1
|
Wu H, Du J, Hu P, Wang P, Wang Z, Ma J, Li Z. Kaempferol Induces DNA Damage in Colorectal Cancer Cells by Regulating the MiR-195/miR-497-PFKFB4-Mediated Nonoxidative Pentose Phosphate Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8312-8322. [PMID: 40091822 DOI: 10.1021/acs.jafc.4c13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Kaempferol is a flavonoid widely found in fruits and vegetables. Our previous studies have shown that kaempferol has a good inhibitory effect on colorectal cancer in vitro and in vivo, significantly inhibiting proliferation and inducing cycle arrest and apoptosis. The pentose phosphate pathway (PPP) is a branch of glucose catabolism, that provides the raw material ribose-5-phosphate (R5P) for biosynthesis for the rapid proliferation of tumor cells and is closely related to DNA damage. DNA damage has been shown to play an important role in cell cycle arrest and apoptosis. Therefore, we speculate whether kaempferol exerts the antitumor effect by inducing DNA damage. Herein we actually found that kaempferol treatment induced DNA damage, as indicated by increased γH2AX expression and comet assay. Furthermore, kaempferol reduced R5P production by inhibiting the nonoxidative PPP, while supplementation with nucleosides rescued DNA damage. Mechanistically, kaempferol upregulates the expression of microRNA-195/497 (miR-195/497) and then suppresses PFKFB4 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4) expression by directly binding to its 3'-UTR, thereby inhibiting the expression of transketolase (TKT) and transaldolase (TALDO), key enzymes in the nonoxidative PPP. These data uncover new targets and pathways for the action of kaempferol and lay the foundation for its development as an adjuvant drug for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jin'e Du
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Pengli Hu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Panfeng Wang
- Shanxi Provincial Inspection and Testing Center (Shanxi Provincial Institute of Standard Metrology Technology), Taiyuan 030006, China
| | - Zhihui Wang
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jiajing Ma
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Wan S, Zhou X, Xie F, Zhou F, Zhang L. Ketogenic diet and cancer: multidimensional exploration and research. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1010-1024. [PMID: 39821829 DOI: 10.1007/s11427-023-2637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/29/2024] [Indexed: 01/19/2025]
Abstract
The ketogenic diet (KD) has attracted attention in recent years for its potential anticancer effects. KD is a dietary structure of high fat, moderate protein, and extremely low carbohydrate content. Originally introduced as a treatment for epilepsy, KD has been widely applied in weight loss programs and the management of metabolic diseases. Previous studies have shown that KD can potentially inhibit the growth and spread of cancer by limiting energy supply to tumor cells, thereby inhibiting tumor angiogenesis, reducing oxidative stress in normal cells, and affecting cancer cell signaling and other processes. Moreover, KD has been shown to influence T-cell-mediated immune responses and inflammation by modulating the gut microbiota, enhance the efficacy of standard cancer treatments, and mitigate the complications of chemotherapy. However, controversies and uncertainties remain regarding the specific mechanisms and clinical effects of KD as an adjunctive therapy for cancer. Therefore, this review summarizes the existing research and explores the intricate relationships between KD and cancer treatment.
Collapse
Affiliation(s)
- Shiyun Wan
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Long Zhang
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Cancer Center Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Lim BJW, Liu M, Wang L, Kong SLY, Yin T, Yan C, Xiang K, Cao C, Wu H, Mihai A, Tay FPL, Wang E, Jiang Q, Ma Z, Tan L, Chia RN, Qin D, Pan CC, Wang XF, Li QJ. Neoadjuvant anti-4-1BB confers protection against spontaneous metastasis through low-affinity intratumor CD8 + T cells in triple-negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635356. [PMID: 39975187 PMCID: PMC11838326 DOI: 10.1101/2025.01.29.635356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neoadjuvant immunotherapy seeks to harness the primary tumor as a source of relevant tumor antigens to enhance systemic anti-tumor immunity through improved immunological surveillance. Despite having revolutionized the treatment of patients with high-risk early-stage triple-negative breast cancer (TNBC), a significant portion of patients remain unresponsive and succumb to metastatic recurrence post-treatment. Here, we found that optimally scheduled neoadjuvant administration of anti-4-1BB monotherapy was able to counteract metastases and prolong survival following surgical resection. Phenotypic and transcriptional profiling revealed enhanced 4-1BB expression on tumor-infiltrating intermediate (T int ), relative to progenitor (T prog ) and terminally exhausted (T term ) T cells. Furthermore, T int was enriched in low-affinity T cells. Treatment with anti-4-1BB drove clonal expansion of T int , with reduced expression of tissue-retention marker CD103 in T prog . This was accompanied by increased TCR clonotype sharing between paired tumors and pre-metastatic lungs. Further interrogation of sorted intratumor T cells confirmed enhanced T cell egress into circulation following anti-4-1BB treatment. In addition, gene signature extracted from anti-4-1BB treated T int was consistently associated with improved clinical outcomes in BRCA patients. Combinatorial neoadjuvant anti-4-1BB and ablation of tumor-derived CXCL16 resulted in enhanced therapeutic effect. These findings illustrate the intratumor changes underpinning the efficacy of neoadjuvant anti-4-1BB, highlighting the reciprocity between local tissue-retention and distant immunologic fortification, suggesting treatment can reverse the siphoning of intratumor T cells to primary tumor, enabling redistribution to distant tissues and subsequent protection against metastases.
Collapse
|
4
|
Zuo Q, Yoo JY, Nelson ER, Sikora MJ, Riggins RB, Madak-Erdogan Z. Co-targeting of metabolism using dietary and pharmacologic approaches reduces breast cancer metastatic burden. NPJ Breast Cancer 2025; 11:3. [PMID: 39809806 PMCID: PMC11733225 DOI: 10.1038/s41523-024-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Patients with metastatic breast cancer face reduced quality of life and increased mortality rates, necessitating more effective anti-cancer strategies. Building on previous research that identified metastatic-niche-specific metabolic vulnerabilities, we investigated how a ketogenic diet enhances estrogen receptor (ER)-positive liver metastatic breast cancer's response to Fulvestrant (Fulv) treatment. Using in vitro cell lines and in vivo xenograft metastasis mouse models, we examined the molecular mechanisms of combining ER targeting with a ketogenic diet. We found that Fulv treatment downregulates the ketogenesis pathway enzyme OXCT1, leading to β-hydroxybutyrate accumulation and decreased tumor cell viability. We also explored interactions between glucose, palmitic acid, and β-hydroxybutyric acid. These findings establish the molecular basis and clinical potential of a ketogenic diet to enhance Fulv efficacy in patients with ER+ liver metastatic breast cancer, potentially improving survival outcomes and quality of life in this population.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jin Young Yoo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
6
|
Fredericks K, Kriel J, Engelbrecht L, Mercea PA, Widhalm G, Harrington B, Vlok I, Loos B. 5-ALA localises to the autophagy compartment and increases its fluorescence upon autophagy enhancement through caloric restriction and spermidine treatment in human glioblastoma. Biochem Biophys Rep 2024; 37:101642. [PMID: 38288282 PMCID: PMC10823107 DOI: 10.1016/j.bbrep.2024.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
Glioblastoma Multiforme (GBM) is the most invasive and prevalent Central Nervous System (CNS) malignancy. It is characterised by diffuse infiltrative growth and metabolic dysregulation that impairs the extent of surgical resection (EoR), contributing to its poor prognosis. 5-Aminolevulinic acid (5-ALA) fluorescence-guided surgical resection (FGR) takes advantage of the preferential generation of 5-ALA-derived fluorescence signal in glioma cells, thereby improving visualisation and enhancing the EoR. However, despite 5-ALA FGR is a widely used technique in the surgical management of malignant gliomas, the infiltrative tumour margins usually show only vague or no visible fluorescence and thus a significant amount of residual tumour tissue may hence remain in the resection cavity, subsequently driving tumour recurrence. To investigate the molecular mechanisms that govern the preferential accumulation of 5-ALA in glioma cells, we investigated the precise subcellular localisation of 5-ALA signal using Correlative Light and Electron Microscopy (CLEM) and colocalisation analyses in U118MG glioma cells. Our results revealed strong 5-ALA signal localisation in the autophagy compartment - specifically autolysosomes and lysosomes. Flow cytometry was employed to investigate whether autophagy enhancement through spermidine treatment (SPD) or nutrient deprivation/caloric restriction (CR) would enhance 5-ALA fluorescence signal generation. Indeed, SPD, CR and a combination of SPD/CR treatment significantly increased 5-ALA signal intensity, with a most robust increase in signal intensity observed in the combination treatment of SPD/CR. When using 3-D glioma spheroids to assess the effect of 5-ALA on cellular ultrastructure, we demonstrate that 5-ALA exposure leads to cytoplasmic disruption, vacuolarisation and large-scale mitophagy induction. These findings not only suggest a critical role for the autophagy compartment in 5-ALA engagement and signal generation but also point towards a novel and practically feasible approach to enhance 5-ALA fluorescence signal intensity. The findings may highlight that indeed autophagy control may serve as a promising avenue to promote an improved resection and GBM prognosis.
Collapse
Affiliation(s)
- Kim Fredericks
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Jurgen Kriel
- Central Analytical Facility, Microscopy Unit, Stellenbosch University, South Africa
| | - Lize Engelbrecht
- Central Analytical Facility, Microscopy Unit, Stellenbosch University, South Africa
| | | | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Brad Harrington
- Department of Neurosurgery, Stellenbosch University, Cape Town, South Africa
| | - Ian Vlok
- Department of Neurosurgery, Stellenbosch University, Cape Town, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
7
|
Neja S, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16:396. [PMID: 38337680 PMCID: PMC10857208 DOI: 10.3390/nu16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sultan Neja
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
8
|
Noll JH, Levine BL, June CH, Fraietta JA. Beyond youth: Understanding CAR T cell fitness in the context of immunological aging. Semin Immunol 2023; 70:101840. [PMID: 37729825 DOI: 10.1016/j.smim.2023.101840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Population aging, a pervasive global demographic trend, is anticipated to challenge health and social systems worldwide. This phenomenon is due to medical advancements enabling longer lifespans, with 20% of the US population soon to be over 65 years old. Consequently, there will be a surge in age-related diseases. Senescence, characterized by the loss of biological maintenance and homeostasis at molecular and cellular levels, either correlates with or directly causes age-related phenotypic changes. Decline of the immune system is a critical factor in the senescence process, with cancer being a primary cause of death in elderly populations. Chimeric antigen receptor (CAR) T cell therapy, an innovative approach, has demonstrated success mainly in pediatric and young adult hematological malignancies but remains largely ineffective for diseases affecting older populations, such as late-in-life B cell malignancies and most solid tumor indications. This limitation arises because CAR T cell efficacy heavily relies on the fitness of the patient-derived starting T cell material. Numerous studies suggest that T cell senescence may be a key driver of CAR T cell deficiency. This review examines correlates and underlying factors associated with favorable CAR T cell outcomes and explores potential experimental and clinically actionable strategies for T cell rejuvenation.
Collapse
Affiliation(s)
- Julia Han Noll
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Fraietta
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Ivessa AS, Singh S. The increase in cell death rates in caloric restricted cells of the yeast helicase mutant rrm3 is Sir complex dependent. Sci Rep 2023; 13:17832. [PMID: 37857740 PMCID: PMC10587150 DOI: 10.1038/s41598-023-45125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
Calorie restriction (CR), which is a reduction in calorie intake without malnutrition, usually extends lifespan and improves tissue integrity. This report focuses on the relationship between nuclear genomic instability and dietary-restriction and its effect on cell survival. We demonstrate that the cell survival rates of the genomic instability yeast mutant rrm3 change under metabolic restricted conditions. Rrm3 is a DNA helicase, chromosomal replication slows (and potentially stalls) in its absence with increased rates at over 1400 natural pause sites including sites within ribosomal DNA and tRNA genes. Whereas rrm3 mutant cells have lower cell death rates compared to wild type (WT) in growth medium containing normal glucose levels (i.e., 2%), under CR growth conditions cell death rates increase in the rrm3 mutant to levels, which are higher than WT. The silent-information-regulatory (Sir) protein complex and mitochondrial oxidative stress are required for the increase in cell death rates in the rrm3 mutant when cells are transferred from growth medium containing 2% glucose to CR-medium. The Rad53 checkpoint protein is highly phosphorylated in the rrm3 mutant in response to genomic instability in growth medium containing 2% glucose. Under CR, Rad53 phosphorylation is largely reduced in the rrm3 mutant in a Sir-complex dependent manner. Since CR is an adjuvant treatment during chemotherapy, which may target genomic instability in cancer cells, our studies may gain further insight into how these therapy strategies can be improved.
Collapse
Affiliation(s)
- Andreas S Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA.
| | - Sukhwinder Singh
- Pathology and Laboratory Medicine/Flow Cytometry and Immunology Core Laboratory, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA
| |
Collapse
|
10
|
Boesch M, Baty F, Rassouli F, Kowatsch T, Joerger M, Früh M, Brutsche MH. Non-pharmaceutical interventions to optimize cancer immunotherapy. Oncoimmunology 2023; 12:2255459. [PMID: 37791231 PMCID: PMC10543347 DOI: 10.1080/2162402x.2023.2255459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
The traditional picture of cancer patients as weak individuals requiring maximum rest and protection is beginning to dissolve. Too much focus on the medical side and one's own vulnerability and mortality might be counterproductive and not doing justice to the complexity of human nature. Unlike cytotoxic and lympho-depleting treatments, immune-engaging therapies strengthen the immune system and are typically less harmful for patients. Thus, cancer patients receiving checkpoint inhibitors are not viewed as being vulnerable per se, at least not in immunological and physical terms. This perspective article advocates a holistic approach to cancer immunotherapy, with an empowered patient in the center, focusing on personal resources and receiving domain-specific support from healthcare professionals. It summarizes recent evidence on non-pharmaceutical interventions to enhance the efficacy of immune checkpoint blockade and improve quality of life. These interventions target behavioral factors such as diet, physical activity, stress management, circadian timing of checkpoint inhibitor infusion, and waiving unnecessary co-medication curtailing immunotherapy efficacy. Non-pharmaceutical interventions are universally accessible, broadly applicable, instantly actionable, scalable, and economically sustainable, creating value for all stakeholders involved. Most importantly, this holistic framework re-emphasizes the patient as a whole and harnesses the full potential of anticancer immunity and checkpoint blockade, potentially leading to survival benefits. Digital therapeutics are proposed to accompany the patients on their mission toward change in lifestyle-related behaviors for creating optimal conditions for treatment efficacy and personal growth.
Collapse
Affiliation(s)
| | - Florent Baty
- Lung Center, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Frank Rassouli
- Lung Center, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Tobias Kowatsch
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- School of Medicine, University of St.Gallen, St.Gallen, Switzerland
- Centre for Digital Health Interventions, Department of Technology, Management, and Economics, ETH Zurich, Zurich, Switzerland
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Martin Früh
- Department of Medical Oncology and Hematology, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
- Department of Medical Oncology, University Hospital Bern, Bern, Switzerland
| | | |
Collapse
|
11
|
Kian N, Behrouzieh S, Razi S, Rezaei N. Diet Influences Immunotherapy Outcomes in Cancer Patients: A Literature Review. Nutr Cancer 2023; 75:415-429. [PMID: 36254373 DOI: 10.1080/01635581.2022.2133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The outbreak of immunotherapy has revolutionized cancer treatment. Despite the results confirming the effectiveness of immunotherapy, some studies have reported poor responsiveness to this therapeutic approach. The effectiveness of immunotherapy is dependent on numerous factors related to patients' lifestyles and health status. Diet, as an essential component of lifestyle, plays a major role in determining immunotherapy outcomes. It can significantly influence the body, gut microbiome composition, and metabolism, both in general and in tumor microenvironment. Consuming certain diets has resulted in either improved or worsened outcomes in patients receiving immunotherapy. For example, several recent studies have associated ketogenic, plant-based, and microbiome-favoring diets with promising outcomes. Moreover, obesity and dietary deprivation have impacted immunotherapy responsiveness, yet the studies are inconsistent in this context. This narrative review aims to integrate the results from many articles that have studied the contribution of diet to immunotherapy. We will start by introducing the multiple effects of dietary status on cancer progression and treatment. Then we will proceed to discuss various regimens known to affect immunotherapy outcomes, including ketogenic, high-fiber, and obesity-inducing diets and regimens that either contain or lack specific nutrients. Finally, we will elaborate on how composition of the gut microbiome may influence immunotherapy.
Collapse
Affiliation(s)
- Naghmeh Kian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sadra Behrouzieh
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
12
|
Martinez-Turtos A, Paul R, Grima-Reyes M, Issaoui H, Krug A, Mhaidly R, Bossowski JP, Chiche J, Marchetti S, Verhoeyen E, Chevet E, Ricci JE. IRE1α overexpression in malignant cells limits tumor progression by inducing an anti-cancer immune response. Oncoimmunology 2022; 11:2116844. [PMID: 36046811 PMCID: PMC9423862 DOI: 10.1080/2162402x.2022.2116844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
IRE1α is one of the three ER transmembrane transducers of the Unfolded Protein Response (UPR) activated under endoplasmic reticulum (ER) stress. IRE1α activation has a dual role in cancer as it may be either pro- or anti-tumoral depending on the studied models. Here, we describe the discovery that exogenous expression of IRE1α, resulting in IRE1α auto-activation, did not affect cancer cell proliferation in vitro but resulted in a tumor-suppressive phenotype in syngeneic immunocompetent mice. We found that exogenous expression of IRE1α in murine colorectal and Lewis lung carcinoma cells impaired tumor growth when syngeneic tumor cells were subcutaneously implanted in immunocompetent mice but not in immunodeficient mice. Mechanistically, the in vivo tumor-suppressive effect of overexpressing IRE1α in tumor cells was associated with IRE1α RNAse activity driving both XBP1 mRNA splicing and regulated IRE1-dependent decay of RNA (RIDD). We showed that the tumor-suppressive phenotype upon IRE1α overexpression was characterized by the induction of apoptosis in tumor cells along with an enhanced adaptive anti-cancer immunosurveillance. Hence, our work indicates that IRE1α overexpression and/or activation in tumor cells can limit tumor growth in immunocompetent mice. This finding might point toward the need of adjusting the use of IRE1α inhibitors in cancer treatments based on the predominant outcome of the RNAse activity of IRE1α.
Collapse
Affiliation(s)
- Adriana Martinez-Turtos
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rachel Paul
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Manuel Grima-Reyes
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Hussein Issaoui
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Adrien Krug
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rana Mhaidly
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Jozef P. Bossowski
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Johanna Chiche
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Sandrine Marchetti
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Els Verhoeyen
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
- CIRIINSERM U1111, Université de Lyon, Lyon, France
| | - Eric Chevet
- Inserm U1242, Université de Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Jean-Ehrland Ricci
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
13
|
Amaro GM, da Silva ADT, Tamarindo GH, Lamas CDA, Taboga SR, Cagnon VHA, Góes RM. Differential effects of omega-3 PUFAS on tumor progression at early and advanced stages in TRAMP mice. Prostate 2022; 82:1491-1504. [PMID: 36039485 DOI: 10.1002/pros.24421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND In vitro studies evidenced antitumor effects of omega-3 polyunsaturated fatty acids ([n-3] PUFAs), but their effects on prostate cancer (PCa) remain controversial in epidemiological studies. Here we investigated whether an (n-3) PUFA-enriched diet affects tumor progression in transgenic adenocarcinoma of the mouse prostate (TRAMP), at early (12 weeks age) and advanced stages (20 weeks age). METHODS TRAMP mice were fed with standard rodent diet (C12, C20) or (n-3) PUFA-enriched diet containing 10% fish oil (T12, T20). A group of 8 weeks age animals fed standard diet was also used for comparison (C8). The ventral prostate was processed for histopathological and immunohistochemical analyses and serum samples submitted to biochemical assays. RESULTS At early stages, (n-3) PUFA increased the frequency of normal epithelium (3.8-fold) and decreased the frequency of high-grade intraepithelial neoplasia (3.3-fold) and in situ carcinoma (1.9-fold) in the gland, maintaining prostate pathological status similar to C8 group. At advanced stages, 50% of the animals developed a large primary tumor in both C20 and T20, and tumor weight did not differ (C20: 2.2 ± 2.4; T20: 2.8 ± 2.9 g). The ventral prostate of T12 and of T20 animals that did not develop primary tumors showed lower cell proliferation, tissue expressions of androgen (AR) and glucocorticoid (GR) receptors, than their respective controls. For these animals, (n-3) PUFA also avoided an increase in the number of T-lymphocytes, collagen fibers, and αSMA immunoreactivity, and preserved stromal gland microenvironment. (n-3) PUFA also lowered serum triglycerides and cholesterol, regulating the lipid metabolism of TRAMP mice. CONCLUSIONS (n-3) PUFAs had a protective effect at early stages of PCa, delaying tumor progression in TRAMP mice, in parallel with reductions in cell proliferation, AR, and GR and maintenance of the stromal compartment of the gland. However, (n-3) PUFAs did not prevent the development of primary tumors for the T20 group, reinforcing the need for further investigation at advanced stages of disease.
Collapse
Affiliation(s)
- Gustavo M Amaro
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Alana D T da Silva
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Guilherme H Tamarindo
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Celina de A Lamas
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sebastião R Taboga
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rejane M Góes
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
14
|
Gelova SP, Doherty KN, Alasmar S, Chan K. Intrinsic base substitution patterns in diverse species reveal links to cancer and metabolism. Genetics 2022; 222:iyac144. [PMID: 36149294 PMCID: PMC9630983 DOI: 10.1093/genetics/iyac144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
Analyses of large-scale cancer sequencing data have revealed that mutagenic processes can create distinctive patterns of base substitutions, called mutational signatures. Interestingly, mutational patterns resembling some of these signatures can also be observed in normal cells. To determine whether similar patterns exist more generally, we analyzed large data sets of genetic variation, including mutations from 7 model species and single nucleotide polymorphisms in 42 species, totaling >1.9 billion variants. We found that base substitution patterns for most species closely match single base substitution (SBS) mutational signature 5 in the Catalog of Somatic Mutations in Cancer (COSMIC) database. SBS5 is ubiquitous in cancers and also present in normal human cells, suggesting that similar patterns of genetic variation across so many species are likely due to conserved biochemistry. We investigated the mechanistic origins of the SBS5-like mutational pattern in Saccharomyces cerevisiae, and show that translesion DNA synthesis and sugar metabolism are directly linked to this form of mutagenesis. We propose that conserved metabolic processes in cells are coupled to continuous generation of genetic variants, which can be acted upon by selection to drive the evolution of biological entities.
Collapse
Affiliation(s)
- Suzana P Gelova
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kassidy N Doherty
- Biopharmaceutical Sciences Undergraduate Program, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Salma Alasmar
- Biopharmaceutical Sciences Undergraduate Program, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kin Chan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
15
|
Polyphenols as Potent Epigenetics Agents for Cancer. Int J Mol Sci 2022; 23:ijms231911712. [PMID: 36233012 PMCID: PMC9570183 DOI: 10.3390/ijms231911712] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 02/06/2023] Open
Abstract
Human diseases such as cancer can be caused by aberrant epigenetic regulation. Polyphenols play a major role in mammalian epigenome regulation through mechanisms and proteins that remodel chromatin. In fruits, seeds, and vegetables, as well as food supplements, polyphenols are found. Compounds such as these ones are powerful anticancer agents and antioxidants. Gallic acid, kaempferol, curcumin, quercetin, and resveratrol, among others, have potent anti-tumor effects by helping reverse epigenetic changes associated with oncogene activation and tumor suppressor gene inactivation. The role dietary polyphenols plays in restoring epigenetic alterations in cancer cells with a particular focus on DNA methylation and histone modifications was summarized. We also discussed how these natural compounds modulate gene expression at the epigenetic level and described their molecular targets in cancer. It highlights the potential of polyphenols as an alternative therapeutic approach in cancer since they modulate epigenetic activity.
Collapse
|
16
|
Zuo Q, Park NH, Lee JK, Madak Erdogan Z. Liver Metastatic Breast Cancer: Epidemiology, Dietary Interventions, and Related Metabolism. Nutrients 2022; 14:2376. [PMID: 35745105 PMCID: PMC9228756 DOI: 10.3390/nu14122376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
The median overall survival of patients with metastatic breast cancer is only 2-3 years, and for patients with untreated liver metastasis, it is as short as 4-8 months. Improving the survival of women with breast cancer requires more effective anti-cancer strategies, especially for metastatic disease. Nutrients can influence tumor microenvironments, and cancer metabolism can be manipulated via a dietary modification to enhance anti-cancer strategies. Yet, there are no standard evidence-based recommendations for diet therapies before or during cancer treatment, and few studies provide definitive data that certain diets can mediate tumor progression or therapeutic effectiveness in human cancer. This review focuses on metastatic breast cancer, in particular liver metastatic forms, and recent studies on the impact of diets on disease progression and treatment.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Gabel K, Cares K, Varady K, Gadi V, Tussing-Humphreys L. Current Evidence and Directions for Intermittent Fasting During Cancer Chemotherapy. Adv Nutr 2022; 13:667-680. [PMID: 34788373 PMCID: PMC8970823 DOI: 10.1093/advances/nmab132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Almost 40% of the adult population in the USA will be diagnosed with cancer in their lifetime. Diet is a modifiable factor which is known to affect cancer risk and recurrence. Yet, little is known about how diet influences cancer treatment outcomes. Intermittent fasting, characterized by periods of abstaining from foods and beverages alternated with periods of ad libitum intake, when adopted in the context of chemotherapy, has shown promise in preclinical models resulting in decreased vomiting, diarrhea, visible discomfort, and improved insulin sensitivity and efficacy of chemotherapeutic treatment. Although intermittent fasting during receipt of chemotherapy has been well-established in preclinical models, limited numbers of human studies are now being reported. This review aims to survey the current data examining the effect of intermittent fasting on chemotherapy efficacy, patient treatment outcomes, patient centered outcomes, and circulating biomarkers associated with cancer. Available data show that periodic fasting, a form of intermittent fasting, may hold potential to improve the effectiveness of chemotherapy, decrease treatment-related side effects and cancer-promoting factors such as insulin, while ameliorating treatment-related decreases in quality of life and daily functioning. Larger controlled periodic fasting trials, including exploration of alternate forms of intermittent fasting, are needed to better elucidate the effect of intermittent fasting on treatment and patient outcomes during chemotherapy.
Collapse
Affiliation(s)
- Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.
| | - Kate Cares
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Vijayakrishna Gadi
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
18
|
Zuo Q, Mogol AN, Liu YJ, Santaliz Casiano A, Chien C, Drnevich J, Imir OB, Kulkoyluoglu-Cotul E, Park NH, Shapiro DJ, Park BH, Ziegler Y, Katzenellenbogen BS, Aranda E, O'Neill JD, Raghavendra AS, Tripathy D, Madak Erdogan Z. Targeting metabolic adaptations in the breast cancer-liver metastatic niche using dietary approaches to improve endocrine therapy efficacy. Mol Cancer Res 2022; 20:923-937. [PMID: 35259269 DOI: 10.1158/1541-7786.mcr-21-0781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
Estrogen receptor-positive (ER+) metastatic tumors contribute to nearly 70% of breast cancer-related deaths. Most patients with ER+ metastatic breast cancer (MBC) undergo treatment with the estrogen receptor antagonist fulvestrant (Fulv) as standard-of-care. Yet, among such patients, metastasis in the liver is associated with reduced overall survival compared to other metastasis sites. The factors underlying the reduced responsiveness of liver metastases to ER-targeting agents remain unknown, impeding the development of more effective treatment approaches to improve outcomes for patients with ER+ liver metastases. We therefore evaluated site-specific changes in MBC cells and determined the mechanisms through which the liver metastatic niche specifically influences ER+ tumor metabolism and drug resistance. We characterized ER activity of MBC cells both in vitro, using a novel system of tissue-specific extracellular matrix hydrogels representing the stroma of ER+ tumor metastatic sites (liver, lung and bone), and in vivo, in liver and lung metastasis mouse models. ER+ metastatic liver tumors and MBC cells grown in liver hydrogels displayed upregulated expression of glucose metabolism enzymes in response to Fulv. Furthermore, differential ERα activity, but not expression, was detected in liver hydrogels. In vivo, increased glucose metabolism led to increased glycogen deposition in liver metastatic tumors, while a fasting-mimicking diet increased efficacy of Fulv treatment to reduce the metastatic burden. Our findings identify a novel mechanism of endocrine resistance driven by the liver tumor microenvironment. Implications: These results may guide the development of dietary strategies to circumvent drug resistance in liver metastasis, with potential applicability in other metastatic diseases.
Collapse
Affiliation(s)
- Qianying Zuo
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ayca Nazli Mogol
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yu-Jeh Liu
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Christine Chien
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jenny Drnevich
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ozan Berk Imir
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | | | - David J Shapiro
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ben Ho Park
- Vanderbilt University, Nashville, TN, United States
| | - Yvonne Ziegler
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | | | | | | | - Debu Tripathy
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
19
|
Krstic J, Reinisch I, Schindlmaier K, Galhuber M, Riahi Z, Berger N, Kupper N, Moyschewitz E, Auer M, Michenthaler H, Nössing C, Depaoli MR, Ramadani-Muja J, Usluer S, Stryeck S, Pichler M, Rinner B, Deutsch AJA, Reinisch A, Madl T, Chiozzi RZ, Heck AJR, Huch M, Malli R, Prokesch A. Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism. SCIENCE ADVANCES 2022; 8:eabh2635. [PMID: 35061544 PMCID: PMC8782451 DOI: 10.1126/sciadv.abh2635] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Katharina Schindlmaier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Zina Riahi
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Natascha Berger
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Nadja Kupper
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Martina Auer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Christoph Nössing
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Maria R. Depaoli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sarah Stryeck
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, 8010 Graz, Austria
- Know-Center GmbH, 8010 Graz, Austria
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria
| | - Beate Rinner
- Department for Biomedical Research, Medical University of Graz, Graz, Austria
| | - Alexander J. A. Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Andreas Reinisch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Division of Hematology, Department of Blood Group Serology and Transfusion Medicine Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584CH Utrecht, Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584CH Utrecht, Netherlands
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Roland Malli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
20
|
Torlak MS, Gonulalan G, Tufekci O, Nazli MS, Atici E. The effect of therapeutic exercise and vegan diet on pain and quality of life in young female patients with chronic non-specific neck pain. BULLETIN OF FACULTY OF PHYSICAL THERAPY 2022. [DOI: 10.1186/s43161-021-00061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Background and purpose
In recent years, dietary practices have begun to be used in painful conditions. This study aimed to investigate the effect of a vegan diet and therapeutic exercise in patients with chronic non-specific neck pain.
Materials and methods
A total of 45 young female patients with chronic non-specific neck pain, aged 18–25 years, participated in the study. Body mass index and body fat percentage were measured with bioelectrical impedance analysis. Pain severity was assessed using the Visual Analogue Scale, quality of life with the short form-36 scale, kinesiophobia with the Tampa scale of kinesiophobia and neck disability with the Neck Disability Index.
Results
The pain severity reduced in the diet group and exercise group after treatment (p = 0.001). After treatment, Neck Disability Index score decreased in the diet group and exercise group (p = 0.001). Tampa scale of kinesiophobia score decreased in the diet group and exercise group (p = 0.001). The eight domains of the short form-36 scale score increased in the diet group and exercise group (p < 0.05). No difference was found in the body mass index and fat percentage in all groups before and after treatment (p˃ 0.05).
Conclusion
A vegan diet and therapeutic exercise are beneficial to patients with chronic non-specific neck pain in terms of pain severity and quality of life.
Collapse
|
21
|
Vultaggio-Poma V, Falzoni S, Chiozzi P, Sarti AC, Adinolfi E, Giuliani AL, Sánchez-Melgar A, Boldrini P, Zanoni M, Tesei A, Pinton P, Di Virgilio F. Extracellular ATP is increased by release of ATP-loaded microparticles triggered by nutrient deprivation. Theranostics 2022; 12:859-874. [PMID: 34976217 PMCID: PMC8692914 DOI: 10.7150/thno.66274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: Caloric restriction improves the efficacy of anti-cancer therapy. This effect is largely dependent on the increase of the extracellular ATP concentration in the tumor microenvironment (TME). Pathways for ATP release triggered by nutrient deprivation are largely unknown. Methods: The extracellular ATP (eATP) concentration was in vivo measured in the tumor microenvironment of B16F10-inoculated C57Bl/6 mice with the pmeLuc probe. Alternatively, the pmeLuc-TG-mouse was used. Caloric restriction was in vivo induced with hydroxycitrate (HC). B16F10 melanoma cells or CT26 colon carcinoma cells were in vitro exposed to serum starvation to mimic nutrient deprivation. Energy metabolism was monitored by Seahorse. Microparticle release was measured by ultracentrifugation and by Nanosight. Results: Nutrient deprivation increases eATP release despite the dramatic inhibition of intracellular energy synthesis. Under these conditions oxidative phosphorylation was dramatically impaired, mitochondria fragmented and glycolysis and lactic acid release were enhanced. Nutrient deprivation stimulated a P2X7-dependent release of ATP-loaded, mitochondria-containing, microparticles as well as of naked mitochondria. Conclusions: Nutrient deprivation promotes a striking accumulation of eATP paralleled by a large release of ATP-laden microparticles and of naked mitochondria. This is likely to be a main mechanism driving the accumulation of eATP into the TME.
Collapse
|
22
|
de la Fuente B, Berrada H, Barba FJ. Marine resources and cancer therapy: from current evidence to challenges for functional foods development. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Kverneland AH, Chamberlain CA, Borch TH, Nielsen M, Mørk SK, Kjeldsen JW, Lorentzen CL, Jørgensen LP, Riis LB, Yde CW, Met Ö, Donia M, Marie Svane I. Adoptive cell therapy with tumor-infiltrating lymphocytes supported by checkpoint inhibition across multiple solid cancer types. J Immunother Cancer 2021; 9:jitc-2021-003499. [PMID: 34607899 PMCID: PMC8491427 DOI: 10.1136/jitc-2021-003499] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 02/01/2023] Open
Abstract
Background Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) has shown remarkable results in malignant melanoma (MM), while studies on the potential in other cancer diagnoses are sparse. Further, the prospect of using checkpoint inhibitors (CPIs) to support TIL production and therapy remains to be explored. Study design TIL-based ACT with CPIs was evaluated in a clinical phase I/II trial. Ipilimumab (3 mg/kg) was administered prior to tumor resection and nivolumab (3 mg/kg, every 2 weeks ×4) in relation to TIL infusion. Preconditioning chemotherapy was given before TIL infusion and followed by low-dose (2 10e6 international units (UI) ×1 subcutaneous for 14 days) interleukin-2 stimulation. Results Twenty-five patients covering 10 different cancer diagnoses were treated with in vitro expanded TILs. Expansion of TILs was successful in 97% of recruited patients. Five patients had sizeable tumor regressions of 30%–63%, including two confirmed partial responses in patients with head-and-neck cancer and cholangiocarcinoma. Safety and feasibility were comparable to MM trials of ACT with the addition of expected CPI toxicity. In an exploratory analysis, tumor mutational burden and expression of the alpha-integrin CD103 (p=0.025) were associated with increased disease control. In vitro tumor reactivity was seen in both patients with an objective response and was associated with regressions in tumor size (p=0.028). Conclusion High success rates of TIL expansion were demonstrated across multiple solid cancers. TIL ACTs were found feasible, independent of previous therapy. Tumor regressions after ACT combined with CPIs were demonstrated in several cancer types supported by in vitro antitumor reactivity of the TILs. Trial registration numbers NCT03296137, and EudraCT No. 2017-002323-25.
Collapse
Affiliation(s)
- Anders Handrup Kverneland
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Christopher Aled Chamberlain
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Troels Holz Borch
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Morten Nielsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Sofie Kirial Mørk
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Julie Westerlin Kjeldsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Cathrine Lund Lorentzen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lise Pyndt Jørgensen
- Department of Pathology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lene Buhl Riis
- Department of Pathology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Christina Westmose Yde
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Glostrup, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Marco Donia
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inge Marie Svane
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark .,National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| |
Collapse
|
24
|
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo‐San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo M, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen E, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez‐Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera R, Piacentini M, Reggiori F, Rubinsztein DC, Ryan K, Sadoshima J, Santambrogio L, Scorrano L, Simon H, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. Autophagy in major human diseases. EMBO J 2021; 40:e108863. [PMID: 34459017 PMCID: PMC8488577 DOI: 10.15252/embj.2021108863] [Citation(s) in RCA: 895] [Impact Index Per Article: 223.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Collapse
Affiliation(s)
| | - Giulia Petroni
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ravi K Amaravadi
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesSection of PediatricsFederico II UniversityNaplesItaly
- Department of Molecular and Human GeneticsBaylor College of Medicine, and Jan and Dan Duncan Neurological Research InstituteTexas Children HospitalHoustonTXUSA
| | - Patricia Boya
- Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - José Manuel Bravo‐San Pedro
- Faculty of MedicineDepartment Section of PhysiologyComplutense University of MadridMadridSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of MicrobiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineNew York University Langone HealthNew YorkNYUSA
| | - Francesco Cecconi
- Cell Stress and Survival UnitCenter for Autophagy, Recycling and Disease (CARD)Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Pediatric Onco‐Hematology and Cell and Gene TherapyIRCCS Bambino Gesù Children's HospitalRomeItaly
- Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care MedicineJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
| | - Mary E Choi
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
- Division of Nephrology and HypertensionJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Charleen T Chu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Patrice Codogno
- Institut Necker‐Enfants MaladesINSERM U1151‐CNRS UMR 8253ParisFrance
- Université de ParisParisFrance
| | - Maria Isabel Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia‐Instituto de Histología y Embriología (IHEM)‐Universidad Nacional de CuyoCONICET‐ Facultad de Ciencias MédicasMendozaArgentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineBronxNYUSA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism (AIMCenter of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Ivan Dikic
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Zvulun Elazar
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Gian Maria Fimia
- Department of Molecular MedicineSapienza University of RomeRomeItaly
- Department of EpidemiologyPreclinical Research, and Advanced DiagnosticsNational Institute for Infectious Diseases ‘L. Spallanzani’ IRCCSRomeItaly
| | - David A Gewirtz
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Douglas R Green
- Department of ImmunologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery InstituteProgram of DevelopmentAging, and RegenerationLa JollaCAUSA
| | - Marja Jäättelä
- Cell Death and MetabolismCenter for Autophagy, Recycling & DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Terje Johansen
- Department of Medical BiologyMolecular Cancer Research GroupUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Gábor Juhász
- Institute of GeneticsBiological Research CenterSzegedHungary
- Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Claudine Kraft
- Institute of Biochemistry and Molecular BiologyZBMZFaculty of MedicineUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Guido Kroemer
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéInserm U1138Institut Universitaire de FranceParisFrance
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Karolinska InstituteDepartment of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| | | | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSAAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Carlos Lopez‐Otin
- Departamento de Bioquímica y Biología MolecularFacultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Kay F Macleod
- The Ben May Department for Cancer ResearchThe Gordon Center for Integrative SciencesW‐338The University of ChicagoChicagoILUSA
- The University of ChicagoChicagoILUSA
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Jennifer Martinez
- Immunity, Inflammation and Disease LaboratoryNational Institute of Environmental Health SciencesNIHResearch Triangle ParkNCUSA
| | - Alicia Meléndez
- Biology Department, Queens CollegeCity University of New YorkFlushingNYUSA
- The Graduate Center Biology and Biochemistry PhD Programs of the City University of New YorkNew YorkNYUSA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Rushika M Perera
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Mauro Piacentini
- Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Laboratory of Molecular MedicineInstitute of Cytology Russian Academy of ScienceSaint PetersburgRussia
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & SystemsMolecular Cell Biology SectionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - David C Rubinsztein
- Department of Medical GeneticsCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeUK
| | - Kevin M Ryan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular MedicineCardiovascular Research InstituteRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Laura Santambrogio
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
| | - Luca Scorrano
- Istituto Veneto di Medicina MolecolarePadovaItaly
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Hans‐Uwe Simon
- Institute of PharmacologyUniversity of BernBernSwitzerland
- Department of Clinical Immunology and AllergologySechenov UniversityMoscowRussia
- Laboratory of Molecular ImmunologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
| | | | - Anne Simonsen
- Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Centre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University Hospital MontebelloOsloNorway
| | - Alexandra Stolz
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklion, CreteGreece
- Department of Basic SciencesSchool of MedicineUniversity of CreteHeraklion, CreteGreece
| | - Sharon A Tooze
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - Tamotsu Yoshimori
- Department of GeneticsGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of Intracellular Membrane DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationDepartment of PathophysiologyShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Lorenzo Galluzzi
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
- Department of DermatologyYale School of MedicineNew HavenCTUSA
- Université de ParisParisFrance
| | | |
Collapse
|
25
|
Dierge E, Debock E, Guilbaud C, Corbet C, Mignolet E, Mignard L, Bastien E, Dessy C, Larondelle Y, Feron O. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab 2021; 33:1701-1715.e5. [PMID: 34118189 DOI: 10.1016/j.cmet.2021.05.016] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Tumor acidosis promotes disease progression through a stimulation of fatty acid (FA) metabolism in cancer cells. Instead of blocking the use of FAs by acidic cancer cells, we examined whether excess uptake of specific FAs could lead to antitumor effects. We found that n-3 but also remarkably n-6 polyunsaturated FA (PUFA) selectively induced ferroptosis in cancer cells under ambient acidosis. Upon exceeding buffering capacity of triglyceride storage into lipid droplets, n-3 and n-6 PUFA peroxidation led to cytotoxic effects in proportion to the number of double bonds and even more so in the presence of diacylglycerol acyltransferase inhibitors (DGATi). Finally, an n-3 long-chain PUFA-rich diet significantly delayed mouse tumor growth when compared with a monounsaturated FA-rich diet, an effect further accentuated by administration of DGATi or ferroptosis inducers. These data point out dietary PUFA as a selective adjuvant antitumor modality that may efficiently complement pharmacological approaches.
Collapse
Affiliation(s)
- Emeline Dierge
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium; Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Elena Debock
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Céline Guilbaud
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium
| | - Eric Mignolet
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Louise Mignard
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium.
| |
Collapse
|
26
|
Goncalves MD, Maddocks OD. Engineered diets to improve cancer outcomes. Curr Opin Biotechnol 2021; 70:29-35. [PMID: 33232844 PMCID: PMC8702371 DOI: 10.1016/j.copbio.2020.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Cancer cells acquire a diverse range of metabolic adaptations that support their enhanced rates of growth and proliferation. While these adaptations help tune metabolism to support higher anabolic output and bolster antioxidant defenses, they can also decrease metabolic flexibility and increase dependence on nutrient uptake versus de novo synthesis. Diet is the major source of nutrients that ultimately support tumor growth, yet the potential impact of diet is currently underutilized during the treatment of cancer. Here, we review several forms of dietary augmentation therapy including those that alter the content of food, such as energy or macronutrient restriction, and those that alter the timing of food consumption, like intermittent fasting regimens. We discuss how these dietary strategies can be combined with pharmacologic therapies to exaggerate the metabolic liabilities of different cancer types.
Collapse
Affiliation(s)
- Marcus D Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Oliver Dk Maddocks
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
27
|
Wu Q, Yu X, Li J, Sun S, Tu Y. Metabolic regulation in the immune response to cancer. Cancer Commun (Lond) 2021; 41:661-694. [PMID: 34145990 PMCID: PMC8360644 DOI: 10.1002/cac2.12182] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/25/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming in tumor‐immune interactions is emerging as a key factor affecting pro‐inflammatory carcinogenic effects and anticancer immune responses. Therefore, dysregulated metabolites and their regulators affect both cancer progression and therapeutic response. Here, we describe the molecular mechanisms through which microenvironmental, systemic, and microbial metabolites potentially influence the host immune response to mediate malignant progression and therapeutic intervention. We summarized the primary interplaying factors that constitute metabolism, immunological reactions, and cancer with a focus on mechanistic aspects. Finally, we discussed the possibility of metabolic interventions at multiple levels to enhance the efficacy of immunotherapeutic and conventional approaches for future anticancer treatments.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
28
|
Solanki SL, Kaur J, Gupta AM, Patkar S, Joshi R, Ambulkar RP, Patil A, Goel M. Cancer related nutritional and inflammatory markers as predictive parameters of immediate postoperative complications and long-term survival after hepatectomies. Surg Oncol 2021; 37:101526. [PMID: 33582497 DOI: 10.1016/j.suronc.2021.101526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/27/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The overall survival (OS), disease-free survival (DFS) and complications after liver resections is unsatisfactory. Cancer-related malnutrition and inflammation have an effect on survival but not studied/not clear on postoperative complications. METHODS We retrospectively analyzed prospectively maintained database of 309 patients. The outcome variables included complications in terms of Clavien-Dindo (CD) Score, OS and DFS; We studied effect of preoperative albumin globulin ratio (AGR), neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and aspartate transaminase to platelet ratio index (APRI) and dynamic change from pre-operative to postoperative value (Delta-AGR, Delta-NLR, Delta-PLR and Delta-APRI) on complications, OS and DFS. RESULTS Total 98 patients (31.71%) had postoperative complications. Fifty patients had CD 1 & 2 and 35 (11.33%) had CD 3 & 4, and 13 (4.12%) had mortality (CD 5). Low AGR, high NLR, high PLR and high Delta-AGR and high Delta-APRI predicted increased major complications. Preoperative high NLR predicted worse OS and low AGR predicted worse OS and DFS. Delta-APRI showed trends towards worse OS and DFS. CONCLUSION These serum inflammatory markers can predict immediate postoperative complications. Preoperative AGR and preoperative NLR can predict survival after liver resections. High Delta-AGR, which is a new entity, is predicting more postoperative complications and needs further detailed studies.
Collapse
Affiliation(s)
- Sohan Lal Solanki
- Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India.
| | - Jasmeen Kaur
- Department of Anesthesiology and Perioperative Medicine, Augusta University Medical Center, Augusta, GA, USA
| | - Amit M Gupta
- Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Shraddha Patkar
- Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Riddhi Joshi
- Department of Anaesthesia, Dubbo Base Hospital, Dubbo, NSW, Australia
| | - Reshma P Ambulkar
- Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Akshay Patil
- Clinical Research Secretariat, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Goel
- Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
29
|
Sanchez-Pino MD, Gilmore LA, Ochoa AC, Brown JC. Obesity-Associated Myeloid Immunosuppressive Cells, Key Players in Cancer Risk and Response to Immunotherapy. Obesity (Silver Spring) 2021; 29:944-953. [PMID: 33616242 PMCID: PMC8154641 DOI: 10.1002/oby.23108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
Obesity is a risk factor for developing several cancers. The dysfunctional metabolism and chronic activation of inflammatory pathways in obesity create a milieu that supports tumor initiation, progression, and metastasis. Obesity-associated metabolic, endocrine, and inflammatory mediators, besides interacting with cells leading to a malignant transformation, also modify the intrinsic metabolic and functional characteristics of immune myeloid cells. Here, the evidence supporting the hypothesis that obesity metabolically primes and promotes the expansion of myeloid cells with immunosuppressive and pro-oncogenic properties is discussed. In consequence, the accumulation of these cells, such as myeloid-derived suppressor cells and some subtypes of adipose-tissue macrophages, creates a microenvironment conducive to tumor development. In this review, the role of lipids, insulin, and leptin, which are dysregulated in obesity, is emphasized, as well as dietary nutrients in metabolic reprogramming of these myeloid cells. Moreover, emerging evidence indicating that obesity enhances immunotherapy response and hypothesized mechanisms are summarized. Priorities in deeper exploration involving the mechanisms of cross talk between metabolic disorders and myeloid cells related to cancer risk in patients with obesity are highlighted.
Collapse
Affiliation(s)
- Maria Dulfary Sanchez-Pino
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
| | | | - Augusto C. Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- Department of Pediatrics, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
| | - Justin C. Brown
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- LSU Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
30
|
Metabolic Classification and Intervention Opportunities for Tumor Energy Dysfunction. Metabolites 2021; 11:metabo11050264. [PMID: 33922558 PMCID: PMC8146396 DOI: 10.3390/metabo11050264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
A comprehensive view of cell metabolism provides a new vision of cancer, conceptualized as tissue with cellular-altered metabolism and energetic dysfunction, which can shed light on pathophysiological mechanisms. Cancer is now considered a heterogeneous ecosystem, formed by tumor cells and the microenvironment, which is molecularly, phenotypically, and metabolically reprogrammable. A wealth of evidence confirms metabolic reprogramming activity as the minimum common denominator of cancer, grouping together a wide variety of aberrations that can affect any of the different metabolic pathways involved in cell physiology. This forms the basis for a new proposed classification of cancer according to the altered metabolic pathway(s) and degree of energy dysfunction. Enhanced understanding of the metabolic reprogramming pathways of fatty acids, amino acids, carbohydrates, hypoxia, and acidosis can bring about new therapeutic intervention possibilities from a metabolic perspective of cancer.
Collapse
|
31
|
Wilhelm C, Surendar J, Karagiannis F. Enemy or ally? Fasting as an essential regulator of immune responses. Trends Immunol 2021; 42:389-400. [PMID: 33865714 DOI: 10.1016/j.it.2021.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
Nutrition is essential for supplying an organism with sufficient energy to maintain its bodily functions. Apart from serving as an energy supply, the immunomodulatory effects of diet are emerging as a central aspect of human health. The latest evidence suggests that dietary restriction may play an important regulatory role by influencing the activation and effector functions of immune cells. However, depending on the context, nutrient restriction may have both pathogenic and beneficial effects. Here, we discuss the diverse roles of fasting programs, including ketogenesis in infection and chronic inflammation, aiming to clarify their detrimental and/or beneficial effects. Understanding these differences may help identify conditions under which dietary interventions might serve as putative effective approaches to treat various diseases.
Collapse
Affiliation(s)
- Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany.
| | - Jayagopi Surendar
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Fotios Karagiannis
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
32
|
Eriau E, Paillet J, Kroemer G, Pol JG. Metabolic Reprogramming by Reduced Calorie Intake or Pharmacological Caloric Restriction Mimetics for Improved Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13061260. [PMID: 33809187 PMCID: PMC7999281 DOI: 10.3390/cancers13061260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Caloric restriction and fasting have been known for a long time for their health- and life-span promoting effects, with coherent observations in multiple model organisms as well as epidemiological and clinical studies. This holds particularly true for cancer. The health-promoting effects of caloric restriction and fasting are mediated at least partly through their cellular effects-chiefly autophagy induction-rather than reduced calorie intake per se. Interestingly, caloric restriction has a differential impact on cancer and healthy cells, due to the atypical metabolic profile of malignant tumors. Caloric restriction mimetics are non-toxic compounds able to mimic the biochemical and physiological effects of caloric restriction including autophagy induction. Caloric restriction and its mimetics induce autophagy to improve the efficacy of some cancer treatments that induce immunogenic cell death (ICD), a type of cellular demise that eventually elicits adaptive antitumor immunity. Caloric restriction and its mimetics also enhance the therapeutic efficacy of chemo-immunotherapies combining ICD-inducing agents with immune checkpoint inhibitors targeting PD-1. Collectively, preclinical data encourage the application of caloric restriction and its mimetics as an adjuvant to immunotherapies. This recommendation is subject to confirmation in additional experimental settings and in clinical trials. In this work, we review the preclinical and clinical evidence in favor of such therapeutic interventions before listing ongoing clinical trials that will shed some light on this subject.
Collapse
Affiliation(s)
- Erwan Eriau
- Centre de Cancérologie de Lyon, Université de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, 69008 Lyon, France; or
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
| | - Juliette Paillet
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Institut Universitaire de France, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique–Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 215163, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Jonathan G. Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Correspondence: or ; Tel.: +33-1-44-27-76-66
| |
Collapse
|
33
|
Trivieri N, Panebianco C, Villani A, Pracella R, Latiano TP, Perri F, Binda E, Pazienza V. High Levels of Prebiotic Resistant Starch in Diet Modulate a Specific Pattern of miRNAs Expression Profile Associated to a Better Overall Survival in Pancreatic Cancer. Biomolecules 2020; 11:biom11010026. [PMID: 33383727 PMCID: PMC7824309 DOI: 10.3390/biom11010026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/17/2023] Open
Abstract
Dietary patterns are well known risk factors involved in cancer initiation, progression, and in cancer protection. Previous in vitro and in vivo studies underline the link between a diet rich in resistant starch (RS) and slowing of tumor growth and gene expression in pancreatic cancer xenograft mice. The aim of this study was to investigate the impact of a diet rich in resistant starch on miRNAs and miRNAs-target genes expression profile and on biological processes and pathways, that play a critical role in pancreatic tumors of xenografted mice. miRNA expression profiles on tumor tissues displayed 19 miRNAs as dysregulated in mice fed with RS diet as compared to those fed with control diet and differentially expressed miRNA-target genes were predicted by integrating (our data) with a public human pancreatic cancer gene expression dataset (GSE16515). Functional and pathway enrichment analyses unveiled that miRNAs involved in RS diet are critical regulators of genes that control tumor growth and cell migration and metastasis, inflammatory response, and, as expected, synthesis of carbohydrate and glucose metabolism disorder. Mostly, overall survival analysis with clinical data from TCGA (n = 175) displayed that almost four miRNAs (miRNA-375, miRNA-148a-3p, miRNA-125a-5p, and miRNA-200a-3p) upregulated in tumors from mice fed with RS were a predictor of good prognosis for pancreatic cancer patients. These findings contribute to the understanding of the potential mechanisms through which resistant starch may affect cancer progression, suggesting also a possible integrative approach for enhancing the efficacy of existing cancer treatments.
Collapse
Affiliation(s)
- Nadia Trivieri
- Cancer Stem Cells Unit, ISBReMIT, Fondazione IRCCS “Casa Sollievo della Sofferenza”, viale Padre Pio, 7-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (N.T.); (R.P.)
| | - Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, viale dei Cappuccini, 1-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (C.P.); (A.V.); (F.P.)
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, viale dei Cappuccini, 1-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (C.P.); (A.V.); (F.P.)
| | - Riccardo Pracella
- Cancer Stem Cells Unit, ISBReMIT, Fondazione IRCCS “Casa Sollievo della Sofferenza”, viale Padre Pio, 7-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (N.T.); (R.P.)
| | - Tiziana Pia Latiano
- Oncology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, viale dei Cappuccini, 1-71013 San Giovanni Rotondo, 71100 Foggia, Italy;
| | - Francesco Perri
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, viale dei Cappuccini, 1-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (C.P.); (A.V.); (F.P.)
| | - Elena Binda
- Cancer Stem Cells Unit, ISBReMIT, Fondazione IRCCS “Casa Sollievo della Sofferenza”, viale Padre Pio, 7-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (N.T.); (R.P.)
- Correspondence: (E.B.); (V.P.)
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, viale dei Cappuccini, 1-71013 San Giovanni Rotondo, 71100 Foggia, Italy; (C.P.); (A.V.); (F.P.)
- Correspondence: (E.B.); (V.P.)
| |
Collapse
|
34
|
Deligiorgi MV, Liapi C, Trafalis DT. How Far Are We from Prescribing Fasting as Anticancer Medicine? Int J Mol Sci 2020; 21:ijms21239175. [PMID: 33271979 PMCID: PMC7730661 DOI: 10.3390/ijms21239175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
(1) Background: the present review provides a comprehensive and up-to date overview of the potential exploitation of fasting as an anticancer strategy. The rationale for this concept is that fasting elicits a differential stress response in the setting of unfavorable conditions, empowering the survival of normal cells, while killing cancer cells. (2) Methods: the present narrative review presents the basic aspects of the hormonal, molecular, and cellular response to fasting, focusing on the interrelationship of fasting with oxidative stress. It also presents nonclinical and clinical evidence concerning the implementation of fasting as adjuvant to chemotherapy, highlighting current challenges and future perspectives. (3) Results: there is ample nonclinical evidence indicating that fasting can mitigate the toxicity of chemotherapy and/or increase the efficacy of chemotherapy. The relevant clinical research is encouraging, albeit still in its infancy. The path forward for implementing fasting in oncology is a personalized approach, entailing counteraction of current challenges, including: (i) patient selection; (ii) fasting patterns; (iii) timeline of fasting and refeeding; (iv) validation of biomarkers for assessment of fasting; and (v) establishment of protocols for patients’ monitoring. (4) Conclusion: prescribing fasting as anticancer medicine may not be far away if large randomized clinical trials consolidate its safety and efficacy.
Collapse
|
35
|
Drijvers JM, Sharpe AH, Haigis MC. The effects of age and systemic metabolism on anti-tumor T cell responses. eLife 2020; 9:e62420. [PMID: 33170123 PMCID: PMC7655106 DOI: 10.7554/elife.62420] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Average age and obesity prevalence are increasing globally. Both aging and obesity are characterized by profound systemic metabolic and immunologic changes and are cancer risk factors. The mechanisms linking age and body weight to cancer are incompletely understood, but recent studies have provided evidence that the anti-tumor immune response is reduced in both conditions, while responsiveness to immune checkpoint blockade, a form of cancer immunotherapy, is paradoxically intact. Dietary restriction, which promotes health and lifespan, may enhance cancer immunity. These findings illustrate that the systemic context can impact anti-tumor immunity and immunotherapy responsiveness. Here, we review the current knowledge of how age and systemic metabolic state affect the anti-tumor immune response, with an emphasis on CD8+ T cells, which are key players in anti-tumor immunity. A better understanding of the underlying mechanisms may lead to novel therapies enhancing anti-tumor immunity in the context of aging or metabolic dysfunction.
Collapse
Affiliation(s)
- Jefte M Drijvers
- Department of Immunology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s HospitalBostonUnited States
- Department of Cell Biology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s HospitalBostonUnited States
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
36
|
Altea‐Manzano P, Cuadros AM, Broadfield LA, Fendt S. Nutrient metabolism and cancer in the in vivo context: a metabolic game of give and take. EMBO Rep 2020; 21:e50635. [PMID: 32964587 PMCID: PMC7534637 DOI: 10.15252/embr.202050635] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/08/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Nutrients are indispensable resources that provide the macromolecular building blocks and energy requirements for sustaining cell growth and survival. Cancer cells require several key nutrients to fulfill their changing metabolic needs as they progress through stages of development. Moreover, both cell-intrinsic and microenvironment-influenced factors determine nutrient dependencies throughout cancer progression-for which a comprehensive characterization remains incomplete. In addition to the widely studied role of genetic alterations driving cancer metabolism, nutrient use in cancer tissue may be affected by several factors including the following: (i) diet, the primary source of bodily nutrients which influences circulating metabolite levels; (ii) tissue of origin, which can influence the tumor's reliance on specific nutrients to support cell metabolism and growth; (iii) local microenvironment, which dictates the accessibility of nutrients to tumor cells; (iv) tumor heterogeneity, which promotes metabolic plasticity and adaptation to nutrient demands; and (v) functional demand, which intensifies metabolic reprogramming to fuel the phenotypic changes required for invasion, growth, or survival. Here, we discuss the influence of these factors on nutrient metabolism and dependence during various steps of tumor development and progression.
Collapse
Affiliation(s)
- Patricia Altea‐Manzano
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Alejandro M Cuadros
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Lindsay A Broadfield
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Sarah‐Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic RegulationVIB‐KU Leuven Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| |
Collapse
|
37
|
Hernández-Cáceres MP, Cereceda K, Hernández S, Li Y, Narro C, Rivera P, Silva P, Ávalos Y, Jara C, Burgos P, Toledo-Valenzuela L, Lagos P, Cifuentes Araneda F, Perez-Leighton C, Bertocchi C, Clegg DJ, Criollo A, Tapia-Rojas C, Burgos PV, Morselli E. Palmitic acid reduces the autophagic flux in hypothalamic neurons by impairing autophagosome-lysosome fusion and endolysosomal dynamics. Mol Cell Oncol 2020; 7:1789418. [PMID: 32944643 DOI: 10.1080/23723556.2020.1789418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-fat diet (HFD)-induced obesity is associated with increased cancer risk. Long-term feeding with HFD increases the concentration of the saturated fatty acid palmitic acid (PA) in the hypothalamus. We previously showed that, in hypothalamic neuronal cells, exposure to PA inhibits the autophagic flux, which is the whole autophagic process from the synthesis of the autophagosomes, up to their lysosomal fusion and degradation. However, the mechanism by which PA impairs autophagy in hypothalamic neurons remains unknown. Here, we show that PA-mediated reduction of the autophagic flux is not caused by lysosomal dysfunction, as PA treatment does not impair lysosomal pH or the activity of cathepsin B.Instead, PA dysregulates autophagy by reducing autophagosome-lysosome fusion, which correlates with the swelling of endolysosomal compartments that show areduction in their dynamics. Finally, because lysosomes undergo constant dynamic regulation by the small Rab7 GTPase, we investigated the effect of PA treatment on its activity. Interestingly, we found PA treatment altered the activity of Rab7. Altogether, these results unveil the cellular process by which PA exposure impairs the autophagic flux. As impaired autophagy in hypothalamic neurons promotes obesity, and balanced autophagy is required to inhibit malignant transformation, this could affect tumor initiation, progression, and/or response to therapy of obesity-related cancers.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Karina Cereceda
- Translational Medicine Laboratory, Fundación Arturo López Pérez Cancer Center, Santiago, Chile.,Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Sergio Hernández
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Ying Li
- Tsinghua University-Pekin University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Carla Narro
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Patricia Rivera
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Patricio Silva
- Advanced Center for Chronic Diseases (Accdis), Universidad De Chile, Santiago, Chile.,Instituto De Investigación En Ciencias Odontológicas (ICOD), Facultad De Odontología, Universidad De Chile, Santiago, Chile
| | - Yenniffer Ávalos
- Departamento De Biología, Facultad De Química Y Biología, Universidad De Santiago De Chile, Santiago, Chile
| | - Claudia Jara
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Paulina Burgos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Flavia Cifuentes Araneda
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Claudio Perez-Leighton
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Deborah J Clegg
- College of Nursing and Health Professions, Drexel University, Philadelphia, PA, USA
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (Accdis), Universidad De Chile, Santiago, Chile.,Instituto De Investigación En Ciencias Odontológicas (ICOD), Facultad De Odontología, Universidad De Chile, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
38
|
Isidoro C. Nutraceuticals and diet in human health and disease. The special issue at a glance. J Tradit Complement Med 2020; 10:175-179. [PMID: 32670811 PMCID: PMC7340978 DOI: 10.1016/j.jtcme.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This first Special Issue collects fifteen original research and up-to-date review articles addressing the beneficial properties of herbal products, nutrient supplements, dietary regimens, and functional food for the complementary therapy of human pathologies. In these articles, renowned scholars present and discuss the curative effects and the molecular mechanisms of action of nutraceuticals, medicinal herbs, and dietary regimens that have been proven effective in the treatment of cancers, metabolic syndrome, fatty liver disease, hearth arrythmia and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ciro Isidoro
- Università Del Piemonte Orientale, Department of Health Sciences, Novara, Italy
| |
Collapse
|
39
|
Abstract
The concept that dietary changes could improve the response to cancer therapy is extremely attractive to many patients, who are highly motivated to take control of at least some aspect of their treatment. Growing insight into cancer metabolism is highlighting the importance of nutrient supply to tumor development and therapeutic response. Cancers show diverse metabolic requirements, influenced by factors such as tissue of origin, microenvironment, and genetics. Dietary modulation will therefore need to be matched to the specific characteristics of both cancers and treatment, a precision approach requiring a detailed understanding of the mechanisms that determine the metabolic vulnerabilities of each cancer.
Collapse
Affiliation(s)
- Mylène Tajan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
40
|
Antunes F, Pereira GJS, Saito RF, Buri MV, Gagliardi M, Bincoletto C, Chammas R, Fimia GM, Piacentini M, Corazzari M, Smaili SS. Effective Synergy of Sorafenib and Nutrient Shortage in Inducing Melanoma Cell Death through Energy Stress. Cells 2020; 9:E640. [PMID: 32155825 PMCID: PMC7140454 DOI: 10.3390/cells9030640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
Skin melanoma is one of the most aggressive and difficult-to-treat human malignancies, characterized by poor survival rates, thus requiring urgent novel therapeutic approaches. Although metabolic reprogramming has represented so far, a cancer hallmark, accumulating data indicate a high plasticity of cancer cells in modulating cellular metabolism to adapt to a heterogeneous and continuously changing microenvironment, suggesting a novel therapeutic approach for dietary manipulation in cancer therapy. To this aim, we exposed melanoma cells to combined nutrient-restriction/sorafenib. Results indicate that cell death was efficiently induced, with apoptosis representing the prominent feature. In contrast, autophagy was blocked in the final stage by this treatment, similarly to chloroquine, which also enhanced melanoma cell sensitization to combined treatment. Energy stress was evidenced by associated treatment with mitochondrial dysfunction and glycolysis impairment, suggesting metabolic stress determining melanoma cell death. A reduction of tumor growth after cycles of intermittent fasting together with sorafenib treatment was also observed in vivo, reinforcing that the nutrient shortage can potentiate anti-melanoma therapy. Our findings showed that the restriction of nutrients by intermittent fasting potentiates the effects of sorafenib due to the modulation of cellular metabolism, suggesting that it is possible to harness the energy of cancer cells for the treatment of melanoma.
Collapse
Affiliation(s)
- Fernanda Antunes
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| | - Gustavo J. S. Pereira
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| | - Renata F. Saito
- Center for Translational Research in Oncology, Department of Radiology and Oncology, Faculty of Medicine of the University of São Paulo and Cancer Institute of the State of São Paulo, São Paulo 04021-001, Brazil; (R.F.S.); (R.C.)
| | - Marcus V. Buri
- Department of Molecular Biology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil;
| | - Mara Gagliardi
- Department of Health Sciences (DISS), University of Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), 28100 Novara, Italy
| | - Claudia Bincoletto
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| | - Roger Chammas
- Center for Translational Research in Oncology, Department of Radiology and Oncology, Faculty of Medicine of the University of São Paulo and Cancer Institute of the State of São Paulo, São Paulo 04021-001, Brazil; (R.F.S.); (R.C.)
| | - Gian Maria Fimia
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘Lazzaro Spallanzani’, 00149 Rome, Italy; (G.M.F.); (M.P.)
- Department of Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘Lazzaro Spallanzani’, 00149 Rome, Italy; (G.M.F.); (M.P.)
- Institute of Cytology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Marco Corazzari
- Department of Health Sciences (DISS), University of Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), 28100 Novara, Italy
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Soraya Soubhi Smaili
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| |
Collapse
|
41
|
Lévesque S, Le Naour J, Pietrocola F, Paillet J, Kremer M, Castoldi F, Baracco EE, Wang Y, Vacchelli E, Stoll G, Jolly A, De La Grange P, Zitvogel L, Kroemer G, Pol JG. A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncoimmunology 2019; 8:e1657375. [PMID: 31646107 PMCID: PMC6791453 DOI: 10.1080/2162402x.2019.1657375] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/16/2023] Open
Abstract
We have recently shown that chemotherapy with immunogenic cell death (ICD)-inducing agents can be advantageously combined with fasting regimens or caloric restriction mimetics (CRMs) to achieve superior tumor growth control via a T cell-dependent mechanism. Here, we show that the blockade of the CD11b-dependent extravasation of myeloid cells blocks such a combination effect as well. Based on the characterization of the myeloid and lymphoid immune infiltrates, including the expression pattern of immune checkpoint proteins (and noting a chemotherapy-induced overexpression of programmed death-ligand 1, PD-L1, on both cancer cells and leukocytes, as well as a reduced frequency of exhausted CD8+ T cells positive for programmed cell death 1 protein, PD-1), we then evaluated the possibility to combine ICD inducers, CRMs and targeting of the PD-1/PD-L1 interaction. While fasting or CRMs failed to improve tumor growth control by PD-1 blockade, ICD inducers alone achieved a partial sensitization to treatment with a PD-1-specific antibody. However, definitive cure of most of the tumor-bearing mice was only achieved by a tritherapy combining (i) ICD inducers exemplified by mitoxantrone and oxaliplatin, (ii) CRMs exemplified by hydroxycitrate and spermidine and substitutable for by fasting, and (iii) immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 interaction. Altogether, these results point to the possibility of synergistic interactions among distinct classes of anticancer agents.
Collapse
Affiliation(s)
- Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Julie Le Naour
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Federico Pietrocola
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Juliette Paillet
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Margerie Kremer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Francesca Castoldi
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Elisa E. Baracco
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Yan Wang
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Erika Vacchelli
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Gautier Stoll
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | | | | | - Laurence Zitvogel
- Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
42
|
Montrose DC, Galluzzi L. Drugging cancer metabolism: Expectations vs. reality. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:1-26. [PMID: 31451211 DOI: 10.1016/bs.ircmb.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As compared to their normal counterparts, neoplastic cells exhibit a variety of metabolic changes that reflect not only genetic and epigenetic defects underlying malignant transformation, but also the nutritional and immunobiological conditions of the tumor microenvironment. Such alterations, including the so-called Warburg effect (an increase in glucose uptake largely feeding anabolic and antioxidant metabolism), have attracted considerable attention as potential targets for the development of novel anticancer therapeutics. However, very few drugs specifically conceived to target bioenergetic cancer metabolism are currently approved by regulatory agencies for use in humans. This reflects the elevated degree of heterogeneity and redundancy in the metabolic circuitries exploited by neoplastic cells from different tumors (even of the same type), as well as the resemblance of such metabolic pathways to those employed by highly proliferating normal cells. Here, we summarize the major metabolic alterations that accompany oncogenesis, the potential of targeting bioenergetic metabolism for cancer therapy, and the obstacles that still prevent the clinical translation of such a promising therapeutic paradigm.
Collapse
Affiliation(s)
- David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|