1
|
Balkhi S, Bilato G, De Lerma Barbaro A, Orecchia P, Poggi A, Mortara L. Efficacy of Anti-Cancer Immune Responses Elicited Using Tumor-Targeted IL-2 Cytokine and Its Derivatives in Combined Preclinical Therapies. Vaccines (Basel) 2025; 13:69. [PMID: 39852848 PMCID: PMC11768832 DOI: 10.3390/vaccines13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Effective cancer therapies must address the tumor microenvironment (TME), a complex network of tumor cells and stromal components, including endothelial, immune, and mesenchymal cells. Durable outcomes require targeting both tumor cells and the TME while minimizing systemic toxicity. Interleukin-2 (IL-2)-based therapies have shown efficacy in cancers such as metastatic melanoma and renal cell carcinoma but are limited by severe side effects. Innovative IL-2-based immunotherapeutic approaches include immunotoxins, such as antibody-drug conjugates, immunocytokines, and antibody-cytokine fusion proteins that enhance tumor-specific delivery. These strategies activate cytotoxic CD8+ T lymphocytes and natural killer (NK) cells, eliciting a potent Th1-mediated anti-tumor response. Modified IL-2 variants with reduced Treg cell activity further improve specificity and reduce immunosuppression. Additionally, IL-2 conjugates with peptides or anti-angiogenic agents offer improved therapeutic profiles. Combining IL-2-based therapies with immune checkpoint inhibitors (ICIs), anti-angiogenic agents, or radiotherapy has demonstrated synergistic potential. Preclinical and clinical studies highlight reduced toxicity and enhanced anti-tumor efficacy, overcoming TME-driven immune suppression. These approaches mitigate the limitations of high-dose soluble IL-2 therapy, promoting immune activation and minimizing adverse effects. This review critically explores advances in IL-2-based therapies, focusing on immunotoxins, immunocytokines, and IL-2 derivatives. Emphasis is placed on their role in combination strategies, showcasing their potential to target the TME and improve clinical outcomes effectively. Also, the use of IL-2 immunocytokines in "in situ" vaccination to relieve the immunosuppression of the TME is discussed.
Collapse
Affiliation(s)
- Sahar Balkhi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
| | - Giorgia Bilato
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| | - Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, 20145 Varese, Italy;
| | - Paola Orecchia
- Pathology and Experimental Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Alessandro Poggi
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| |
Collapse
|
2
|
Prades-Sagarra E, Yaromina A, Dubois L. Understanding the impact of radiation-induced lymphopenia: Preclinical and clinical research perspectives. Clin Transl Radiat Oncol 2024; 49:100852. [PMID: 39315059 PMCID: PMC11418132 DOI: 10.1016/j.ctro.2024.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy has revolutionized the field of cancer treatment, changing the standard of care to the use of immune checkpoint inhibitors. Radiotherapy can boost anti-tumour immune responses by changing the tumour microenvironment, but it also can cause radiotherapy-induced lymphopenia (RIL), a decrease in circulating lymphocyte counts. RIL has been associated with lower survival in patients undergoing radiotherapy, and new studies have suggested that it can also affect immunotherapy outcome. To study RIL's effects and to explore mitigation treatment strategies, preclinical models closely mimicking the clinical situation are needed. State-of-the-art image-guided small animal irradiators now offer the possibility to target specific organs in small animals to induce RIL, aiding research on its molecular mechanisms and prevention. This review covers the relationship between radiotherapy and RIL, its impact on patient survival, and future directions to generate models to investigate and prevent RIL.
Collapse
Affiliation(s)
- E. Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - A. Yaromina
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - L.J. Dubois
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Galbiati A, Bocci M, Ravazza D, Mock J, Gilardoni E, Neri D, Cazzamalli S. Preclinical Evaluation of 177Lu-OncoFAP-23, a Multivalent FAP-Targeted Radiopharmaceutical Therapeutic for Solid Tumors. J Nucl Med 2024; 65:1604-1610. [PMID: 39266289 DOI: 10.2967/jnumed.124.268200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024] Open
Abstract
Fibroblast activation protein (FAP) is abundantly expressed in the stroma of most human solid tumors. Clinical-stage radiolabeled FAP ligands are increasingly used as tools for the detection of various cancer lesions. To unleash the full therapeutic potential of FAP-targeting agents, ligands need to remain at the tumor site for several days after administration. We recently described the discovery of OncoFAP, a high-affinity small organic ligand of FAP with a rapid accumulation in tumors and low uptake in healthy tissues in cancer patients. Trimerization of OncoFAP provided a derivative (named TriOncoFAP, or OncoFAP-23) with improved FAP affinity. In this work, we evaluated the tissue biodistribution profile and the therapeutic performance of OncoFAP-23 in tumor-bearing mice. Methods: OncoFAP-23 was radiolabeled with the theranostic radionuclide 177Lu. Preclinical experiments were conducted on mice bearing SK-RC-52.hFAP (BALB/c nude mice) or CT-26.hFAP (BALB/c mice) tumors. 177Lu-OncoFAP and 177Lu-FAP-2286 were included in the biodistribution study as controls. Toxicologic evaluation was performed on Wistar rats and CD1 mice by injecting high doses of OncoFAP-23 or its cold-labeled counterpart, respectively. Results: 177Lu-OncoFAP-23 emerged for its best-in-class biodistribution profile, high and prolonged tumor uptake (i.e., ∼16 percentage injected dose/g at 96 h), and low accumulation in healthy organs, which correlates well with its potent single-agent anticancer activity at low levels of administered radioactivity. Combination treatment with the tumor-targeted interleukin 2 (L19-IL2, a clinical-stage immunocytokine) further expands the therapeutic window of 177Lu-OncoFAP-23 by potentiating its in vivo antitumor activity. Proteomics studies revealed a potent tumor-directed immune response on treatment with the combination. OncoFAP-23 and natLu-OncoFAP-23 exhibited a favorable toxicologic profile, without showing any side effects or signs of toxicity. Conclusion: OncoFAP-23 presents enhanced tumor uptake and tumor retention and low accumulation in healthy organs, findings that correspond to a strongly improved in vivo antitumor efficacy. The data presented in this work support the clinical development of 177Lu-OncoFAP-23 for the treatment of FAP-positive solid tumors.
Collapse
Affiliation(s)
| | - Matilde Bocci
- R&D Department, Philochem AG, Otelfingen, Switzerland
| | | | | | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland; and
- Philogen S.p.A., Siena, Italy
| | | |
Collapse
|
4
|
Prodi E, Neri D, De Luca R. Tumor-Homing Antibody-Cytokine Fusions for Cancer Therapy. Onco Targets Ther 2024; 17:697-715. [PMID: 39224695 PMCID: PMC11368152 DOI: 10.2147/ott.s480787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Recombinant cytokine products have emerged as a promising avenue in cancer therapy due to their capacity to modulate and enhance the immune response against tumors. However, their clinical application is significantly hindered by systemic toxicities already at low doses, thus preventing escalation to therapeutically active regimens. One promising approach to overcoming these limitations is using antibody-cytokine fusion proteins (also called immunocytokines). These biopharmaceuticals leverage the targeting specificity of antibodies to deliver cytokines directly to the tumor microenvironment, thereby reducing systemic exposure and enhancing the therapeutic index. This review comprehensively examines the development and potential of antibody-cytokine fusion proteins in cancer therapy. It explores the molecular characteristics that influence the performance of these fusion proteins, and it highlights key findings from preclinical and clinical studies, illustrating the potential of immunocytokines to improve treatment outcomes in cancer patients. Recent advancements in the field, such as novel engineering strategies and combination strategies to enhance the efficacy and safety of immunocytokines, are also discussed. These innovations offer new opportunities to optimize this class of biotherapeutics, making them a more viable and effective option for cancer treatment. As the field continues to evolve, understanding the critical factors that influence the performance of immunocytokines will be essential for successfully translating these therapies into clinical practice.
Collapse
Affiliation(s)
- Eleonora Prodi
- Philochem AG, Otelfingen, 8112, Switzerland
- University of Trento, Italy, CiBIO (Department of Cellular, Computational and Integrative Biology), Povo, 38123, Trento
| | - Dario Neri
- Philogen Spa, Siena, 53100, Italy
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | |
Collapse
|
5
|
Schriek AI, Aldon YLT, van Gils MJ, de Taeye SW. Next-generation bNAbs for HIV-1 cure strategies. Antiviral Res 2024; 222:105788. [PMID: 38158130 DOI: 10.1016/j.antiviral.2023.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Despite the ability to suppress viral replication using anti-retroviral therapy (ART), HIV-1 remains a global public health problem. Curative strategies for HIV-1 have to target and eradicate latently infected cells across the body, i.e. the viral reservoir. Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to neutralize virions and bind to infected cells to initiate elimination of these cells. To improve the efficacy of bNAbs in terms of viral suppression and viral reservoir eradication, next generation antibodies (Abs) are being developed that address the current limitations of Ab treatment efficacy; (1) low antigen (Env) density on (reactivated) HIV-1 infected cells, (2) high viral genetic diversity, (3) exhaustion of immune cells and (4) short half-life of Abs. In this review we summarize and discuss preclinical and clinical studies in which anti-HIV-1 Abs demonstrated potent viral control, and describe the development of engineered Abs that could address the limitations described above. Next generation Abs with optimized effector function, avidity, effector cell recruitment and immune cell activation have the potential to contribute to an HIV-1 cure or durable control.
Collapse
Affiliation(s)
- A I Schriek
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Y L T Aldon
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - M J van Gils
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - S W de Taeye
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Galbiati A, Dorten P, Gilardoni E, Gierse F, Bocci M, Zana A, Mock J, Claesener M, Cufe J, Büther F, Schäfers K, Hermann S, Schäfers M, Neri D, Cazzamalli S, Backhaus P. Tumor-Targeted Interleukin 2 Boosts the Anticancer Activity of FAP-Directed Radioligand Therapeutics. J Nucl Med 2023; 64:1934-1940. [PMID: 37734838 PMCID: PMC10690118 DOI: 10.2967/jnumed.123.266007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
We studied the antitumor efficacy of a combination of 177Lu-labeled radioligand therapeutics targeting the fibroblast activation protein (FAP) (OncoFAP and BiOncoFAP) with the antibody-cytokine fusion protein L19-interleukin 2 (L19-IL2) providing targeted delivery of interleukin 2 to tumors. Methods: The biodistribution of 177Lu-OncoFAP and 177Lu-BiOncoFAP at different molar amounts (3 vs. 250 nmol/kg) of injected ligand was studied via SPECT/CT in mice bearing subcutaneous HT-1080.hFAP tumors, and self-absorbed tumor and organ doses were calculated. The in vivo anticancer effect of 5 MBq of the radiolabeled preparations was evaluated as monotherapy or in combination with L19-IL2 in subcutaneously implanted HT-1080.hFAP and SK-RC-52.hFAP tumors. Tumor samples from animals treated with 177Lu-BiOncoFAP, L19-IL2, or both were analyzed by mass spectrometry-based proteomics to identify therapeutic signatures on cellular and stromal markers of cancer and on immunomodulatory targets. Results: 177Lu-BiOncoFAP led to a significantly higher self-absorbed dose in FAP-positive tumors (0.293 ± 0.123 Gy/MBq) than did 177Lu-OncoFAP (0.157 ± 0.047 Gy/MBq, P = 0.01) and demonstrated favorable tumor-to-organ ratios at high molar amounts of injected ligand. Administration of L19-IL2 or 177Lu-BiOncoFAP as single agents led to cancer cures in only a limited number of treated animals. In 177Lu-BiOncoFAP-plus-L19-IL2 combination therapy, complete remissions were observed in all injected mice (7/7 complete remissions for the HT-1080.hFAP model, and 4/4 complete remissions for the SK-RC-52.hFAP model), suggesting therapeutic synergy. Proteomic studies revealed a mechanism of action based on the activation of natural killer cells, with a significant enhancement of the expression of granzymes and perforin 1 in the tumor microenvironment after combination treatment. Conclusion: The combination of OncoFAP-based radioligand therapeutics with concurrent targeting of interleukin 2 shows synergistic anticancer effects in the treatment of FAP-positive tumors. This experimental finding should be corroborated by future clinical studies.
Collapse
Affiliation(s)
- Andrea Galbiati
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Paulina Dorten
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Ettore Gilardoni
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Florian Gierse
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Matilde Bocci
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Aureliano Zana
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Jacqueline Mock
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Michael Claesener
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Juela Cufe
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Klaus Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre, Münster, Germany
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland; and
- Philogen S.p.A., Siena, Italy
| | - Samuele Cazzamalli
- Research and Development Department, Philochem AG, Otelfingen, Switzerland;
| | - Philipp Backhaus
- European Institute for Molecular Imaging, University of Münster, Münster, Germany;
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre, Münster, Germany
| |
Collapse
|
7
|
Pabani A, Gainor JF. Facts and Hopes: Immunocytokines for Cancer Immunotherapy. Clin Cancer Res 2023; 29:3841-3849. [PMID: 37227449 DOI: 10.1158/1078-0432.ccr-22-1837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
The clinical development of cytokines as cancer therapeutics has been limited due to significant toxicities generally observed with systemic administration. This narrow therapeutic window, together with relatively modest efficacy, has made natural cytokines unattractive drug candidates. Immunocytokines represent a class of next-generation cytokines designed to overcome the challenges associated with traditional cytokines. These agents seek to improve the therapeutic index of cytokines by using antibodies as vehicles for the targeted delivery of immunomodulatory agents within the local tumor microenvironment (TME). Various molecular formats and cytokine payloads have been studied. In this review, we provide an overview of the rationale, preclinical support, and current clinical development strategies for immunocytokines.
Collapse
Affiliation(s)
- Aliyah Pabani
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Justin F Gainor
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Feng Y, Hao Y, Wang Y, Song W, Zhang S, Ni D, Yan F, Sun L. Ultrasound Molecular Imaging of Bladder Cancer via Extradomain B Fibronectin-Targeted Biosynthetic GVs. Int J Nanomedicine 2023; 18:4871-4884. [PMID: 37662687 PMCID: PMC10474871 DOI: 10.2147/ijn.s412422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose Ultrasound molecular imaging (UMI) has proven promising to diagnose the onset and progression of diseases such as angiogenesis, inflammation, and thrombosis. However, microbubble-based acoustic probes are confined to intravascular targets due to their relatively large particle size, greatly reducing the application value of UMI, especially for extravascular targets. Extradomain B fibronectin (ED-B FN) is an important glycoprotein associated with tumor genesis and development and highly expressed in many types of tumors. Here, we developed a gas vesicles (GVs)-based nanoscale acoustic probe (ZD2-GVs) through conjugating ZD2 peptides which can specially target to ED-B FN to the biosynthetic GVs. Materials and Methods ED-B FN expression was evaluated in normal liver and tumor tissues with immunofluorescence and Western blot. ZD2-GVs were prepared by conjugating ZD2 to the surface of GVs by amide reaction. The inverted microscope was used to analyze the targeted binding capacity of ZD2-GVs to MB49 cells (bladder cancer cell line). The contrast-enhanced imaging features of GVs, non-targeted control GVs (CTR-GVs), and targeted GVs (ZD2-GVs) were compared in three MB49 tumor mice. The penetration ability of ZD2-GVs in tumor tissues was assessed by fluorescence immunohistochemistry. The biosafety of GVs was evaluated by CCK8, blood biochemistry, and HE staining. Results Strong ED-B FN expression was observed in tumor tissues while little expression in normal liver tissues. The resulting ZD2-GVs had only 267.73 ± 2.86 nm particle size and exhibited excellent binding capability to the MB49 tumor cells. The in vivo UMI experiments showed that ZD2-GVs produced stronger and longer retention in the BC tumors than that of the non-targeted CTR-GVs and GVs. Fluorescence immunohistochemistry confirmed that ZD2-GVs could penetrate the tumor vascular into the interstitial space of the tumors. Biosafety analysis revealed there was no significant cytotoxicity to these tested mice. Conclusion Thus, ZD2-GVs can function as a potential UMI probe for the early diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Yanan Feng
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| | - Yongsheng Hao
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Weijian Song
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Shanxin Zhang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Dong Ni
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, 518055, People’s Republic of China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| |
Collapse
|
9
|
Zhao K, Jiang L, Si Y, Zhou S, Huang Z, Meng X. TIGIT blockade enhances tumor response to radiotherapy via a CD103 + dendritic cell-dependent mechanism. Cancer Immunol Immunother 2023; 72:193-209. [PMID: 35794399 DOI: 10.1007/s00262-022-03227-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Blockade of the T cell immunoreceptor with the immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) can enhance innate and adaptive tumor immunity and radiotherapy (RT) can enhance anti-tumor immunity. However, our data suggest that TIGIT-mediated immune suppression may be an impediment to such goals. Herein, we report on the synergistic effects of RT combined with anti-TIGIT therapy and the mechanism of their interaction. Treatment efficacy was assessed by measuring primary and secondary tumor growth, survival, and immune memory capacity. The function of CD103 + dendritic cells (DCs) under the combined treatment was assessed in wild-type and BATF3-deficient (BATF3-/-) mice. FMS-like tyrosine kinase 3 ligand (Flt3L) was used to confirm the role of CD103 + DCs in RT combined with anti-TIGIT therapy. TIGIT was upregulated in immune cells following RT in both esophageal squamous cell carcinoma patients and mouse models. Administration of the anti-TIGIT antibody enhanced the efficacy of RT through a CD8 + T cell-dependent mechanism. It was observed that RT and the anti-TIGIT antibody synergistically enhanced the accumulation of tumor-infiltrating DCs, which activated CD8 + T cells. The efficacy of the combination therapy was negated in the BATF3-/- mouse model. CD103 + DCs were required to promote the anti-tumor effects of combination therapy. Additionally, Flt3L therapy enhanced tumor response to RT combined with TIGIT blockade. Our study demonstrated TIGIT blockade can synergistically enhance anti-tumor T cell responses to RT via CD8 + T cells (dependent on CD103 + DCs), suggesting the clinical potential of targeting the TIGIT pathway and expanding CD103 + DCs in RT.
Collapse
Affiliation(s)
- Kaikai Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Liyang Jiang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Youjiao Si
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shujie Zhou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
10
|
Liu L, Li H, Xu Q, Wu Y, Chen D, Yu F. Antitumor activity of recombinant oncolytic vaccinia virus with human IL2. Open Med (Wars) 2022; 17:1084-1091. [PMID: 35799600 PMCID: PMC9206501 DOI: 10.1515/med-2022-0496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
The tumor microenvironment is highly immunosuppressive. The genetically modified oncolytic vaccinia virus (OVV) is a promising vector for cancer immunotherapy. The aim of the present study was to assess the antitumor effects of human interleukin-2 (hIL2)-armed OVV in vitro. The hIL2 gene was inserted into a thymidine kinase and the viral growth factor double deleted oncolytic VV (VVDD) to generate recombinant hIL2-armed OVV (rVVDD-hIL2). Viral replication capacity in A549 cells was quantified by plaque titration on CV-1 cells. Production of hIL2 in cancer cells infected by rVVDD-hIL2 was measured by enzyme-linked immunosorbent assay. Finally, 3-(4,5-dimethylthiazol-2-yl)-5-(3-arboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay was performed to assess the antitumor effects of rVVDD-hIL2. The results showed that rVVDD-hIL2 viral particles expressed increasing levels of hIL2 in human and murine cancer cell lines with growing multiplicities of infection (MOIs). The insertion of the hIL2 gene did not impair the replication capacity of VV, and the rVVDD-hIL2 virus killed cancer cells efficaciously. The lytic effects of the recombinant oncolytic virus on tumor cells increased with the growing MOIs. In conclusion, these findings suggest that hIL2-armed VVDD effectively infects and lyses tumor cells, with high expression of hIL2.
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong Province, 518052, P. R. China
| | - Huiqun Li
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong Province, 518052, P. R. China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yan Wu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| |
Collapse
|
11
|
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, Sockolosky JT. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114112. [PMID: 35085624 DOI: 10.1016/j.addr.2022.114112] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Cytokines are a class of potent immunoregulatory proteins that are secreted in response to various stimuli and act locally to regulate many aspects of human physiology and disease. Cytokines play important roles in cancer initiation, progression, and elimination, and thus, there is a long clinical history associated with the use of recombinant cytokines to treat cancer. However, the use of cytokines as therapeutics has been limited by cytokine pleiotropy, complex biology, poor drug-like properties, and severe dose-limiting toxicities. Nevertheless, cytokines are crucial mediators of innate and adaptive antitumor immunity and have the potential to enhance immunotherapeutic approaches to treat cancer. Development of immune checkpoint inhibitors and combination immunotherapies has reinvigorated interest in cytokines as therapeutics, and a variety of engineering approaches are emerging to improve the safety and effectiveness of cytokine immunotherapy. In this review we highlight recent advances in cytokine biology and engineering for cancer immunotherapy.
Collapse
|
12
|
Yu S, Wang Y, He P, Shao B, Liu F, Xiang Z, Yang T, Zeng Y, He T, Ma J, Wang X, Liu L. Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment. Front Oncol 2022; 12:809304. [PMID: 35198442 PMCID: PMC8858950 DOI: 10.3389/fonc.2022.809304] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Though single tumor immunotherapy and radiotherapy have significantly improved the survival rate of tumor patients, there are certain limitations in overcoming tumor metastasis, recurrence, and reducing side effects. Therefore, it is urgent to explore new tumor treatment methods. The new combination of radiotherapy and immunotherapy shows promise in improving therapeutic efficacy and reducing recurrence by enhancing the ability of the immune system to recognize and eradicate tumor cells, to overcome tumor immune tolerance mechanisms. Nanomaterials, as new drug-delivery-system materials of the 21st century, can maintain the activity of drugs, improve drug targeting, and reduce side effects in tumor immunotherapy. Additionally, nanomaterials, as radiosensitizers, have shown great potential in tumor radiotherapy due to their unique properties, such as light, heat, electromagnetic effects. Here, we review the mechanisms of tumor immunotherapy and radiotherapy and the synergy of radiotherapy with multiple types of immunotherapies, including immune checkpoint inhibitors (ICIs), tumor vaccines, adoptive cell therapy, and cytokine therapy. Finally, we propose the potential for nanomaterials in tumor radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Siting Yu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ping He
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Bianfei Shao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongzheng Xiang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Yang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Zeng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiachun Ma
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiran Wang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lei Liu,
| |
Collapse
|
13
|
Link B, Torres Crigna A, Hölzel M, Giordano FA, Golubnitschaja O. Abscopal Effects in Metastatic Cancer: Is a Predictive Approach Possible to Improve Individual Outcomes? J Clin Med 2021; 10:5124. [PMID: 34768644 PMCID: PMC8584726 DOI: 10.3390/jcm10215124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with metastatic cancers often require radiotherapy (RT) as a palliative therapy for cancer pain. RT can, however, also induce systemic antitumor effects outside of the irradiated field (abscopal effects) in various cancer entities. The occurrence of the abscopal effect is associated with a specific immunological activation in response to RT-induced cell death, which is mainly seen under concomitant immune checkpoint blockade. Even if the number of reported apscopal effects has increased since the introduction of immune checkpoint inhibition, its occurrence is still considered rare and unpredictable. The cases reported so far may nevertheless allow for identifying first biomarkers and clinical patterns. We here review biomarkers that may be helpful to predict the occurrence of abscopal effects and hence to optimize therapy for patients with metastatic cancers.
Collapse
Affiliation(s)
- Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
14
|
Jagodinsky JC, Morris ZS. Priming and Propagating Anti-tumor Immunity: Focal Hypofractionated Radiation for in Situ Vaccination and Systemic Targeted Radionuclide Theranostics for Immunomodulation of Tumor Microenvironments. Semin Radiat Oncol 2021; 30:181-186. [PMID: 32381297 DOI: 10.1016/j.semradonc.2019.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent preclinical and clinical studies have elucidated mechanisms whereby radiation therapy influences the anti-tumor immune response. Immunogenic cell death and phenotypic changes in tumor cells surviving radiation may underlie this effect and contribute to the capacity of radiation to elicit an in situ tumor vaccine effect. In situ vaccination is a therapeutic strategy that seeks to convert a patient's own tumor into a source of enhanced antigen recognition for the purpose of augmenting a systemic anti-tumor immune response. Capitalizing on the in situ vaccine effect of radiation, several groups have demonstrated anti-tumor efficacy in preclinical models by combining radiation with immune checkpoint blockade. Local delivery of immune adjuvants and/or immune stimulatory cytokines via direct injection into the radiated tumor microenvironment may further increase the in situ vaccine capacity of radiation therapy. However, recent studies suggest that in some contexts this effect is antagonized by the presence of distant untreated sites of disease that may dampen the systemic immune response generated by in situ vaccination through a phenomenon termed concomitant immune tolerance. Concomitant immune tolerance may be overcome by delivering radiation to all sites of metastatic disease, however this is often not possible to safely achieve using external beam radiation therapy without considerable risk of lymphopenia that would negate the immune effects of in situ vaccination. For patients with widespread metastatic disease, alternative strategies may include systemic treatment with targeted radionuclide therapies alone or in combination with an external beam radiation therapy-based in situ vaccine approach.
Collapse
Affiliation(s)
- Justin C Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
15
|
Tranberg KG. Local Destruction of Tumors and Systemic Immune Effects. Front Oncol 2021; 11:708810. [PMID: 34307177 PMCID: PMC8298109 DOI: 10.3389/fonc.2021.708810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Current immune-based therapies signify a major advancement in cancer therapy; yet, they are not effective in the majority of patients. Physically based local destruction techniques have been shown to induce immunologic effects and are increasingly used in order to improve the outcome of immunotherapies. The various local destruction methods have different modes of action and there is considerable variation between the different techniques with respect to the ability and frequency to create a systemic anti-tumor immunologic effect. Since the abscopal effect is considered to be the best indicator of a relevant immunologic effect, the present review focused on the tissue changes associated with this effect in order to find determinants for a strong immunologic response, both when local destruction is used alone and combined with immunotherapy. In addition to the T cell-inflammation that was induced by all methods, the analysis indicated that it was important for an optimal outcome that the released antigens were not destroyed, tumor cell death was necrotic and tumor tissue perfusion was at least partially preserved allowing for antigen presentation, immune cell trafficking and reduction of hypoxia. Local treatment with controlled low level hyperthermia met these requisites and was especially prone to result in abscopal immune activity on its own.
Collapse
|
16
|
Kubiak AM, Bailey TS, Dubois LJ, Theys J, Lambin P. Efficient Secretion of Murine IL-2 From an Attenuated Strain of Clostridium sporogenes, a Novel Delivery Vehicle for Cancer Immunotherapy. Front Microbiol 2021; 12:669488. [PMID: 34168629 PMCID: PMC8217651 DOI: 10.3389/fmicb.2021.669488] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Despite a history dating back to the 1800s, using Clostridium bacteria to treat cancer has not advanced beyond the observation that they can colonise and partially destroy solid tumours. Progress has been hampered by their inability to eradicate the viable portion of tumours, and an instinctive anxiety around injecting patients with a bacterium whose close relatives cause tetanus and botulism. However, recent advances in techniques to genetically engineer Clostridium species gives cause to revisit this concept. This paper illustrates these developments through the attenuation of C. sporogenes to enhance its clinical safety, and through the expression and secretion of an immunotherapeutic. An 8.6 kb sequence, corresponding to a haemolysin operon, was deleted from the genome and replaced with a short non-coding sequence. The resultant phenotype of this strain, named C. sporogenes-NT, showed a reduction of haemolysis to levels similar to the probiotic strain, C. butyricum M588. Comparison to the parental strain showed no change in growth or sporulation. Following injection of tumour-bearing mice with purified spores of the attenuated strain, high levels of germination were detected in all tumours. Very low levels of spores and vegetative cells were detected in the spleen and lymph nodes. The new strain was transformed with four different murine IL-2-expressing plasmids, differentiated by promoter and signal peptide sequences. Biologically active mIL-2, recovered from the extracellular fraction of bacterial cultures, was shown to stimulate proliferation of T cells. With this investigation we propose a new, safer candidate for intratumoral delivery of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Aleksandra M Kubiak
- The M-Lab, Department of Precision Medicine, GROW - School of Oncology, Maastricht University, Maastricht, Netherlands.,Exomnis Biotech BV, Oxfordlaan, Maastricht, Netherlands
| | - Tom S Bailey
- The M-Lab, Department of Precision Medicine, GROW - School of Oncology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School of Oncology, Maastricht University, Maastricht, Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW - School of Oncology, Maastricht University, Maastricht, Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School of Oncology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
17
|
van den Bijgaart RJE, Schuurmans F, Fütterer JJ, Verheij M, Cornelissen LAM, Adema GJ. Immune Modulation Plus Tumor Ablation: Adjuvants and Antibodies to Prime and Boost Anti-Tumor Immunity In Situ. Front Immunol 2021; 12:617365. [PMID: 33936033 PMCID: PMC8079760 DOI: 10.3389/fimmu.2021.617365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
In situ tumor ablation techniques, like radiotherapy, cryo- and heat-based thermal ablation are successfully applied in oncology for local destruction of tumor masses. Although diverse in technology and mechanism of inducing cell death, ablative techniques share one key feature: they generate tumor debris which remains in situ. This tumor debris functions as an unbiased source of tumor antigens available to the immune system and has led to the concept of in situ cancer vaccination. Most studies, however, report generally modest tumor-directed immune responses following local tumor ablation as stand-alone treatment. Tumors have evolved mechanisms to create an immunosuppressive tumor microenvironment (TME), parts of which may admix with the antigen depot. Provision of immune stimuli, as well as approaches that counteract the immunosuppressive TME, have shown to be key to boost ablation-induced anti-tumor immunity. Recent advances in protein engineering have yielded novel multifunctional antibody formats. These multifunctional antibodies can provide a combination of distinct effector functions or allow for delivery of immunomodulators specifically to the relevant locations, thereby mitigating potential toxic side effects. This review provides an update on immune activation strategies that have been tested to act in concert with tumor debris to achieve in situ cancer vaccination. We further provide a rationale for multifunctional antibody formats to be applied together with in situ ablation to boost anti-tumor immunity for local and systemic tumor control.
Collapse
Affiliation(s)
- Renske J E van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabian Schuurmans
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Marcel Verheij
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lenneke A M Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
18
|
Li B, Jiang C, Pang L, Zou B, Ding M, Sun X, Yu J, Wang L. Toxicity Profile of Combining PD-1/PD-L1 Inhibitors and Thoracic Radiotherapy in Non-Small Cell Lung Cancer: A Systematic Review. Front Immunol 2021; 12:627197. [PMID: 33859637 PMCID: PMC8042254 DOI: 10.3389/fimmu.2021.627197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Background The combination of immune checkpoint inhibitors (ICIs) and thoracic radiotherapy (TRT) has shown significant clinical activity in patients with non-small cell lung cancer (NSCLC). However, the currently available data on adverse events (AEs) were derived from a small subset of patients included in prospective clinical trials or retrospective studies. Thus, we conducted this systematic review to determine the AEs associated with this combination treatment. Methods An electronic literature search was performed in databases and conference proceedings of prospective clinical trials assessing the combination of ICIs and TRT for patients with NSCLC. The systematic analysis was conducted to determine the profile and incidence of AEs of combination treatment. We further performed the comparison of AEs between programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors, and sequential and concurrent administration of ICIs and TRT to help identify high risk patients. The systematic analyses were conducted with the Review Manager (version 5.3; The Cochrane Collaboration, Oxford, United Kingdom) and Stata version 12.0 (StataCorp, College Station, TX, USA) software. Results Eleven clinical trials involving 1,113 patients with NSCLC were eligible for analysis. The incidence of all-grade AEs was 95.5%; that of high-grade AEs (grade ≥3) was 30.2%. The most frequent all-grade AE was fatigue (49.7%), while pneumonitis was the most common high-grade AE (3.8%) and grade 5 AE (0.6%). Notably, the toxicity profiles of PD-1 and PD-L1 inhibitors were similar. Concurrent treatment was associated with a higher incidence of higher-grade AEs (41.6% vs 24.8%, P=0.17) and pneumonitis (7.1% vs 3.9%, P=0.14) compared to sequential treatment, but no significant difference was observed. Conclusion Most AEs of this combination treatment are tolerable; as the most common high-grade AE, pneumonitis deserves the utmost attention of physicians. The toxicity profiles of patients receiving PD-1 or PD-L1 were similar, and no significant difference was observed between concurrent and sequential treatment.
Collapse
Affiliation(s)
- Butuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Chao Jiang
- Department of Otorhinolaryngology & Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Linlin Pang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Bing Zou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Mingjun Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China.,Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Xindong Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
19
|
Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ, Yaromina A. Charged Particle and Conventional Radiotherapy: Current Implications as Partner for Immunotherapy. Cancers (Basel) 2021; 13:1468. [PMID: 33806808 PMCID: PMC8005048 DOI: 10.3390/cancers13061468] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) has been shown to interfere with inflammatory signals and to enhance tumor immunogenicity via, e.g., immunogenic cell death, thereby potentially augmenting the therapeutic efficacy of immunotherapy. Conventional RT consists predominantly of high energy photon beams. Hypofractionated RT regimens administered, e.g., by stereotactic body radiation therapy (SBRT), are increasingly investigated in combination with cancer immunotherapy within clinical trials. Despite intensive preclinical studies, the optimal dose per fraction and dose schemes for elaboration of RT induced immunogenic potential remain inconclusive. Compared to the scenario of combined immune checkpoint inhibition (ICI) and RT, multimodal therapies utilizing other immunotherapy principles such as adoptive transfer of immune cells, vaccination strategies, targeted immune-cytokines and agonists are underrepresented in both preclinical and clinical settings. Despite the clinical success of ICI and RT combination, e.g., prolonging overall survival in locally advanced lung cancer, curative outcomes are still not achieved for most cancer entities studied. Charged particle RT (PRT) has gained interest as it may enhance tumor immunogenicity compared to conventional RT due to its unique biological and physical properties. However, whether PRT in combination with immune therapy will elicit superior antitumor effects both locally and systemically needs to be further investigated. In this review, the immunological effects of RT in the tumor microenvironment are summarized to understand their implications for immunotherapy combinations. Attention will be given to the various immunotherapeutic interventions that have been co-administered with RT so far. Furthermore, the theoretical basis and first evidences supporting a favorable immunogenicity profile of PRT will be examined.
Collapse
Affiliation(s)
- Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Relinde I. Y. Lieverse
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Carmen Klein
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| |
Collapse
|
20
|
Walker JM, Rolig AS, Charych DH, Hoch U, Kasiewicz MJ, Rose DC, McNamara MJ, Hilgart-Martiszus IF, Redmond WL. NKTR-214 immunotherapy synergizes with radiotherapy to stimulate systemic CD8 + T cell responses capable of curing multi-focal cancer. J Immunother Cancer 2021; 8:jitc-2019-000464. [PMID: 32457127 PMCID: PMC7252958 DOI: 10.1136/jitc-2019-000464] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background High-dose radiotherapy (RT) is known to be immunogenic, but is rarely capable of driving clinically relevant abscopal antitumor immunity as monotherapy. RT is known to increase antigen presentation, type I/II interferon responses, and immune cell trafficking to irradiated tumors. Bempegaldesleukin (NKTR-214) is a CD122-preferential interleukin 2 (IL-2) pathway agonist that has been shown to increase tumor-infiltrating lymphocytes, T cell clonality, and increase PD-1 expression. NKTR-214 has increased drug half-life, decreased toxicity, and increased CD8+ T cell and natural killer cell stimulation compared with IL-2. Methods Animals bearing bilateral subcutaneous MCA-205 fibrosarcoma or CT26 colorectal tumors were treated with NKTR-214, RT, or combination therapy, and tumor growth of irradiated and abscopal lesions was assessed. Focal RT was delivered using a small animal radiation research platform. Peripheral and tumor-infiltrating immune phenotype and functional analyses were performed by flow cytometry. RNA expression profiling from both irradiated and abscopal lesions was performed using microarray. Results We demonstrate synergy between RT of a single tumor and NKTR-214 systemic therapy resulting in dramatically increased cure rates of mice bearing bilateral tumors compared with RT or NKTR-214 therapy alone. Combination therapy resulted in increased magnitude and effector function of tumor-specific CD8+ T cell responses and increased trafficking of these T cells to both irradiated and distant, unirradiated, tumors. Conclusions Given the increasing role of hypofractionated and stereotactic body RT as standard of care treatments in the management of locally advanced and metastatic cancer, these data have important implications for future clinical trial development. The combination of RT and NKTR-214 therapy potently stimulates systemic antitumor immunity and should be evaluated for the treatment of patients with locally advanced and metastatic solid tumors.
Collapse
Affiliation(s)
- Joshua M Walker
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA .,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Annah S Rolig
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | | | - Ute Hoch
- Nektar Therapeutics, San Francisco, California, USA
| | - Melissa J Kasiewicz
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Daniel C Rose
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Michael J McNamara
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| |
Collapse
|
21
|
Runbeck E, Crescioli S, Karagiannis SN, Papa S. Utilizing Immunocytokines for Cancer Therapy. Antibodies (Basel) 2021; 10:antib10010010. [PMID: 33803078 PMCID: PMC8006145 DOI: 10.3390/antib10010010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokine therapy for cancer has indicated efficacy in certain diseases but is generally accompanied by severe toxicity. The field of antibody-cytokine fusion proteins (immunocytokines) arose to target these effector molecules to the tumor environment in order to expand the therapeutic window of cytokine therapy. Pre-clinical evidence has shown the increased efficacy and decreased toxicity of various immunocytokines when compared to their cognate unconjugated cytokine. These anti-tumor properties are markedly enhanced when combined with other treatments such as chemotherapy, radiotherapy, and checkpoint inhibitor antibodies. Clinical trials that have continued to explore the potential of these biologics for cancer therapy have been conducted. This review covers the in vitro, in vivo, and clinical evidence for the application of immunocytokines in immuno-oncology.
Collapse
Affiliation(s)
- Erin Runbeck
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophie Papa
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
- Correspondence:
| |
Collapse
|
22
|
Olivo Pimentel V, Marcus D, van der Wiel AM, Lieuwes NG, Biemans R, Lieverse RI, Neri D, Theys J, Yaromina A, Dubois LJ, Lambin P. Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19-IL2 cures poorly immunogenic tumors when combined with radiotherapy. J Immunother Cancer 2021; 9:e001764. [PMID: 33688020 PMCID: PMC7944996 DOI: 10.1136/jitc-2020-001764] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Poorly immunogenic tumors are hardly responsive to immunotherapies such as immune checkpoint blockade (ICB) and are, therefore, a therapeutic challenge. Combination with other immunotherapies and/or immunogenic therapies, such as radiotherapy (RT), could make these tumors more immune responsive. We have previously shown that the immunocytokine L19-IL2 combined with single-dose RT resulted in 75% tumor remission and a 20% curative abscopal effect in the T cell-inflamed C51 colon carcinoma model. This treatment schedule was associated with the upregulation of inhibitory immune checkpoint (IC) molecules on tumor-infiltrating T cells, leading to only tumor growth delay in the poorly immunogenic Lewis lung carcinoma (LLC) model. METHODS We aimed to trigger curative therapeutic responses in three tumor models (LLC, C51 and CT26) by "pushing the accelerator" of tumor immunity with L19-IL2 and/or "releasing the brakes" with ICB, such as antibodies directed against cytotoxic T lymphocyte associated protein 4 (CTLA-4), programmed death 1 (PD-1) or its ligand (PD-L1), combined with single-dose RT (10 Gy or 5 Gy). Primary tumor endpoint was defined as time to reach four times the size of tumor volume at start of treatment (4T×SV). Multivariate analysis of 4T×SV was performed using the Cox proportional hazards model comparing each treatment group with controls. Causal involvement of T and natural killer (NK) cells in the anti-tumor effect was assessed by in vivo depletion of T, NK or both cell populations. Immune profiling was performed using flow cytometry on single cell suspensions from spleens, bone marrow, tumors and blood. RESULTS Combining RT, anti-PD-L1 and L19-IL2 cured 38% of LLC tumors, which was both CD8+ T and NK cell dependent. LLC tumors were resistant to RT +anti-PD-L1 likely explained by the upregulation of other IC molecules and increased T regulatory cell tumor infiltration. RT+L19-IL2 outperformed RT+ICB in C51 tumors; effects were comparable in CT26 tumors. Triple combinations were not superior to RT+L19-IL2 in both these models. CONCLUSIONS This study demonstrated that combinatorial strategies rationally designed on biological effects can turn immunotherapy-resistant tumors into immunologically responsive tumors. This hypothesis is currently being tested in the international multicentric randomized phase 2 trial: ImmunoSABR (NCT03705403).
Collapse
MESH Headings
- Animals
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/metabolism
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/therapy
- Cell Line, Tumor
- Chemoradiotherapy
- Coculture Techniques
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Immune Checkpoint Inhibitors/pharmacology
- Immunologic Memory/drug effects
- Immunomodulating Agents/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Memory T Cells/drug effects
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Recombinant Fusion Proteins/pharmacology
- Signal Transduction
- Tumor Burden/drug effects
- Tumor Microenvironment
- Mice
Collapse
Affiliation(s)
- Veronica Olivo Pimentel
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Alexander Ma van der Wiel
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Natasja G Lieuwes
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Rianne Biemans
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Relinde Iy Lieverse
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
23
|
Van Limbergen EJ, Hoeben A, Lieverse RIY, Houben R, Overhof C, Postma A, Zindler J, Verhelst F, Dubois LJ, De Ruysscher D, Troost EGC, Lambin P. Toxicity of L19-Interleukin 2 Combined with Stereotactic Body Radiation Therapy: A Phase 1 Study. Int J Radiat Oncol Biol Phys 2020; 109:1421-1430. [PMID: 33285270 DOI: 10.1016/j.ijrobp.2020.11.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE The immunocytokine L19-IL2 delivers interleukin-2 to the tumor by exploiting the selective L19-dependent binding of extradomain B of fibronectin on tumor blood vessels. In preclinical models, L19-IL2 has been shown to enhance the local and abscopal effects of radiation therapy. The clinical safety of L19-IL2 monotherapy has been established previously. In this study, the safety and tolerability of L19-IL2 after stereotactic body radiation therapy (SBRT) was assessed. METHODS AND MATERIALS Patients with oligometastatic solid tumors received radical SBRT to all visible metastases. Within 1 week after SBRT, intravenous L19-IL2 using a 3 + 3 dose escalation design was administered. Safety and tolerability were analyzed as the primary endpoint using the Common Terminology Criteria for Adverse Events 4.03 scoring system, with progression-free and overall survival as secondary endpoints. RESULTS A total of 6 patients in 2 L19-IL2 dose levels were included. The 15 million International Units (Mio IU) dose level was well tolerated with no dose-limiting toxicity. The most frequently reported adverse events were chills, noninfectious fever, fatigue, edema, erythema, pruritus, nausea/vomiting, and cough and dyspnea. Blood analysis revealed abnormalities in liver function tests, anemia, hypoalbuminemia, and hypokalemia. At the second dose level (ie, 22.5 Mio IU), which is the recommended dose for L19-IL2 monotherapy, all 3 included patients experienced dose-limiting toxicity but recovered without sequelae. We documented 2 long-term progression-free responders, both having non-small cell lung cancer as primary tumor. CONCLUSIONS Based on the results of this phase 1 clinical trial, the recommended phase 2 dose for SBRT combined with L19-IL2 is 15 Mio IU. The therapeutic efficacy of this combination is currently being evaluated in the multicentric EU-funded phase 2 clinical trial, ImmunoSABR.
Collapse
Affiliation(s)
- Evert Jan Van Limbergen
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Internal Medicine, Division of Medical Oncology, GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Relinde I Y Lieverse
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Ruud Houben
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Chantal Overhof
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Alida Postma
- Department of Radiology and Nuclear Medicine, GROW-School for Oncology, School for Mental Health and Sciences, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jaap Zindler
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands; Department of Radiotherapy, Erasmus University Medical Centre Cancer Institute, Rotterdam, The Netherlands; Holland Proton Therapy Centre, Delft, The Netherlands
| | - Frans Verhelst
- Department of Internal Medicine, Division of Pulmonology, H.-Hartziekenhuis, Lier, Belgium
| | - Ludwig J Dubois
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Esther G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Dresden, Germany; Helmholtz-Zentrum Dresden- Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Philippe Lambin
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
24
|
Olivo Pimentel V, Yaromina A, Marcus D, Dubois LJ, Lambin P. A novel co-culture assay to assess anti-tumor CD8 + T cell cytotoxicity via luminescence and multicolor flow cytometry. J Immunol Methods 2020; 487:112899. [PMID: 33068606 DOI: 10.1016/j.jim.2020.112899] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/16/2020] [Accepted: 10/11/2020] [Indexed: 12/31/2022]
Abstract
T cell immunotherapies have shown great promise in patients with advanced cancer disease, revolutionizing treatment. T cell cytotoxicity is crucial in its efficacy, therefore developing ex vivo methods testing tumor and T cell interactions is pivotal. Increasing efforts have been made in developing co-culture assays with sophisticated materials and platforms aiming to mimic the tumor microenvironment (TME), but its complexity makes it difficult to develop the ideal model. In this study, we developed a simple co-culture assay, reproducible in any lab, but respecting the multicellular nature of the TME. Our goal is to combine in a single assay well-established techniques such as a luciferase assay for target cell viability analysis, a CD107a degranulation assay, and multicolor flow cytometry for the detection of cytokines and cytotoxicity markers. Cell suspensions of whole spleens and tumors containing splenic or tumor-infiltrating effector T cells of mice bearing Lewis lung carcinoma (LLC) or CT26 colon carcinoma tumors treated with radiation alone or in combination with immunotherapies were used for co-culture. LLC and CT26 cell lines transduced with the firefly luciferase gene were used as target cells. We demonstrated that splenocytes and tumor-infiltrating T cells derived from mice treated with combination therapy were able to kill approximately 50% of target cells after 48 h of co-culture. This effect was tumor cell-specific and dependent on CD8+ T cells evidenced by in vitro CD8+ T cell depletion. Flow cytometry demonstrated increased expression of CD107a and production of granzyme B, IFNγ, and TNFα by CD8+ T cells. Our co-culture assay is therefore suitable as proof of principle for in vivo therapeutic studies testing immunotherapies, and specifically to assess the involvement of cytotoxic CD8+ T cells in treatment response in LLC and CT26 tumor models. We also propose this assay as an ex vivo platform for high-throughput screening of immunomodulating agents to be tested in these two murine tumor models. This assay can be adapted to other tumor models after optimizations.
Collapse
MESH Headings
- Animals
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/therapy
- Cell Line, Tumor
- Coculture Techniques
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Cytotoxicity, Immunologic
- Flow Cytometry
- Granzymes/metabolism
- Immunotherapy
- Interferon-gamma/metabolism
- Luciferases, Firefly/biosynthesis
- Luciferases, Firefly/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lysosomal Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Proof of Concept Study
- Radiotherapy
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Microenvironment
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Verónica Olivo Pimentel
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
25
|
Wang D, Zhang X, Gao Y, Cui X, Yang Y, Mao W, Li M, Zhang B, Yu J. Research Progress and Existing Problems for Abscopal Effect. Cancer Manag Res 2020; 12:6695-6706. [PMID: 32801902 PMCID: PMC7413699 DOI: 10.2147/cmar.s245426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy plays a vital role in the treatment of tumours. In particular, the occurrence of the “abscopal effect” brings about a favourable turn for the treatment of patients with advanced metastatic malignant tumours. Because of the abscopal effect, non-irradiated areas are also treated. However, the abscopal effect occurs by chance, not through seeking. Although the abscopal effect has been studied enthusiastically, the desired result does not appear to be achieved. Moreover, its combination with immunotherapy appears to be overwhelming. There is an opinion that abscopal effect is difficult to achieve by irradiation of a single tumour, and irradiation of multiple or total lesions is advocated to increase the possibility of obtaining clinically meaningful outcomes. Obviously, there are still questions about the mechanism, condition and possibility underlying the occurrence of the abscopal effect. Can the abscopal effect truly change the future treatment strategy as the researchers expect? What are the current problems? This article reviewed the research in recent years to explore the progress and controversy surrounding the abscopal effect of radiation therapy.
Collapse
Affiliation(s)
- Di Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Xia Zhang
- Department of Oncology, The Fifth People's Hospital of Dalian, Dalian, People's Republic of China
| | - Yajie Gao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yanqin Yang
- Department of Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Weifeng Mao
- The School of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Minghuan Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| |
Collapse
|
26
|
Lieverse RIY, Marcus D, van der Wiel AMA, Van Limbergen EJ, Theys J, Yaromina A, Lambin P, Dubois LJ. Human fibronectin extra domain B as a biomarker for targeted therapy in cancer. Mol Oncol 2020; 14:1555-1568. [PMID: 32386436 PMCID: PMC7332215 DOI: 10.1002/1878-0261.12705] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix protein fibronectin contains a domain that is rarely found in healthy adults and is almost exclusively expressed by newly formed blood vessels in tumours, particularly in solid tumours, different types of lymphoma and some leukaemias. This domain, called the extra domain B (ED‐B), thus has broad therapeutic potential. The antibody L19 has been developed to specifically target ED‐B and has shown therapeutic potential when combined with cytokines, such as IL‐2. In this review article, we discuss the preclinical research and clinical trials that highlight the potential of ED‐B targeting for the imaging and treatment of various types of cancer. ED‐B‐centred studies also highlight how proper patient stratification is of utmost importance for the successful implementation of novel antibody‐based targeted therapies.
Collapse
Affiliation(s)
- Relinde I Y Lieverse
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Alexander M A van der Wiel
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Evert J Van Limbergen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| |
Collapse
|
27
|
Lieverse RIY, Van Limbergen EJ, Oberije CJG, Troost EGC, Hadrup SR, Dingemans AMC, Hendriks LEL, Eckert F, Hiley C, Dooms C, Lievens Y, de Jong MC, Bussink J, Geets X, Valentini V, Elia G, Neri D, Billiet C, Abdollahi A, Pasquier D, Boisselier P, Yaromina A, De Ruysscher D, Dubois LJ, Lambin P. Stereotactic ablative body radiotherapy (SABR) combined with immunotherapy (L19-IL2) versus standard of care in stage IV NSCLC patients, ImmunoSABR: a multicentre, randomised controlled open-label phase II trial. BMC Cancer 2020; 20:557. [PMID: 32539805 PMCID: PMC7296663 DOI: 10.1186/s12885-020-07055-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND About 50% of non-small cell lung cancer (NSCLC) patients have metastatic disease at initial diagnosis, which limits their treatment options and, consequently, the 5-year survival rate (15%). Immune checkpoint inhibitors (ICI), either alone or in combination with chemotherapy, have become standard of care (SOC) for most good performance status patients. However, most patients will not obtain long-term benefit and new treatment strategies are therefore needed. We previously demonstrated clinical safety of the tumour-selective immunocytokine L19-IL2, consisting of the anti-ED-B scFv L19 antibody coupled to IL2, combined with stereotactic ablative radiotherapy (SABR). METHODS This investigator-initiated, multicentric, randomised controlled open-label phase II clinical trial will test the hypothesis that the combination of SABR and L19-IL2 increases progression free survival (PFS) in patients with limited metastatic NSCLC. One hundred twenty-six patients will be stratified according to their metastatic load (oligo-metastatic: ≤5 or poly-metastatic: 6 to 10) and randomised to the experimental-arm (E-arm) or the control-arm (C-arm). The C-arm will receive SOC, according to the local protocol. E-arm oligo-metastatic patients will receive SABR to all lesions followed by L19-IL2 therapy; radiotherapy for poly-metastatic patients consists of irradiation of one (symptomatic) to a maximum of 5 lesions (including ICI in both arms if this is the SOC). The accrual period will be 2.5-years, starting after the first centre is initiated and active. Primary endpoint is PFS at 1.5-years based on blinded radiological review, and secondary endpoints are overall survival, toxicity, quality of life and abscopal response. Associative biomarker studies, immune monitoring, CT-based radiomics, stool collection, iRECIST and tumour growth rate will be performed. DISCUSSION The combination of SABR with or without ICI and the immunocytokine L19-IL2 will be tested as 1st, 2nd or 3rd line treatment in stage IV NSCLC patients in 14 centres located in 6 countries. This bimodal and trimodal treatment approach is based on the direct cytotoxic effect of radiotherapy, the tumour selective immunocytokine L19-IL2, the abscopal effect observed distant from the irradiated metastatic site(s) and the memory effect. The first results are expected end 2023. TRIAL REGISTRATION ImmunoSABR Protocol Code: NL67629.068.18; EudraCT: 2018-002583-11; Clinicaltrials.gov: NCT03705403; ISRCTN ID: ISRCTN49817477; Date of registration: 03-April-2019.
Collapse
Affiliation(s)
- Relinde I Y Lieverse
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Evert J Van Limbergen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Cary J G Oberije
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne-Marie C Dingemans
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, The Netherlands
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Crispin Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Christophe Dooms
- Department of Respiratory Diseases, Respiratory Oncology Unit, University Hospitals KU Leuven, Leuven, Belgium
| | - Yolande Lievens
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Monique C de Jong
- Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066, Amsterdam, CX, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xavier Geets
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, MIRO - IREC Lab, UCL, Bruxelles, Belgium
| | - Vincenzo Valentini
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Istituto di Radiologia, Roma, Italy
| | - Giuliano Elia
- Philochem AG, Libernstrasse 3, CH-8112, Otelfingen, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Charlotte Billiet
- Department of Radiation Oncology, Iridium Network, Wilrijk (Antwerp), Belgium
- University of Antwerp, Faculty of Medicine and Health Sciences, Campus Drie Eiken, Building S, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Pasquier
- Academic Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center, Lille, France
| | - Pierre Boisselier
- Department of Radiation Oncology, ICM-Val d'Aurelle, Université de Montpellier, Montpellier, France
| | - Ala Yaromina
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ludwig J Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
28
|
Kujawski M, Sherman M, Hui S, Zuro D, Lee WH, Yazaki P, Sherman A, Szpikowska B, Chea J, Lasiewski D, Poku K, Li H, Colcher D, Wong J, Shively JE. Potent immunomodulatory effects of an anti-CEA-IL-2 immunocytokine on tumor therapy and effects of stereotactic radiation. Oncoimmunology 2020; 9:1724052. [PMID: 32117587 PMCID: PMC7028338 DOI: 10.1080/2162402x.2020.1724052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
While anti-CEA antibodies have no direct effect on CEA-positive tumors, they can be used to direct potent anti-tumor effects as an antibody-IL-2 fusion protein (immunocytokine, ICK), and at the same time reduce the toxicity of IL-2 as a single agent. Using a fusion protein of humanized anti-CEA with human IL-2 (M5A-IL-2) in a transgenic murine model expressing human CEA, we show high tumor uptake of the ICK to CEA-positive tumors with additional lymph node targeting. ICK treated CEA-positive tumors exhibit significant tumor eradication. Analysis of tumor-infiltrating lymphocytes shows a high frequency of both CD8+ and CD4+ T cells along with CD11b positive myeloid cells in ICK treated mice. The frequency of tumor-infiltrating FoxP3+ CD4+ T cells (Tregs) is significantly reduced vs anti-CEA antibody-treated controls, indicating that ICK did not preferentially stimulate migration or proliferation of Tregs to the tumor. Combination therapy with anti-PD-1 antibody did not improve tumor reduction over ICK therapy alone. Since stereotactic tumor irradiation (SRT), commonly used in cancer therapy has immunomodulatory effects, we tested combination SRT+ICK therapy in two tumor model systems. Use of fractionated vs single high dose SRT in combination with ICK resulted in greater tumor inhibition and immunity to tumor rechallenge. In particular, tumor microenvironment and myeloid cell composition appear to play a significant role in the response rate to ICK+SRT combination therapy.
Collapse
Affiliation(s)
- Maciej Kujawski
- Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA, USA
| | - Mark Sherman
- School of Pharmacy, West Coast University, Los Angeles, CA, USA
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Darren Zuro
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Wen-Hui Lee
- Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA, USA
| | - Paul Yazaki
- Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA, USA
| | - Anakim Sherman
- Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA, USA
| | - Barbara Szpikowska
- Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA, USA
| | - Junie Chea
- Radiopharmacy, City of Hope, Duarte, CA, USA
| | | | - Kofi Poku
- Radiopharmacy, City of Hope, Duarte, CA, USA
| | - Harry Li
- Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA, USA
| | - David Colcher
- Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA, USA
| | - Jeffrey Wong
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - John E Shively
- Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA, USA
| |
Collapse
|
29
|
Palata O, Hradilova Podzimkova N, Nedvedova E, Umprecht A, Sadilkova L, Palova Jelinkova L, Spisek R, Adkins I. Radiotherapy in Combination With Cytokine Treatment. Front Oncol 2019; 9:367. [PMID: 31179236 PMCID: PMC6538686 DOI: 10.3389/fonc.2019.00367] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Radiotherapy (RT) plays an important role in the management of cancer patients. RT is used in more than 50% of patients during the course of their disease in a curative or palliative setting. In the past decades it became apparent that the abscopal effect induced by RT might be dependent on the activation of immune system, and that the induction of immunogenic cancer cell death and production of danger-associated molecular patterns from dying cells play a major role in the radiotherapy-mediated anti-tumor efficacy. Therefore, the combination of RT and immunotherapy is of a particular interest that is reflected in designing clinical trials to treat patients with various malignancies. The use of cytokines as immunoadjuvants in combination with RT has been explored over the last decades as one of the immunotherapeutic combinations to enhance the clinical response to anti-cancer treatment. Here we review mainly the data on the efficacy of IFN-α, IL-2, IL-2-based immunocytokines, GM-CSF, and TNF-α used in combinations with various radiotherapeutic techniques in clinical trials. Moreover, we discuss the potential of IL-15 and its analogs and IL-12 cytokines in combination with RT based on the efficacy in preclinical mouse tumor models.
Collapse
Affiliation(s)
- Ondrej Palata
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Nada Hradilova Podzimkova
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | | | | | | | - Lenka Palova Jelinkova
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Radek Spisek
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Irena Adkins
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| |
Collapse
|
30
|
Murer P, Neri D. Antibody-cytokine fusion proteins: A novel class of biopharmaceuticals for the therapy of cancer and of chronic inflammation. N Biotechnol 2019; 52:42-53. [PMID: 30991144 DOI: 10.1016/j.nbt.2019.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022]
Abstract
Antibody-cytokine fusion proteins represent a novel class of biopharmaceuticals, with the potential to increase the therapeutic index of cytokine 'payloads' and to promote leukocyte infiltration at the site of disease. In this review, we present a survey of immunocytokines that have been used in preclinical models of cancer and in clinical trials. In particular, we highlight how antibody format, choice of target antigen and cytokine engineering, as well as combination strategies, may have a profound impact on therapeutic performance. Moreover, by using anti-inflammatory cytokines, antibody fusion strategies can conveniently be employed for the treatment of auto-immune and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland.
| |
Collapse
|
31
|
Yu WD, Sun G, Li J, Xu J, Wang X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett 2019; 452:66-70. [PMID: 30902563 DOI: 10.1016/j.canlet.2019.02.048] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Immunotherapies based on T cells have gained significant success in the treatment of diverse cancers, however, several limitations also exist, including low response, acquired resistance and severe side effects, which lead to unfavorable outcomes. Recent studies found that traditional therapies, radiotherapy and/or chemotherapy may affect the immune condition in situ and cause abscopal effect, which may improve the response of immunotherapies, enhance the efficiency, and reduce the untoward effect. Here, we review the mechanisms uncovering the cancer immunotherapy and immunogenic effects of radiotherapy and chemotherapy, aiming to highlight the principles underlying the therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy and ultimately guide better designs for future synergistic cancer therapies.
Collapse
Affiliation(s)
- Wei-Di Yu
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Guan Sun
- Department of Neurosurgery, Yancheng City No.1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, PR China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, 168 Gushan Road, Nanjing, Jiangsu Province, PR China
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.
| | - Xiaochen Wang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
32
|
Jing H, Hettich M, Gaedicke S, Firat E, Bartholomä M, Niedermann G. Combination treatment with hypofractionated radiotherapy plus IL-2/anti-IL-2 complexes and its theranostic evaluation. J Immunother Cancer 2019; 7:55. [PMID: 30808414 PMCID: PMC6390578 DOI: 10.1186/s40425-019-0537-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
Background Immunogenic radiotherapy (RT) can act synergistically with immune checkpoint blockers (ICBs). However, alternatives are needed for non-responding patients and those with pre-existing or ICB-induced autoimmune symptoms. Combination of RT with IL-2 could be an alternative. But IL-2 has a short half-life, and, by binding to its high-affinity receptor, it strongly stimulates immunosuppressive CD4+ Tregs and seems to promote potentially life-threatening vascular leakage. IL-2/anti-IL-2 complexes (IL-2c), which bind to the low-affinity receptor, have been reported to circumvent these disadvantages but they have not yet been thoroughly tested in conjunction with radiotherapy. Methods We evaluated, in three mouse models, the antitumoral effects induced by hypofractionated RT (hRT) plus IL-2c. We also used non-invasive imaging with a newly developed PET tracer based on therapeutically active IL-2c and a PD-L1 PET tracer for the theranostic evaluation of the treatment and its side effects. Results Treatment of mice bearing established B16 melanomas with hRT + IL-2c was superior to hRT + uncomplexed IL-2 or hRT alone; IL-2c alone was not effective. hRT + IL-2c was also synergistic in mice bearing C51 colon carcinomas or 4T1 mammary carcinomas. The better antitumor response correlated with increased tumor-specific CD8+ T cells and NK cells, but not CD4+ Tregs, in the irradiated tumor and in lymphoid organs. With the new PET tracer, we visualized the whole-body distribution of IL-2c and the bound receptors in naïve mice and tumor-bearing mice. Surprisingly, the tumor uptake was non-specific and only moderate. This prompted experiments demonstrating that specific IL-2c binding in the tumor is limited by IL-2 secreted by tumor-resident effector cells and that extratumorally expanded T and NK cells can infiltrate the irradiated tumor, which suggests that systemic immune activation considerably contributed to the reduction of tumor growth. Lastly, we show that a side effect of IL-2c treatment – a quite dramatic non-specific expansion of CD8+ T and NK cells – is only transient, and we visualized the associated splenomegaly as well as side effects on liver and lung by contrast-enhanced CT and PD-L1 PET. Conclusions Our results show that the combination of immunogenic RT with IL-2c that are directed towards the low-affinity IL-2 receptor can be synergistic and more effective than the combination with uncomplexed IL-2. In addition, our theranostic evaluation provided insights into the mechanism of action and the side effects of IL-2c treatment. Electronic supplementary material The online version of this article (10.1186/s40425-019-0537-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hua Jing
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ) , Heidelberg, Germany.,Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Michael Hettich
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Oncology Translational Imaging Science, Roche pRED, Basel, Switzerland
| | - Simone Gaedicke
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elke Firat
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mark Bartholomä
- Department of Nuclear Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany. .,German Cancer Research Center (DKFZ) , Heidelberg, Germany.
| |
Collapse
|
33
|
Rothschilds AM, Wittrup KD. What, Why, Where, and When: Bringing Timing to Immuno-Oncology. Trends Immunol 2019; 40:12-21. [DOI: 10.1016/j.it.2018.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/27/2023]
|
34
|
Immune Modulatory Effects of Radiotherapy. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
35
|
Mortara L, Balza E, Bruno A, Poggi A, Orecchia P, Carnemolla B. Anti-cancer Therapies Employing IL-2 Cytokine Tumor Targeting: Contribution of Innate, Adaptive and Immunosuppressive Cells in the Anti-tumor Efficacy. Front Immunol 2018; 9:2905. [PMID: 30619269 PMCID: PMC6305397 DOI: 10.3389/fimmu.2018.02905] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/27/2018] [Indexed: 01/08/2023] Open
Abstract
Antibody-cytokine fusion proteins (immunocytokine) exert a potent anti-cancer effect; indeed, they target the immunosuppressive tumor microenvironment (TME) due to a specific anti-tumor antibody linked to immune activating cytokines. Once bound to the target tumor, the interleukin-2 (IL-2) immunocytokines composed of either full antibody or single chain Fv conjugated to IL-2 can promote the in situ recruitment and activation of natural killer (NK) cells and cytotoxic CD8+ T lymphocytes (CTL). This recruitment induces a TME switch toward a classical T helper 1 (Th1) anti-tumor immune response, supported by the cross-talk between NK and dendritic cells (DC). Furthermore, some IL-2 immunocytokines have been largely shown to trigger tumor cell killing by antibody dependent cellular cytotoxicity (ADCC), through Fcγ receptors engagement. The modulation of the TME can be also achieved with immunocytokines conjugated with a mutated form of IL-2 that impairs regulatory T (Treg) cell proliferation and activity. Preclinical animal models and more recently phase I/II clinical trials have shown that IL-2 immunocytokines can avoid the severe toxicities of the systemic administration of high doses of soluble IL-2 maintaining the potent anti-tumor effect of this cytokine. Also, very promising results have been reported using IL-2 immunocytokines delivered in combination with other immunocytokines, chemo-, radio-, anti-angiogenic therapies, and blockade of immune checkpoints. Here, we summarize and discuss the most relevant reported studies with a focus on: (a) the effects of IL-2 immunocytokines on innate and adaptive anti-tumor immune cell responses as well as immunosuppressive Treg cells and (b) the approaches to circumvent IL-2-mediated severe toxic side effects.
Collapse
Affiliation(s)
- Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Enrica Balza
- UOC Cell Biology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonino Bruno
- Vascular Biology and Angiogenesis Laboratory, Scientific and Technologic Park, IRCCS MultiMedica, Milan, Italy
| | - Alessandro Poggi
- UOSD Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Orecchia
- UOC Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Carnemolla
- UOC Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
36
|
Wang SJ, Haffty B. Radiotherapy as a New Player in Immuno-Oncology. Cancers (Basel) 2018; 10:cancers10120515. [PMID: 30558196 PMCID: PMC6315809 DOI: 10.3390/cancers10120515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
Recent development in radiation biology has revealed potent immunogenic properties of radiotherapy in cancer treatments. However, antitumor immune effects of radiotherapy are limited by the concomitant induction of radiation-dependent immunosuppressive effects. In the growing era of immunotherapy, combining radiotherapy with immunomodulating agents has demonstrated enhancement of radiation-induced antitumor immune activation that correlated with improved treatment outcomes. Yet, how to optimally deliver combination therapy regarding dose-fractionation and timing of radiotherapy is largely unknown. Future prospective testing to fine-tune this promising combination of radiotherapy and immunotherapy is warranted.
Collapse
Affiliation(s)
- Shang-Jui Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA.
| | - Bruce Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA.
| |
Collapse
|
37
|
Combining radiation therapy and cancer immune therapies: From preclinical findings to clinical applications. Cancer Radiother 2018; 22:567-580. [PMID: 30197026 DOI: 10.1016/j.canrad.2018.07.136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
Abstract
Besides its direct cytotoxic effect on the tumor cells, radiation therapy is also able to elicit an immune-mediated systemic anti-tumor response, resulting in tumor regression in irradiated sites but also within distant out of field secondary lesions and providing a long-term anti-tumor response. It is now clear that associating ionizing radiation with immune therapies can enhance radio-induced anti-tumor immune responses. Over the last decade, such a combination aroused considerable interest among the scientific community, with many preclinical models and clinical trials, using many types of immune therapies and radiation regimens. In this article, we summarize the main mechanisms underlying radio-induced anti-tumor responses. We will then present an extended overview of the recent preclinical and clinical research built on this background of combined radiation and immune therapy, shedding light on what we know so far about such a promising strategy.
Collapse
|
38
|
Wang H, Mooney DJ. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. NATURE MATERIALS 2018; 17:761-772. [PMID: 30104668 DOI: 10.1038/s41563-018-0147-9] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/10/2018] [Indexed: 05/06/2023]
Abstract
The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment.
Collapse
Affiliation(s)
- Hua Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA.
| |
Collapse
|