1
|
Mao Q, Luo Q, Ma SM, Teng M, Luo J. Critical role of ferroptosis in viral infection and host responses. Virology 2025; 606:110485. [PMID: 40086206 DOI: 10.1016/j.virol.2025.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death that plays a crucial role in regulating intracellular redox homeostasis and lipid metabolism, and in combating viral infections. Viruses have persistently evolved and adapted synergistically with their hosts over a long period and, to some extent, have been able to utilize ferroptosis to promote viral replication. Herein, we summarize the characteristics, mechanisms, and regulatory networks of ferroptosis and provide an overview of the key regulatory steps of ferroptosis involved in viral infection, together with the changes in host indicators and key regulatory signaling pathways. This study intends to deepen our understanding of the critical role of ferroptosis in viral infection, which will be meaningful for further revealing the mechanisms underlying the occurrence and progression of virus diseases, as well as for the future exploration of anti-viral strategies.
Collapse
Affiliation(s)
- Qian Mao
- Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China.
| | - Qin Luo
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, People's Republic of China
| | - Sheng-Min Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, People's Republic of China
| | - Man Teng
- Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Jun Luo
- Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
| |
Collapse
|
2
|
Sun Z, Li L, Wu Y, Zhang L, Zang G, Qian Y, Yao H, Mao X, Wang Z. Acetylation-ubiquitination crosstalk of DJ-1 mediates microcalcification formation in diabetic plaques via collagen-matrix vesicles interaction. Cardiovasc Res 2025; 121:296-310. [PMID: 39786474 DOI: 10.1093/cvr/cvae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/05/2024] [Accepted: 11/03/2024] [Indexed: 01/12/2025] Open
Abstract
AIMS Microcalcification increases the vulnerability of plaques and has become an important driver of acute cardiovascular events in diabetic patients. However, the regulatory mechanisms remain unclear. DJ-1, a multifunctional protein, may play a potential role in the development of diabetic complications. Therefore, this study aims to explore the relationship between DJ-1 and microcalcification in diabetic plaques and investigate the mechanisms. METHODS AND RESULTS The regulatory relationship between DJ-1 and diabetic vascular microcalcification was determined in anterior tibial arteries from diabetic foot amputated patients, a diabetic apolipoprotein E-deficient (ApoE-/-) mouse model, and a vascular smooth muscle cell (VSMC) model. The ubiquitination and acetylation levels of DJ-1 were detected, and the acetylation-ubiquitination crosstalk was explored. Then, the regulatory effects of DJ-1 on receptor for advanced glycation end products (RAGE) were clarified. Further, the role of DJ-1 in collagen-matrix vesicles (MVs) interaction in diabetic microenvironment was observed. The collagen interacting surface protein of MVs was verified with proteomics and the biomimetic MVs model. In clinical samples, the number of microcalcification nodules in anterior tibial artery plaques was negatively correlated with DJ-1 expression. In diabetic ApoE-/- mice and VSMCs models, knocking down DJ-1 significantly increased the number of microcalcified nodules. N-acetyltransferase 10 (NAT10) was an acetyltransferase of DJ-1. NAT10 could crosstalk the ubiquitination of DJ-1 and enhance the ubiquitination of DJ-1 by E3 ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). Besides, the knockdown of DJ-1 activated signal transducer and activator of transcription 1 (STAT1), and then STAT1 could bind to RAGE promoter, thus up-regulating RAGE. Furthermore, the knockdown of DJ-1 significantly promoted collagen-MVs interaction in diabetic microenvironment. Milk fat globule epidermal growth factor 8 (MFGE8) may serve as a collagen-interacting protein. The coating of MFGE8 protein could increase the interaction between collagen and biomimetic MVs. CONCLUSION In the diabetic microenvironment, DJ-1 was a protective factor for vascular microcalcification. NAT10- and TRIM32-mediated acetylation-ubiquitination crosstalk resulted in the degradation of DJ-1. The decrease of DJ-1 could activate DJ-1/STAT1/RAGE microcalcification signal. Further, under the stimulation of DJ-1-mediated microcalcification signal, VSMCs released MVs with high abundance of MFGE8. MFGE8 promoted collagen-MVs interaction and finally accelerated the formation of microcalcification.
Collapse
MESH Headings
- Animals
- Acetylation
- Protein Deglycase DJ-1/metabolism
- Protein Deglycase DJ-1/genetics
- Ubiquitination
- Humans
- Signal Transduction
- Plaque, Atherosclerotic
- Mice, Knockout, ApoE
- Male
- Mice, Inbred C57BL
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/enzymology
- Receptor for Advanced Glycation End Products/metabolism
- Receptor for Advanced Glycation End Products/genetics
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/enzymology
- Cells, Cultured
- Collagen/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/enzymology
- Diabetic Angiopathies/metabolism
- Female
- Disease Models, Animal
- Middle Aged
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yao Wu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Haipeng Yao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiang Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
3
|
Wu J, Lu J, Pan M, Gu X, Wang Y, Dai L. Inhibition of neutral sphingomyelinase-2 restrains enterovirus 71 infection by autophagy. Microb Pathog 2025; 200:107326. [PMID: 39864764 DOI: 10.1016/j.micpath.2025.107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Enterovirus 71 (EV-71) is a major pathogenic factor that causes hand, foot, and mouth disease in young children and infants. Given the limited treatments for EV-71 infection, discovering new host factors and understanding the mechanisms involved will aid in combating this viral infection. Neutral sphingomyelinase-2 (nSMase-2, encoded by SMPD3) is a crucial cellular cofactor in viral infection. We found that EV-71 infection increased nSMase-2 expression in African green monkey kidney cells (Vero cells). Knockdown of nSMase-2 by small interfering RNA obviously decreased the viral replication and infectivity. Furthermore, the knockdown of nSMase-2 reduced autophagy-associated proteins expression. Collectively, our findings uncovered a potential mechanism of nSMase-2 supporting EV-71 infection.
Collapse
Affiliation(s)
- Jing Wu
- Department of Laboratory Medicine, Suzhou Mental Health Center, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Jian Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Mingzhi Pan
- Department of Laboratory Medicine, Suzhou Mental Health Center, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xiaochu Gu
- Department of Laboratory Medicine, Suzhou Mental Health Center, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yun Wang
- Department of Laboratory Medicine, Suzhou Mental Health Center, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Lu Dai
- Department of Laboratory Medicine, Suzhou Mental Health Center, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| |
Collapse
|
4
|
Zhu P, Ji W, Li D, Wang F, Sun T, Yang H, Chen S, Zhang W, Jin Y, Duan G. The activation of complement C5a-C5aR1 axis in astrocytes facilitates the neuropathogenesis due to EV-A71 infection by upregulating CXCL1. J Virol 2025; 99:e0151424. [PMID: 39679722 PMCID: PMC11784463 DOI: 10.1128/jvi.01514-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024] Open
Abstract
Enterovirus A71 (EV-A71) is a common small RNA virus that is highly neuroinvasive. Emerging evidence indicates that the complement fragment C5a and its receptor C5aR1 are important drivers of neuroinflammation. However, the potential role of the C5a-C5aR1 axis in EV-A71 encephalitis remains largely elusive. Our previous studies revealed that EV-A71 can infect astrocytes and result in complement activation in vivo. Here, we investigated how complement factors interact with astrocytes to promote a severe inflammatory response upon EV-A71 infection. Our data revealed that EV-A71 infected mainly astrocytes and caused astrocyte activation in the mouse brain, which was further verified in patients with EV-A71 infection and U87-MG cells. Notably, EV-A71 infection led to activation of the C5a-C5aR1 axis in U87-MG cells, and knockdown (siC5aR1) or blockade (PMX53) of C5aR1 significantly suppressed EV-A71-induced astrocyte activation and proinflammatory cytokine (e.g., CXCL1) production. Next, the activation of the C5a-C5aR1 axis in mouse astrocytes was confirmed. Compared with C5aR1 knockout mice, wild-type mice presented more severe symptoms and lower survival rates after EV-A71 infection. C5aR1 deficiency or blockade significantly reduced EV-A71-induced pathological damage and proinflammatory cytokine production in the mouse brain. Importantly, an increased level of soluble C5a was strongly correlated with the severity of symptoms in patients with EV-A71 infection. By using confocal microscopy, primary astrocytes, and human specimens, we observed that the increase in CXCL1 levels resulted mainly from astrocytes. Neutralizing CXCL1 significantly alleviated the neuropathological changes caused by EV-A71 infection, and the production of CXCL1 in astrocytes was regulated by p38 MAPK signaling. Taken together, our findings indicate that the activation of the C5a-C5aR1 axis in astrocytes facilitates the neuropathological changes resulting from EV-A71 infection, emphasizing the potential role of p38 MAPK-mediated CXCL1 production in these alterations. IMPORTANCE Enterovirus A71 (EV-A71) is a common small RNA virus with highly neuroinvasive tendencies. Our previous studies took the view that EV-A71 could infect astrocytes and result in complement activation in vivo. We investigated how complement interacts with astrocytes to promote a severe inflammatory response upon EV-A71 infection in the study. As expected, our data demonstrate that EV-A71 triggers robust activation of the C5a-C5aR1 axis in astrocytes and that knockout or blockade of C5aR1 in animals exposed to lethal doses of EV-A71 significantly enhances survival by diminishing the production of the chemokines CXCL1 and IL-6. In addition, neutralizing CXCL1 significantly alleviates the neuropathogenesis caused by EV-A71 infection. Thus, inhibiting the C5a-C5aR1 axis has emerged as a potential therapeutic strategy to mitigate neural damage caused by EV-A71 infection.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wang
- Department of Infectious Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Weiguo Zhang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Department of Infectious Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Hu Y, Gu J, Jin X, Wu X, Li H, Bai L, Wu J, Li X. Asiatic acid alleviates subarachnoid hemorrhage-induced brain injury in rats by inhibiting ferroptosis of neurons via targeting acyl-coenzyme a oxidase 1. Neuropharmacology 2025; 262:110208. [PMID: 39500389 DOI: 10.1016/j.neuropharm.2024.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/11/2024]
Abstract
The occurrence of subarachnoid hemorrhage (SAH) can lead to brain injury, which is a fatal condition with limited effective clinical intervention strategies. The naturally occurring component Asiatic acid (AA), found in the tropical plant Centella asiatica, has been reported to possess neuroprotective properties. The objective of this study was to evaluate the neuroprotective effect of AA following SAH and investigate its potential mechanisms. The SAH model was established in male Sprague-Dawley (SD) rats through intravascular perforation, following a standardized protocol. The administration of AA was performed via gavage following SAH. A lentiviral vector was constructed and utilized for the knockdown of Acyl Coenzyme A Oxidase 1 (ACOX1) Firstly, AA treatment effectively improves brain neurological deficit, neuronal damage, and iron deposition induced by SAH. Furthermore, it has been demonstrated that AA directly interacts with ACOX1, which exhibits decreased expression in neurons following SAH. Additionally, our study reveals AA can reverse SAH-induced reduction in ACOX1 expression, concurrently ameliorating neuronal ferroptosis. This improvement is evidenced by reduced lipid peroxidation, including mitigated GSH depletion, decreased MDA production, and increased GPX4 content and activity. Also, AA enhances mitochondrial constriction while alleviating cristae disruption induced by SAH, providing crucial insights into its neuroprotective effects against neuronal ferroptosis in SAH. Moreover, when ACOX1 is knocked down, the neuroprotective effects of AA are weakened. Collectively, this study elucidated the neuroprotective effect of AA by inhibiting neuronal cell ferroptosis through targeting ACOX1. These findings suggest that AA holds promise as a potential therapeutic candidate for ameliorating SAH-induced brain injury.
Collapse
Affiliation(s)
- Yukun Hu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China; Affliated hospital of Nantong University, Changshu, 215500, Suzhou, Jiangsu Province, China
| | - Jingyu Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xin Jin
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiaoxiao Wu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, 215002, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Lei Bai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
6
|
Yu J, An N, Zhu J, Zhu B, Zhang G, Chen K, Zhou Y, Ye T, Li G. AVL-armed oncolytic vaccinia virus promotes viral replication and boosts antitumor immunity via increasing ROS levels in pancreatic cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200878. [PMID: 39431173 PMCID: PMC11488421 DOI: 10.1016/j.omton.2024.200878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Pancreatic malignant neoplasm is an extremely deadly malignancy well known for its resistance to traditional therapeutic approaches. Enhanced treatments are imperative for individuals diagnosed with pancreatic cancer (PC). Recent investigations have shed light on the wide-ranging anticancer properties of genetic therapy facilitated by oncolytic vaccinia virus. To illuminate the precise impacts of Aphrocallistes vastus lectin-armed oncolytic vaccinia virus (oncoVV-AVL) on PC, AsPC-1 and PANC-1 cells underwent treatment with oncoVV-AVL. Our findings revealed that oncoVV-AVL possesses the capacity to heighten oncolytic effects on PC cells and incite the production of diverse cytokines like tumor necrosis factor-α, interleukin-6 (IL-6), IL-8, and interferon-I (IFN-I), without triggering antiviral responses. Additionally, oncoVV-AVL can significantly elevate the levels of ROS in PC cells, initiating an oxidative stress response that promotes viral replication, apoptosis, and autophagy. Moreover, in xenograft tumor models, oncoVV-AVL notably restrained PC growth, enhanced IFN-γ levels in the bloodstream, and reprogrammed macrophages. Our investigation indicates that oncoVV-AVL boosts the efficacy of antitumor actions against PC tumors by orchestrating reactive oxygen species-triggered viral replication, fostering M1 polarization, and reshaping the tumor microenvironment to transform cold PC tumors into hot ones. These findings imply that oncoVV-AVL could present a novel therapeutic approach for treating PC tumors.
Collapse
Affiliation(s)
- Jianlei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nan An
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jili Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Borong Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohui Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Villares M, Espert L, Daussy CF. Peroxisomes are underappreciated organelles hijacked by viruses. Trends Cell Biol 2024:S0962-8924(24)00248-4. [PMID: 39667991 DOI: 10.1016/j.tcb.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Peroxisomes are cellular organelles that are crucial for metabolism, stress responses, and healthy aging. They have recently come to be considered as important mediators of the immune response during viral infections. Consequently, various viruses target peroxisomes for the purpose of hijacking either their biogenesis or their functions, as a means of replicating efficiently, making this a compelling research area. Despite their known connections with mitochondria, which have been the object of considerable research on account of their role in the innate immune response, less is known about peroxisomes in this context. In this review, we explore the evolving understanding of the role of peroxisomes, highlighting recent findings on how they are exploited by viruses to modulate their replication cycle.
Collapse
Affiliation(s)
- Marie Villares
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Lucile Espert
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Coralie F Daussy
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France.
| |
Collapse
|
8
|
Lin JY, Lin JY, Kuo RL, Huang HI. Heterogeneous nuclear ribonucleoprotein A3 binds to the internal ribosomal entry site of enterovirus A71 and affects virus replication in neural cells. J Cell Biochem 2024; 125:e30575. [PMID: 38720641 DOI: 10.1002/jcb.30575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 12/18/2024]
Abstract
Enterovirus A71 (EV-A71) belongs to the genus Enterovirus of the Picornaviridae family and often causes outbreaks in Asia. EV-A71 infection usually causes hand, foot, and mouth disease and can even affect the central nervous system, causing neurological complications or death. The 5'-untranslated region (5'-UTR) of EV-A71 contains an internal ribosome entry site (IRES) that is responsible for the translation of viral proteins. IRES-transacting factors can interact with the EV-A71 5'-UTR to regulate IRES activity. Heterogeneous nuclear ribonucleoprotein (hnRNP) A3 is a member of the hnRNP A/B protein family of RNA-binding proteins and is involved in RNA transport and modification. We found that hnRNP A3 knockdown promoted the replication of EV-A71 in neural calls. Conversely, increasing the expression of hnRNP A3 within cells inhibits the growth of EV-A71. HnRNP A3 can bind to the EV-A71 5'-UTR, and knockdown of hnRNP A3 enhances the luciferase activity of the EV-A71 5'-UTR IRES. The localization of hnRNP A3 shifts from the nucleus to the cytoplasm of infected cells during viral infection. Additionally, EV-A71 infection can increase the protein expression of hnRNP A3, and the protein level is correlated with efficient viral growth. Based on these findings, we concluded that hnRNP A3 plays a negative regulatory role in EV-A71 replication within neural cells.
Collapse
Affiliation(s)
- Jhao-Yin Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Rei-Lin Kuo
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Hsing-I Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
9
|
Nie Z, Zhai F, Zhang H, Zheng H, Pei J. The multiple roles of viral 3D pol protein in picornavirus infections. Virulence 2024; 15:2333562. [PMID: 38622757 PMCID: PMC11020597 DOI: 10.1080/21505594.2024.2333562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024] Open
Abstract
The Picornaviridae are a large group of positive-sense, single-stranded RNA viruses, and most research has focused on the Enterovirus genus, given they present a severe health risk to humans. Other picornaviruses, such as foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), affect agricultural production with high animal mortality to cause huge economic losses. The 3Dpol protein of picornaviruses is widely known to be used for genome replication; however, a growing number of studies have demonstrated its non-polymerase roles, including modulation of host cell biological processes, viral replication complex assembly and localization, autophagy, and innate immune responses. Currently, there is no effective vaccine to control picornavirus diseases widely, and clinical therapeutic strategies have limited efficiency in combating infections. Many efforts have been made to develop different types of drugs to prohibit virus survival; the most important target for drug development is the virus polymerase, a necessary element for virus replication. For picornaviruses, there are also active efforts in targeted 3Dpol drug development. This paper reviews the interaction of 3Dpol proteins with the host and the progress of drug development targeting 3Dpol.
Collapse
Affiliation(s)
- Zhenyu Nie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Fengge Zhai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Han Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
10
|
Wang R, Wang C, Chen P, Qi H, Zhang J. Oxidised rice bran oil induced oxidative stress and apoptosis in IPEC-J2 cells via the Nrf2 signalling pathway. J Anim Physiol Anim Nutr (Berl) 2024; 108:1844-1855. [PMID: 39037063 DOI: 10.1111/jpn.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Rice bran oil is a type of rice oil made by leaching or pressing during rice processing and has a high absorption rate after consumption. When oxidative rancidity occurs, it may cause oxidative stress (OS) and affect intestinal function. Meanwhile, the toxic effects of oxidised rice bran oil have been less well studied in pigs. Therefore, the IPEC-J2 cells model was chosen to explore the regulatory mechanisms of oxidised rice bran oil on OS and apoptosis. Oxidised rice bran oil extract treatment (OR) significantly decreased the viability of IPEC-J2 cells. The results showed that OR significantly elevated apoptosis and reactive oxygen species levels and promoted the expression of pro-apoptotic gene Caspase-3 messenger RNA levels. The activation of Nrf2 signalling pathway by OR decreased the cellular antioxidant capacity. This was further evidenced by the expression of kelch-like ECH-associated protein 1, heme oxygenase 1, NADH: quinone oxidoreductase 1, superoxide dismutase 2 and heat shock 70 kDa protein genes and proteins were all downregulated. In conclusion, our results suggested that oxidised rice bran oil induced damage in IPEC-J2 cells through the Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Ruqi Wang
- Institute of Food Quality and Nutrition, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, People's Republic of China
| | - Chuanqi Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, People's Republic of China
| | - Peide Chen
- Institute of Food Quality and Nutrition, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Huiyu Qi
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, People's Republic of China
| | - Jing Zhang
- Institute of Food Quality and Nutrition, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
11
|
Ji W, Zhu P, Wang Y, Zhang Y, Li Z, Yang H, Chen S, Jin Y, Duan G. The key mechanisms of multi-system responses triggered by central nervous system damage in hand, foot, and mouth disease severity. INFECTIOUS MEDICINE 2024; 3:100124. [PMID: 39314804 PMCID: PMC11417554 DOI: 10.1016/j.imj.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is a prevalent infectious affliction primarily affecting children, with a small portion of cases progressing to neurological complications. Notably, in a subset of severe HFMD cases, neurological manifestations may result in significant sequelae and pose a risk of mortality. We systematically conducted literature retrieval from the databases PubMed (1957-2023), Embase (1957-2023), and Web of Science (1957-2023), in addition to consulting authoritative guidelines. Subsequently, we rigorously selected the most relevant articles within the scope of this review for comprehensive analysis. It is widely recognized that the severity of HFMD is attributed to a multifaceted array of pathophysiological mechanisms. The implication of multi-system dysfunction appears to be perturbances of the human defense system; therefore, it contributes to the severity of HFMD. In this review, we provide an overview and analysis of recent insights into the molecular mechanisms contributing to the severity of HFMD, with a particular focus on cytokine release syndrome, the involvement of the renin-angiotensin system, regional immunity, endothelial dysfunction, catecholamine storm, viral invasion, and the molecular mechanisms of neurological damage. We speculate that the domino effect of diverse physiological systems, initiated by damage to the central nervous system, serve as the primary mechanisms governing the severity of HFMD. Simultaneously, we emphasize the knowledge gaps and research urgently required to delineate a quick roadmap for ongoing and essential studies on HFMD.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| |
Collapse
|
12
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
14
|
Xu C, Wang M, Cheng A, Yang Q, Huang J, Ou X, Sun D, He Y, Wu Z, Wu Y, Zhang S, Tian B, Zhao X, Liu M, Zhu D, Jia R, Chen S. Multiple functions of the nonstructural protein 3D in picornavirus infection. Front Immunol 2024; 15:1365521. [PMID: 38629064 PMCID: PMC11018997 DOI: 10.3389/fimmu.2024.1365521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
3D polymerase, also known as RNA-dependent RNA polymerase, is encoded by all known picornaviruses, and their structures are highly conserved. In the process of picornavirus replication, 3D polymerase facilitates the assembly of replication complexes and directly catalyzes the synthesis of viral RNA. The nuclear localization signal carried by picornavirus 3D polymerase, combined with its ability to interact with other viral proteins, viral RNA and cellular proteins, indicate that its noncatalytic role is equally important in viral infections. Recent studies have shown that 3D polymerase has multiple effects on host cell biological functions, including inducing cell cycle arrest, regulating host cell translation, inducing autophagy, evading immune responses, and triggering inflammasome formation. Thus, 3D polymerase would be a very valuable target for the development of antiviral therapies. This review summarizes current studies on the structure of 3D polymerase and its regulation of host cell responses, thereby improving the understanding of picornavirus-mediated pathogenesis caused by 3D polymerase.
Collapse
Affiliation(s)
- Chenxia Xu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Lee YP, Yu CK, Wong TW, Chen LC, Huang BM. Cordycepin Inhibits Enterovirus A71 Replication and Protects Host Cell from Virus-Induced Cytotoxicity through Adenosine Action Pathway. Viruses 2024; 16:352. [PMID: 38543718 PMCID: PMC10974990 DOI: 10.3390/v16030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.
Collapse
Affiliation(s)
- Yi-Ping Lee
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chun-Keung Yu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Ching Chen
- Department of Biological Science & Technology, China Medical University, Taichung 406040, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
16
|
Luo SQ, Cao SJ, Zhao Q. CRISPR/Cas9-Mediated Knockout of the HuR Gene in U251 Cell Inhibits Japanese Encephalitis Virus Replication. Microorganisms 2024; 12:314. [PMID: 38399718 PMCID: PMC10892152 DOI: 10.3390/microorganisms12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Human antigen R (HuR) is an RNA-binding protein that regulates the post-transcriptional reaction of its target mRNAs. HuR is a critical factor in cancer development and has been identified as a potential target in many cancer models. It participates in the viral life cycle by binding to viral RNAs. In prior work, we used CRISPR/Cas9 screening to identify HuR as a prospective host factor facilitating Japanese encephalitis virus (JEV) infection. The HuR gene was successfully knocked out in U251 cell lines using the CRISPR/Cas9 gene-editing system, with no significant difference in cell growth between U251-WT and U251-HuR-KO2 cells. Here, we experimentally demonstrate for the first time that the knockout of the HuR gene inhibits the replication ability of JEV in U251 cell lines. These results play an essential role in regulating the replication level of JEV and providing new insights into virus-host interactions and potential antiviral strategies. It also offers a platform for investigating the function of HuR in the life cycle of flaviviruses.
Collapse
Affiliation(s)
- Sai-Qi Luo
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - San-Jie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
17
|
Wang S, Pang Z, Fan H, Tong Y. Advances in anti-EV-A71 drug development research. J Adv Res 2024; 56:137-156. [PMID: 37001813 PMCID: PMC10834817 DOI: 10.1016/j.jare.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
18
|
Yue Z, Zhang X, Gu Y, Liu Y, Lan LM, Liu Y, Li Y, Yang G, Wan P, Chen X. Regulation and functions of the NLRP3 inflammasome in RNA virus infection. Front Cell Infect Microbiol 2024; 13:1309128. [PMID: 38249297 PMCID: PMC10796458 DOI: 10.3389/fcimb.2023.1309128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Virus infection is one of the greatest threats to human life and health. In response to viral infection, the host's innate immune system triggers an antiviral immune response mostly mediated by inflammatory processes. Among the many pathways involved, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome has received wide attention in the context of viral infection. The NLRP3 inflammasome is an intracellular sensor composed of three components, including the innate immune receptor NLRP3, adaptor apoptosis-associated speck-like protein containing CARD (ASC), and the cysteine protease caspase-1. After being assembled, the NLRP3 inflammasome can trigger caspase-1 to induce gasdermin D (GSDMD)-dependent pyroptosis, promoting the maturation and secretion of proinflammatory cytokines such as interleukin-1 (IL-1β) and interleukin-18 (IL-18). Recent studies have revealed that a variety of viruses activate or inhibit the NLRP3 inflammasome via viral particles, proteins, and nucleic acids. In this review, we present a variety of regulatory mechanisms and functions of the NLRP3 inflammasome upon RNA viral infection and demonstrate multiple therapeutic strategies that target the NLRP3 inflammasome for anti-inflammatory effects in viral infection.
Collapse
Affiliation(s)
- Zhaoyang Yue
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Xuelong Zhang
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yu Gu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ying Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Lin-Miaoshen Lan
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yilin Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yongkui Li
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xin Chen
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
19
|
Zhang W, Yang H, Liu Z, Wang S, Chen T, Song H, Xu Y, Li F, Luo G, Wang H. Enterovirus 71 leads to abnormal mitochondrial dynamics in human neuroblastoma SK-N-SH cells. Virus Res 2024; 339:199267. [PMID: 37949375 PMCID: PMC10682842 DOI: 10.1016/j.virusres.2023.199267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
EV71, a significant pathogen causing hand-foot-mouth disease, is associated with severe neurological complications such as brain stem encephalitis, aseptic meningitis, and acute flaccid paralysis. While the role of mitochondrial dynamics in regulating the replication of numerous viruses is recognized, its specific involvement in EV71 remains unclear. This study aimed to elucidate the role of mitochondrial dynamics in human neuroblastoma SK-N-SH cells during EV71 infection. Utilizing laser confocal microscopy and transmission electron microscopy, we observed that EV71 infection induced mitochondrial elongation and damage to cristae structures, concurrently accelerating mitochondrial movement. Furthermore, we identified the reduction in the expression of dynamin-related protein 1 (Drp1) and optic atrophy protein 1 (Opa1) and the increased expression of Mitofusion 2 (Mfn2) upon EV71 infection. Notably, EV71 directly stimulated the generation of mitochondrial reactive oxygen species (ROS), leading to a decline in mitochondrial membrane potential and ATP levels. Remarkably, the application of melatonin, a potent mitochondrial protector, inhibited EV71 replication by restoring Drp1 expression. These findings collectively indicate that EV71 induces alterations in mitochondrial morphology and dynamics within SK-N-SH cells, potentially impairing mitochondrial function and contributing to nervous system dysfunction. The restoration of proper mitochondrial dynamics may hold promise as a prospective approach to counteract EV71 infection.
Collapse
Affiliation(s)
- Wanling Zhang
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Yang
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhengyun Liu
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shengyu Wang
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Tianyang Chen
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hong Song
- Department of Microbiology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yunbin Xu
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Fajin Li
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China
| | - Guo Luo
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Huan Wang
- Key Laboratory of infectious disease & Biosafety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
20
|
Jiang H, Nair V, Sun Y, Ding C. The diverse roles of peroxisomes in the interplay between viruses and mammalian cells. Antiviral Res 2024; 221:105780. [PMID: 38092324 DOI: 10.1016/j.antiviral.2023.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Peroxisomes are ubiquitous organelles found in eukaryotic cells that play a critical role in the oxidative metabolism of lipids and detoxification of reactive oxygen species (ROS). Recently, the role of peroxisomes in viral infections has been extensively studied. Although several studies have reported that peroxisomes exert antiviral activity, evidence indicates that viruses have also evolved diverse strategies to evade peroxisomal antiviral signals. In this review, we summarize the multiple roles of peroxisomes in the interplay between viruses and mammalian cells. Focus is given on the peroxisomal regulation of innate immune response, lipid metabolism, ROS production, and viral regulation of peroxisomal biosynthesis and degradation. Understanding the interactions between peroxisomes and viruses provides novel insights for the development of new antiviral strategies.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Venugopal Nair
- Avian Oncogenic Viruses Group, UK-China Centre of Excellence in Avian Disease Research, The Pirbright Institute, Pirbright, Guildford, Surrey, United Kingdom
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China.
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
21
|
Xu J, Yin P, Liu X, Hou X. Forsythoside A inhibits apoptosis and autophagy induced by infectious bronchitis virus through regulation of the PI3K/Akt/NF-κB pathway. Microbiol Spectr 2023; 11:e0192123. [PMID: 37971265 PMCID: PMC10715169 DOI: 10.1128/spectrum.01921-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Infectious bronchitis virus (IBV) is an acute and highly infectious viral disease that seriously endangered the development of the chicken industry. However, due to the limited effectiveness of commercial vaccines, there is an urgent need to develop safe and effective anti-IBV drugs. Forsythoside A (FTA) is a natural ingredient with wide pharmacological and biological activities, and it has been shown to have antiviral effects against IBV. However, the antiviral mechanism of FTA is still unclear. In this study, we demonstrated that FTA can inhibit cell apoptosis and autophagy induced by IBV infection by regulating the PI3K/AKT/NF-κB signaling pathway. This finding is important for exploring the role and mechanism of FTA in anti-IBV infection, indicating that FTA can be further studied as an anti-IBV drug.
Collapse
Affiliation(s)
- Jun Xu
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Peng Yin
- Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Xuewei Liu
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
22
|
Lin D, Dong X, Xiao X, Xiang Z, Lei X, Wang J. Proteomic and phosphoproteomic analysis of responses to enterovirus A71 infection reveals novel targets for antiviral and viral replication. Antiviral Res 2023; 220:105761. [PMID: 37992763 DOI: 10.1016/j.antiviral.2023.105761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is a common infectious disease in infants and children, especially those under five years of age. EV-A71 is a common pathogen that causes HFMD and the primary pathogen leading to severe or fatal HFMD, which is characterized by neurological complications. However, the underlying mechanisms of EV-A71 pathogenesis remain largely unknown. In this report, we used proteomic and phosphorylated proteomic methods to characterize the proteome and phosphoproteome profiles of EV-A71-infected human neuroblastoma SK-N-SH cells. More than 7744 host proteins and 10069 phosphorylation modification sites were successfully quantified. Among them, 974 proteins and 3648 phosphorylation modification sites were regulated significantly during EV-A71 infection. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that EV-A71 altered cell biological processes, including protein synthesis, RNA splicing and metabolism in SK-N-SH cells. Notably, based on the prediction of upregulated kinases during EV-A71 infection, we identified specific kinase inhibitors approved by the FDA, with ceralasertib, bosutinib, flavin mononucleotide, minocycline, pimasertib and acetylcysteine inhibiting EV-A71 infection. Finally, EV-A71 proteins were found to be phosphorylated during infection, with one site (S184 on 3D polymerase) observed to be crucial for viral replication because a S184A mutation knocked out viral replication. The results improve our understanding of the host response to EV-A71 infection of neuroblastoma cells and provide potential targets for developing anti-EV-A71 strategies.
Collapse
Affiliation(s)
- Dandan Lin
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaojing Dong
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Xia Xiao
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Zichun Xiang
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China; State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China; State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
23
|
Kashyap I, Deb R, Battineni A, Nagotu S. Acyl CoA oxidase: from its expression, structure, folding, and import to its role in human health and disease. Mol Genet Genomics 2023; 298:1247-1260. [PMID: 37555868 DOI: 10.1007/s00438-023-02059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
β-oxidation of fatty acids is an important metabolic pathway and is a shared function between mitochondria and peroxisomes in mammalian cells. On the other hand, peroxisomes are the sole site for the degradation of fatty acids in yeast. The first reaction of this pathway is catalyzed by the enzyme acyl CoA oxidase housed in the matrix of peroxisomes. Studies in various model organisms have reported the conserved function of the protein in fatty acid oxidation. The importance of this enzyme is highlighted by the lethal conditions caused in humans due to its altered function. In this review, we discuss various aspects ranging from gene expression, structure, folding, and import of the protein in both yeast and human cells. Further, we highlight recent findings on the role of the protein in human health and aging, and discuss the identified mutations in the protein associated with debilitating conditions in patients.
Collapse
Affiliation(s)
- Isha Kashyap
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Abhigna Battineni
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
24
|
Zhao Y, Chen J, Ding Y, Luo M, Tong Y, Hu T, Wei Y. A Novel Polysaccharide from Sargassum weizhouense: Extraction Optimization, Structural Characterization, Antiviral and Antioxidant Effects. Antioxidants (Basel) 2023; 12:1832. [PMID: 37891911 PMCID: PMC10604564 DOI: 10.3390/antiox12101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens in the global swine industry over the past three decades. There is no licensed antiviral medication that can effectively control this infection. In the present study, the structure of SP-1 isolated and purified from Sargassum weizhouense was analyzed, and its antioxidant capacity and antiviral effect in MARC-145 cells against PRRSV were investigated. The results showed that SP-1 is a novel polysaccharide which mainly is composed of →4)-β-D-ManpA-(1→, →4)-α-L-GulpA-(1→ and a small amount of →4)-β-D-GalpA-(1→. PRRSV adsorption, replication, and release were all suppressed by SP-1. SP-1 therapy down-regulated mRNA expression of the CD163 receptor while increasing the antioxidant gene expression of Nrf2, TXNIP, and HO-1; increasing the protein expression of NQO1 and HO-1; and drastically reducing the protein expression of p-p65. The findings indicated that SP-1 reduces PRRSV adsorption, replication, and release through blocking the expression of the crucial CD163 receptor during infection. Meanwhile, SP-1 exerts antioxidant effects in PRRSV-infected cells through the activation of the Nrf2-HO1 signaling pathway.
Collapse
Affiliation(s)
- Yi Zhao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
| | - Jiaji Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
| | - Yiqu Ding
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
| | - Mengyuan Luo
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
| | - Yanmei Tong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
| | - Tingjun Hu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
| | - Yingyi Wei
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
| |
Collapse
|
25
|
Liu Y, Chen W, Li C, Li L, Yang M, Jiang N, Luo S, Xi Y, Liu C, Han Y, Zhao H, Zhu X, Yuan S, Xiao L, Sun L. DsbA-L interacting with catalase in peroxisome improves tubular oxidative damage in diabetic nephropathy. Redox Biol 2023; 66:102855. [PMID: 37597421 PMCID: PMC10458997 DOI: 10.1016/j.redox.2023.102855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
Peroxisomes are metabolically active organelles that are known for exerting oxidative metabolism, but the precise mechanism remains unclear in diabetic nephropathy (DN). Here, we used proteomics to uncover a correlation between the antioxidant protein disulfide-bond A oxidoreductase-like protein (DsbA-L) and peroxisomal function. In vivo, renal tubular injury, oxidative stress, and cell apoptosis in high-fat diet plus streptozotocin (STZ)-induced diabetic mice were significantly increased, and these changes were accompanied by a "ghost" peroxisomal phenotype, which was further aggravated in DsbA-L-deficient diabetic mice. In vitro, the overexpression of DsbA-L in peroxisomes could improve peroxisomal phenotype and function, reduce oxidative stress and cell apoptosis induced by high glucose (HG, 30 mM) and palmitic acid (PA, 250 μM), but this effect was reversed by 3-Amino-1,2,4-triazole (3-AT, a catalase inhibitor). Mechanistically, DsbA-L regulated the activity of catalase by binding to it, thereby reducing peroxisomal leakage and proteasomal degradation of peroxisomal matrix proteins induced by HG and PA. Additionally, the expression of DsbA-L in renal tubules of patients with DN significantly decreased and was positively correlated with peroxisomal function. Taken together, these results highlight an important role of DsbA-L in ameliorating tubular injury in DN by improving peroxisomal function.
Collapse
Affiliation(s)
- Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
26
|
Hao Z, Yin X, Ding R, Chen L, Hao C, Duan H. A novel oncolytic virus-based biomarker participates in prognosis and tumor immune infiltration of glioma. Front Microbiol 2023; 14:1249289. [PMID: 37808305 PMCID: PMC10556503 DOI: 10.3389/fmicb.2023.1249289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Background Glioma is the most common central nervous malignancy. Due to its poor survival outcomes, it is essential to identify novel individualized therapy. Oncolytic virus (OV) treatment is a key therapy regulating tumor microenvironment in malignant glioma. Herein, we aim to identify the key genes after OV infection and its role in glioma. Methods Performing an RNA-seq analysis, the differentially expressed genes (DEGs) between EV-A71-infection and mock group were screened with GFold values. DAVID online analysis was performed to identify the functional classification. Overall survival (OS) or disease-free survival (DFS) was evaluated to analyze the relation between PTBP1 expression levels and prognosis of glioma patients. Additionally, the ssGSEA and TIMER algorithms were applied for evaluating immune cell infiltration in glioma. Results Following EV-A71 infection in glioma cells, PTBP1, one of the downregulated DEGs, was found to be associated with multiple categories of GO and KEGG enrichment analysis. We observed elevated expression levels of PTBP1 across various tumor grades of glioma in comparison to normal brain samples. High PTBP1 expression had a notable impact on the OS of patients with low-grade glioma (LGG). Furthermore, we observed an obvious association between PTBP1 levels and immune cell infiltration in LGG. Notably, PTBP1 was regarded as an essential prognostic biomarker in immune cells of LGG. Conclusion Our research uncovered a critical role of PTBP1 in outcomes and immune cell infiltration of glioma patients, particularly in those with LGG.
Collapse
Affiliation(s)
- Zheng Hao
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Ding
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Laizhao Chen
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
27
|
Yang G, Yue Z, Pan P, Li Y. In Memory of the Virologist Jianguo Wu, 1957-2022. Viruses 2023; 15:1754. [PMID: 37632095 PMCID: PMC10457867 DOI: 10.3390/v15081754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
It is with deep sorrow that we mourn the passing of the virologist Professor Jianguo Wu [...].
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Zhaoyang Yue
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Pan Pan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
28
|
Chen X. A Tribute to Professor Jianguo Wu. Viruses 2023; 15:1720. [PMID: 37632062 PMCID: PMC10457838 DOI: 10.3390/v15081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
It has been a couple of months since Professor Jianguo Wu left us [...].
Collapse
Affiliation(s)
- Xin Chen
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
29
|
Zhu T, Niu G, Zhang Y, Chen M, Li CY, Hao L, Zhang Z. Host-mediated RNA editing in viruses. Biol Direct 2023; 18:12. [PMID: 36978112 PMCID: PMC10043548 DOI: 10.1186/s13062-023-00366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses rely on hosts for life and reproduction, cause a variety of symptoms from common cold to AIDS to COVID-19 and provoke public health threats claiming millions of lives around the globe. RNA editing, as a crucial co-/post-transcriptional modification inducing nucleotide alterations on both endogenous and exogenous RNA sequences, exerts significant influences on virus replication, protein synthesis, infectivity and toxicity. Hitherto, a number of host-mediated RNA editing sites have been identified in diverse viruses, yet lacking a full picture of RNA editing-associated mechanisms and effects in different classes of viruses. Here we synthesize the current knowledge of host-mediated RNA editing in a variety of viruses by considering two enzyme families, viz., ADARs and APOBECs, thereby presenting a landscape of diverse editing mechanisms and effects between viruses and hosts. In the ongoing pandemic, our study promises to provide potentially valuable insights for better understanding host-mediated RNA editing on ever-reported and newly-emerging viruses.
Collapse
Affiliation(s)
- Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Lili Hao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Zhang Y, Zhong X, Xi Z, Li Y, Xu H. Antiviral Potential of the Genus Panax: An updated review on their effects and underlying mechanism of action. J Ginseng Res 2023; 47:183-192. [PMID: 36926608 PMCID: PMC10014226 DOI: 10.1016/j.jgr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Viral infections are known as one of the major factors causing death. Ginseng is a medicinal plant that demonstrated a wide range of antiviral potential, and saponins are the major bioactive ingredients in the genus Panax with vast therapeutic potential. Studies focusing on the antiviral activity of the genus Panax plant-derived agents (extracts and saponins) and their mechanisms were identified and summarized, including contributions mainly from January 2016 until January 2022. P. ginseng, P. notoginseng, and P. quinquefolius were included in the review as valuable medicinal herbs against infections with 14 types of viruses. Reports from 9 extracts and 12 bioactive saponins were included, with 6 types of protopanaxadiol (PPD) ginsenosides and 6 types of protopanaxatriol (PPT) ginsenosides. The mechanisms mainly involved the inhibition of viral attachment and replication, the modulation of immune response by regulating signaling pathways, including the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway, phosphoinositide-dependent kinase-1 (PDK1)/ protein kinase B (Akt) signaling pathway, c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. This review includes detailed information about the mentioned antiviral effects of the genus Panax extracts and saponins in vitro and in vivo, and in human clinical trials, which provides a scientific basis for ginseng as an adjunctive therapeutic drug or nutraceutical.
Collapse
Key Words
- ARI, acute respiratory illness
- BG, black ginseng
- BVDV, bovine viral diarrhea virus
- CHB, chronic hepatitis B
- CSFV, classical swine fever virus
- CVBs, group B coxsackieviruses
- DAA, direct-acting antiviral therapies
- EBV, the Epstein-Barr virus
- EV, enterovirus
- EV71, human enterovirus 71
- GCRV, grass carp reovirus
- GSLS, Ginseng stem-leaf saponins
- HAART, highly active antiretroviral drug therapy
- HBV, hepatitis B virus
- HCV, Hepatitis C virus
- HIV-1, human immunodeficiency virus type 1
- HP, highly pathogenic
- HSV, herpes simplex virus
- HVJ, hemagglutinating virus of Japan
- IFN-1, type-I interferon
- JAK, janus kinase
- JNK, c-Jun N-terminal kinase
- KRG, Korean Red Ginseng
- KSHV, Kaposi's sarcoma-associated herpesvirus
- MHV-68, murine gammaherpesvirus 68
- NDV, Newcastle disease virus
- NK, natural killer
- PNAB, PEGylated nanoparticle albumin-bound
- PNR, P. notoginseng root water extract
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- PRRSV, porcine reproductive and respiratory syndrome virus
- Panax ginseng
- RSV, respiratory syncytial virus
- RV, rotavirus
- STAT, signal transducer and activator of transcription
- antiviral activity
- ginseng
- ginsenosides
- mechanism of action
Collapse
Affiliation(s)
- Yibo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xuanlei Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Guo H, Zhu Y, Zou Y, Li C, Wang Y, De G, Lu L. Enterovirus 71 induces pyroptosis of human neuroblastoma SH-SY5Y cells through miR-146a/ CXCR4 axis. Heliyon 2023; 9:e15014. [PMID: 37095967 PMCID: PMC10121780 DOI: 10.1016/j.heliyon.2023.e15014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus 71 (EV71) is a predominant causative pathogen of hand-foot-and-mouth disease (HFMD) in children. Compared with other HFMD-associated viruses, EV71 tends to induce more severe neurological complications and even death. However, the detailed mechanism of EV71 causes nervous system disorder is still unclear. In this study, we found that EV71 induced the GSDMD/NLRP3-mediated pyroptosis of SH-SY5Y cells through up-regulated miR-146a. Through bioinformatic analysis, we identified C-X-C chemokine receptor type 4 (CXCR4) as the potential target of miR-146a. We noticed that the expression of CXCR4 was regulated by miR-146a during EV71 infection. Moreover, our results show that over-expression of CXCR4 attenuated EV71-induced pyroptosis of SY-SY5Y cells. These results reveal a previously unrecognized mechanism in which EV71 induces nervous system cells damage through regulating miR-146a/CXCR4 mediated pyroptosis.
Collapse
Affiliation(s)
- Hengzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
| | - Yangyang Zhu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
| | - Yu Zou
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
| | - Chaozhi Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
| | - Ya Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
| | - Gejing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, 100700, Beijing, PR China
- Corresponding author.
| | - Lili Lu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065, Wuhan, Hubei, PR China
- Corresponding author.
| |
Collapse
|
32
|
TRAF3 activates STING-mediated suppression of EV-A71 and target of viral evasion. Signal Transduct Target Ther 2023; 8:79. [PMID: 36823147 PMCID: PMC9950063 DOI: 10.1038/s41392-022-01287-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 02/25/2023] Open
Abstract
Innate immunity represents one of the main host responses to viral infection.1-3 STING (Stimulator of interferon genes), a crucial immune adapter functioning in host cells, mediates cGAS (Cyclic GMP-AMP Synthase) sensing of exogenous and endogenous DNA fragments and generates innate immune responses.4 Whether STING activation was involved in infection and replication of enterovirus remains largely unknown. In the present study, we discovered that human enterovirus A71 (EV-A71) infection triggered STING activation in a cGAS dependent manner. EV-A71 infection caused mitochondrial damage and the discharge of mitochondrial DNA into the cytosol of infected cells. However, during EV-A71 infection, cGAS-STING activation was attenuated. EV-A71 proteins were screened and the viral protease 2Apro had the greatest capacity to inhibit cGAS-STING activation. We identified TRAF3 as an important factor during STING activation and as a target of 2Apro. Supplement of TRAF3 rescued cGAS-STING activation suppression by 2Apro. TRAF3 supported STING activation mediated TBK1 phosphorylation. Moreover, we found that 2Apro protease activity was essential for inhibiting STING activation. Furthermore, EV-D68 and CV-A16 infection also triggered STING activation. The viral protease 2Apro from EV-D68 and CV-A16 also had the ability to inhibit STING activation. As STING activation prior to EV-A71 infection generated cellular resistance to EV-A71 replication, blocking EV-A71-mediated STING suppression represents a new anti-viral target.
Collapse
|
33
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bowen Dai
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shujie Han
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
34
|
Li R. The impact of the COVID-19 pandemic on the number of hand, foot, and mouth disease due to enterovirus 71 infectionsImpact of the COVID-19 pandemic on enterovirus 71 infections. J Infect 2023; 86:e111-e113. [PMID: 36764394 PMCID: PMC9908569 DOI: 10.1016/j.jinf.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Affiliation(s)
- Rui Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's, Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Children's Hospital, Zhengzhou, China.
| |
Collapse
|
35
|
Ferreira V, Ferreira AR, Ribeiro D. Peroxisomes and Viruses: Overview on Current Knowledge and Experimental Approaches. Methods Mol Biol 2023; 2643:271-294. [PMID: 36952192 DOI: 10.1007/978-1-0716-3048-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The general interest in the study of the interplay between peroxisomes and viruses has increased in recent years, with different reports demonstrating that distinct viruses modulate peroxisome-related mechanisms to either counteract the cellular antiviral response or support viral propagation. Nevertheless, mechanistical details are still scarce, and information is often incomplete. In this chapter, we present an overview of the current knowledge concerning the interplay between peroxisomes and different viruses. We furthermore present, compare, and discuss the most relevant experimental approaches and tools used in the different studies. Finally, we stress the importance of further, more detailed, and spatial-temporal analyses that encompass all the different phases of the viruses' infection cycles. These studies may lead to the discovery of novel peroxisome-related cellular mechanisms that can further be explored as targets for the development of novel antiviral therapies.
Collapse
Affiliation(s)
- Vanessa Ferreira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ana Rita Ferreira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
36
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Jie W, Rui-Fen Z, Zhong-Xiang H, Yan W, Wei-Na L, Yong-Ping M, Jing S, Jing-Yi C, Wan-Hong L, Xiao-Hua H, Zhi L, Yan S. Inhibition of cell proliferation by Tas of foamy viruses through cell cycle arrest or apoptosis underlines the different mechanisms of virus-host interactions. Virulence 2022; 13:342-354. [PMID: 35132916 PMCID: PMC8837258 DOI: 10.1080/21505594.2022.2029329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022] Open
Abstract
Foamy viruses belong to the Spumaretrovirinae subfamily member of the Retroviridae family and produce nonpathogenic infection to hosts in the natural conditions. However, infections of foamy viruses can dramatically cause severe cytopathic effects in vitro. To date, the exact molecular mechanism has remained unclear which implied the tremendous importance of virus-host cell immune reactions. In this study, we found that the transactivator Tas in two foamy viruses isolated from Old World Monkey (OWM) induced obvious inhibition of cell proliferation via the upregulation of Foxo3a expression. It was mediated by the generation of ROS and the initiation of ER stress, and ultimately, the mitochondrial apoptosis pathway was triggered. Notably, PFV Tas contributed to the accumulation of G0/G1 phase cycle arrest induced by the activation of the p53 signaling pathway and the nuclear transportation of HDAC4 via upregulating PPM1E expression. Together, these results demonstrated the different survival strategies by which foamy virus can hijack host cell cytokines and regulate virus-host cell interactions.
Collapse
Affiliation(s)
- Wei Jie
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Zhang Rui-Fen
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Hu Zhong-Xiang
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Wu Yan
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Liu Wei-Na
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Ma Yong-Ping
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Song Jing
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Chen Jing-Yi
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Liu Wan-Hong
- School of Medicine, Wuhan University, Wuhan, P. R. China
| | - He Xiao-Hua
- School of Medicine, Wuhan University, Wuhan, P. R. China
| | - Li Zhi
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Sun Yan
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| |
Collapse
|
38
|
López-Cerdán A, Andreu Z, Hidalgo MR, Grillo-Risco R, Català-Senent JF, Soler-Sáez I, Neva-Alejo A, Gordillo F, de la Iglesia-Vayá M, García-García F. Unveiling sex-based differences in Parkinson's disease: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ 2022; 13:68. [PMID: 36414996 PMCID: PMC9682715 DOI: 10.1186/s13293-022-00477-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In recent decades, increasing longevity (among other factors) has fostered a rise in Parkinson's disease incidence. Although not exhaustively studied in this devastating disease, the impact of sex represents a critical variable in Parkinson's disease as epidemiological and clinical features differ between males and females. METHODS To study sex bias in Parkinson's disease, we conducted a systematic review to select sex-labeled transcriptomic data from three relevant brain tissues: the frontal cortex, the striatum, and the substantia nigra. We performed differential expression analysis on each study chosen. Then we summarized the individual differential expression results with three tissue-specific meta-analyses and a global all-tissues meta-analysis. Finally, results from the meta-analysis were functionally characterized using different functional profiling approaches. RESULTS The tissue-specific meta-analyses linked Parkinson's disease to the enhanced expression of MED31 in the female frontal cortex and the dysregulation of 237 genes in the substantia nigra. The global meta-analysis detected 15 genes with sex-differential patterns in Parkinson's disease, which participate in mitochondrial function, oxidative stress, neuronal degeneration, and cell death. Furthermore, functional analyses identified pathways, protein-protein interaction networks, and transcription factors that differed by sex. While male patients exhibited changes in oxidative stress based on metal ions, inflammation, and angiogenesis, female patients exhibited dysfunctions in mitochondrial and lysosomal activity, antigen processing and presentation functions, and glutamic and purine metabolism. All results generated during this study are readily available by accessing an open web resource ( http://bioinfo.cipf.es/metafun-pd/ ) for consultation and reuse in further studies. CONCLUSIONS Our in silico approach has highlighted sex-based differential mechanisms in typical Parkinson Disease hallmarks (inflammation, mitochondrial dysfunction, and oxidative stress). Additionally, we have identified specific genes and transcription factors for male and female Parkinson Disease patients that represent potential candidates as biomarkers to diagnosis.
Collapse
Affiliation(s)
- Adolfo López-Cerdán
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
- Biomedical Imaging Unit FISABIO-CIPF, Fundación Para El Fomento de La Investigación Sanitaria Y Biomédica de La Comunidad Valenciana, 46012, Valencia, Spain
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Rubén Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | | | - Irene Soler-Sáez
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Almudena Neva-Alejo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Fernando Gordillo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación Para El Fomento de La Investigación Sanitaria Y Biomédica de La Comunidad Valenciana, 46012, Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain.
| |
Collapse
|
39
|
Cui G, Wang H, Yang C, Zhou X, Wang J, Wang T, Ma T. Berberine prevents lethal EV71 neurological infection in newborn mice. Front Pharmacol 2022; 13:1027566. [PMID: 36386168 PMCID: PMC9640474 DOI: 10.3389/fphar.2022.1027566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Enterovirus 71 (EV71) is the major pathogen causing fatal neurological complications of hand, foot, and mouth disease (HFMD) in young children. Currently no effective antiviral therapy is available. In the present study, we found that natural compound Berberine (BBR) displayed potent inhibitory effects on EV71 replication in various neural cells (IC50 of 2.79–4.03 μM). In a newborn mouse model of lethal EV71 infection, Berberine at 2–5 mg/kg markedly reduced mortality and clinical scores. Consistently, the replication of EV71 and pathological changes were attenuated in various infected organs including brain and lung with BBR treatment. Interestingly, EV71 infection in the brain mainly localized in the peripheral zone of brainstem and largely in astrocytes. Primary culture of astrocytes from newborn mouse brain confirmed the efficient EV71 replication that was mostly inhibited by BBR treatment at 5 μM. Further investigations revealed remarkably elevated cellular reactive oxygen species (ROS) levels that coincided with EV71 replication in primary cultured astrocytes and various cell lines. BBR largely abolished the virus-elevated ROS production and greatly diminished EV71 replication by up-regulating NFE2 like bZIP transcription factor 2 (Nrf2) via the kelch like ECH associated protein 1 (Keap)-Nrf2 axis. The nuclear localization of Nrf2 and expression of downstream antioxidant enzymes heme oxygenase 1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) were increased significantly by BBR treatment. Collectively, our findings revealed that BBR prevents lethal EV71 neurological infection via inhibiting virus replication through regulating Keap-Nrf2 axis and ROS generation in astrocytes of brainstem, thus providing a potential antiviral treatment for severe EV71 infection associated with neurological complications.
Collapse
|
40
|
Wang S, Qiao J, Chen Y, Tian L, Sun X. Urolithin A inhibits enterovirus 71 replication and promotes autophagy and apoptosis of infected cells in vitro. Arch Virol 2022; 167:1989-1997. [PMID: 35790643 DOI: 10.1007/s00705-022-05471-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/28/2022] [Indexed: 11/25/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a serious threat to the health of infants, and it can be caused by enterovirus 71 (EV71). The clinical symptoms are mostly self-limiting, but some infections develop into aseptic meningitis with poor prognosis and even death. In this study, urolithin A (UroA), an intestinal metabolite of ellagic acid, significantly inhibited the replication of EV71 in cells. Further evaluation showed that UroA was better than ribavirin in terms of its 50% cytopathic concentration (CC50), 50% inhibitory concentration (IC50), and selectivity index. Moreover, UroA inhibited the proliferation of EV71 by promoting autophagy and apoptosis of infected cells. Therefore, UroA is a candidate drug for the treatment of EV71 infection.
Collapse
Affiliation(s)
- Shengyu Wang
- Key Laboratory of Infectious Disease & Biosafety, Provincial Department of Education, Institute of Life Sciences, College of Preclinical Medicine, Zunyi Medical University, Guizhou, 563003, Zunyi, China.,Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, 563003, Zunyi, China
| | - Junhua Qiao
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, 563003, Zunyi, China
| | - Yaping Chen
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, 563003, Zunyi, China
| | - Langfei Tian
- Key Laboratory of Infectious Disease & Biosafety, Provincial Department of Education, Institute of Life Sciences, College of Preclinical Medicine, Zunyi Medical University, Guizhou, 563003, Zunyi, China
| | - Xin Sun
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, 563003, Zunyi, China.
| |
Collapse
|
41
|
Cheng J, Tao J, Li B, Shi Y, Liu H. Swine influenza virus triggers ferroptosis in A549 cells to enhance virus replication. Virol J 2022; 19:104. [PMID: 35715835 PMCID: PMC9205082 DOI: 10.1186/s12985-022-01825-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background Recently, Influenza A virus (IAV) has been shown to activate several programmed cell death pathways that play essential roles in host defense. Indeed, cell death caused by viral infection may be mediated by a mixed pattern of cell death instead of a certain single mode. Ferroptosis is a novel form of regulated cell death (RCD) that is mainly mediated by iron-dependent lipid peroxidation. Based on the proteomic data, we wondered whether IAV causes ferroptosis in host cells. Method In this study, a quantitative proteomics approach based on an iTRAQ combined with LC–MS/MS was used to profile proteins expressed in A549 cells infected with H1N1 swine influenza virus (SIV). Meanwhile, we measured the intracellular iron content, reactive oxygen species (ROS) release and lipid peroxidation in response to SIV infection. Finally, a drug experiment was conducted to investigate the effects of ferroptosis on modulating SIV survival. Results The bioinformatics analysis revealed several proteins closely relevant to iron homeostasis and transport, and the ferroptosis signaling pathway are highly enriched in response to SIV infection. In our experiment, aberrant expression of iron-binding proteins disrupted labile iron uptake and storage after SIV infection. Meanwhile, SIV infection inhibited system the Xc−/GPX4 axis resulting in GSH depletion and the accumulation of lipid peroxidation products. Notably, cell death caused by SIV as a result of iron-dependent lipid peroxidation can be partially rescued by ferroptosis inhibitor. Additionally, blockade of the ferroptotic pathway by ferrostatin-1 (Fer-1) treatment decreased viral titers and inflammatory response. Conclusions This study revealed a new mode of cell death induced by IAV infection, and our findings might improve the understanding of the underlying mechanism involved in the interaction of virus and host cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01825-y.
Collapse
Affiliation(s)
- Jinghua Cheng
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Science, Shanghai, 201106, People's Republic of China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, People's Republic of China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, People's Republic of China
| | - Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Science, Shanghai, 201106, People's Republic of China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, People's Republic of China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, People's Republic of China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Science, Shanghai, 201106, People's Republic of China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, People's Republic of China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, People's Republic of China
| | - Ying Shi
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Science, Shanghai, 201106, People's Republic of China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, People's Republic of China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, People's Republic of China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Science, Shanghai, 201106, People's Republic of China. .,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, People's Republic of China. .,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, People's Republic of China.
| |
Collapse
|
42
|
Sun J, Liang W, Ye S, Chen X, Zhou Y, Lu J, Shen Y, Wang X, Zhou J, Yu C, Yan C, Zheng B, Chen J, Yang Y. Whole-Transcriptome Analysis Reveals Autophagy Is Involved in Early Senescence of zj-es Mutant Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:899054. [PMID: 35720578 PMCID: PMC9204060 DOI: 10.3389/fpls.2022.899054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Senescence is a necessary stage of plant growth and development, and the early senescence of rice will lead to yield reduction and quality decline. However, the mechanisms of rice senescence remain obscure. In this study, we characterized an early-senescence rice mutant, designated zj-es (ZheJing-early senescence), which was derived from the japonica rice cultivar Zhejing22. The mutant zj-es exhibited obvious early-senescence phenotype, such as collapsed chloroplast, lesions in leaves, declined fertility, plant dwarf, and decreased agronomic traits. The ZJ-ES gene was mapped in a 458 kb-interval between the molecular markers RM5992 and RM5813 on Chromosome 3, and analysis suggested that ZJ-ES is a novel gene controlling rice early senescence. Subsequently, whole-transcriptome RNA sequencing was performed on zj-es and its wild-type rice to dissect the underlying molecular mechanism for early senescence. Totally, 10,085 differentially expressed mRNAs (DEmRNAs), 1,253 differentially expressed lncRNAs (DElncRNAs), and 614 differentially expressed miRNAs (DEmiRNAs) were identified, respectively, in different comparison groups. Based on the weighted gene co-expression network analysis (WGCNA), the co-expression turquoise module was found to be the key for the occurrence of rice early senescence. Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 14 lncRNAs possibly regulated 16 co-expressed mRNAs through 8 miRNAs, and enrichment analysis showed that most of the DEmRNAs and the targets of DElncRNAs and DEmiRNAs were involved in reactive oxygen species (ROS)-triggered autophagy-related pathways. Further analysis showed that, in zj-es, ROS-related enzyme activities were markedly changed, ROS were largely accumulated, autophagosomes were obviously observed, cell death was significantly detected, and lesions were notably appeared in leaves. Totally, combining our results here and the remaining research, we infer that ROS-triggered autophagy induces the programmed cell death (PCD) and its coupled early senescence in zj-es mutant rice.
Collapse
Affiliation(s)
- Jia Sun
- College of Life Science, Fujian A&F University, Fuzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuhang Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jianfei Lu
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Ying Shen
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chulang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
43
|
Yu J, Zhang W, Huo W, Meng X, Zhong T, Su Y, Liu Y, Liu J, Wang Z, Song F, Zhang S, Li Z, Yu X, Yu X, Hua S. Regulation of host factor γ-H2AX level and location by enterovirus A71 for viral replication. Virulence 2022; 13:241-257. [PMID: 35067196 PMCID: PMC8786350 DOI: 10.1080/21505594.2022.2028482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Numerous viruses manipulate host factors for viral production. We demonstrated that human enterovirus A71 (EVA71), a primary causative agent for hand, foot, and mouth disease (HFMD), increased the level of the DNA damage response (DDR) marker γ-H2AX. DDR is primarily mediated by the ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), or DNA-dependent protein kinase (DNA-PK) pathways. Upregulation of γ-H2AX by EVA71 was dependent on the ATR but not the ATM or DNA-PK pathway. As a nuclear factor, there is no previous evidence of cytoplasmic distribution of γ-H2AX. However, the present findings demonstrated that EVA71 encouraged the localization of γ-H2AX to the cytoplasm. Of note, γ-H2AX formed a complex with structural protein VP3, non-structural protein 3D, and the viral genome. Treatment with an inhibitor or CRISPR/Cas9 technology to decrease or silence the expression of γ-H2AX decreased viral genome replication in host cells; this effect was accompanied by decreased viral protein expression and virions. In animal experiments, caffeine was used to inhibit DDR; the results revealed that caffeine protected neonatal mice from death after infection with EVA71, laying the foundation for new therapeutic applications of caffeine. More importantly, in children with HFMD, γ-H2AX was upregulated in peripheral blood lymphocytes. The consistent in vitro and in vivo data on γ-H2AX from this study suggested that caffeine or other inhibitors of DDR might be novel therapeutic agents for HFMD.
Collapse
Affiliation(s)
- Jinghua Yu
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Ting Zhong
- Medicinal Chemistry, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Su
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Yumeng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Jinming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Zengyan Wang
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Fengmei Song
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Xiaofang Yu
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
44
|
Zhang X, Hao J, Sun C, Du J, Han Q, Li Q. Total astragalosides decrease apoptosis and pyroptosis by inhibiting enterovirus 71 replication in gastric epithelial cells. Exp Ther Med 2022; 23:237. [PMID: 35222714 PMCID: PMC8815049 DOI: 10.3892/etm.2022.11162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the primary pathogens involved in severe hand, foot and mouth disease in children. EV71 infection causes various types of programmed cell death. However, there are currently no clinically approved specific antiviral drugs for control of EV71 infection. Astragalus membranaceus (AM), a Traditional Chinese medicine, has been used in antiviral therapy in China. The aim of the present study was to determine whether total astragalosides (ASTs), bioactive components of AM, protect against EV. DAPI nuclear staining was used to observe morphological changes of the nucleus and the protective effect of ASTs, which revealed that the nucleus shrank following EV71 infection, while ASTs reversed it. Cell Counting Kit-8 assay found that human normal gastric epithelial cell (GES-1 cell) viability decreased following EV71 infection, while lactate dehydrogenase (LDH) assay showed that EV71 infection induced GES-1 cell damage. Western blotting was used to measure the expression levels of apoptosis and pyroptosis marker protein to determine whether EV71 infection induced apoptosis and pyroptosis in GES-1 cells. Reverse transcription-quantitative PCR was used to determine the anti-EV71 effect of ASTs. The results showed that ASTs protected GES-1 cells from EV71-induced cell apoptosis and pyroptosis. Furthermore, the present data demonstrated that the protective effect of ASTs was exerted by suppressing EV71 replication and release. These findings suggested that ASTs may represent a potential antiviral agent for the treatment of EV71 infection.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jinfang Hao
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chenxi Sun
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jianping Du
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qian Han
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qingshan Li
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
45
|
Jintana K, Prasertsopon J, Puthavathana P, Lerdsamran H. Antiviral effect in association with anti-apoptosis and anti-autophagy of repurposing formoterol fumarate dihydrate on enterovirus A71-infected neuronal cells. Virus Res 2022; 311:198692. [DOI: 10.1016/j.virusres.2022.198692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/30/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
46
|
Ferreira AR, Marques M, Ramos B, Kagan JC, Ribeiro D. Emerging roles of peroxisomes in viral infections. Trends Cell Biol 2021; 32:124-139. [PMID: 34696946 DOI: 10.1016/j.tcb.2021.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023]
Abstract
Peroxisomes, essential subcellular organelles that fulfill important functions in lipid and reactive oxygen species metabolism, have recently emerged as key players during viral infections. Their importance for the establishment of the cellular antiviral response has been highlighted by numerous reports of specific evasion of peroxisome-dependent signaling by different viruses. Recent data demonstrate that peroxisomes also assume important proviral functions. Here, we review and discuss the recent advances in the study of the diverse roles of peroxisomes during viral infections, from animal to plant viruses, and from basic to translational perspectives. We further discuss the future development of this emerging area and propose that peroxisome-related mechanisms represent a promising target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mariana Marques
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Bruno Ramos
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
47
|
Liu A, Zhou K, Martínez MA, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. A "Janus" face of the RASSF4 signal in cell fate. J Cell Physiol 2021; 237:466-479. [PMID: 34553373 DOI: 10.1002/jcp.30592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
RASSF4 (Ras-association domain family 4) is a protein-coding gene, regarded as a tumor suppressor regulated by DNA methylation. However, RASSF4 acts as a "Janus" in cell fate: death and survival. This review article focuses on the regulatory mechanisms of RASSF4 on cell death and cell survival and puts forward a comprehensive analysis of the relevant signaling pathways. The participation of RASSF4 in the regulation of intracellular store-operated Ca2+ entry also affects cell survival. Moreover, the mechanism of inducing abnormal expression of RASSF4 was summarized. We highlight recent advances in our knowledge of RASSF4 function in the development of cancer and other clinical diseases, which may provide insight into the controversial functions of RASSF4 and its potential application in disease therapy.
Collapse
Affiliation(s)
- Aimei Liu
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Kaixiang Zhou
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - María Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Xu Wang
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| |
Collapse
|
48
|
Inhibition of enterovirus 71 infection by polysaccharides extracted from Picochlorum sp. 122 via the AKT and ATM/ATR signaling pathways. Arch Virol 2021; 166:3269-3274. [PMID: 34536128 DOI: 10.1007/s00705-021-05229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Enterovirus 71 (EV71) poses a major threat to public health globally due to severe and even fatal hand, foot, and mouth disease (HFMD). However, no effective antiviral agents are available to treat HFMD caused by this virus. Polysaccharides have been shown to exhibit antiviral activity, and polysaccharides extracted from Picochlorum sp. 122 (PPE) could potentially be used to treat HFMD, but reports on their antiviral activity are limited. In this study, the antiviral activity of PPE against EV71 was verified in Vero cells. PPE was shown to limit EV71 infection, as demonstrated using an MTT assay and by observing the cellular cytopathic effect. In addition, a decrease in VP1 RNA and protein levels indicated that PPE effectively inhibits proliferation of EV71 in Vero cells. An annexin V affinity assay also indicated that PPE protects host cells from apoptosis through the AKT and ATM/ATR signalling pathways. These results demonstrate that PPE has potential as an antiviral drug to treat HFMD caused by EV71.
Collapse
|
49
|
Mohanty MC, Varose SY, Saxena VK. Susceptibility and cytokine responses of human neuronal cells to multiple circulating EV-A71 genotypes in India. Sci Rep 2021; 11:17751. [PMID: 34493781 PMCID: PMC8423732 DOI: 10.1038/s41598-021-97166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022] Open
Abstract
Enterovirus-A71 (EV-A71) associated Hand, foot and mouth disease (HFMD) is a highly contagious viral infection affecting children in Asia–Pacific region and has become a major threat to public health. Although several EV-A71 genotypes (C, D, and G) were isolated in India in recent years, no recognizable outbreak of EV-A71 caused HFMD, Acute Flaccid paralysis (AFP) or encephalitis have been reported so far. It is essential to study the pathogenicity or cell tropism of these Indian isolates in order to understand their tendency to cause disease. We investigated the susceptibility and cytokine responses of indigenous EV-A71 genotypes (D and G) isolated from cases of AFP and genotype C viruses isolated from cases of HFMD and encephalitis, in human cells in-vitro. Although all three EV-A71 genotypes could infect and replicate in human muscle and neuronal cells, the genotype D virus showed a delayed response in human neuronal cells. Quantification of cytokine secretion in response to these isolates followed by confirmation with gene expression assays in human neuronal cells revealed significantly higher secretion of pro-inflammatory cytokines TNF-α IL-8, IL-6, IP-10 (p < 0.001) in G genotype infected cells as compared to pathogenic C genotypes whereas the genotype D virus could not induce any of the inflammatory cytokines. These findings will help to better understand the host response to indigenous EV-A71 genotypes for management of future EV-A71 outbreaks in India, if any.
Collapse
Affiliation(s)
- Madhu Chhanda Mohanty
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai, 400012, India.
| | - Swapnil Yashavant Varose
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai, 400012, India
| | - Vinay Kumar Saxena
- ICMR-National Institute of Virology, Mumbai Unit, Formerly Enterovirus Research Centre, Indian Council of Medical Research, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai, 400012, India
| |
Collapse
|
50
|
Lu Y, Gao Z, Liu C, Long M, Yang L, Li R, Dong K, Zhang H. Integrative analysis of lncRNA-miRNA-mRNA-associated competing endogenous RNA regulatory network involved in EV71 infection. Am J Transl Res 2021; 13:7440-7457. [PMID: 34377228 PMCID: PMC8340214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
The competing endogenous RNA (ceRNA) axis has been shown to play a critical role in the pathogenesis of various viral infections. Generally, the ceRNA network involves long non-coding RNAs (lncRNAs) that act as sponges for miRNA to regulate mRNA expression. However, no information is available regarding the involvement of ceRNA networks in Enterovirus type 71 (EV71) infections. In the present study, data obtained from Gene Expression Omnibus (GEO) database was analyzed using various bioinformatics tools. EV71 infection in rhabdomyosarcoma (RD) cells was associated with differential expression of six lncRNAs, 28 miRNAs, and 349 mRNAs. Gene function enrichment analysis suggested induction of cytoplasmic vesicle process upon EV71 infection. The ceRNA networks were constructed, in which 20 hub genes were predicted by protein-protein interaction. To confirm the MALAT1/miR-194-5p/DUSP1 ceRNA regulatory axis in EV71 infection, real-time quantitative polymerase chain reaction (qRT-PCR) and luciferase reporter assay were performed. The results of the study also revealed the involvement of the MALAT1/miR-194-5p axis in apoptosis induced by EV71 infection, while no association with autophagy was observed. Thus, the present study provided novel insights into the pathogenic mechanism of EV71 infection.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Zhaowei Gao
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Chong Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Min Long
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Longfei Yang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Ruicheng Li
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Ke Dong
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Huizhong Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| |
Collapse
|