance of Staphylococcus spp., Corynebacterium spp., and Stenotrophomonas maltophilia. Targeted sequencing detected a potential corneal pathogen in the highest proportional abundance among 9 of the 24 (38%) culture-negative patients with microbial keratitis. Age, bacterial density in the sample, and prior antibiotic treatment significantly influenced culture outcome of indirectly inoculated corneal samples. CONCLUSION Targeted sequencing may provide insights on pathogens in both culture negative episodes of microbial keratitis and among subgroups of patients with microbial keratitis as well as factors influencing culture outcome of indirectly inoculated corneal samples.
Collapse
Affiliation(s)
- Susanna Sagerfors
- Department of Ophthalmology, Faculty of Medicine and Health, Örebro University, SE 701 82, Örebro, Sweden.
| | - Sofie Edslev
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Birgitta Ejdervik Lindblad
- Department of Ophthalmology, Faculty of Medicine and Health, Örebro University, SE 701 82, Örebro, Sweden
| | - Berit Lilje
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE 701 82, Örebro, Sweden
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Australia
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE 701 82, Örebro, Sweden
| |
Collapse
|
30
|
Yan Y, Xu J, Huang W, Fan Y, Li Z, Tian M, Ma J, Lu X, Liang J. Metagenomic and Culturomics Analysis of Microbial Communities within Surface Sediments and the Prevalence of Antibiotic Resistance Genes in a Pristine River: The Zaqu River in the Lancang River Source Region, China. Microorganisms 2024; 12:911. [PMID: 38792738 PMCID: PMC11124135 DOI: 10.3390/microorganisms12050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Microbial communities inhabiting sedimentary environments in river source regions serve as pivotal indicators of pristine river ecosystems. While the correlation between antibiotic resistome and pathogenicity with core gut bacteria in humans is well established, there exists a significant knowledge gap concerning the interaction of antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) with specific microbes in river source basins, often referred to as "terrestrial gut". Understanding the microbial composition, including bacteria and resident genetic elements such as ARGs, HPB, Mobile Genetic Elements (MGEs), and Virulence Factors (VFs), within natural habitats against the backdrop of global change, is imperative. To address this gap, an enrichment-based culturomics complementary along with metagenomics was conducted in this study to characterize the microbial biobank and provide preliminary ecological insights into profiling the dissemination of ARGs in the Lancang River Source Basin. Based on our findings, in the main stream of the Lancang River Source Basin, 674 strains of bacteria, comprising 540 strains under anaerobic conditions and 124 under aerobic conditions, were successfully isolated. Among these, 98 species were identified as known species, while 4 were potential novel species. Of these 98 species, 30 were HPB relevant to human health. Additionally, bacA and bacitracin emerged as the most abundant ARGs and antibiotics in this river, respectively. Furthermore, the risk assessment of ARGs predominantly indicated the lowest risk rank (Rank Ⅳ) in terms of endangering human health. In summary, enrichment-based culturomics proved effective in isolating rare and unknown bacteria, particularly under anaerobic conditions. The emergence of ARGs showed limited correlation with MGEs, indicating minimal threats to human health within the main stream of the Lancang River Source Basin.
Collapse
Affiliation(s)
- Yi Yan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jialiang Xu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Wenmin Huang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Yufeng Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Zhenpeng Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Mingkai Tian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Jinsheng Ma
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Xin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
31
|
Vass M, Ramasamy KP, Andersson A. Microbial hitchhikers on microplastics: The exchange of aquatic microbes across distinct aquatic habitats. Environ Microbiol 2024; 26:e16618. [PMID: 38561820 DOI: 10.1111/1462-2920.16618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Microplastics (MPs) have the potential to modify aquatic microbial communities and distribute microorganisms, including pathogens. This poses a potential risk to aquatic life and human health. Despite this, the fate of 'hitchhiking' microbes on MPs that traverse different aquatic habitats remains largely unknown. To address this, we conducted a 50-day microcosm experiment, manipulating estuarine conditions to study the exchange of bacteria and microeukaryotes between river, sea and plastisphere using a long-read metabarcoding approach. Our findings revealed a significant increase in bacteria on the plastisphere, including Pseudomonas, Sphingomonas, Hyphomonas, Brevundimonas, Aquabacterium and Thalassolituus, all of which are known for their pollutant degradation capabilities, specifically polycyclic aromatic hydrocarbons. We also observed a strong association of plastic-degrading fungi (i.e., Cladosporium and Plectosphaerella) and early-diverging fungi (Cryptomycota, also known as Rozellomycota) with the plastisphere. Sea MPs were primarily colonised by fungi (70%), with a small proportion of river-transported microbes (1%-4%). The mere presence of MPs in seawater increased the relative abundance of planktonic fungi from 2% to 25%, suggesting significant exchanges between planktonic and plastisphere communities. Using microbial source tracking, we discovered that MPs only dispersed 3.5% and 5.5% of river bacterial and microeukaryotic communities into the sea, respectively. Hence, although MPs select and facilitate the dispersal of ecologically significant microorganisms, drastic compositional changes across distinct aquatic habitats are unlikely.
Collapse
Affiliation(s)
- Máté Vass
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Division of Systems and Synthetic Biology, Department of Life Sciences, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Kesava Priyan Ramasamy
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Umeå, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
Ferreira PFA, Rocha FI, Howe A, Barbosa DR, da Conceição Jesus E, do Amaral Sobrinho NMB, da Silva Coelho I. Chemical attributes, bacterial community, and antibiotic resistance genes are affected by intensive use of soil in agro-ecosystems of the Atlantic Forest, Southeastern Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:123. [PMID: 38483669 DOI: 10.1007/s10653-024-01894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
Soil is one of the largest reservoirs of microbial diversity in nature. Although soil management is vital for agricultural purposes, intensive practices can have a significant impact on fertility, microbial community, and resistome. Thus, the aim of this study was to evaluate the effects of an intensive soil management system on the chemical attributes, composition and structure of prevalent bacterial communities, and presence and abundance of antimicrobial resistance genes (ARGs). The chemical characterization, bacterial diversity and relative abundance of ARGs were evaluated in soils from areas of intensive vegetable cultivation and forests. Results indicate that levels of nutrients and heavy metals were higher in soil samples from cultivated areas. Similarly, greater enrichment and diversity of bacterial genera was detected in agricultural areas. Of the 18 target ARGs evaluated, seven were detected in studied soils. The oprD gene exhibited the highest abundance among the studied genes and was the only one that showed a significantly different prevalence between areas. The oprD gene was identified only from soil of the cultivated areas. The blaSFO, erm(36), oprD and van genes, in addition to the pH, showed greater correlation with in soil of cultivated areas, which in turn exhibited higher contents of nutrients. Thus, in addition to changes in chemical attributes and in the microbial community of the soil, intensive agricultural cultivation systems cause a modification of its resistome, reinforcing the importance of the study of antimicrobial resistance in a One Health approach.
Collapse
Affiliation(s)
- Paula Fernanda Alves Ferreira
- Departament of Soil, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil
| | - Fernando Igne Rocha
- Mokichi Okada Research Center, Korin Agriculture and Environment, Ipeúna, São Paulo, Brazil
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Daniele Rodrigues Barbosa
- Departament of Soil, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil
| | - Ederson da Conceição Jesus
- Embrapa Agrobiology, Brazilian Agricultural Research Corporation, Seropédica, Rio de Janeiro, 23891-000, Brazil
| | | | - Irene da Silva Coelho
- Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil.
| |
Collapse
|
33
|
O'Hara E, Zaheer R, Andrés-Lasheras S, McAllister TA, Gruninger RJ. Evaluating the liver abscess microbiota of beef cattle during a reduction in tylosin supplementation shows differences according to abscess size and fraction. FEMS Microbiol Ecol 2024; 100:fiae002. [PMID: 38373802 PMCID: PMC10960635 DOI: 10.1093/femsec/fiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024] Open
Abstract
Liver abscesses (LA) resulting from bacterial infection in cattle pose a significant global challenge to the beef and dairy industries. Economic losses from liver discounts at slaughter and reduced animal performance drive the need for effective mitigation strategies. Tylosin phosphate supplementation is widely used to reduce LA occurrence, but concerns over antimicrobial overuse emphasize the urgency to explore alternative approaches. Understanding the microbial ecology of LA is crucial to this, and we hypothesized that a reduced timeframe of tylosin delivery would alter LA microbiomes. We conducted 16S rRNA sequencing to assess severe liver abscess bacteriomes in beef cattle supplemented with in-feed tylosin. Our findings revealed that shortening tylosin supplementation did not notably alter microbial communities. Additionally, our findings highlighted the significance of sample processing methods, showing differing communities in bulk purulent material and the capsule-adhered material. Fusobacterium or Bacteroides ASVs dominated LA, alongside probable opportunistic gut pathogens and other microbes. Moreover, we suggest that liver abscess size correlates with microbial community composition. These insights contribute to our understanding of factors impacting liver abscess microbial ecology and will be valuable in identifying antibiotic alternatives. They underscore the importance of exploring varied approaches to address LA while reducing reliance on in-feed antibiotics.
Collapse
Affiliation(s)
- Eóin O'Hara
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB, T1J 4B1, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB, T1J 4B1, Canada
| | - Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB, T1J 4B1, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB, T1J 4B1, Canada
| | - Robert J Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
34
|
Ajeeb TT, Gonzalez E, Solomons NW, Vossenaar M, Koski KG. Human milk microbiome: associations with maternal diet and infant growth. Front Nutr 2024; 11:1341777. [PMID: 38529196 PMCID: PMC10962684 DOI: 10.3389/fnut.2024.1341777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Ingestion of human milk (HM) is identified as a significant factor associated with early infant gut microbial colonization, which has been associated with infant health and development. Maternal diet has been associated with the HM microbiome (HMM). However, a few studies have explored the associations among maternal diet, HMM, and infant growth during the first 6 months of lactation. Methods For this cross-sectional study, Mam-Mayan mother-infant dyads (n = 64) were recruited from 8 rural communities in the Western Highlands of Guatemala at two stages of lactation: early (6-46 days postpartum, n = 29) or late (109-184 days postpartum, n = 35). Recruited mothers had vaginally delivered singleton births, had no subclinical mastitis or antibiotic treatments, and breastfed their infants. Data collected at both stages of lactation included two 24-h recalls, milk samples, and infant growth status indicators: head-circumference-for-age-z-score (HCAZ), length-for-age-z-score (LAZ), and weight-for-age-z-score (WAZ). Infants were divided into subgroups: normal weight (WAZ ≥ -1SD) and mildly underweight (WAZ < -1SD), non-stunted (LAZ ≥ -1.5SD) and mildly stunted (LAZ < -1.5SD), and normal head-circumference (HCAZ ≥ -1SD) and smaller head-circumference (HCAZ < -1SD). HMM was identified using 16S rRNA gene sequencing; amplicon analysis was performed with the high-resolution ANCHOR pipeline, and DESeq2 identified the differentially abundant (DA) HMM at the species-level between infant growth groups (FDR < 0.05) in both early and late lactation. Results Using both cluster and univariate analyses, we identified (a) positive correlations between infant growth clusters and maternal dietary clusters, (b) both positive and negative associations among maternal macronutrient and micronutrient intakes with the HMM at the species level and (c) distinct correlations between HMM DA taxa with maternal nutrient intakes and infant z-scores that differed between breast-fed infants experiencing growth faltering and normal growth in early and late lactation. Conclusion Collectively, these findings provide important evidence of the potential influence of maternal diet on the early-life growth of breastfed infants via modulation of the HMM.
Collapse
Affiliation(s)
- Tamara T. Ajeeb
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- Department of Clinical Nutrition, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Marieke Vossenaar
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | | |
Collapse
|
35
|
Sabatino R, Zullo R, Di Cesare A, Piscia R, Musazzi S, Corno G, Volta P, Galafassi S. Traditional and biodegradable plastics host distinct and potentially more hazardous microbes when compared to both natural materials and planktonic community. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133166. [PMID: 38101010 DOI: 10.1016/j.jhazmat.2023.133166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Microplastic particles are persistent micropollutants that provide a substrate for the growth of bacterial biofilms, posing a threat to the environment. This study explores the changes in commercially available food containers made of conventional (polypropylene PP, polyethylene terephthalate PET), innovative biodegradable (Mater-Bi) and natural (wood and cellulose) materials, when introduced in the surface waters of Lake Maggiore for 43 days. Spectral changes revealed by FT-IR spectroscopy in PET and Mater-Bi, and changes in thermal properties of all human-made material tested indicated a degradation process occurred during environmental exposure. Despite similar bacterial richness, biofilms on PET, PP, and Mater-Bi differed from natural material biofilms and the planktonic community. Human-made material communities showed a higher proportion of potential pathogens, with PET and PP also exhibiting increased abundances of antibiotic resistance genes. Overall, these findings stress the need for dedicated strategies to curb the spread of human-made polymers in freshwaters, including innovative materials that, due to their biodegradable properties, might be perceived less hazardous for the environment.
Collapse
Affiliation(s)
| | - Rosa Zullo
- Water Research Institute, National Research Council, Verbania, Italy.
| | - Andrea Di Cesare
- Water Research Institute, National Research Council, Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Roberta Piscia
- Water Research Institute, National Research Council, Verbania, Italy
| | - Simona Musazzi
- Water Research Institute, National Research Council, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute, National Research Council, Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Pietro Volta
- Water Research Institute, National Research Council, Verbania, Italy
| | - Silvia Galafassi
- Water Research Institute, National Research Council, Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
36
|
Saikh SR, Mushtaque MA, Pramanick A, Prasad JK, Roy D, Saha S, Das SK. Fog caused distinct diversity of airborne bacterial communities enriched with pathogens over central Indo-Gangetic plain in India. Heliyon 2024; 10:e26370. [PMID: 38420377 PMCID: PMC10901028 DOI: 10.1016/j.heliyon.2024.e26370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Fog causes enhancement of bacterial loading in the atmosphere. Current study represents the impact of occurrences of fog on the alteration of diversity of airborne bacteria and their network computed from metagenomic data of airborne samples collected at Arthauli (25.95°N, 85.10°E) situated at central Indo-Gangetic Plain (IGP) during 1-14 January 2021. A distinct bacterial diversity with a complex network is identified in foggy condition due to the enrichment of unique types of bacteria. Present investigation highlights a statistically significant enrichment of airborne pathogenic bacteria found in a unique ecosystem within air evolved due to the occurrences of fog over central IGP. In the foggy network, Cutibacterium, an opportunistic pathogen, is identified to be interacting maximum (21 edges) with other bacteria with statistically significant copresence relation, which are responsible for various infections for human beings. A 40-60% increase (p < 0.01) in the abundance of pathogenic bacteria for respiratory and skin diseases is noticed in fog period. Among the fog-enriched bacteria, Cutibacterium, Herbaspirillum, Paenibacillus, and Tsukamurella are examples of opportunistic bacteria causing various respiratory diseases, while Paenibacillus can even cause skin cancer and acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Shahina Raushan Saikh
- Department of Physical Sciences, Bose Institute, Kolkata, India
- Department of Life Science & Bio-technology, Jadavpur University, Kolkata, India
| | | | | | | | - Dibakar Roy
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sanat Kumar Das
- Department of Physical Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
37
|
Chao J, Li J, Kong M, Shao K, Tang X. Bacterioplankton diversity and potential health risks in volcanic lakes: A study from Arxan Geopark, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123058. [PMID: 38042466 DOI: 10.1016/j.envpol.2023.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Bacterioplankton play a vital role in maintaining the functions and services of lake ecosystems. Understanding the diversity and distribution patterns of bacterioplankton, particularly the presence of potential pathogenic bacterial communities, is crucial for safeguarding human health. In this study, we employed 16S rRNA gene amplicon sequencing to investigate the diversity and geographic patterns of bacterioplankton communities, as well as potential pathogens, in eight volcanic lakes located in the Arxan UNESCO Global Geopark (in the Greater Khingan Mountains of China). Our results revealed that the bacterial communities primarily comprised Bacteroidota (45.3%), Proteobacteria (33.1%), and Actinobacteria (9.0%) at the phylum level. At the genus level, prominent taxa included Flavobacterium (31.5%), Acinetobacter (11.0%), Chryseobacterium (7.9%), and CL500-29 marine group (5.6%). Among the bacterioplankton, we identified 34 pathogen genera (165 amplicon sequence variants [ASVs]), with Acinetobacter (59.8%), Rahnella (18.3%), Brevundimonas (9.6%), and Pseudomonas (5.8%) being the most dominant. Our findings demonstrated distinct biogeographic patterns in the bacterial communities at the local scale, driven by a combination of dispersal limitation and environmental factors influenced by human activities. Notably, approximately 15.3% of the bacterioplankton reads in the Arxan lakes were identified as potential pathogens, underscoring the potential risks to public health in these popular tourist destinations. This study provides the first comprehensive insight into the diversity of bacterioplankton in mountain lake ecosystems affected by high tourist activity, laying the groundwork for effective control measures against bacterial pathogens.
Collapse
Affiliation(s)
- Jianying Chao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jian Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Hawer H, Burmester R, Sonnenberg N, Weiß K. Detection of endotoxins from selected drinking water microbiota using an LAL-based assay and its implications for human health. JOURNAL OF WATER AND HEALTH 2024; 22:290-295. [PMID: 38421623 PMCID: wh_2024_207 DOI: 10.2166/wh.2024.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Endotoxins are pyrogenic lipopolysaccharides from Gram-negative bacteria that are known to induce fever, septic shock, and multiple organ failure, posing a substantial risk to human health. Drinking water systems are especially prone to home microbiomes containing a large variety of Gram-negative bacteria. Consumption of water from these systems in developed countries is generally regarded as non-hazardous to humans due to the low number of non-pathogenic bacterial cells per milliliter and oral admission. To assess potential risks posed by endotoxins in drinking water systems, we conducted a conventional microbiological investigation on a local community water system in the north of Germany and mined the resulting data to investigate the endotoxin contents of some of the most abundant microbiota found during these analyses. Using a Limulus amoebocyte lysate (LAL) -based endotoxin detection method, average normalized endotoxin content was determined. Although the average culturable amounts of microbiota in the drinking water system were insufficient to exert endotoxin levels critical to human health, peaks and acute contaminations may pose substantial health risks.
Collapse
Affiliation(s)
- Harmen Hawer
- Panpharma GmbH, Bunsenstraße 4, 22946, Trittau, Germany E-mail:
| | | | | | - Katja Weiß
- Panpharma GmbH, Bunsenstraße 4, 22946, Trittau, Germany
| |
Collapse
|
39
|
Peled S, Freilich S, Hanani H, Kashi Y, Livney YD. Next-generation prebiotics: Maillard-conjugates of 2'-fucosyllactose and lactoferrin hydrolysates beneficially modulate gut microbiome composition and health promoting activity in a murine model. Food Res Int 2024; 177:113830. [PMID: 38225111 DOI: 10.1016/j.foodres.2023.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Current prebiotics are predominantly carbohydrates. However, great competition exists among gut microbes for the scarce protein in the colon, as most consumed protein is digested and absorbed in the small intestine. Herein we evaluated in-vivo novel next-generation prebiotics: protein-containing-prebiotics, for selectively-targeted delivery of protein to colonic probiotics, to boost their growth. This system is based on micellar-particles, composed of Maillard-glycoconjugates of 2'-Fucosyllactose (2'-FL, human-milk-oligosaccharide) shell, engulfing lactoferrin peptic-then-tryptic hydrolysate (LFH) core. This core-shell structure lowers protein-core digestibility, while the prebiotic glycans are hypothesized to serve as molecular-recognition ligands for selectively targeting probiotics. To study the efficacy of this novel prebiotic, we fed C57BL/6JRccHsd mice with either 2'-FL-LFH Maillard-glycoconjugates, unconjugated components (control), or saline (blank). Administration of 2'-FL-LFH significantly increased the levels of short-chain-fatty-acids (SCFAs)-producing bacterial families (Ruminococcaceae, Lachnospiraceae) and genus (Odoribacter) and the production of the health-related metabolites, SCFAs, compared to the unconjugated components and to saline. The SCFAs-producing genus Prevotella significantly increased upon 2'-FL-LFH consumption, compared to only moderate increase in the unconjugated components. Interestingly, the plasma-levels of inflammation-inducing lipopolysaccharides (LPS), which indicate increased gut-permeability, were significantly lower in the 2'-FL-LFH group compared to the unconjugated-components and the saline groups. We found that Maillard-glycoconjugates of 2'-FL-LFH can serve as novel protein-containing prebiotics, beneficially modulating gut microbial composition and its metabolic activity, thereby contributing to host health more effectively than the conventional carbohydrate-only prebiotics.
Collapse
Affiliation(s)
- Stav Peled
- Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Shay Freilich
- Laboratory of Applied Genomics, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Hila Hanani
- Laboratory of Applied Genomics, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yechezkel Kashi
- Laboratory of Applied Genomics, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav D Livney
- Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
40
|
Liu C, Pan K, Xu H, Song Y, Qi X, Lu Y, Jiang X, Liu H. The effects of enrofloxacin exposure on responses to oxidative stress, intestinal structure and intestinal microbiome community of largemouth bass (Micropterus salmoides). CHEMOSPHERE 2024; 348:140751. [PMID: 37992902 DOI: 10.1016/j.chemosphere.2023.140751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Antibiotic residues in the aquaculture environments may lead to antibiotic resistance, and potentially exert adverse effects on health of the non-target organisms and humans. In order to evaluate the effect of enrofloxacin of environmental concentrations on largemouth bass (Micropterus salmoides). Two hundred and seventy largemouth basses (with an average weight of 7.88 ± 0.60 g) were randomly divided into three groups, and separately exposed to 0, 1, 100 μg/L enrofloxacin (Control, ENR1, ENR100) for 30 days to detect the effect of enrofloxacin on the growth performance, oxidative stress, intestinal microbiota structure, inflammatory response and structure of the intestine. The results showed that ENR significantly reduced the final body weight (FBW) and weight gain rate (WGR), and increased feed conversion ratio (FCR) (P < 0.05). The histopathological analysis revealed that the villus width and muscular thickness of anterior intestine were significantly decreased with the increasing of enrofloxacin concentration. The activity of SOD was significantly increased at enrofloxacin stress, while CAT and POD activity were significantly decreased compared to control group (P < 0.05). The activities of lysozyme (LZM), alkaline phosphatase (AKP) and peroxidase (POD) in ENR1 was higher than that of control and ENR100 groups. Enrofloxacin treatment up-regulated the expression IL-1β and TNF-α, and down-regulated IL-10, and decreasing the expression level ZO-1, claudin-1, and occludin. Furthermore, the enrofloxacin treatment significantly decreased the intestinal bacterial diversity (P < 0.05). Exposure to 100 μg/L enrofloxacin obviously increased the relative abundance of Bacteroidota, Myxococcota, and Zixibacteria of fish gut, and reduced Firmicutes; 1 μg/L enrofloxacin considerably increased Bacteroidota, Myxococcota, and Actinobacteria, and reduced Firmicutes. The relative abundance of DTB120 and Elusimicrobiota was positively correlated with the occludin and claudin-1 gene. Taken together, exposure to enrofloxacin inhibited the growth of largemouth bass, influenced intestinal health, and induced dysbiosis of the intestinal microbiota.
Collapse
Affiliation(s)
- Chengrong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yitong Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinxin Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
41
|
Martorella M, Kasela S, Garcia-Flores R, Gokden A, Castel SE, Lappalainen T. Evaluation of noninvasive biospecimens for transcriptome studies. BMC Genomics 2023; 24:790. [PMID: 38114913 PMCID: PMC10729488 DOI: 10.1186/s12864-023-09875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Transcriptome studies disentangle functional mechanisms of gene expression regulation and may elucidate the underlying biology of disease processes. However, the types of tissues currently collected typically assay a single post-mortem timepoint or are limited to investigating cell types found in blood. Noninvasive tissues may improve disease-relevant discovery by enabling more complex longitudinal study designs, by capturing different and potentially more applicable cell types, and by increasing sample sizes due to reduced collection costs and possible higher enrollment from vulnerable populations. Here, we develop methods for sampling noninvasive biospecimens, investigate their performance across commercial and in-house library preparations, characterize their biology, and assess the feasibility of using noninvasive tissues in a multitude of transcriptomic applications. We collected buccal swabs, hair follicles, saliva, and urine cell pellets from 19 individuals over three to four timepoints, for a total of 300 unique biological samples, which we then prepared with replicates across three library preparations, for a final tally of 472 transcriptomes. Of the four tissues we studied, we found hair follicles and urine cell pellets to be most promising due to the consistency of sample quality, the cell types and expression profiles we observed, and their performance in disease-relevant applications. This is the first study to thoroughly delineate biological and technical features of noninvasive samples and demonstrate their use in a wide array of transcriptomic and clinical analyses. We anticipate future use of these biospecimens will facilitate discovery and development of clinical applications.
Collapse
Affiliation(s)
- Molly Martorella
- New York Genome Center, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
| | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Renee Garcia-Flores
- New York Genome Center, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
- Undergraduate Program On Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | | | - Stephane E Castel
- New York Genome Center, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
42
|
Liu X, Xu B, Xu X, Wang Z, Luo Y, Gao Y, Ling S, Wang A, Zhou Y, Wang X, Leng SX, Li W, Yao X. Attenuation of allergen-specific immunotherapy for atopic dermatitis by ectopic colonization of Brevundimonas vesicularis in the intestine. Cell Rep Med 2023; 4:101340. [PMID: 38118418 PMCID: PMC10772585 DOI: 10.1016/j.xcrm.2023.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/07/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
Allergen-specific immunotherapy (AIT) has shown beneficial effects against atopic dermatitis (AD); however, the mechanisms and parameters underlying the efficacy of AIT remain unclear. Here, we report that the community structure and function of the oral and gut microbiota are changed in patients with AD undergoing AIT. Transplantation of fecal microbiota from patients who respond well to AIT improves AD-like dermatitis in mice. The abundance of Brevundimonas vesicularis in the gut of AD patients has been found to be positively correlated with disease severity and is decreased following AIT. Furthermore, we find that B. vesicularis from the oral cavity might ectopically colonize the gut of AD patients. In AD model mice, meanwhile, B. vesicularis promotes the skewing of the Treg/Th17 balance toward Th17 polarization and attenuates the efficacy of ovalbumin-specific immunotherapy. Our findings provide potential strategies for the optimization of AIT for AD via the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Beilei Xu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiaoqiang Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai 200040, China
| | | | - Yang Luo
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Yingxia Gao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Shiqi Ling
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Ao Wang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Yuan Zhou
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Sean Xiao Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins Center on Aging and Immune Remodeling, Baltimore, MD, USA.
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai 200040, China.
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
43
|
Kimura S, Ishikawa S, Hayashi N, Fujita K, Inatomi Y, Suzuki S. Bacterial and fungal bioburden reduction on material surfaces using various sterilization techniques suitable for spacecraft decontamination. Front Microbiol 2023; 14:1253436. [PMID: 38152378 PMCID: PMC10751312 DOI: 10.3389/fmicb.2023.1253436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Planetary protection is a guiding principle aiming to prevent microbial contamination of the solar system by spacecraft (forward contamination) and extraterrestrial contamination of the Earth (backward contamination). Bioburden reduction on spacecraft, including cruise and landing systems, is required to prevent microbial contamination from Earth during space exploration missions. Several sterilization methods are available; however, selecting appropriate methods is essential to eliminate a broad spectrum of microorganisms without damaging spacecraft components during manufacturing and assembly. Here, we compared the effects of different bioburden reduction techniques, including dry heat, UV light, isopropyl alcohol (IPA), hydrogen peroxide (H2O2), vaporized hydrogen peroxide (VHP), and oxygen and argon plasma on microorganisms with different resistance capacities. These microorganisms included Bacillus atrophaeus spores and Aspergillus niger spores, Deinococcus radiodurans, and Brevundimonas diminuta, all important microorganisms for considering planetary protection. Bacillus atrophaeus spores showed the highest resistance to dry heat but could be reliably sterilized (i.e., under detection limit) through extended time or increased temperature. Aspergillus niger spores and D. radiodurans were highly resistant to UV light. Seventy percent of IPA and 7.5% of H2O2 treatments effectively sterilized D. radiodurans and B. diminuta but showed no immediate bactericidal effect against B. atrophaeus spores. IPA immediately sterilized A. niger spores, but H2O2 did not. During VHP treatment under reduced pressure, viable B. atrophaeus spores and A. niger spores were quickly reduced by approximately two log orders. Oxygen plasma sterilized D. radiodurans but did not eliminate B. atrophaeus spores. In contrast, argon plasma sterilized B. atrophaeus but not D. radiodurans. Therefore, dry heat could be used for heat-resistant component bioburden reduction, and VHP or plasma for non-heat-resistant components in bulk bioburden reduction. Furthermore, IPA, H2O2, or UV could be used for additional surface bioburden reduction during assembly and testing. The systemic comparison of sterilization efficiencies under identical experimental conditions in this study provides basic criteria for determining which sterilization techniques should be selected during bioburden reduction for forward planetary protection.
Collapse
Affiliation(s)
- Shunta Kimura
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Space Exploration Innovation Hub Center, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Sagamihara, Japan
| | - Shu Ishikawa
- Engineering Division, Kajima Corporation, Tokyo, Japan
| | - Nobuya Hayashi
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhisa Fujita
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Safety and Mission Assurance Department, Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Yuko Inatomi
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Space Exploration Innovation Hub Center, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Sagamihara, Japan
| | - Shino Suzuki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Space Exploration Innovation Hub Center, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Sagamihara, Japan
- Geobiology and Astrobiology Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
44
|
Mehdipour M, Gholipour S, Mohammadi F, Hatamzadeh M, Nikaeen M. Incidence of co-resistance to antibiotics and chlorine in bacterial biofilm of hospital water systems: Insights into the risk of nosocomial infections. J Infect Public Health 2023; 16 Suppl 1:210-216. [PMID: 37951730 DOI: 10.1016/j.jiph.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
The presence of biofilms in drinking water distribution systems (DWDS) in healthcare settings poses a considerable risk to the biological security of water, particularly when the biofilm bacteria demonstrate antimicrobial resistance characteristics. This study aimed to investigate the occurrence of antibiotic-resistant bacteria (ARB) in biofilms within DWDS of hospitals. The chlorine resistance of the isolated ARB was analyzed, and then chlorine-resistant bacteria (CRB) were identified using molecular methods. Additionally, the presence of several antibiotic resistance genes (ARGs) was monitored in the isolated ARB. Out of the 41 biofilm samples collected from hospitals, ARB were detected in 32 (78%) of the samples. A total of 109 colonies of ARB were isolated from DWDS of hospitals, with β-lactam resistant bacteria, including ceftazidime-resistant and ampicillin-resistant bacteria, being the most frequently isolated ARB. Analyzing of ARGs revealed the highest detection of aac6, followed by sul1 gene. However, the β-lactamase genes blaCTX-M and blaTEM were not identified in the ARB, suggesting the presence of other β-lactamase genes not included in the tested panel. Exposure of ARB to free chlorine at a concentration of 0.5 mg/l showed that 64% of the isolates were CRB. However, increasing the chlorine concentration to 4 mg/l decreased the high fraction of ARB (91%). The dominant CRB identified were Sphingomonas, Brevundimonas, Stenotrophomonas, Bacillus and Staphylococcus with Bacillus exhibiting the highest frequency. The results highlight the potential risk of biofilm formation in the DWDS of hospitals, leading to the dissemination of ARB in hospital environments, which is a great concern for the health of hospitalized patients, especially vulnerable individuals. Surveillance of antimicrobial resistance in DWDS of hospitals can provide valuable insights for shaping antimicrobial use policies and practices that ensure their efficacy.
Collapse
Affiliation(s)
- Mohammadmehdi Mehdipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hatamzadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
45
|
Gomez-Ramirez U, Nolasco-Romero CG, Contreras-Rodríguez A, Zuñiga G, Mendoza-Elizalde S, Prado-Galbarro FJ, Pérez Aguilar F, Pedraza Tinoco JE, Valencia-Mayoral P, Velázquez-Guadarrama N. Dysbiosis by Eradication of Helicobacter pylori Infection Associated with Follicular Gastropathy and Pangastropathy. Microorganisms 2023; 11:2748. [PMID: 38004759 PMCID: PMC10673246 DOI: 10.3390/microorganisms11112748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Dysbiosis plays an important role in the development of bacterial infections in the gastric mucosa, particularly Helicobacter pylori. The international guidelines for the treatment of H. pylori infections suggest standard triple therapy (STT). Nevertheless, because of the increasing resistance rates to clarithromycin, metronidazole has been widely considered in several countries. Unfortunately, the non-justified administration of antibiotics induces dysbiosis in the target organ. We characterized the gastric microbiota of patients diagnosed with follicular gastropathy and pangastropathy attributed to H. pylori infection, before and after the administration of STT with metronidazole. Dominant relative abundances of Cutibacterium were observed in pre-treatment patients, whereas H. pylori was observed at <11%, suggesting the multifactor property of the disease. The correlation of Cutibacterium acnes and H. pylori with gastric infectious diseases was also evaluated using quantitative real-time polymerase chain reaction. The dominance of C. acnes over H. pylori was observed in gastritis, gastropathies, and non-significant histological alterations. None of the microorganisms were detected in the intestinal metaplasia. Post-treatment alterations revealed an increase in the relative abundances of Staphylococcus, Pseudomonas, and Klebsiella. Non-H. pylori gastrointestinal bacteria can be associated with the initiation and development of gastric diseases, such as pathobiont C. acnes.
Collapse
Affiliation(s)
- Uriel Gomez-Ramirez
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (C.G.N.-R.); (S.M.-E.)
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Carolina G. Nolasco-Romero
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (C.G.N.-R.); (S.M.-E.)
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Gerardo Zuñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Sandra Mendoza-Elizalde
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (C.G.N.-R.); (S.M.-E.)
| | | | - Fernando Pérez Aguilar
- Servicio de Endoscopía Gastrointestinal, Hospital General Dr. Fernando Quiroz, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City 01140, Mexico;
| | | | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (C.G.N.-R.); (S.M.-E.)
| |
Collapse
|
46
|
Feng J, Yang K, Liu X, Song M, Zhan P, Zhang M, Chen J, Liu J. Machine learning: a powerful tool for identifying key microbial agents associated with specific cancer types. PeerJ 2023; 11:e16304. [PMID: 37901464 PMCID: PMC10601900 DOI: 10.7717/peerj.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Machine learning (ML) includes a broad class of computer programs that improve with experience and shows unique strengths in performing tasks such as clustering, classification and regression. Over the past decade, microbial communities have been implicated in influencing the onset, progression, metastasis, and therapeutic response of multiple cancers. Host-microbe interaction may be a physiological pathway contributing to cancer development. With the accumulation of a large number of high-throughput data, ML has been successfully applied to the study of human cancer microbiomics in an attempt to reveal the complex mechanism behind cancer. In this review, we begin with a brief overview of the data sources included in cancer microbiomics studies. Then, the characteristics of the ML algorithm are briefly introduced. Secondly, the application progress of ML in cancer microbiomics is also reviewed. Finally, we highlight the challenges and future prospects facing ML in cancer microbiomics. On this basis, we conclude that the development of cancer microbiomics can not be achieved without ML, and that ML can be used to develop tumor-targeting microbial therapies, ultimately contributing to personalized and precision medicine.
Collapse
Affiliation(s)
- Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Kailan Yang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Xuexue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Min Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Ping Zhan
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mi Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Jinsong Chen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| |
Collapse
|
47
|
Tian X, Yan X, Chen X, Liu P, Sun Z, Niu R. Identifying Serum Metabolites and Gut Bacterial Species Associated with Nephrotoxicity Caused by Arsenic and Fluoride Exposure. Biol Trace Elem Res 2023; 201:4870-4881. [PMID: 36692655 DOI: 10.1007/s12011-023-03568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Co-contamination of arsenic (As) and fluoride (F) is widely distributed in groundwater, which are known risk factors for the nephrotoxicity. Emerging evidence has linked environmentally associated nephrotoxicity with the disturbance of gut microbiota and blood metabolites. In this study, we generated gut microbiota and blood metabolomic profile and identified multiple serum metabolites and gut bacteria species, which were associated with kidney injury on rat model exposed to As and F alone or combined. Combined As and F exposure significantly increased creatinine level. Abnormal autophagosomes and lysosome were observed, and the autophagic genes were enhanced in kidney tissue after single and combined As and F exposure. The metabolome data showed that single and combined As and F exposure remarkably altered the serum metabolites associated with the proximal tubule reabsorption function pathway, with glutamine and alpha-ketoglutarate level decreased in all exposed group. Furthermore, phosphatidylethanolamine (PE), the key contributor of autophagosomes, was decreased significantly in As and F + As exposed groups during the screen of autophagy-animal pathway. Multiple altered gut bacterial microbiota at phylum and species levels post As and F exposure were associated with targeted kidney injury, including p_Bacteroidetes, s_Chromohalobacter_unclassified, s_Halomonas_unclassified, s_Ignatzschineria_unclassified, s_Bacillus_subtilis, and s_Brevundimonas_sp._NA6. Meanwhile, our analysis indicated that As and F co-exposure possessed an interactive influence on gut microbiota. In conclusion, single or combined As and F exposure leads to the disruption of serum metabolic and gut microbiota profiles. Multiple metabolites and bacterial species are identified and associated with nephrotoxicity, which have potential to be developed as biomarkers of As and/or F-induced kidney damage.
Collapse
Affiliation(s)
- Xiaolin Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xushen Chen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
48
|
Min MH, Jung DH, Kim JN, Yu J, Choi A. Complete genome sequence of a novel species of Brevundimonas (strain NIBR10). Microbiol Resour Announc 2023; 12:e0026523. [PMID: 37477445 PMCID: PMC10508153 DOI: 10.1128/mra.00265-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/18/2023] [Indexed: 07/22/2023] Open
Abstract
The complete genome sequence of strain NIBR10 was sequenced using PacBio RS II (Pacific Biosciences) sequencing platform. The 4,006,378-bp genome has a G + C content of 66.89% and around 3,832 coding sequences. Genomic data will provide valuable research for natural taxonomy and comparative genomics of the genus Brevundimonas.
Collapse
Affiliation(s)
- Myeong-Hyeon Min
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan-gun, Republic of Korea
| | - Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | | | | | | |
Collapse
|
49
|
Ameer A, Cheng Y, Saleem F, Uzma, McKenna A, Richmond A, Gundogdu O, Sloan WT, Javed S, Ijaz UZ. Temporal stability and community assembly mechanisms in healthy broiler cecum. Front Microbiol 2023; 14:1197838. [PMID: 37779716 PMCID: PMC10534011 DOI: 10.3389/fmicb.2023.1197838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, there has been an unprecedented advancement in in situ analytical approaches that contribute to the mechanistic understanding of microbial communities by explicitly incorporating ecology and studying their assembly. In this study, we have analyzed the temporal profiles of the healthy broiler cecal microbiome from day 3 to day 35 to recover the stable and varying components of microbial communities. During this period, the broilers were fed three different diets chronologically, and therefore, we have recovered signature microbial species that dominate during each dietary regime. Since broilers were raised in multiple pens, we have also parameterized these as an environmental condition to explore microbial niches and their overlap. All of these analyses were performed in view of different parameters such as body weight (BW-mean), feed intake (FI), feed conversion ratio (FCR), and age (days) to link them to a subset of microbes that these parameters have a bearing upon. We found that gut microbial communities exhibited strong and statistically significant specificity for several environmental variables. Through regression models, genera that positively/negatively correlate with the bird's age were identified. Some short-chain fatty acids (SCFAs)-producing bacteria, including Izemoplasmatales, Gastranaerophilales, and Roseburia, have a positive correlation with age. Certain pathogens, such as Escherichia-Shigella, Sporomusa, Campylobacter, and Enterococcus, negatively correlated with the bird's age, which indicated a high disease risk in the initial days. Moreover, the majority of pathways involved in amino acid biosynthesis were also positively correlated with the bird's age. Some probiotic genera associated with improved performance included Oscillospirales; UCG-010, Shuttleworthia, Bifidobacterium, and Butyricicoccaceae; UCG-009. In general, predicted antimicrobial resistance genes (piARGs) contributed at a stable level, but there was a slight increase in abundance when the diet was changed. To the best of the authors' knowledge, this is one of the first studies looking at the stability, complexity, and ecology of natural broiler microbiota development in a temporal setting.
Collapse
Affiliation(s)
- Aqsa Ameer
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Youqi Cheng
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Farrukh Saleem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Uzma
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - William T. Sloan
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Sundus Javed
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Umer Zeeshan Ijaz
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
50
|
Koh J, Bairoliya S, Salta M, Cho ZT, Fong J, Neo ML, Cragg S, Cao B. Sediment-driven plastisphere community assembly on plastic debris in tropical coastal and marine environments. ENVIRONMENT INTERNATIONAL 2023; 179:108153. [PMID: 37607427 DOI: 10.1016/j.envint.2023.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Coastal habitats have been suggested to serve as a sink for unaccounted plastic debris, i.e., "missing plastic" in the sea, and hence, a hotspot of plastic pollution in the marine and coastal environments. Although the accumulation of plastic debris may pose significant threats to coastal ecosystems, we know little about the fate of these plastic debris and their ecological impacts due to the lack of studies on plastic-microbe interactions in coastal habitats, especially for the tropical marine and coastal environments. In this study, we collected plastic debris from 14 sites consisting of various coastal ecosystems (seagrass meadows, mangrove forests, and beaches), and marine ecosystem (coral reef) around Singapore and characterized the prokaryotic and eukaryotic microbial communities colonized on them. Our results showed that the composition of plastisphere communities in these intertidal ecosystems was predominantly influenced by the sediment than by the plastic materials. Compared with surrounding sediment and seawater, the plastic debris enriched potential plastic degraders, such as Muricauda, Halomonas, and Brevundimonas. The plastic debris was also found to host taxa that play significant roles in biogeochemical cycles (e.g., cyanobacteria, Erythrobacter), hygienically relevant bacteria (e.g., Chryseobacterium, Brevundimonas), and potential pathogens that may negatively impact the health of coastal ecosystems (e.g., Thraustochytriaceae, Labyrinthulaceae, Flavobacterium). Taken together, our study provides valuable insights into the plastic-microbe interactions in tropical coastal and marine ecosystems, highlighting the urgent need for plastisphere studies to understand the fate and ecological impacts of plastic debris accumulated in coastal habitats.
Collapse
Affiliation(s)
- Jonas Koh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Sakcham Bairoliya
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Maria Salta
- Biofilm and MIC Research, Endures BV, the Netherlands
| | - Zin Thida Cho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Jenny Fong
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Mei Lin Neo
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Simon Cragg
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom; Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|