1
|
Fradin JJ, Charlson JA. Review of Adoptive Cellular Therapies for the Treatment of Sarcoma. Cancers (Basel) 2025; 17:1302. [PMID: 40282478 PMCID: PMC12026197 DOI: 10.3390/cancers17081302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Sarcomas are a heterogeneous group of malignancies with limited therapeutic options, particularly in the metastatic setting. Adoptive cellular therapies (ACTs), including tumor-infiltrating lymphocyte (TIL) therapy, chimeric antigen receptor (CAR) T-cell therapy, and T-cell receptor (TCR) gene-modified T-cell therapy, offer promising novel approaches for these refractory tumors. TIL-based therapy has demonstrated early efficacy in melanoma and myeloma, with ongoing trials exploring its role in sarcoma. CAR T-cell strategies targeting HER2, GD2, and B7-H3 antigens are in development, though challenges such as tumor microenvironment-mediated resistance and antigen escape remain significant. Engineered TCRs, particularly those targeting MAGE-A4 and NY-ESO-1, have shown promising clinical results in synovial sarcoma (SS) and myxoid/round cell liposarcoma (MRCLS), leading to the recent FDA approval of afamitresgene autoleucel (afami-cel) and letetresgene autoleucel (lete-cel). Despite encouraging preliminary data, ACT implementation faces barriers including limited antigen specificity, off-tumor toxicity, immune evasion, and manufacturing scalability. Future research will focus on optimizing lymphodepleting regimens, mitigating toxicity, enhancing in vivo persistence, and combining ACT with other therapeutic agents. As clinical trials expand, ACT holds the potential to revolutionize sarcoma treatment by offering durable, targeted therapies for previously refractory disease.
Collapse
Affiliation(s)
- James J. Fradin
- Division of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A. Charlson
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
2
|
Zhao F, Zhang X, Tang Y, Yang H, Pan H, Li B, An R, Geyemuri W, Yang C, Wan F, Wu J. Engineered PD-L1 co-expression in PD-1 knockout and MAGE-C2-targeting TCR-T cells augments the cytotoxic efficacy toward target cancer cells. Sci Rep 2025; 15:11894. [PMID: 40195438 PMCID: PMC11976951 DOI: 10.1038/s41598-025-92209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Expression of the PD-1 protein by tumor cells is relatively common and has been shown to exert proliferation-inhibitory effects across various tumor types, including T-cell malignancies, non-small cell lung cancer, and colon cancer. However, harnessing this tumor suppressor pathway is challenging because PD-1 activation by PD-L1 also suppresses normal T-cell function. We hypothesized that cancer antigen-specific TCR-T cells engineered to express PD-L1 could selectively activate the PD-1 pathway in tumor cells while simultaneously preventing self-inhibition by knocking out intrinsic PD-1 expression in TCR-T cells. To test this hypothesis, we co-expressed a MAGE-C2-specific recombinant TCR and the PD-L1-encoding CD274 gene in normal human T cells in which the PDCD1 gene was knocked out. These engineered TCR-T cells targeted MAGE-C2-expressing malignant cells, activating PD-1 signaling to suppress tumor proliferation while maintaining suppressed PD-1 signaling in the TCR-T cells themselves. To evaluate the tumor-suppressive potential of this approach, we compared the efficacy of PDL1-MC2-TCR-TPD1⁻ cells against subtypes lacking PD-L1 expression, PD-1 knockout, or both. Our findings demonstrated that this TCR-T model exhibited significantly enhanced cytotoxic efficacy compared to other subtypes in vitro, ex vivo, and in vivo. These results suggest that the targeted activation of intrinsic PD-1 signaling in T-cell malignancies inhibits tumor proliferation and, when combined with PD-1 inhibition in TCR-T cells, synergistically enhances their cancer-suppressing efficacy. This study provides a foundation for novel cancer treatment strategies.
Collapse
MESH Headings
- Humans
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/immunology
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Cell Line, Tumor
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Mice
- Neoplasm Proteins/immunology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Proliferation
- Gene Knockout Techniques
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms/pathology
- Neoplasms/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Fangxin Zhao
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xuan Zhang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ying Tang
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hongxin Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Haiting Pan
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Beibei Li
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Riwen An
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wu Geyemuri
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chao Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Fang Wan
- School of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jianqiang Wu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China.
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
3
|
Yang M, Zhong P, Jiao H, Wei P. Features of HLA-A*02 in Identifying Eligible Patients for Tecelra TCR-T Therapy. Cancer Sci 2025. [PMID: 40083079 DOI: 10.1111/cas.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
This study investigates the molecular mechanisms behind HLA-A*02 subtypes' differential responses to Tecelra, a TCR-engineered T-cell therapy targeting MAGE-A4. Using computational tools, the study identifies specific HLA-A*02 alleles, such as HLA-A*02:07, HLA-A*02:05, and others, with low affinity for the GV10 peptide or a risk of inducing alloreactivity. These findings provide insights into patient selection for Tecelra therapy, suggesting exclusion criteria for certain HLA-A*02 subtypes to optimize treatment efficacy and minimize adverse reactions.
Collapse
Affiliation(s)
- Min Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Peiluan Zhong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Huifang Jiao
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Knafler G, Ho AL, Moore KN, Pollack SM, Navenot JM, Sanderson JP. Melanoma-associated antigen A4: A cancer/testis antigen as a target for adoptive T-cell receptor T-cell therapy. Cancer Treat Rev 2025; 134:102891. [PMID: 39970827 DOI: 10.1016/j.ctrv.2025.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/21/2025]
Abstract
T-cell receptor (TCR) T-cell therapies are adoptive cell therapies in which patient cells are engineered to express TCRs targeting specific cancer antigens and infused back into the patient. Since TCR recognition depends on antigen presentation by the human leukocyte antigen system, TCRs can respond to intracellular antigens. Cancer/testis antigens (CTAs) are a large family of proteins, many of which are only expressed in cancerous tissue and immune-privileged germline sites. Melanoma-associated antigen A4 (MAGE-A4) is an intracellular CTA expressed in healthy testis and placenta, and in a range of cancers, including esophageal, head and neck, gastric, ovarian, colorectal, lung, endometrial, cervical, bladder, breast and prostate cancers; soft tissue sarcomas; urothelial and hepatocellular carcinomas; osteosarcoma; and melanoma. This expression pattern, along with the immunogenicity and potential role in tumorigenesis of MAGE-A4 make it a prime target for TCR T-cell therapy. We outline the preclinical and clinical development of TCR T-cell therapies targeting CTAs for treatment of solid tumors, highlighting the need for extensive preclinical characterization of putative off-target, and potential on-target but off-tumor, effects. We identified ten clinical trials assessing TCR T-cell therapies targeting MAGE-A4. Overall, manageable safety profiles and signals of efficacy have been observed, especially in patients with advanced synovial sarcoma, myxoid/round cell liposarcoma, ovarian, head and neck, and urothelial cancers, with one TCR T-cell therapy approved by the US Food and Drug Administration in August 2024. We also review the limitations, and strategies to enhance efficacy and improve safety, of these therapies, and summarize related immunotherapies targeting MAGE-A4.
Collapse
Affiliation(s)
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, and Weill Medical College of Cornell University New York NY USA
| | - Kathleen N Moore
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center Oklahoma City OK USA
| | - Seth M Pollack
- Lurie Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine Chicago IL USA
| | | | | |
Collapse
|
5
|
Kar S, Verma D, Mehrotra S, Prajapati VK. Reconfiguring the immune system to target cancer: Therapies based on T cells, cytokines, and vaccines. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:77-150. [PMID: 39978976 DOI: 10.1016/bs.apcsb.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Over the years, extensive research has been dedicated to performing in-depth analysis of cancer to uncover the intricate details of its nature - including the types of cancer, causative agents, stimulators of disease progression, factors contributing to poor prognosis, and efficient therapies to restrict the metastatic aggressiveness. This chapter highlights the mechanisms through which different arms of the host immune system - namely cytokines, lymphocytes, antigen-presenting cells (APCs) -can be mobilized to eradicate cancer. Most malignant tumors are either poorly immunogenic, or are harbored in a highly immuno-suppressive microenvironment. This is why reinforcing the host's anti-tumor defenses, through infusion of pro-inflammatory cytokines, tumor antigen-loaded APCs, and anti-tumor cytotoxic cells has emerged as a viable treatment option against cancer. The chapter also highlights the ongoing preclinical and clinical studies in different malignancies and the outcome of various therapies. Although these methods are not foolproof, and antigen escape variants can still evade or develop resistance to customized therapies, they achieve disease stabilization in several cases when conventional treatments fail. In many instances, combination therapies involving cytokines, T cells, and vaccinations prove more effective than monotherapies. The limitations of the current therapies are also discussed, along with ongoing modifications aimed at improving efficacy.
Collapse
Affiliation(s)
- Sramona Kar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Divya Verma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
6
|
Chandora K, Chandora A, Saeed A, Cavalcante L. Adoptive T Cell Therapy Targeting MAGE-A4. Cancers (Basel) 2025; 17:413. [PMID: 39941782 PMCID: PMC11815873 DOI: 10.3390/cancers17030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
MAGE A4 (Melanoma Antigen Gene A4) is a cancer testis antigen (CTA) that is expressed normally in germline cells (testis/embryonic tissues) but absent in somatic cells. The MAGE A4 CTA is expressed in a variety of tumor types, like synovial sarcoma, ovarian cancer and non-small cell lung cancer. Having its expression profile limited to germline cells has made MAGE A4 a sought-after immunotherapeutic target in certain malignancies. In this review, we focus on MAGE-A4's function and expression, current clinical trials involving targeted immunotherapy approaches, and challenges and opportunities facing MAGE-A4's targeted therapeutics.
Collapse
Affiliation(s)
- Kapil Chandora
- Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA 30310, USA; (K.C.)
| | - Akshay Chandora
- Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA 30310, USA; (K.C.)
| | - Anwaar Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Ludimila Cavalcante
- Division of Hematology and Oncology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| |
Collapse
|
7
|
Bürdek M, Prinz PU, Mutze K, Tippmer S, Geiger C, Longinotti G, Schendel DJ. Characterization of a 3S PRAME VLD-Specific T Cell Receptor and Its Use in Investigational Medicinal Products for TCR-T Therapy of Patients with Myeloid Malignancies. Cancers (Basel) 2025; 17:242. [PMID: 39858024 PMCID: PMC11763942 DOI: 10.3390/cancers17020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES MDG1011 is an autologous TCR-T therapy developed as a treatment option for patients with myeloid malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). It is specific for the target antigen PReferentially expressed Antigen in MElanoma (PRAME). The recombinant TCR used in MDG1011 recognizes PRAME100-108 VLD-peptide presented by HLA-A*02:01-encoded surface molecules. METHODS Two preclinical batches of MDG1011, produced from enriched CD8+ T cells of healthy donors, underwent rigorous evaluation of on-target and off-target recognition of tumor cells and test cells representing healthy tissues. MDG1011 investigational medicinal products (IMPs) were produced for 13 patients. VLD-TCR surface expression was assessed using dual-marker flow cytometry using TCR V-beta-specific antibody and VLD/HLA-A2-specific multimer. Functionality was assessed by interferon-gamma (IFN-γ) secretion and cell-mediated cytotoxicity of target cells. RESULTS Preclinical MDG1011 batches displayed strong VLD-TCR expression, cytokine secretion, and cytotoxicity after antigen-specific activation, while showing no signals of on-target/off-tumor or off-target recognition. All IMPs had good VLD-TCR expression as well as functionality after activation by multiple target cells. CONCLUSIONS Preclinical studies demonstrated that MDG1011 displayed key 3S attributes of high specificity, sensitivity, and safety required for regulatory approval of a first-in-human (FIH) clinical study of patients with myeloid malignancies (CD-TCR-001: ClinicalTrials.gov Identifier: NCT03503968). MDG1011 IMP manufacturing was successful at 92%, even including heavily pretreated elderly patients with very advanced disease. The IMPs applied in nine patients all displayed antigen-specific functionality. Elsewhere, clinical study results for MDG1011 showed no dose-limiting toxicity and signs of biological and/or clinical activity in several patients.
Collapse
Affiliation(s)
- Maja Bürdek
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Petra U. Prinz
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Kathrin Mutze
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Stefanie Tippmer
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Christiane Geiger
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Giulia Longinotti
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Dolores J. Schendel
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
- Medigene AG, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Householder KD, Xiang X, Jude KM, Deng A, Obenaus M, Wilson SC, Chen X, Wang N, Garcia KC. De novo design and structure of a peptide-centric TCR mimic binding module. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628822. [PMID: 39763827 PMCID: PMC11702606 DOI: 10.1101/2024.12.16.628822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
T cell receptor (TCR) mimics offer a promising platform for tumor-specific targeting of peptide-MHC in cancer immunotherapy. Here, we designed a de novo α-helical TCR mimic (TCRm) specific for the NY-ESO-1 peptide presented by HLA-A*02, achieving high on-target specificity with nanomolar affinity (Kd = 9.5 nM). The structure of the TCRm/pMHC complex at 2.05 Å resolution revealed a rigid TCR-like docking mode with an unusual degree of focus on the up-facing NY-ESO-1 side chains, suggesting the potential for reduced off-target reactivity. Indeed, a structure-informed in silico screen of 14,363 HLA-A*02 peptides correctly predicted two off-target peptides, yet our TCRm maintained a wide therapeutic window as a T cell engager. These results represent a path for precision targeting of tumor antigens with peptide-focused α-helical TCR mimics.
Collapse
Affiliation(s)
- Karsten D. Householder
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
- Program in Immunology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Xinyu Xiang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Kevin M. Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Arthur Deng
- Department of Computer Science, Stanford University; Stanford, CA 94305
| | - Matthias Obenaus
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Steven C. Wilson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Xiaojing Chen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Nan Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA 94305
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
- Department of Structural Biology, Stanford University School of Medicine; Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA 94305
| |
Collapse
|
9
|
Hu AY, Puig-Saus C. T-switch-ing TCR specificity. Immunity 2024; 57:2717-2719. [PMID: 39662088 DOI: 10.1016/j.immuni.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
Central tolerance restricts T cells that target self-antigens. In this issue of Immunity, Abdelfattah et al.1 describe a method to generate self-reactive T cell receptors (TCRs) by directed evolution of non-autoreactive TCRs to recognize self-antigen peptides and demonstrate potential for T cells engineered with such receptors in immunotherapy.
Collapse
Affiliation(s)
- Andrew Y Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA; Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Cristina Puig-Saus
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics at the University of California Los Angeles (UCLA), Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center-UCLA, Los Angeles, CA, USA; Broad Stem Cell Research Center-UCLA, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Karuppiah V, Sangani D, Whaley L, Pengelly R, Uluocak P, Carreira RJ, Hock M, Cristina PD, Bartasun P, Dobrinic P, Smith N, Barnbrook K, Robinson RA, Harper S. Broadening alloselectivity of T cell receptors by structure guided engineering. Sci Rep 2024; 14:26851. [PMID: 39500929 PMCID: PMC11538495 DOI: 10.1038/s41598-024-75140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Specificity of a T cell receptor (TCR) is determined by the combination of its interactions to the peptide and human leukocyte antigen (HLA). TCR-based therapeutic molecules have to date targeted a single peptide in the context of a single HLA allele. Some peptides are presented on multiple HLA alleles, and by engineering TCRs for specific recognition of more than one allele, there is potential to expand the targetable patient population. Here, as a proof of concept, we studied two TCRs, S2 and S8, binding to the PRAME peptide antigen (ELFSYLIEK) presented by HLA alleles HLA-A*03:01 and HLA-A*11:01. By structure-guided affinity maturation targeting a specific residue on the HLA surface, we show that the affinity of the TCR can be modulated for different alleles. Using a combination of affinity maturation and functional T cell assay, we demonstrate that an engineered TCR can target the same peptide on two different HLA alleles with similar affinity and potency. This work highlights the importance of engineering alloselectivity for designing TCR based therapeutics suitable for differing global populations.
Collapse
Affiliation(s)
| | - Dhaval Sangani
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Lorraine Whaley
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Robert Pengelly
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Pelin Uluocak
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Miriam Hock
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Paulina Bartasun
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Paula Dobrinic
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Nicola Smith
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Keir Barnbrook
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Ross A Robinson
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Stephen Harper
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK.
| |
Collapse
|
11
|
Keam SJ. Afamitresgene Autoleucel: First Approval. Mol Diagn Ther 2024; 28:861-866. [PMID: 39404764 DOI: 10.1007/s40291-024-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/27/2024]
Abstract
Afamitresgene autoleucel (TECELRA®), a genetically modified human leukocyte antigen (HLA)-restricted autologous melanoma-associated antigen 4 (MAGE-A4)-directed T cell immunotherapy, is being developed by Adaptimmune Therapeutics plc, for the treatment of solid tumours expressing the MAGE-A4 antigen. In August 2024, afamitresgene autoleucel was approved in the USA under accelerated approval for the treatment of adults with unresectable or metastatic synovial sarcoma who have received prior chemotherapy, are HLA-A*02:01P, -A*02:02P, -A*02:03P or -A*02:06P positive and whose tumour expresses the MAGE-A4 antigen as determined by FDA-approved or cleared companion diagnostic devices. This article summarizes the milestones in the development of afamitresgene autoleucel leading to this first approval for the treatment of advanced synovial sarcoma.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
12
|
Neve-Oz Y, Sherman E, Raveh B. Bayesian metamodeling of early T-cell antigen receptor signaling accounts for its nanoscale activation patterns. Front Immunol 2024; 15:1412221. [PMID: 39524449 PMCID: PMC11543436 DOI: 10.3389/fimmu.2024.1412221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
T cells respond swiftly, specifically, sensitively, and robustly to cognate antigens presented on the surface of antigen presenting cells. Existing microscopic models capture various aspects of early T-cell antigen receptor (TCR) signaling at the molecular level. However, none of these models account for the totality of the data, impeding our understanding of early T-cell activation. Here, we study early TCR signaling using Bayesian metamodeling, an approach for systematically integrating multiple partial models into a metamodel of a complex system. We inform the partial models using multiple published super-resolution microscopy datasets. Collectively, these datasets describe the spatiotemporal organization, activity, interactions, and dynamics of TCR, CD45 and Lck signaling molecules in the early-forming immune synapse, and the concurrent membrane alterations. The resulting metamodel accounts for a distinct nanoscale dynamic pattern that could not be accounted for by any of the partial models on their own: a ring of phosphorylated TCR molecules, enriched at the periphery of early T cell contacts and confined by a proximal ring of CD45 molecules. The metamodel suggests this pattern results from limited activity range for the Lck molecules, acting as signaling messengers between kinetically-segregated TCR and CD45 molecules. We assessed the potential effect of Lck activity range on TCR phosphorylation and robust T cell activation for various pMHC:TCR association strengths, in the specific setting of an initial contact. We also inspected the impact of localized Lck inhibition via Csk recruitment to pTCRs, and that of splicing isoforms of CD45 on kinetic segregation. Due to the inherent scalability and adaptability of integrating independent partial models via Bayesian metamodeling, this approach can elucidate additional aspects of cell signaling and decision making.
Collapse
Affiliation(s)
- Yair Neve-Oz
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Barak Raveh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Li S, Melchiore F, Kantari-Mimoun C, Mouton A, Knockaert S, Philippon W, Chanrion B, Bourgeois C, Lefebvre C, Elhmouzi-Younes J, Blanc V, Ramon Olayo F, Laugel B. In silico and pharmacological evaluation of GPR65 as a cancer immunotherapy target regulating T-cell functions. Front Immunol 2024; 15:1483258. [PMID: 39483470 PMCID: PMC11525786 DOI: 10.3389/fimmu.2024.1483258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
The success of cancer immunotherapies such as immune checkpoint inhibitors, CAR T-cells and immune cell engagers have provided clinicians with tools to bypass some of the limitations of cancer immunity. However, numerous tumour factors curtail the immune response against cancer and limit the efficiency of immuno-oncology (IO) therapies. Acidification of the extra-cellular tumour environment consecutive to aberrant cancer cell metabolism is a well-known promoter of oncogenic processes that also acts as an immune regulator. Yet, the suppressive mechanisms of low extra-cellular pH on anti-cancer immunity remain poorly understood. Recent reports have suggested that GPR65, a Gαs-coupled proton-sensing GPCR broadly expressed in the immune system, may act as an immune suppressant detrimental to anti-tumour immunity. So far, the immuno-regulatory properties of GPR65 in acidic milieux have mostly been documented in macrophages and myeloid cells. Our computational evaluation of GPR65's transcriptomic expression profile and potential as an IO target using public datasets prompted us to further investigate its functions in human T-cells. To this end, we identified and validated GPR65 small molecule inhibitors active in in vitro cellular assays and we showed that GPR65 inhibition promoted the killing capacity of antigen-specific human T-cells. Our results broaden the scope of GPR65 as an IO target by suggesting that its inhibition may enhance T-cell anti-tumour activity and provide useful pharmacological tools to further investigate the therapeutic potential of GPR65 inhibition.
Collapse
Affiliation(s)
- Shamin Li
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | - Fabien Melchiore
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | | | - Aurore Mouton
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | - Samantha Knockaert
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | - Wendy Philippon
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | - Benjamin Chanrion
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | | | - Céline Lefebvre
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | | | - Véronique Blanc
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | | | - Bruno Laugel
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Asano Y, Veatch J, McAfee M, Bakhtiari J, Lee B, Martin L, Zhang S, Mazziotta F, Paulson KG, Schmitt TM, Munkbhat A, Young C, Seaton B, Hunter D, Horst N, Lindberg M, Miller N, Stone M, Bielas J, Koelle D, Voillet V, Gottardo R, Gooley T, Oda S, Greenberg PD, Nghiem P, Chapuis AG. Tumor Regression Following Engineered Polyomavirus-Specific T Cell Therapy in Immune Checkpoint Inhibitor-Refractory Merkel Cell Carcinoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.01.24309780. [PMID: 39006423 PMCID: PMC11245074 DOI: 10.1101/2024.07.01.24309780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although immune check-point inhibitors (CPIs) revolutionized treatment of Merkel cell carcinoma (MCC), patients with CPI-refractory MCC lack effective therapy. More than 80% of MCC express T-antigens encoded by Merkel cell polyomavirus, which is an ideal target for T-cell receptor (TCR)-based immunotherapy. However, MCC often repress HLA expression, requiring additional strategies to reverse the downregulation for allowing T cells to recognize their targets. We identified TCRMCC1 that recognizes a T-antigen epitope restricted to human leukocyte antigen (HLA)-A*02:01. Seven CPI-refractory metastatic MCC patients received CD4 and CD8 T cells transduced with TCRMCC1 (TTCR-MCC1) preceded either by lymphodepleting chemotherapy or an HLA-upregulating regimen (single-fraction radiation therapy (SFRT) or systemic interferon gamma (IFNγ)) with concurrent avelumab. Two patients who received preceding SFRT and IFNγ respectively experienced tumor regression. One experienced regression of 13/14 subcutaneous lesions with 1 'escape' lesion and the other had delayed tumor regression in all lesions after initial progression. Although TTCR-MCC1 cells with an activated phenotype infiltrated tumors including the 'escape' lesion, all progressing lesions transcriptionally lacked HLA expression. While SFRT/IFNγ did not immediately upregulate tumor HLA expression, a secondary endogenous antigen-specific T cell infiltrate was detected in one of the regressing tumors and associated with HLA upregulation, indicating in situ immune responses have the potential to reverse HLA downregulation. Indeed, supplying a strong co-stimulatory signal via a CD200R-CD28 switch receptor allows TTCR-MCC1 cells to control HLA-downregulated MCC cells in a xenograft mouse model, upregulating HLA expression. Our results demonstrate the potential of TCR gene therapy for metastatic MCC and propose a next strategy for overcoming epigenetic downregulation of HLA in MCC.
Collapse
Affiliation(s)
- Yuta Asano
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Joshua Veatch
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | | | | | - Bo Lee
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | - Nick Horst
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Matt Stone
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jason Bielas
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - David Koelle
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| | | | - Raphael Gottardo
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Ted Gooley
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shannon Oda
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Philip D. Greenberg
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Paul Nghiem
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Aude G. Chapuis
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Wang T, Navenot JM, Rafail S, Kurtis C, Carroll M, Van Kerckhoven M, Van Rossom S, Schats K, Avraam K, Broad R, Howe K, Liddle A, Clayton A, Wang R, Quinn L, Sanderson JP, McAlpine C, Carozza C, Pimpinella E, Hsu S, Brophy F, Elefant E, Bayer P, Williams D, Butler MO, Clarke JM, Gainor JF, Govindan R, Moreno V, Johnson M, Tu J, Hong DS, Blumenschein GR. Identifying MAGE-A4-positive tumors for TCR T cell therapies in HLA-A∗02-eligible patients. Mol Ther Methods Clin Dev 2024; 32:101265. [PMID: 38872830 PMCID: PMC11170170 DOI: 10.1016/j.omtm.2024.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
T cell receptor (TCR) T cell therapies target tumor antigens in a human leukocyte antigen (HLA)-restricted manner. Biomarker-defined therapies require validation of assays suitable for determination of patient eligibility. For clinical trials evaluating TCR T cell therapies targeting melanoma-associated antigen A4 (MAGE-A4), screening in studies NCT02636855 and NCT04044768 assesses patient eligibility based on: (1) high-resolution HLA typing and (2) tumor MAGE-A4 testing via an immunohistochemical assay in HLA-eligible patients. The HLA/MAGE-A4 assays validation, biomarker data, and their relationship to covariates (demographics, cancer type, histopathology, tissue location) are reported here. HLA-A∗02 eligibility was 44.8% (2,959/6,606) in patients from 43 sites across North America and Europe. While HLA-A∗02:01 was the most frequent HLA-A∗02 allele, others (A∗02:02, A∗02:03, A∗02:06) considerably increased HLA eligibility in Hispanic, Black, and Asian populations. Overall, MAGE-A4 prevalence based on clinical trial enrollment was 26% (447/1,750) across 10 solid tumor types, and was highest in synovial sarcoma (70%) and lowest in gastric cancer (9%). The covariates were generally not associated with MAGE-A4 expression, except for patient age in ovarian cancer and histology in non-small cell lung cancer. This report shows the eligibility rate from biomarker screening for TCR T cell therapies and provides epidemiological data for future clinical development of MAGE-A4-targeted therapies.
Collapse
Affiliation(s)
- Tianjiao Wang
- Clinical Biomarkers & Companion Diagnostics, Adaptimmune, Philadelphia, PA, USA
| | - Jean-Marc Navenot
- Clinical Biomarkers & Companion Diagnostics, Adaptimmune, Philadelphia, PA, USA
| | - Stavros Rafail
- Biomarker Discovery and Platform, Adaptimmune, Philadelphia, PA, USA
| | - Cynthia Kurtis
- Clinical Biomarkers & Companion Diagnostics, Adaptimmune, Philadelphia, PA, USA
| | - Mark Carroll
- Information Management Clinical Systems, Adaptimmune, Philadelphia, PA, USA
| | | | | | - Kelly Schats
- Assay Development Histopathology, CellCarta, Antwerpen, Belgium
| | | | - Robyn Broad
- Translational Sciences, Adaptimmune, Abingdon, Oxfordshire, UK
| | - Karen Howe
- Target Validation, Adaptimmune, Abingdon, Oxfordshire, UK
| | - Ashley Liddle
- Translational Sciences, Adaptimmune, Abingdon, Oxfordshire, UK
| | - Amber Clayton
- Target Validation, Adaptimmune, Abingdon, Oxfordshire, UK
| | - Ruoxi Wang
- Information Management Clinical Systems, Adaptimmune, Philadelphia, PA, USA
| | - Laura Quinn
- Preclinical Research, Adaptimmune, Abingdon, Oxfordshire, UK
| | | | - Cheryl McAlpine
- Translational Sciences, Adaptimmune, Abingdon, Oxfordshire, UK
| | - Carly Carozza
- Histocompatibility Laboratory Services, American Red Cross, Philadelphia, PA, USA
| | - Eric Pimpinella
- Histocompatibility Laboratory Services, American Red Cross, Philadelphia, PA, USA
| | - Susan Hsu
- Histocompatibility Laboratory Services, American Red Cross, Philadelphia, PA, USA
| | | | - Erica Elefant
- Clinical Science, Adaptimmune, Philadelphia, PA, USA
| | - Paige Bayer
- Clinical Science, Adaptimmune, Philadelphia, PA, USA
| | | | - Marcus O. Butler
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Departments of Immunology and Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Justin F. Gainor
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ramaswamy Govindan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Victor Moreno
- Oncology, START Madrid FJD, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Melissa Johnson
- Lung Cancer Research and Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Janet Tu
- Department of General Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George R. Blumenschein
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Mühlgrabner V, Plach A, Holler J, Leitner J, Steinberger P, Dupré L, Göhring J, Huppa JB. Gauging antigen recognition by human primary T-cells featuring orthotopically exchanged TCRs of choice. Methods Cell Biol 2024; 193:127-154. [PMID: 39919839 DOI: 10.1016/bs.mcb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Understanding human T-cell antigen recognition in health and disease is becoming increasingly instrumental for monitoring T-cell responses to pathogen challenge and for the rational design of T-cell-based therapies targeting cancer, autoimmunity and organ transplant rejection. Here we showcase a quantitative imaging platform which is based on the use of planar glass-supported lipid bilayers (SLBs). The latter are functionalized with antigen (peptide-loaded HLA) as adhesion and costimulatory molecules (ICAM-1, B7-1) to serve as surrogate antigen presenting cell for antigen recognition by T-cells, which are equipped with T-cell antigen receptors (TCRs) sequenced from antigen-specific patient T-cells. We outline in detail, how the experimental use of SLBs supports recoding and analysis of synaptic antigen engagement and calcium signaling at the single cell level in response to user-defined antigen densities for quantitative comparison.
Collapse
Affiliation(s)
- Vanessa Mühlgrabner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Angelika Plach
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Johannes Holler
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Judith Leitner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Immunology, Vienna, Austria
| | - Peter Steinberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Immunology, Vienna, Austria
| | - Loïc Dupré
- Medical University of Vienna, University Clinics for Dermatology, Vienna, Austria
| | - Janett Göhring
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria.
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria.
| |
Collapse
|
17
|
D'Angelo SP, Araujo DM, Abdul Razak AR, Agulnik M, Attia S, Blay JY, Carrasco Garcia I, Charlson JA, Choy E, Demetri GD, Druta M, Forcade E, Ganjoo KN, Glod J, Keedy VL, Le Cesne A, Liebner DA, Moreno V, Pollack SM, Schuetze SM, Schwartz GK, Strauss SJ, Tap WD, Thistlethwaite F, Valverde Morales CM, Wagner MJ, Wilky BA, McAlpine C, Hudson L, Navenot JM, Wang T, Bai J, Rafail S, Wang R, Sun A, Fernandes L, Van Winkle E, Elefant E, Lunt C, Norry E, Williams D, Biswas S, Van Tine BA. Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma (SPEARHEAD-1): an international, open-label, phase 2 trial. Lancet 2024; 403:1460-1471. [PMID: 38554725 PMCID: PMC11419333 DOI: 10.1016/s0140-6736(24)00319-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Afamitresgene autoleucel (afami-cel) showed acceptable safety and promising efficacy in a phase 1 trial (NCT03132922). The aim of this study was to further evaluate the efficacy of afami-cel for the treatment of patients with HLA-A*02 and MAGE-A4-expressing advanced synovial sarcoma or myxoid round cell liposarcoma. METHODS SPEARHEAD-1 was an open-label, non-randomised, phase 2 trial done across 23 sites in Canada, the USA, and Europe. The trial included three cohorts, of which the main investigational cohort (cohort 1) is reported here. Cohort 1 included patients with HLA-A*02, aged 16-75 years, with metastatic or unresectable synovial sarcoma or myxoid round cell liposarcoma (confirmed by cytogenetics) expressing MAGE-A4, and who had received at least one previous line of anthracycline-containing or ifosfamide-containing chemotherapy. Patients received a single intravenous dose of afami-cel (transduced dose range 1·0 × 109-10·0 × 109 T cells) after lymphodepletion. The primary endpoint was overall response rate in cohort 1, assessed by a masked independent review committee using Response Evaluation Criteria in Solid Tumours (version 1.1) in the modified intention-to-treat population (all patients who received afami-cel). Adverse events, including those of special interest (cytokine release syndrome, prolonged cytopenia, and neurotoxicity), were monitored and are reported for the modified intention-to-treat population. This trial is registered at ClinicalTrials.gov, NCT04044768; recruitment is closed and follow-up is ongoing for cohorts 1 and 2, and recruitment is open for cohort 3. FINDINGS Between Dec 17, 2019, and July 27, 2021, 52 patients with cytogenetically confirmed synovial sarcoma (n=44) and myxoid round cell liposarcoma (n=8) were enrolled and received afami-cel in cohort 1. Patients were heavily pre-treated (median three [IQR two to four] previous lines of systemic therapy). Median follow-up time was 32·6 months (IQR 29·4-36·1). Overall response rate was 37% (19 of 52; 95% CI 24-51) overall, 39% (17 of 44; 24-55) for patients with synovial sarcoma, and 25% (two of eight; 3-65) for patients with myxoid round cell liposarcoma. Cytokine release syndrome occurred in 37 (71%) of 52 of patients (one grade 3 event). Cytopenias were the most common grade 3 or worse adverse events (lymphopenia in 50 [96%], neutropenia 44 [85%], leukopenia 42 [81%] of 52 patients). No treatment-related deaths occurred. INTERPRETATION Afami-cel treatment resulted in durable responses in heavily pre-treated patients with HLA-A*02 and MAGE-A4-expressing synovial sarcoma. This study shows that T-cell receptor therapy can be used to effectively target solid tumours and provides rationale to expand this approach to other solid malignancies. FUNDING Adaptimmune.
Collapse
Affiliation(s)
- Sandra P D'Angelo
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| | - Dejka M Araujo
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | - Edwin Choy
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - George D Demetri
- Dana Farber Cancer Institute, Boston, MA, USA; Ludwig Center at Harvard Medical School, Boston, MA, USA
| | | | - Edouard Forcade
- Centre Hospitalier Universitaire de Bordeaux-Hôpital Haut-Lévêque, Bordeaux, France
| | - Kristen N Ganjoo
- Stanford Cancer Institute, Stanford Medicine at Stanford University, Palo Alto, CA, USA
| | - John Glod
- Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Vicki L Keedy
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Axel Le Cesne
- Institut Gustave Roussy Cancer Center-DITEP, Villejuif, France
| | - David A Liebner
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundación Jiménez Diaz, Madrid, Spain
| | | | | | - Gary K Schwartz
- Columbia University Vagelos School of Medicine, New York, NY, USA
| | - Sandra J Strauss
- UCL Cancer Institute, University College London NHS Foundation Trust, London, UK
| | - William D Tap
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Fiona Thistlethwaite
- The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester, UK
| | | | - Michael J Wagner
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Breelyn A Wilky
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | | | - Jane Bai
- Adaptimmune, Philadelphia, PA, USA
| | | | | | - Amy Sun
- Adaptimmune, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shao W, Yao Y, Yang L, Li X, Ge T, Zheng Y, Zhu Q, Ge S, Gu X, Jia R, Song X, Zhuang A. Novel insights into TCR-T cell therapy in solid neoplasms: optimizing adoptive immunotherapy. Exp Hematol Oncol 2024; 13:37. [PMID: 38570883 PMCID: PMC10988985 DOI: 10.1186/s40164-024-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiaoran Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Qiuyi Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
19
|
Griffith-Jones S, Álvarez L, Mukhopadhyay U, Gharbi S, Rettel M, Adams M, Hennig J, Bhogaraju S. Structural basis for RAD18 regulation by MAGEA4 and its implications for RING ubiquitin ligase binding by MAGE family proteins. EMBO J 2024; 43:1273-1300. [PMID: 38448672 PMCID: PMC10987633 DOI: 10.1038/s44318-024-00058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.
Collapse
Affiliation(s)
| | - Lucía Álvarez
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Urbi Mukhopadhyay
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Sarah Gharbi
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Mandy Rettel
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Michael Adams
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Janosch Hennig
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Sagar Bhogaraju
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
20
|
Verma S, Swain D, Kushwaha PP, Brahmbhatt S, Gupta K, Sundi D, Gupta S. Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer. Cancers (Basel) 2024; 16:246. [PMID: 38254738 PMCID: PMC10813664 DOI: 10.3390/cancers16020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The Melanoma Antigen Gene (MAGE) is a large family of highly conserved proteins that share a common MAGE homology domain. Interestingly, many MAGE family members exhibit restricted expression in reproductive tissues but are abnormally expressed in various human malignancies, including bladder cancer, which is a common urinary malignancy associated with high morbidity and mortality rates. The recent literature suggests a more prominent role for MAGEA family members in driving bladder tumorigenesis. This review highlights the role of MAGEA proteins, the potential for them to serve as diagnostic or prognostic biomarker(s), and as therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Diya Swain
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Prem Prakash Kushwaha
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Smit Brahmbhatt
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Karishma Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, James Cancer Hospital & Wexner Medical Center, Columbus, OH 43210, USA;
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Yang D, Duan Z, Yuan P, Ding C, Dai X, Chen G, Wu D. How does TCR-T cell therapy exhibit a superior anti-tumor efficacy. Biochem Biophys Res Commun 2023; 687:149209. [PMID: 37944471 DOI: 10.1016/j.bbrc.2023.149209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
TCR-engineered T cells have achieved great progress in solid tumor therapy, some of which have been applicated in clinical trials. Deep knowledge about the current progress of TCR-T in tumor therapy would be beneficial to understand the direction. Here, we classify tumor antigens into tumor-associated antigens, tumor-specific antigens, tumor antigens expressed by oncogenic viruses, and tumor antigens caused by abnormal protein modification; Then we detail the TCR-T cell therapy effects targeting those tumor antigens in clinical or preclinical trials, and propose that neoantigen specific TCR-T cell therapy is expected to be a promising approach for solid tumors; Furthermore, we summarize the optimization strategies, such as tumor microenvironment, TCR pairing and affinity, to improve the therapeutic effect of TCR-T. Overall, this review provides inspiration for the antigen selection and therapy strategies of TCR-T in the future.
Collapse
Affiliation(s)
- Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengming Ding
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
22
|
Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov 2023; 22:996-1017. [PMID: 37891435 PMCID: PMC10947610 DOI: 10.1038/s41573-023-00809-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA.
| | - Smita S Chandran
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, ID, USA
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, ID, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Achilles Therapeutics, London, UK
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
23
|
Hikmet F, Rassy M, Backman M, Méar L, Mattsson JSM, Djureinovic D, Botling J, Brunnström H, Micke P, Lindskog C. Expression of cancer-testis antigens in the immune microenvironment of non-small cell lung cancer. Mol Oncol 2023; 17:2603-2617. [PMID: 37341056 DOI: 10.1002/1878-0261.13474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023] Open
Abstract
The antigenic repertoire of tumors is critical for successful anti-cancer immune response and the efficacy of immunotherapy. Cancer-testis antigens (CTAs) are targets of humoral and cellular immune reactions. We aimed to characterize CTA expression in non-small cell lung cancer (NSCLC) in the context of the immune microenvironment. Of 90 CTAs validated by RNA sequencing, eight CTAs (DPEP3, EZHIP, MAGEA4, MAGEB2, MAGEC2, PAGE1, PRAME, and TKTL1) were selected for immunohistochemical profiling in cancer tissues from 328 NSCLC patients. CTA expression was compared with immune cell densities in the tumor environment and with genomic, transcriptomic, and clinical data. Most NSCLC cases (79%) expressed at least one of the analyzed CTAs, and CTA protein expression correlated generally with RNA expression. CTA profiles were associated with immune profiles: high MAGEA4 expression was related to M2 macrophages (CD163) and regulatory T cells (FOXP3), low MAGEA4 was associated with T cells (CD3), and high EZHIP was associated with plasma cell infiltration (adj. P-value < 0.05). None of the CTAs correlated with clinical outcomes. The current study provides a comprehensive evaluation of CTAs and suggests that their association with immune cells may indicate in situ immunogenic effects. The findings support the rationale to harness CTAs as targets for immunotherapy.
Collapse
Affiliation(s)
- Feria Hikmet
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | - Marc Rassy
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | - Max Backman
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | - Loren Méar
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | | | - Dijana Djureinovic
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| |
Collapse
|
24
|
Kwok DW, Stevers NO, Nejo T, Chen LH, Etxeberria I, Jung J, Okada K, Cove MC, Lakshmanachetty S, Gallus M, Barpanda A, Hong C, Chan GKL, Wu SH, Ramos E, Yamamichi A, Liu J, Watchmaker P, Ogino H, Saijo A, Du A, Grishanina N, Woo J, Diaz A, Chang SM, Phillips JJ, Wiita AP, Klebanoff CA, Costello JF, Okada H. Tumor-wide RNA splicing aberrations generate immunogenic public neoantigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563178. [PMID: 37904942 PMCID: PMC10614978 DOI: 10.1101/2023.10.19.563178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
T-cell-mediated immunotherapies are limited by the extent to which cancer-specific antigens are homogenously expressed throughout a tumor. We reasoned that recurrent splicing aberrations in cancer represent a potential source of tumor-wide and public neoantigens, and to test this possibility, we developed a novel pipeline for identifying neojunctions expressed uniformly within a tumor across diverse cancer types. Our analyses revealed multiple neojunctions that recur across patients and either exhibited intratumor heterogeneity or, in some cases, were tumor-wide. We identified CD8+ T-cell clones specific for neoantigens derived from tumor-wide and conserved neojunctions in GNAS and RPL22 , respectively. TCR-engineered CD8 + T-cells targeting these mutations conferred neoantigen-specific tumor cell eradication. Furthermore, we revealed that cancer-specific dysregulation in splicing factor expression leads to recurrent neojunction expression. Together, these data reveal that a subset of neojunctions are both intratumorally conserved and public, providing the molecular basis for novel T-cell-based immunotherapies that address intratumoral heterogeneity.
Collapse
|
25
|
Shim K, Jo H, Jeoung D. Cancer/Testis Antigens as Targets for RNA-Based Anticancer Therapy. Int J Mol Sci 2023; 24:14679. [PMID: 37834126 PMCID: PMC10572814 DOI: 10.3390/ijms241914679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In the last few decades, RNA-based drugs have emerged as a promising candidate in the treatment of various diseases. The introduction of messenger RNA (mRNA) as a vaccine or therapeutic agent enables the production of almost any functional protein/peptide. The key to applying RNA therapy in clinical trials is developing safe and effective delivery systems. Exosomes and lipid nanoparticles (LNPs) have been exploited as promising vehicles for drug delivery. This review discusses the feasibility of exosomes and LNPs as vehicles for mRNA delivery. Cancer/testis antigens (CTAs) show restricted expression in normal tissues and widespread expression in cancer tissues. Many of these CTAs show expression in the sera of patients with cancers. These characteristics of CTAs make them excellent targets for cancer immunotherapy. This review summarizes the roles of CTAs in various life processes and current studies on mRNAs encoding CTAs. Clinical studies present the beneficial effects of mRNAs encoding CTAs in patients with cancers. This review highlight clinical studies employing mRNA-LNPs encoding CTAs.
Collapse
Affiliation(s)
| | | | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.S.); (H.J.)
| |
Collapse
|
26
|
Foldvari Z, Knetter C, Yang W, Gjerdingen TJ, Bollineni RC, Tran TT, Lund-Johansen F, Kolstad A, Drousch K, Klopfleisch R, Leisegang M, Olweus J. A systematic safety pipeline for selection of T-cell receptors to enter clinical use. NPJ Vaccines 2023; 8:126. [PMID: 37607971 PMCID: PMC10444760 DOI: 10.1038/s41541-023-00713-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Cancer immunotherapy using T cell receptor-engineered T cells (TCR-Ts) represents a promising treatment option. However, technologies for pre-clinical safety assessment are incomplete or inaccessible to most laboratories. Here, TCR-T off-target reactivity was assessed in five steps: (1) Mapping target amino acids necessary for TCR-T recognition, followed by (2) a computational search for, and (3) reactivity screening against, candidate cross-reactive peptides in the human proteome. Natural processing and presentation of recognized peptides was evaluated using (4) short mRNAs, and (5) full-length proteins. TCR-Ts were screened for recognition of unintended HLA alleles, and as proxy for off-target reactivity in vivo, a syngeneic, HLA-A*02:01-transgenic mouse model was used. Validation demonstrated importance of studying recognition of full-length candidate off-targets, and that the clinically applied 1G4 TCR has a hitherto unknown reactivity to unintended HLA alleles, relevant for patient selection. This widely applicable strategy should facilitate evaluation of candidate therapeutic TCRs and inform clinical decision-making.
Collapse
Affiliation(s)
- Zsofia Foldvari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Cathrine Knetter
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Thea Johanne Gjerdingen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ravi Chand Bollineni
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Trung The Tran
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Arne Kolstad
- Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Kimberley Drousch
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Matthias Leisegang
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL, USA.
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
He K, Hong DS, Ke D, Kebriaei P, Wang T, Danesi H, Bertolet G, Leuschner C, Puebla-Osorio N, Voss TA, Lin Q, Norry E, Fracasso PM, Welsh JW. Durable control of metastases in an HLA-A2+ patient with refractory melanoma after low-dose radiotherapy in combination with MAGE-A4 T cell therapy: a case report. Melanoma Res 2023; 33:332-337. [PMID: 37325860 PMCID: PMC10309102 DOI: 10.1097/cmr.0000000000000869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
There is no currently approved adoptive cellular therapy for solid tumors. Pre-clinical and clinical studies have demonstrated that low-dose radiotherapy (LDRT) can enhance intratumoral T cell infiltration and efficacy. This case report describes a 71-year-old female patient with rectal mucosal melanoma that had developed metastases to liver, lung, mediastinum, axillary nodes, and brain. After systemic therapies had failed, she enrolled in the radiation sub-study of our phase-I clinical trial exploring the safety and efficacy of afamitresgene autoleucel (afami-cel), genetically engineered T cells with a T cell receptor (TCR) targeting the MAGE-A4 tumor antigen in patients with advanced malignancies (NCT03132922). Prior to the infusion of afami-cel, she received concurrent lymphodepleting chemotherapy and LDRT at 5.6 Gy/4 fractions to the liver. Time to partial response was 10 weeks, and duration of overall response was 18.4 weeks. Although the patient progressed at 28 weeks, the disease was well controlled after high-dose radiotherapy to liver metastases and checkpoint inhibitors. As of the last follow-up, she remains alive over two years after LDRT and afami-cel therapy. This report suggests that afami-cel in combination with LDRT safely enhanced clinical benefit. This provides evidence for further exploring the benefit of LDRT in TCR-T cell therapy.
Collapse
Affiliation(s)
- Kewen He
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Department of Radiation Oncology
| | | | - Danxia Ke
- Department of Investigational Cancer Therapeutics
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | - Quan Lin
- Adaptimmune, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
28
|
Landuzzi L, Manara MC, Pazzaglia L, Lollini PL, Scotlandi K. Innovative Breakthroughs for the Treatment of Advanced and Metastatic Synovial Sarcoma. Cancers (Basel) 2023; 15:3887. [PMID: 37568703 PMCID: PMC10416854 DOI: 10.3390/cancers15153887] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Synovial sarcoma (SyS) is a rare aggressive soft tissue sarcoma carrying the chromosomal translocation t(X;18), encoding the fusion transcript SS18::SSX. The fusion oncoprotein interacts with both BAF enhancer complexes and polycomb repressor complexes, resulting in genome-wide epigenetic perturbations and a unique altered genetic signature. Over 80% of the patients are initially diagnosed with localized disease and have a 5-year survival rate of 70-80%, but metastatic relapse occurs in 50% of the cases. Advanced, unresectable, or metastatic disease has a 5-year survival rate below 10%, representing a critical issue. This review summarizes the molecular mechanisms behind SyS and illustrates current treatments in front line, second line, and beyond settings. We analyze the use of immune check point inhibitors (ICI) in SyS that do not behave as an ICI-sensitive tumor, claiming the need for predictive genetic signatures and tumor immune microenvironment biomarkers. We highlight the clinical translation of innovative technologies, such as proteolysis targeting chimera (PROTAC) protein degraders or adoptive transfer of engineered immune cells. Adoptive cell transfer of engineered T-cell receptor cells targeting selected cancer/testis antigens has shown promising results against metastatic SyS in early clinical trials and further improvements are awaited from refinements involving immune cell engineering and tumor immune microenvironment enhancement.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| | - Maria Cristina Manara
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| | - Laura Pazzaglia
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.M.); (L.P.)
| |
Collapse
|
29
|
Giorgioni L, Ambrosone A, Cometa MF, Salvati AL, Magrelli A. CAR-T State of the Art and Future Challenges, A Regulatory Perspective. Int J Mol Sci 2023; 24:11803. [PMID: 37511562 PMCID: PMC10380644 DOI: 10.3390/ijms241411803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
This review is an outlook on CAR-T development up to the beginning of 2023, with a special focus on the European landscape and its regulatory field, highlighting the main features and limitations affecting this innovative therapy in cancer treatment. We analysed the current state of the art in the EU and set out a showcase of the field's potential advancements in the coming years. For this analysis, the data used came from the available scientific literature as well as from the European Medicines Agency and from clinical trial databases. The latter were investigated to query the studies on CAR-Ts that are active and/or relevant to the review process. As of this writing, CAR-Ts have started to move past the "ceiling" of third-line treatment with positive results in comparison trials with the Standard of Care (SoC). One such example is the trial Zuma-7 (NCT03391466), which resulted in approval of CAR-T products (Yescarta™) for second-line treatment, a crucial achievement for the field which can increase the use of this type of therapy. Despite exciting results in clinical trials, limitations are still many: they regard access, production, duration of response, resistance, safety, overall efficacy, and cost mitigation strategies. Nonetheless, CAR-T constructs are becoming more diverse, and the technology is starting to produce some remarkable results in treating diseases other than cancer.
Collapse
Affiliation(s)
- Lorenzo Giorgioni
- Faculty of Physiology and Pharmacology "V. Erspamer", Sapienza Università di Roma, 00185 Rome, Italy
| | - Alessandra Ambrosone
- Faculty of Medicine and Pharmacy, Sapienza Università di Roma, 00185 Rome, Italy
| | - Maria Francesca Cometa
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Armando Magrelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
30
|
Gouttefangeas C, Klein R, Maia A. The good and the bad of T cell cross-reactivity: challenges and opportunities for novel therapeutics in autoimmunity and cancer. Front Immunol 2023; 14:1212546. [PMID: 37409132 PMCID: PMC10319254 DOI: 10.3389/fimmu.2023.1212546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
T cells are main actors of the immune system with an essential role in protection against pathogens and cancer. The molecular key event involved in this absolutely central task is the interaction of membrane-bound specific T cell receptors with peptide-MHC complexes which initiates T cell priming, activation and recall, and thus controls a range of downstream functions. While textbooks teach us that the repertoire of mature T cells is highly diverse, it is clear that this diversity cannot possibly cover all potential foreign peptides that might be encountered during life. TCR cross-reactivity, i.e. the ability of a single TCR to recognise different peptides, offers the best solution to this biological challenge. Reports have shown that indeed, TCR cross-reactivity is surprisingly high. Hence, the T cell dilemma is the following: be as specific as possible to target foreign danger and spare self, while being able to react to a large spectrum of body-threatening situations. This has major consequences for both autoimmune diseases and cancer, and significant implications for the development of T cell-based therapies. In this review, we will present essential experimental evidence of T cell cross-reactivity, implications for two opposite immune conditions, i.e. autoimmunity vs cancer, and how this can be differently exploited for immunotherapy approaches. Finally, we will discuss the tools available for predicting cross-reactivity and how improvements in this field might boost translational approaches.
Collapse
Affiliation(s)
- Cécile Gouttefangeas
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ana Maia
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Ai H, Yang H, Li L, Ma J, Liu K, Li Z. Cancer/testis antigens: promising immunotherapy targets for digestive tract cancers. Front Immunol 2023; 14:1190883. [PMID: 37398650 PMCID: PMC10311965 DOI: 10.3389/fimmu.2023.1190883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Digestive tract cancers, including esophageal, gastric, and colorectal cancers, are the major cause of death among cancer patients worldwide due to the heterogeneity of cancer cells, which limits the effectiveness of traditional treatment methods. Immunotherapy represents a promising treatment strategy for improving the prognosis of patients with digestive tract cancers. However, the clinical application of this approach is limited by the absence of optimal targets. Cancer/testis antigens are characterized by low or absent expression in normal tissues, but high expression in tumor tissues, making them an attractive target for antitumor immunotherapy. Recent preclinical trials have shown promising results for cancer/testis antigen-targeted immunotherapy in digestive cancer. However, practical problems and difficulties in clinical application remain. This review presents a comprehensive analysis of cancer/testis antigens in digestive tract cancers, covering their expression, function, and potential as an immunotherapy target. Additionally, the current state of cancer/testis antigens in digestive tract cancer immunotherapy is discussed, and we predict that these antigens hold great promise as an avenue for breakthroughs in the treatment of digestive tract cancers.
Collapse
Affiliation(s)
- Huihan Ai
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Hang Yang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Liang Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jie Ma
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Department of Molecular and Cellular Biology, China-United States (US) Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
32
|
Schmidt J, Chiffelle J, Perez MAS, Magnin M, Bobisse S, Arnaud M, Genolet R, Cesbron J, Barras D, Navarro Rodrigo B, Benedetti F, Michel A, Queiroz L, Baumgaertner P, Guillaume P, Hebeisen M, Michielin O, Nguyen-Ngoc T, Huber F, Irving M, Tissot-Renaud S, Stevenson BJ, Rusakiewicz S, Dangaj Laniti D, Bassani-Sternberg M, Rufer N, Gfeller D, Kandalaft LE, Speiser DE, Zoete V, Coukos G, Harari A. Neoantigen-specific CD8 T cells with high structural avidity preferentially reside in and eliminate tumors. Nat Commun 2023; 14:3188. [PMID: 37280206 DOI: 10.1038/s41467-023-38946-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
The success of cancer immunotherapy depends in part on the strength of antigen recognition by T cells. Here, we characterize the T cell receptor (TCR) functional (antigen sensitivity) and structural (monomeric pMHC-TCR off-rates) avidities of 371 CD8 T cell clones specific for neoantigens, tumor-associated antigens (TAAs) or viral antigens isolated from tumors or blood of patients and healthy donors. T cells from tumors exhibit stronger functional and structural avidity than their blood counterparts. Relative to TAA, neoantigen-specific T cells are of higher structural avidity and, consistently, are preferentially detected in tumors. Effective tumor infiltration in mice models is associated with high structural avidity and CXCR3 expression. Based on TCR biophysicochemical properties, we derive and apply an in silico model predicting TCR structural avidity and validate the enrichment in high avidity T cells in patients' tumors. These observations indicate a direct relationship between neoantigen recognition, T cell functionality and tumor infiltration. These results delineate a rational approach to identify potent T cells for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Julien Schmidt
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marta A S Perez
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Morgane Magnin
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marion Arnaud
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Julien Cesbron
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandra Michel
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Lise Queiroz
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Petra Baumgaertner
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michael Hebeisen
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
| | - Olivier Michielin
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Tu Nguyen-Ngoc
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
| | - Stéphanie Tissot-Renaud
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Brian J Stevenson
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Sylvie Rusakiewicz
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Nathalie Rufer
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
| | - David Gfeller
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Daniel E Speiser
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland.
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
33
|
Anderson VE, Brilha SS, Weber AM, Pachnio A, Wiedermann GE, Dauleh S, Ahmed T, Pope GR, Quinn LL, Docta RY, Quattrini A, Masters S, Cartwright N, Viswanathan P, Melchiori L, Rice LV, Sevko A, Gueguen C, Saini M, Tavano B, Abbott RJ, Silk JD, Laugel B, Sanderson JP, Gerry AB. Enhancing Efficacy of TCR-engineered CD4 + T Cells Via Coexpression of CD8α. J Immunother 2023; 46:132-144. [PMID: 36826388 PMCID: PMC10072215 DOI: 10.1097/cji.0000000000000456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 02/25/2023]
Abstract
Adoptive cell therapy with T cells expressing affinity-enhanced T-cell receptors (TCRs) is a promising treatment for solid tumors. Efforts are ongoing to further engineer these T cells to increase the depth and durability of clinical responses and broaden efficacy toward additional indications. In the present study, we investigated one such approach: T cells were transduced with a lentiviral vector to coexpress an affinity-enhanced HLA class I-restricted TCR directed against MAGE-A4 alongside a CD8α coreceptor. We hypothesized that this approach would enhance CD4 + T-cell helper and effector functions, possibly leading to a more potent antitumor response. Activation of transduced CD4 + T cells was measured by detecting CD40 ligand expression on the surface and cytokine and chemokine secretion from CD4 + T cells and dendritic cells cultured with melanoma-associated antigen A4 + tumor cells. In addition, T-cell cytotoxic activity against 3-dimensional tumor spheroids was measured. Our data demonstrated that CD4 + T cells coexpressing the TCR and CD8α coreceptor displayed enhanced responses, including CD40 ligand expression, interferon-gamma secretion, and cytotoxic activity, along with improved dendritic cell activation. Therefore, our study supports the addition of the CD8α coreceptor to HLA class I-restricted TCR-engineered T cells to enhance CD4 + T-cell functions, which may potentially improve the depth and durability of antitumor responses in patients.
Collapse
|
34
|
The Melanoma-Associated Antigen Family A (MAGE-A): A Promising Target for Cancer Immunotherapy? Cancers (Basel) 2023; 15:cancers15061779. [PMID: 36980665 PMCID: PMC10046478 DOI: 10.3390/cancers15061779] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Early efforts to identify tumor-associated antigens over the last decade have provided unique cancer epitopes for targeted cancer therapy. MAGE-A proteins are a subclass of cancer/testis (CT) antigens that are presented on the cell surface by MHC class I molecules as an immune-privileged site. This is due to their restricted expression to germline cells and a wide range of cancers, where they are associated with resistance to chemotherapy, metastasis, and cancer cells with an increasing potential for survival. This makes them an appealing candidate target for designing an effective and specific immunotherapy, thereby suggesting that targeting oncogenic MAGE-As with cancer vaccination, adoptive T-cell transfer, or a combination of therapies would be promising. In this review, we summarize and discuss previous and ongoing (pre-)clinical studies that target these antigens, while bearing in mind the benefits and drawbacks of various therapeutic strategies, in order to speculate on future directions for MAGE-A-specific immunotherapies.
Collapse
|
35
|
Foy SP, Jacoby K, Bota DA, Hunter T, Pan Z, Stawiski E, Ma Y, Lu W, Peng S, Wang CL, Yuen B, Dalmas O, Heeringa K, Sennino B, Conroy A, Bethune MT, Mende I, White W, Kukreja M, Gunturu S, Humphrey E, Hussaini A, An D, Litterman AJ, Quach BB, Ng AHC, Lu Y, Smith C, Campbell KM, Anaya D, Skrdlant L, Huang EYH, Mendoza V, Mathur J, Dengler L, Purandare B, Moot R, Yi MC, Funke R, Sibley A, Stallings-Schmitt T, Oh DY, Chmielowski B, Abedi M, Yuan Y, Sosman JA, Lee SM, Schoenfeld AJ, Baltimore D, Heath JR, Franzusoff A, Ribas A, Rao AV, Mandl SJ. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature 2023; 615:687-696. [PMID: 36356599 PMCID: PMC9768791 DOI: 10.1038/s41586-022-05531-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022]
Abstract
T cell receptors (TCRs) enable T cells to specifically recognize mutations in cancer cells1-3. Here we developed a clinical-grade approach based on CRISPR-Cas9 non-viral precision genome-editing to simultaneously knockout the two endogenous TCR genes TRAC (which encodes TCRα) and TRBC (which encodes TCRβ). We also inserted into the TRAC locus two chains of a neoantigen-specific TCR (neoTCR) isolated from circulating T cells of patients. The neoTCRs were isolated using a personalized library of soluble predicted neoantigen-HLA capture reagents. Sixteen patients with different refractory solid cancers received up to three distinct neoTCR transgenic cell products. Each product expressed a patient-specific neoTCR and was administered in a cell-dose-escalation, first-in-human phase I clinical trial ( NCT03970382 ). One patient had grade 1 cytokine release syndrome and one patient had grade 3 encephalitis. All participants had the expected side effects from the lymphodepleting chemotherapy. Five patients had stable disease and the other eleven had disease progression as the best response on the therapy. neoTCR transgenic T cells were detected in tumour biopsy samples after infusion at frequencies higher than the native TCRs before infusion. This study demonstrates the feasibility of isolating and cloning multiple TCRs that recognize mutational neoantigens. Moreover, simultaneous knockout of the endogenous TCR and knock-in of neoTCRs using single-step, non-viral precision genome-editing are achieved. The manufacture of neoTCR engineered T cells at clinical grade, the safety of infusing up to three gene-edited neoTCR T cell products and the ability of the transgenic T cells to traffic to the tumours of patients are also demonstrated.
Collapse
MESH Headings
- Humans
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Biopsy
- Cell- and Tissue-Based Therapy/adverse effects
- Cell- and Tissue-Based Therapy/methods
- Cytokine Release Syndrome/complications
- Disease Progression
- Encephalitis/complications
- Gene Editing
- Gene Knock-In Techniques
- Gene Knockout Techniques
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Mutation
- Neoplasms/complications
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Patient Safety
- Precision Medicine/adverse effects
- Precision Medicine/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transgenes/genetics
- HLA Antigens/immunology
- CRISPR-Cas Systems
Collapse
Affiliation(s)
| | | | - Daniela A Bota
- Department of Neurology and Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | | | - Zheng Pan
- PACT Pharma, South San Francisco, CA, USA
| | | | - Yan Ma
- PACT Pharma, South San Francisco, CA, USA
| | - William Lu
- PACT Pharma, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | - Ines Mende
- PACT Pharma, South San Francisco, CA, USA
| | | | | | | | | | | | - Duo An
- PACT Pharma, South San Francisco, CA, USA
| | | | | | | | - Yue Lu
- Institute for Systems Biology, Seattle, WA, USA
| | - Chad Smith
- PACT Pharma, South San Francisco, CA, USA
| | - Katie M Campbell
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | - Roel Funke
- PACT Pharma, South San Francisco, CA, USA
| | | | | | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Bartosz Chmielowski
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA
| | - Mehrdad Abedi
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Yuan Yuan
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Jeffrey A Sosman
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University, Evanston, IL, USA
| | - Sylvia M Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Adam J Schoenfeld
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
36
|
Schossig P, Coskun E, Arsenic R, Horst D, Sehouli J, Bergmann E, Andresen N, Sigler C, Busse A, Keller U, Ochsenreither S. Target Selection for T-Cell Therapy in Epithelial Ovarian Cancer: Systematic Prioritization of Self-Antigens. Int J Mol Sci 2023; 24:ijms24032292. [PMID: 36768616 PMCID: PMC9916968 DOI: 10.3390/ijms24032292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Adoptive T cell-receptor therapy (ACT) could represent a promising approach in the targeted treatment of epithelial ovarian cancer (EOC). However, the identification of suitable tumor-associated antigens (TAAs) as targets is challenging. We identified and prioritized TAAs for ACT and other immunotherapeutic interventions in EOC. A comprehensive list of pre-described TAAs was created and candidates were prioritized, using predefined weighted criteria. Highly ranked TAAs were immunohistochemically stained in a tissue microarray of 58 EOC samples to identify associations of TAA expression with grade, stage, response to platinum, and prognosis. Preselection based on expression data resulted in 38 TAAs, which were prioritized. Along with already published Cyclin A1, the TAAs KIF20A, CT45, and LY6K emerged as most promising targets, with high expression in EOC samples and several identified peptides in ligandome analysis. Expression of these TAAs showed prognostic relevance independent of molecular subtypes. By using a systematic vetting algorithm, we identified KIF20A, CT45, and LY6K to be promising candidates for immunotherapy in EOC. Results are supported by IHC and HLA-ligandome data. The described method might be helpful for the prioritization of TAAs in other tumor entities.
Collapse
Affiliation(s)
- Paul Schossig
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ebru Coskun
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ruza Arsenic
- Department of Pathology, Universitätsklinikum Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - David Horst
- Insitute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Tumorbank Ovarian Cancer Network, 13353 Berlin, Germany
| | - Eva Bergmann
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nadine Andresen
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Sigler
- Charité Comprehensive Cancer Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Antonia Busse
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Sebastian Ochsenreither
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Charité Comprehensive Cancer Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
37
|
Hiltensperger M, Krackhardt AM. Current and future concepts for the generation and application of genetically engineered CAR-T and TCR-T cells. Front Immunol 2023; 14:1121030. [PMID: 36949949 PMCID: PMC10025359 DOI: 10.3389/fimmu.2023.1121030] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Adoptive cell therapy (ACT) has seen a steep rise of new therapeutic approaches in its immune-oncology pipeline over the last years. This is in great part due to the recent approvals of chimeric antigen receptor (CAR)-T cell therapies and their remarkable efficacy in certain soluble tumors. A big focus of ACT lies on T cells and how to genetically modify them to target and kill tumor cells. Genetically modified T cells that are currently utilized are either equipped with an engineered CAR or a T cell receptor (TCR) for this purpose. Both strategies have their advantages and limitations. While CAR-T cell therapies are already used in the clinic, these therapies face challenges when it comes to the treatment of solid tumors. New designs of next-generation CAR-T cells might be able to overcome these hurdles. Moreover, CARs are restricted to surface antigens. Genetically engineered TCR-T cells targeting intracellular antigens might provide necessary qualities for the treatment of solid tumors. In this review, we will summarize the major advancements of the CAR-T and TCR-T cell technology. Moreover, we will cover ongoing clinical trials, discuss current challenges, and provide an assessment of future directions within the field.
Collapse
Affiliation(s)
- Michael Hiltensperger
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- IIIrd Medical Department, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Michael Hiltensperger, ; Angela M. Krackhardt,
| | - Angela M. Krackhardt
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- IIIrd Medical Department, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- *Correspondence: Michael Hiltensperger, ; Angela M. Krackhardt,
| |
Collapse
|
38
|
Hong DS, Van Tine BA, Biswas S, McAlpine C, Johnson ML, Olszanski AJ, Clarke JM, Araujo D, Blumenschein GR, Kebriaei P, Lin Q, Tipping AJ, Sanderson JP, Wang R, Trivedi T, Annareddy T, Bai J, Rafail S, Sun A, Fernandes L, Navenot JM, Bushman FD, Everett JK, Karadeniz D, Broad R, Isabelle M, Naidoo R, Bath N, Betts G, Wolchinsky Z, Batrakou DG, Van Winkle E, Elefant E, Ghobadi A, Cashen A, Grand'Maison A, McCarthy P, Fracasso PM, Norry E, Williams D, Druta M, Liebner DA, Odunsi K, Butler MO. Autologous T cell therapy for MAGE-A4 + solid cancers in HLA-A*02 + patients: a phase 1 trial. Nat Med 2023; 29:104-114. [PMID: 36624315 PMCID: PMC9873554 DOI: 10.1038/s41591-022-02128-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 11/09/2022] [Indexed: 01/11/2023]
Abstract
Affinity-optimized T cell receptors can enhance the potency of adoptive T cell therapy. Afamitresgene autoleucel (afami-cel) is a human leukocyte antigen-restricted autologous T cell therapy targeting melanoma-associated antigen A4 (MAGE-A4), a cancer/testis antigen expressed at varying levels in multiple solid tumors. We conducted a multicenter, dose-escalation, phase 1 trial in patients with relapsed/refractory metastatic solid tumors expressing MAGE-A4, including synovial sarcoma (SS), ovarian cancer and head and neck cancer ( NCT03132922 ). The primary endpoint was safety, and the secondary efficacy endpoints included overall response rate (ORR) and duration of response. All patients (N = 38, nine tumor types) experienced Grade ≥3 hematologic toxicities; 55% of patients (90% Grade ≤2) experienced cytokine release syndrome. ORR (all partial response) was 24% (9/38), 7/16 (44%) for SS and 2/22 (9%) for all other cancers. Median duration of response was 25.6 weeks (95% confidence interval (CI): 12.286, not reached) and 28.1 weeks (95% CI: 12.286, not reached) overall and for SS, respectively. Exploratory analyses showed that afami-cel infiltrates tumors, has an interferon-γ-driven mechanism of action and triggers adaptive immune responses. In addition, afami-cel has an acceptable benefit-risk profile, with early and durable responses, especially in patients with metastatic SS. Although the small trial size limits conclusions that can be drawn, the results warrant further testing in larger studies.
Collapse
Affiliation(s)
- David S Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Brian A Van Tine
- Section of Medical Oncology, Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Melissa L Johnson
- Sarah Cannon Cancer Institute, Tennessee Oncology/One Oncology, Nashville, TN, USA
| | - Anthony J Olszanski
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Dejka Araujo
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George R Blumenschein
- Department of Thoracic-Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quan Lin
- Adaptimmue, Philadelphia, PA, USA
| | | | | | | | | | | | - Jane Bai
- Adaptimmue, Philadelphia, PA, USA
| | | | - Amy Sun
- Adaptimmue, Philadelphia, PA, USA
| | | | | | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Derin Karadeniz
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | - Armin Ghobadi
- Section of Medical Oncology, Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Cashen
- Section of Medical Oncology, Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne Grand'Maison
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Philip McCarthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | | | - Mihaela Druta
- Sarcoma Medical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - David A Liebner
- Department of Internal Medicine, Division of Medical Oncology, and Department of Biomedical Informatics, Division of Computational Biology and Bioinformatics, Ohio State University, Columbus, OH, USA
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Marcus O Butler
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
39
|
Mao W. Overcoming current challenges to T-cell receptor therapy via metabolic targeting to increase antitumor efficacy, durability, and tolerability. Front Immunol 2022; 13:1056622. [PMID: 36479131 PMCID: PMC9720167 DOI: 10.3389/fimmu.2022.1056622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The antitumor potential of personalized immunotherapy, including adoptive T-cell therapy, has been shown in both preclinical and clinical studies. Combining cell therapy with targeted metabolic interventions can further enhance therapeutic outcomes in terms of magnitude and durability. The ability of a T cell receptor to recognize peptides derived from tumor neoantigens allows for a robust yet specific response against cancer cells while sparing healthy tissue. However, there exist challenges to adoptive T cell therapy such as a suppressive tumor milieu, the fitness and survival of transferred cells, and tumor escape, all of which can be targeted to further enhance the antitumor potential of T cell receptor-engineered T cell (TCR-T) therapy. Here, we explore current strategies involving metabolic reprogramming of both the tumor microenvironment and the cell product, which can lead to increased T cell proliferation, survival, and anti-tumor cytotoxicity. In addition, we highlight potential metabolic pathways and targets which can be leveraged to improve engraftment of transferred cells and obviate the need for lymphodepletion, while minimizing off-target effects. Metabolic signaling is delicately balanced, and we demonstrate the need for thoughtful and precise interventions that are tailored for the unique characteristics of each tumor. Through improved understanding of the interplay between immunometabolism, tumor resistance, and T cell signaling, we can improve current treatment regimens and open the door to potential synergistic combinations.
Collapse
|
40
|
Cojocaru E, Napolitano A, Fisher C, Huang P, Jones RL, Thway K. What's the latest with investigational drugs for soft tissue sarcoma? Expert Opin Investig Drugs 2022; 31:1239-1253. [PMID: 36424693 DOI: 10.1080/13543784.2022.2152324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Despite extensive research undertaken in the past 20-30 years, the treatment for soft tissue sarcoma (STS) has remained largely the same, with anthracycline-based chemotherapy remaining the first choice for treating advanced or metastatic STS. AREAS COVERED This review focuses on newly approved drugs for STS and current research directions, including recent results of late-phase trials in patients with STS. We cover several different histological subtypes, and we discuss the role of adoptive cell transfer (ACT) therapies for the treatment of synovial and myxoid/round cell (high-grade myxoid) liposarcoma, one of the most promising areas of treatment development to date. We searched clinicaltrials.gov and pubmed.ncbi.nih.gov, as well as recent year proceedings from the annual conferences of the American Society of Clinical Oncology (ASCO), European Society for Medical Oncology (ESMO), and Connective Tissue Oncology Society (CTOS). EXPERT OPINION Immune-oncology drugs (IOs) show promise in certain subtypes of STS, but it is recognized that PD-1/PD-L1 axis inhibition is not enough on its own. Better trial stratifications based on the molecular categorization of different subtypes of STS are needed, and more evidence suggests that 'one size fits all' treatment is no longer sustainable in this heterogeneous and aggressive group of tumors.
Collapse
Affiliation(s)
- Elena Cojocaru
- Cancer Genetic Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK.,Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK
| | - Andrea Napolitano
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK
| | - Cyril Fisher
- Department of Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Paul Huang
- Protein Networks Team, Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, UK
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK.,Protein Networks Team, Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, UK
| | - Khin Thway
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK.,Protein Networks Team, Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, UK
| |
Collapse
|
41
|
Vazquez-Lombardi R, Jung JS, Schlatter FS, Mei A, Mantuano NR, Bieberich F, Hong KL, Kucharczyk J, Kapetanovic E, Aznauryan E, Weber CR, Zippelius A, Läubli H, Reddy ST. High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity. Immunity 2022; 55:1953-1966.e10. [PMID: 36174557 DOI: 10.1016/j.immuni.2022.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
A major challenge in adoptive T cell immunotherapy is the discovery of natural T cell receptors (TCRs) with high activity and specificity to tumor antigens. Engineering synthetic TCRs for increased tumor antigen recognition is complicated by the risk of introducing cross-reactivity and by the poor correlation that can exist between binding affinity and activity of TCRs in response to antigen (peptide-MHC). Here, we developed TCR-Engine, a method combining genome editing, computational design, and deep sequencing to engineer the functional activity and specificity of TCRs on the surface of a human T cell line at high throughput. We applied TCR-Engine to successfully engineer synthetic TCRs for increased potency and specificity to a clinically relevant tumor-associated antigen (MAGE-A3) and validated their translational potential through multiple in vitro and in vivo assessments of safety and efficacy. Thus, TCR-Engine represents a valuable technology for engineering of safe and potent synthetic TCRs for immunotherapy applications.
Collapse
Affiliation(s)
- Rodrigo Vazquez-Lombardi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Engimmune Therapeutics AG, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland.
| | - Johanna S Jung
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Fabrice S Schlatter
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anna Mei
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | - Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jakub Kucharczyk
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Erik Aznauryan
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
42
|
Chow DT, Rardin MJ. Identification and Mitigation of Defensins in the Immunopurification of Peptide MHC-I Antigens from Lung Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1590-1597. [PMID: 34645265 DOI: 10.1021/jasms.1c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The class I major histocompatibility (MHC-I) complex is a set of diverse cell surface receptors encoded by the human leukocyte antigen gene complex. These receptors present intracellular antigens to cytotoxic T cells providing information on the state and health of cells. Changes in the immunopeptidome during cancer may provide novel targets for therapeutic intervention. To understand how the tumor immunopeptidome is altered, we developed a mass spectrometry (MS) based platform for isolating and identifying MHC-I peptide antigens in lung tumors. In the course of our work, we encountered several large unknown peptide contaminants which had not been previously reported. To understand the source of these major contaminants, we isolated them using offline fractionation and identified them by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as members of the host defense protein family known as the defensins. To mitigate their detrimental effects, we modified our "Original" data-dependent acquisition (DDA) MS method to narrowly target the MHC-I peptides based on their physical properties including charge state and molecular weight ("z state" DDA), evaluated field asymmetric ion mobility spectrometry to attempt gas-phase separation prior to MS analysis, and developed an immunodepletion approach using defensin specific antibodies. This modified approach improves peptide identification and reduces the impact of defensin contamination in lung tissue samples.
Collapse
Affiliation(s)
- David T Chow
- Amgen Research, Discovery Attribute Sciences Amgen, South San Francisco, California 94080, United States
| | - Matthew J Rardin
- Amgen Research, Discovery Attribute Sciences Amgen, South San Francisco, California 94080, United States
| |
Collapse
|
43
|
Simister PC, Border EC, Vieira JF, Pumphrey NJ. Structural insights into engineering a T-cell receptor targeting MAGE-A10 with higher affinity and specificity for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004600. [PMID: 35851311 PMCID: PMC9295655 DOI: 10.1136/jitc-2022-004600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND T-cell receptor (TCR) immunotherapy is becoming a viable modality in cancer treatment with efficacy in clinical trials. The safety of patients is paramount, so innovative cell engineering methods are being employed to exploit adaptive immunity while controlling the factors governing antigen receptor (ie, TCR) specificity and cross-reactivity. We recently reported a TCR engineering campaign and selectivity profiling assay (X-scan) targeting a melanoma antigen gene (MAGE)-A10 peptide. This helped to distinguish between two well-performing TCRs based on cross-reactivity potential during preclinical drug evaluation, allowing one to be advanced to T-cell immunotherapeutic clinical trials. Here, we present three-dimensional structural information on those TCRs, highlighting engineering improvements and molecular mechanisms likely underpinning differential selectivity. METHODS Parental and engineered TCRs were purified and crystallized either alone or complexed to human leucocyte antigen (HLA)-A*02:01 presenting the MAGE-A10 9-mer peptide, GLYDGMEHL (pHLA/MAGE-A10-9). Using X-ray diffraction, we solved four high-resolution crystal structures and evaluated them relative to previously reported functional results. RESULTS The unligated parental TCR displayed similar complementarity-determining region (CDR) loop conformations when bound to pHLA/MAGE-A10-9; a rigid-body movement of TCR beta chain variable domain (TRBV) relative to TCR alpha chain variable domain helped optimal pHLA engagement. This first view of an HLA-bound MAGE-A10 peptide revealed an intrachain non-covalent 'staple' between peptide Tyr3 and Glu7. A subtle Glu31-Asp mutation in βCDR1 of the parental TCR generated a high-affinity derivative. Its pHLA-complexed structure shows that the shorter Asp leans toward the pHLA with resulting rigid-body TRBV shift, creating localized changes around the peptide's C-terminus. Structural comparison with a less selective TCR indicated that differential cross-reactivity to MAGE-A10 peptide variants is most readily explained by alterations in surface electrostatics, and the size and geometry of TCR-peptide interfacial cavities. CONCLUSIONS Modest changes in engineered TCRs targeting MAGE-A10 produced significantly different properties. Conformational invariance of TCR and antigen peptide plus more space-filling CDR loop sequences may be desirable properties for clinically relevant TCR-pHLA systems to reduce the likelihood of structurally similar peptide mimics being tolerated by a TCR. Such properties may partially explain why the affinity-enhanced, in vitro-selected TCR has been generally well tolerated in patients.
Collapse
|
44
|
An unexplored angle: T cell antigen discoveries reveal a marginal contribution of proteasome splicing to the immunogenic MHC class I antigen pool. Proc Natl Acad Sci U S A 2022; 119:e2119736119. [PMID: 35858315 PMCID: PMC9303865 DOI: 10.1073/pnas.2119736119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the current era of T cell–based immunotherapies, it is crucial to understand which types of MHC-presented T cell antigens are produced by tumor cells. In addition to linear peptide antigens, chimeric peptides are generated through proteasome-catalyzed peptide splicing (PCPS). Whether such spliced peptides are abundantly presented by MHC is highly disputed because of disagreement in computational analyses of mass spectrometry data of MHC-eluted peptides. Moreover, such mass spectrometric analyses cannot elucidate how much spliced peptides contribute to the pool of immunogenic antigens. In this Perspective, we explain the significance of knowing the contribution of spliced peptides for accurate analyses of peptidomes on one hand, and to serve as a potential source of targetable tumor antigens on the other hand. Toward a strategy for mass spectrometry independent estimation of the contribution of PCPS to the immunopeptidome, we first reviewed methodologies to identify MHC-presented spliced peptide antigens expressed by tumors. Data from these identifications allowed us to compile three independent datasets containing 103, 74, and 83 confirmed T cell antigens from cancer patients. Only 3.9%, 1.4%, and between 0% and 7.2% of these truly immunogenic antigens are produced by PCPS, therefore providing a marginal contribution to the pool of immunogenic tumor antigens. We conclude that spliced peptides will not serve as a comprehensive source to expand the number of targetable antigens for immunotherapies.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW To summarize the development of modified T-cell therapies in sarcomas and discuss relevant published and ongoing clinical trials to date. RECENT FINDINGS Numerous clinical trials are underway evaluating tumor-specific chimeric antigen receptor T cells and high affinity T-cell receptor (TCR)-transduced T cells in sarcomas. Notably, translocation-dependent synovial sarcoma and myxoid/round cell liposarcoma are the subject of several phase II trials evaluating TCRs targeting cancer testis antigens New York esophageal squamous cell carcinoma-1 (NY-ESO-1) and melanoma antigen-A4 (MAGE A4), and response rates of up to 60% have been observed for NY-ESO-1 directed, modified T cells in synovial sarcoma. Challenges posed by modified T-cell therapy include limitations conferred by HLA-restriction, non-immunogenic tumor microenvironments (TME), aggressive lymphodepletion and immune-mediated toxicities restricting coinfusion of cytokines. SUMMARY Cellular therapy to augment the adaptive immune response through delivery of modified T cells is an area of novel therapeutic development in sarcomas where a reliably expressed, ubiquitous target antigen can be identified. Therapeutic tools to improve the specificity, signaling, proliferation and persistence of modified TCRs and augment clinical responses through safe manipulation of the sarcoma TME will be necessary to harness the full potential of this approach.
Collapse
|
46
|
Zhang Y, Liu Z, Wei W, Li Y. TCR engineered T cells for solid tumor immunotherapy. Exp Hematol Oncol 2022; 11:38. [PMID: 35725570 PMCID: PMC9210724 DOI: 10.1186/s40164-022-00291-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
T cell immunotherapy remains an attractive approach for cancer immunotherapy. T cell immunotherapy mainly employs chimeric antigen receptor (CAR)- and T cell receptor (TCR)-engineered T cells. CAR-T cell therapy has been an essential breakthrough in treating hematological malignancies. TCR-T cells can recognize antigens expressed both on cell surfaces and in intracellular compartments. Although TCR-T cells have not been approved for clinical application, a number of clinical trials have been performed, particularly for solid tumors. In this article, we summarized current TCR-T cell advances and their potential advantages for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China.,Guangdong Cord blood bank, Guangzhou, 510663, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632, China
| | - Zhipeng Liu
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China.,Guangdong Cord blood bank, Guangzhou, 510663, China
| | - Wei Wei
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China. .,Guangdong Cord blood bank, Guangzhou, 510663, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632, China.
| |
Collapse
|
47
|
Abd El-Salam MA, Smith CEP, Pan CX. Insights on recent innovations in bladder cancer immunotherapy. Cancer Cytopathol 2022; 130:667-683. [PMID: 35653623 DOI: 10.1002/cncy.22603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Bladder carcinoma is the most common genitourinary cancer, with a high prevalence and global incidence. In addition to early detection by cytology, the management of bladder cancer has recently advanced, not only by improvements in conventional treatments such as surgery and chemotherapy, but also through the introduction of immunotherapeutic strategies. The number of approved immunotherapeutic agents has dramatically increased, with various preclinical and clinical applications in cancer drug discovery. Some bladder cancer immunotherapies include immune checkpoint inhibitors, adoptive cell therapy, cytokine-based therapy, bispecific antibodies, and antibody-drug conjugates. This review provides an overview of some of the innovative immunotherapeutic agents approved and in development that can potentially be used in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Mohamed A Abd El-Salam
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA.,Institute for Research in Biomedicine (IRB) Barcelona, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology International Coastal Road, Gamasa, Egypt
| | - Claire E P Smith
- Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Hematology and Medical Oncology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Chong-Xian Pan
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Guedan S, Luu M, Ammar D, Barbao P, Bonini C, Bousso P, Buchholz CJ, Casucci M, De Angelis B, Donnadieu E, Espie D, Greco B, Groen R, Huppa JB, Kantari-Mimoun C, Laugel B, Mantock M, Markman JL, Morris E, Quintarelli C, Rade M, Reiche K, Rodriguez-Garcia A, Rodriguez-Madoz JR, Ruggiero E, Themeli M, Hudecek M, Marchiq I. Time 2EVOLVE: predicting efficacy of engineered T-cells - how far is the bench from the bedside? J Immunother Cancer 2022; 10:jitc-2021-003487. [PMID: 35577501 PMCID: PMC9115015 DOI: 10.1136/jitc-2021-003487] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.
Collapse
Affiliation(s)
- Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Maik Luu
- 19 Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Germany
| | | | - Paula Barbao
- Department of Hematology and Oncology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Philippe Bousso
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Paris, France
| | | | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Biagio De Angelis
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Emmanuel Donnadieu
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France
| | - David Espie
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France.,CAR-T Cells Department, Invectys, Paris, France
| | - Beatrice Greco
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Richard Groen
- Amsterdam University Medical Centers at Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunolgy, Vienna, Austria
| | | | - Bruno Laugel
- Institut de Recherches internationales Servier (IRIS), Suresnes, France
| | | | - Janet L Markman
- Takeda Development Centers Americas, Inc. Lexington, Massachusetts, USA
| | - Emma Morris
- Institute of Immunity & Transplantation, University College London Medical School - Royal Free Campus, London, UK
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Michael Rade
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | | | | | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Themeli
- Amsterdam University Medical Centers at Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Michael Hudecek
- 19 Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Germany
| | - Ibtissam Marchiq
- Institut de Recherches internationales Servier (IRIS), Suresnes, France
| |
Collapse
|
49
|
Shafer P, Kelly LM, Hoyos V. Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects. Front Immunol 2022; 13:835762. [PMID: 35309357 PMCID: PMC8928448 DOI: 10.3389/fimmu.2022.835762] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
To redirect T cells against tumor cells, T cells can be engineered ex vivo to express cancer-antigen specific T cell receptors (TCRs), generating products known as TCR-engineered T cells (TCR T). Unlike chimeric antigen receptors (CARs), TCRs recognize HLA-presented peptides derived from proteins of all cellular compartments. The use of TCR T cells for adoptive cellular therapies (ACT) has gained increased attention, especially as efforts to treat solid cancers with ACTs have intensified. In this review, we describe the differing mechanisms of T cell antigen recognition and signal transduction mediated through CARs and TCRs. We describe the classes of cancer antigens recognized by current TCR T therapies and discuss both classical and emerging pre-clinical strategies for antigen-specific TCR discovery, enhancement, and validation. Finally, we review the current landscape of clinical trials for TCR T therapy and discuss what these current results indicate for the development of future engineered TCR approaches.
Collapse
Affiliation(s)
- Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Lauren M. Kelly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Cancer & Cell Biology, Baylor College of Medicine, Houston, TX, United States
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
50
|
Zhao J, Xu Z, Liu Y, Wang X, Liu X, Gao Y, Jin Y. The expression of cancer-testis antigen in ovarian cancer and the development of immunotherapy. Am J Cancer Res 2022; 12:681-694. [PMID: 35261795 PMCID: PMC8899981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023] Open
Abstract
Ovarian cancer is a relatively common tumor in women with the highest mortality among female reproductive system tumors. The lack of apparent early symptoms and effective screening strategies often leads to ovarian cancer being diagnosed at an advanced stage. Immunotherapy relying on tumor-associated antigens might improve the treatment of ovarian cancer. Cancer-testis antigens (CTAs) are ideal tumor-associated antigens, and MAGE-A, NY-ESO-1, CT45, and Sp17 are classic CTAs highly expressed in ovarian cancer. Here, we review the research on CTAs in ovarian cancer, including prognostic value and advances in immunotherapy, all of which are essential for developing a theoretical basis for targeted therapy strategies.
Collapse
Affiliation(s)
- Jianhang Zhao
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang, Liaoning, China
| | - Zhaoxu Xu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang, Liaoning, China
| | - Yan Liu
- Liaoning Research Institute of Family Planning (Reproductive Hospital Affiliated to China Medical University), Key Laboratory of Reproductive Health and Genetic Medicine, National Health Commission of ChinaShenyang, Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Xinli Liu
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Yanan Gao
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang, Liaoning, China
| | - Ying Jin
- Liaoning Research Institute of Family Planning (Reproductive Hospital Affiliated to China Medical University), Key Laboratory of Reproductive Health and Genetic Medicine, National Health Commission of ChinaShenyang, Liaoning, China
| |
Collapse
|