1
|
Yao Y, Yang X, Li J, Guo E, Wang H, Sun C, Hong Z, Zhang X, Jia J, Wang R, Ma J, Dai Y, Deng M, Yu C, Sun L, Xie L. Preclinical Characterization of Efficacy and Pharmacodynamic Properties of Finotonlimab, a Humanized Anti-PD-1 Monoclonal Antibody. Pharmaceuticals (Basel) 2025; 18:395. [PMID: 40143171 PMCID: PMC11946465 DOI: 10.3390/ph18030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Finotonlimab (SCTI10A) is a humanized anti-PD-1 antibody tested in Phase III trials for several solid tumor types. Methods: This study characterized the in vitro and in vivo efficacy, Fc-mediated effector function, and non-clinical PK/PD properties of finotonlimab. Results: The results demonstrated that finotonlimab is effective in stimulating human T cell function in vitro and exhibits marked antitumor efficacy in vivo using both PD-1-humanized and PBMC-reconstructed mouse models. Additionally, finotonlimab exhibited minimal impact on the activation of effector cells via Fc receptor-dependent pathways, potentially facilitating PD-1+ T cell killing. In cynomolgus monkeys, finotonlimab exhibited a nonlinear pharmacokinetic (PK) profile in a dose-dependent manner, and a receptor occupancy rate of approximately 90% was observed at 168 h following a single administration of 1 mg/kg. Finotonlimab's PK profile (especially Cmax) was better than that of marketed antibodies. Following a 13-week successive administration of finotonlimab, a pharmacodynamic analysis revealed that a sustained mean receptor occupancy of PD-1 molecules on circulating T cells remained at or above 93% for up to 8 weeks, even at a dose of 3 mg/kg, and that there were higher antibody accumulations in different dose groups. Conclusions: Taken together, the preclinical findings are promising and provide the groundwork for evaluating the efficacy and pharmacodynamic characteristics of finotonlimab in clinical trials.
Collapse
Affiliation(s)
- Yunqi Yao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Xiaoning Yang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Jing Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Erhong Guo
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Huiyu Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Chunyun Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Xiao Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Jilei Jia
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Juan Ma
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Yaqi Dai
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Mingjing Deng
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Lingling Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
- Beijing Key Laboratory of Monoclonal Antibody Research and Development, Sino Biological Inc., Beijing 100176, China
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
2
|
Majidpour M, Azizi SG, Davodabadi F, Sabeti Akbar-Abad M, Abdollahi Z, Sargazi S, Shahriari H. Recent advances in TGF-β signaling pathway in COVID-19 pathogenesis: A review. Microb Pathog 2025; 199:107236. [PMID: 39701478 DOI: 10.1016/j.micpath.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in approximately 7.0 million fatalities between 2019 and 2022, underscoring a pressing need for comprehensive research into its underlying mechanisms and therapeutic avenues. A distinctive feature of severe COVID-19 is the dysregulated immune response characterized by excessive activation of immune cells and the consequent cytokine storms. Recent advancements in our understanding of cellular signaling pathways have illuminated the role of Transforming Growth Factor Beta (TGF-β) as a pivotal signaling molecule with significant implications for the pathogenesis of infectious diseases, including COVID-19. Emerging evidence reveals that TGF-β signaling, when activated by viral components or secondary pathways, adversely affects diverse cell types, particularly immune cells, and lung tissue, leading to complications such as pulmonary fibrosis. In our review article, we critically evaluate recent literature on the involvement of TGF-β signaling in the progression of COVID-19. We discuss a range of pharmacological interventions, including nintedanib, pirfenidone, corticosteroids, proton pump inhibitors, and histone deacetylase inhibitors, and their potential to modulate the TGF-β pathway in the context of COVID-19 treatment. Additionally, we explore ongoing clinical trials involving mesenchymal stem cells, low-dose radiation therapy, and artemisinin derivatives to assess their impact on TGF-β levels and subsequent clinical outcomes in COVID-19 patients. This review is particularly relevant at this juncture as the global health community continues to grapple with the ramifications of the COVID-19 pandemic, highlighting the urgent need for targeted therapeutic strategies aimed at TGF-β modulation to mitigate disease severity and improve patient outcomes.
Collapse
Affiliation(s)
- Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Fatemeh Davodabadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahboobeh Sabeti Akbar-Abad
- Department of Clinical Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Zahra Abdollahi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
3
|
Ng M, Cerezo-Wallis D, Ng LG, Hidalgo A. Adaptations of neutrophils in cancer. Immunity 2025; 58:40-58. [PMID: 39813993 DOI: 10.1016/j.immuni.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
There is a renewed interest in neutrophil biology, largely instigated by their prominence in cancer. From an immunologist's perspective, a conceptual breakthrough is the realization that prototypical inflammatory, cytotoxic leukocytes can be tamed to promote the survival and growth of other cells. This has sparked interest in defining the biological principles and molecular mechanisms driving the adaptation of neutrophils to cancer. Yet, many questions remain: is this adaptation mediated by reprogramming mature neutrophils inside the tumoral mass, or rather by rewiring granulopoiesis in the bone marrow? Why, in some instances, are neutrophils beneficial and in others detrimental to cancer? How many different functional programs can be induced in neutrophils by tumors, and is this dependent on the type of tumor? This review summarizes what we know about these questions and discusses therapeutic strategies based on our incipient knowledge of how neutrophils adapt to cancer.
Collapse
Affiliation(s)
- Melissa Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore.
| | - Daniela Cerezo-Wallis
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
5
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 PMCID: PMC11865675 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Lefler DS, Manobianco SA, Bashir B. Immunotherapy resistance in solid tumors: mechanisms and potential solutions. Cancer Biol Ther 2024; 25:2315655. [PMID: 38389121 PMCID: PMC10896138 DOI: 10.1080/15384047.2024.2315655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
While the emergence of immunotherapies has fundamentally altered the management of solid tumors, cancers exploit many complex biological mechanisms that result in resistance to these agents. These encompass a broad range of cellular activities - from modification of traditional paradigms of immunity via antigen presentation and immunoregulation to metabolic modifications and manipulation of the tumor microenvironment. Intervening on these intricate processes may provide clinical benefit in patients with solid tumors by overcoming resistance to immunotherapies, which is why it has become an area of tremendous research interest with practice-changing implications. This review details the major ways cancers avoid both natural immunity and immunotherapies through primary (innate) and secondary (acquired) mechanisms of resistance, and it considers available and emerging therapeutic approaches to overcoming immunotherapy resistance.
Collapse
Affiliation(s)
- Daniel S. Lefler
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven A. Manobianco
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Babar Bashir
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Pietrobono S, Bertolini M, De Vita V, Sabbadini F, Fazzini F, Frusteri C, Scarlato E, Mangiameli D, Quinzii A, Casalino S, Zecchetto C, Merz V, Melisi D. CCL3 predicts exceptional response to TGFβ inhibition in basal-like pancreatic cancer enriched in LIF-producing macrophages. NPJ Precis Oncol 2024; 8:246. [PMID: 39478186 PMCID: PMC11525688 DOI: 10.1038/s41698-024-00742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
The TGFβ receptor inhibitor galunisertib showed promising efficacy in patients with pancreatic ductal adenocarcinoma (PDAC) in the phase 2 H9H-MC-JBAJ study. Identifying biomarkers for this treatment remains essential. Baseline plasma levels of chemokine CCL3 were integrated with clinical outcomes in PDAC patients treated with galunisertib plus gemcitabine (n = 104) or placebo plus gemcitabine (n = 52). High CCL3 was a poor prognostic factor in the placebo group (mOS 3.6 vs. 10.1 months; p < 0.01) but a positive predictor for galunisertib (mOS 9.2 vs. 3.6 months; p < 0.01). Mechanistically, tumor-derived CCL3 activates Tgfβ signaling in macrophages, inducing their M2 phenotype and Lif secretion, sustaining a mesenchymal/basal-like ecotype. TGFβ inhibition redirects macrophage polarization to M1, reducing Lif and shifting PDAC cells to a more epithelial/classical phenotype, improving gemcitabine sensitivity. This study supports exploring TGFβ-targeting agents in PDAC with a mesenchymal/basal-like ecotype driven by high CCL3 levels.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Monica Bertolini
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Veronica De Vita
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Fabio Sabbadini
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Federica Fazzini
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Cristina Frusteri
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Enza Scarlato
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Domenico Mangiameli
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Alberto Quinzii
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Simona Casalino
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Camilla Zecchetto
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Valeria Merz
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Davide Melisi
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy.
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| |
Collapse
|
8
|
Nishimura K, Takahara K, Komura K, Ishida M, Hirosuna K, Maenosono R, Ajiro M, Sakamoto M, Iwatsuki K, Nakajima Y, Tsujino T, Taniguchi K, Tanaka T, Inamoto T, Hirose Y, Ono F, Kondo Y, Yoshimi A, Azuma H. Mechanistic insights into lethal hyper progressive disease induced by PD-L1 inhibitor in metastatic urothelial carcinoma. NPJ Precis Oncol 2024; 8:206. [PMID: 39289546 PMCID: PMC11408499 DOI: 10.1038/s41698-024-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Hyper progressive disease (HPD) is a paradoxical phenomenon characterized by accelerated tumor growth following treatment with immune checkpoint inhibitors. However, the pathogenic causality and its predictor remain unknown. We herein report a fatal case of HPD in a 50-year-old man with metastatic bladder cancer. He had achieved a complete response (CR) through chemoradiation therapy followed by twelve cycles of chemotherapy, maintaining CR for 24 months. Three weeks after initiating maintenance use of a PD-L1 inhibitor, avelumab, a massive amount of metastases developed, leading to the patient's demise. Omics analysis, utilizing metastatic tissues obtained from an immediate autopsy, implied the contribution of M2 macrophages, TGF-β signaling, and interleukin-8 to HPD pathogenesis.
Collapse
Affiliation(s)
- Kazuki Nishimura
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Kiyoshi Takahara
- Department of Urology, Fujita-Health University School of Medicine, Toyoake City, Aichi, Japan
| | - Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
| | - Mitsuaki Ishida
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Kensuke Hirosuna
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Ryoichi Maenosono
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Masahiko Ajiro
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Moritoshi Sakamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Kengo Iwatsuki
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yuki Nakajima
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Takuya Tsujino
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Kohei Taniguchi
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Tomohito Tanaka
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Fumihito Ono
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan.
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| |
Collapse
|
9
|
Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, Vitale P, De Falco V, Farese S, Zotta A, Ciardiello F, Addeo R. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. Int J Mol Sci 2024; 25:7400. [PMID: 39000507 PMCID: PMC11242595 DOI: 10.3390/ijms25137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-β signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-β signals through SMAD proteins, which are intracellular molecules that transmit TGF-β signals from the cell membrane to the nucleus. Alterations in the TGF-β pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-β signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-β influences metastasis development. TGF-β promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-β affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-β in mCRC patients, aiming to identify new therapeutic options.
Collapse
Affiliation(s)
- Morena Fasano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mario Pirozzi
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Chiara Carmen Miceli
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mariateresa Cocule
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale Vitale
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Vincenzo De Falco
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Stefano Farese
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Alessia Zotta
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| |
Collapse
|
10
|
Trujillo Cubillo L, Gurdal M, Zeugolis DI. Corneal fibrosis: From in vitro models to current and upcoming drug and gene medicines. Adv Drug Deliv Rev 2024; 209:115317. [PMID: 38642593 DOI: 10.1016/j.addr.2024.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Fibrotic diseases are characterised by myofibroblast differentiation, uncontrolled pathological extracellular matrix accumulation, tissue contraction, scar formation and, ultimately tissue / organ dysfunction. The cornea, the transparent tissue located on the anterior chamber of the eye, is extremely susceptible to fibrotic diseases, which cause loss of corneal transparency and are often associated with blindness. Although topical corticosteroids and antimetabolites are extensively used in the management of corneal fibrosis, they are associated with glaucoma, cataract formation, corneoscleral melting and infection, imposing the need of far more effective therapies. Herein, we summarise and discuss shortfalls and recent advances in in vitro models (e.g. transforming growth factor-β (TGF-β) / ascorbic acid / interleukin (IL) induced) and drug (e.g. TGF-β inhibitors, epigenetic modulators) and gene (e.g. gene editing, gene silencing) therapeutic strategies in the corneal fibrosis context. Emerging therapeutical agents (e.g. neutralising antibodies, ligand traps, receptor kinase inhibitors, antisense oligonucleotides) that have shown promise in clinical setting but have not yet assessed in corneal fibrosis context are also discussed.
Collapse
Affiliation(s)
- Laura Trujillo Cubillo
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
11
|
Baranda JC, Robbrecht D, Sullivan R, Doger B, Santoro A, Barve M, Grob J, Bechter O, Vieito M, de Miguel MJ, Schadendorf D, Johnson M, Pouzin C, Cantalloube C, Wang R, Lee J, Chen X, Demers B, Amrate A, Abbadessa G, Hodi FS. Safety, pharmacokinetics, pharmacodynamics, and antitumor activity of SAR439459, a TGFβ inhibitor, as monotherapy and in combination with cemiplimab in patients with advanced solid tumors: Findings from a phase 1/1b study. Clin Transl Sci 2024; 17:e13854. [PMID: 38898592 PMCID: PMC11186846 DOI: 10.1111/cts.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
SAR439459 (SAR'459), a "second-generation" human anti-transforming growth factor beta (TGFβ) monoclonal antibody, enhances the activity of immune checkpoint inhibitors. In this phase I/Ib study, we evaluated the safety, pharmacokinetics (PK), pharmacodynamics, and antitumor activity of SAR'459 ± cemiplimab (intravenous) in patients with advanced solid tumors. Increasing doses of SAR'459 were administered every 2 or 3 weeks (Q2W, Q3W) alone (Part 1A) or with 3 mg/kg cemiplimab Q2W or 350 mg Q3W (Part 1B). In Part 2A (dose expansion), melanoma patients were randomly (1:1) administered 22.5 or 7.5 mg/kg SAR'459. In Part 2B (dose expansion), 22.5 mg/kg SAR'459 and 350 mg cemiplimab Q3W were administered. The primary end points were maximum tolerated dose (MTD) or maximum administered dose (MAD; Part 1), preliminary antitumor activity (Part 2B), and optimal monotherapy dose (Part 2A). Twenty-eight and 24 patients were treated in Parts 1A and 1B, respectively; MTD was not reached, MAD was 15 (Q2W) and 22.5 mg/kg (Q3W) alone and in combination, respectively. Fourteen and 95 patients, including 14 hepatocellular carcinoma (HCC) patients, were treated in Parts 2A and 2B, respectively. The population PK model yielded satisfactory goodness-of-fit plots and adequately described the observed data by a two-compartment PK model with linear elimination. Objective responses were not observed in Parts 1 and 2A. In Part 2B, objective response rate was 8.4% and 7.1% across tumor types and the HCC cohort, respectively. The most frequent treatment-emergent adverse effects were hemorrhagic events (43.5%), keratoacanthoma (6.8%), and skin neoplasms (6.2%). Fatal bleeding occurred in 21.4% HCC patients despite the implementation of mitigation measures. SAR'459 monotherapy and combination with cemiplimab appeared relatively safe and tolerable in limited number of patients in dose escalation. However, the study was discontinued due to the unclear efficacy of SAR'459 and bleeding risk, particularly in HCC patients.
Collapse
Affiliation(s)
- Joaquina C. Baranda
- Department of Internal MedicineUniversity of Kansas Cancer CenterFairwayKansasUSA
| | | | - Ryan Sullivan
- Massachusetts General Hospital Cancer Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Bernard Doger
- START Madrid Hospital Universitario Fundación Jiménez DíazMadridSpain
| | - Armando Santoro
- Department of Biomedical SciencesHumanitas University Via Rita Levi MontalciniPieve Emanuele, MilanItaly
- IRCCS Humanitas Research Hospital‐Humanitas Cancer Center Via ManzoniRozzano, MilanItaly
| | | | | | - Oliver Bechter
- Department of General Medical Oncology Leuven Cancer InstituteUniversity Hospitals Leuven, KU LeuvenLeuvenBelgium
| | - Maria Vieito
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO) SpainBarcelonaSpain
| | | | - Dirk Schadendorf
- University of Essen and the German Cancer ConsortiumEssenGermany
| | - Melissa Johnson
- Sarah Cannon Research Institute/Tennessee Oncology, PLCCNashvilleTennesseeUSA
| | | | | | | | | | | | | | | | | | - F. Stephen Hodi
- Department of Medical Oncology, Center for Immuno‐OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| |
Collapse
|
12
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Tapia-Galisteo A, Sánchez-Rodríguez I, Narbona J, Iglesias-Hernández P, Aragón-García S, Jiménez-Reinoso A, Compte M, Khan S, Tsuda T, Chames P, Lacadena J, Álvarez-Vallina L, Sanz L. Combination of T cell-redirecting strategies with a bispecific antibody blocking TGF-β and PD-L1 enhances antitumor responses. Oncoimmunology 2024; 13:2338558. [PMID: 38623463 PMCID: PMC11018002 DOI: 10.1080/2162402x.2024.2338558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/30/2024] [Indexed: 04/17/2024] Open
Abstract
T cell-based immunotherapies for solid tumors have not achieved the clinical success observed in hematological malignancies, partially due to the immunosuppressive effect promoted by the tumor microenvironment, where PD-L1 and TGF-β play a pivotal role. However, durable responses to immune checkpoint inhibitors remain limited to a minority of patients, while TGF-β inhibitors have not reached the market yet. Here, we describe a bispecific antibody for dual blockade of PD-L1 and TFG-β, termed AxF (scFv)2, under the premise that combination with T cell redirecting strategies would improve clinical benefit. The AxF (scFv)2 antibody was well expressed in mammalian and yeast cells, bound both targets and inhibited dose-dependently the corresponding signaling pathways in luminescence-based cellular reporter systems. Moreover, combined treatment with trispecific T-cell engagers (TriTE) or CAR-T cells significantly boosted T cell activation status and cytotoxic response in breast, lung and colorectal (CRC) cancer models. Importantly, the combination of an EpCAMxCD3×EGFR TriTE with the AxF (scFv)2 delayed CRC tumor growth in vivo and significantly enhanced survival compared to monotherapy with the trispecific antibody. In summary, we demonstrated the feasibility of concomitant blockade of PD-L1 and TGF-β by a single molecule, as well as its therapeutic potential in combination with different T cell redirecting agents to overcome tumor microenvironment-mediated immunosuppression.
Collapse
Affiliation(s)
- Antonio Tapia-Galisteo
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Cancer Immunotherapy Unit (UNICA), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-oncology and Immunotherapy Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Iñigo Sánchez-Rodríguez
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Javier Narbona
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Iglesias-Hernández
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Saray Aragón-García
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Anaïs Jiménez-Reinoso
- Cancer Immunotherapy Unit (UNICA), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-oncology and Immunotherapy Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Shaukat Khan
- Nemours Children’s Health Delaware, Wilmington, Delaware, USA
| | - Takeshi Tsuda
- Nemours Children’s Health Delaware, Wilmington, Delaware, USA
| | - Patrick Chames
- Aix Marseille Univ, CNRS, INSERM, Institute Paoli-Calmettes, CRCM, Marseille, France
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-oncology and Immunotherapy Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
14
|
Robbrecht D, Grob J, Bechter O, Simonelli M, Doger B, Borbath I, Butler MO, Cheng T, Romano PM, Pons‐Tostivint E, Di Nicola M, Curigliano G, Ryu M, Rodriguez‐Vida A, Schadendorf D, Garralda E, Abbadessa G, Demers B, Amrate A, Wang H, Lee JS, Pomponio R, Wang R. Biomarker and pharmacodynamic activity of the transforming growth factor-beta (TGFβ) inhibitor SAR439459 as monotherapy and in combination with cemiplimab in a phase I clinical study in patients with advanced solid tumors. Clin Transl Sci 2024; 17:e13736. [PMID: 38362837 PMCID: PMC10870242 DOI: 10.1111/cts.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 02/17/2024] Open
Abstract
SAR439459, a 'second-generation' human anti-transforming growth factor-beta (TGFβ) monoclonal antibody, inhibits all TGFβ isoforms and improves the antitumor activity of anti-programmed cell death protein-1 therapeutics. This study reports the pharmacodynamics (PD) and biomarker results from phase I/Ib first-in-human study of SAR439459 ± cemiplimab in patients with advanced solid tumors (NCT03192345). In dose-escalation phase (Part 1), SAR439459 was administered intravenously at increasing doses either every 2 weeks (Q2W) or every 3 weeks (Q3W) with cemiplimab IV at 3 mg/kg Q2W or 350 mg Q3W, respectively, in patients with advanced solid tumors. In dose-expansion phase (Part 2), patients with melanoma received SAR439459 IV Q3W at preliminary recommended phase II dose (pRP2D) of 22.5/7.5 mg/kg or at 22.5 mg/kg with cemiplimab 350 mg IV Q3W. Tumor biopsy and peripheral blood samples were collected for exploratory biomarker analyses to assess target engagement and PD, and results were correlated with patients' clinical parameters. SAR439459 ± cemiplimab showed decreased plasma and tissue TGFβ, downregulation of TGFβ-pathway activation signature, modulation of peripheral natural killer (NK) and T cell expansion, proliferation, and increased secretion of CXCL10. Conversion of tumor tissue samples from 'immune-excluded' to 'immune-infiltrated' phenotype in a representative patient with melanoma SAR439459 22.5 mg/kg with cemiplimab was observed. In paired tumor and plasma, active and total TGFβ1 was more consistently elevated followed by TGFβ2, whereas TGFβ3 was only measurable (lower limit of quantitation ≥2.68 pg/mg) in tumors. SAR439459 ± cemiplimab showed expected peripheral PD effects and TGFβ alteration. However, further studies are needed to identify biomarkers of response.
Collapse
Affiliation(s)
- Debbie Robbrecht
- Medical OncologyErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Jean‐Jacques Grob
- Dermatology and Oncology ServiceAix Marseille University and Timone HospitalMarseilleFrance
| | - Oliver Bechter
- Department of General Medical OncologyLeuven Cancer Institute, University Hospitals Leuven, KU LeuvenLeuvenBelgium
| | - Matteo Simonelli
- Department of Biomedical ScienceHumanitas UniversityMilanItaly
- Department of Medical Oncology and HematologyIRCCS Humanitas Research HospitalMilanItaly
| | - Bernard Doger
- START Madrid‐FJD, Early Phase Clinical Trials UnitHospital Universitario Fundación Jiménez DíazMadridSpain
| | - Ivan Borbath
- Department of HepatogastroenterologyCliniques Universitaires Saint‐Luc, Université Catholique de LouvainBrusselsBelgium
| | - Marcus O. Butler
- Department of Medical Oncology and Hematology, Department of ImmunologyPrincess Margaret Cancer Centre, University of TorontoTorontoOntarioCanada
| | - Tina Cheng
- Division of Medical Oncology, Department of OncologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Patricia Martin Romano
- Département d'Innovation Thérapeutique et d'Essais Précoces, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
| | | | - Massimo Di Nicola
- Unit of Immunotherapy and Anticancer Innovative TherapeuticsFondazione IRCCS Istituto Nazionale TumoriMilanItaly
| | - Giuseppe Curigliano
- Division of Early Drug DevelopmentEuropean Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐OncologyUniversity of MilanMilanItaly
| | - Min‐Hee Ryu
- Department of Oncology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Alejo Rodriguez‐Vida
- Medical Oncology Department, Hospital del Mar, CIBERONCIMIM Research InstituteBarcelonaSpain
| | - Dirk Schadendorf
- Department of DermatologyUniversity Hospital EssenEssenGermany
- German Cancer Consortium, partner site EssenEssenGermany
- NCT‐West, Campus EssenEssenGermany
- University Alliance Ruhr, Research Center One Health, University Duisburg‐EssenEssenGermany
| | - Elena Garralda
- Medical Oncology DepartmentVall d'Hebron University Hospital and Institute of OncologyBarcelonaSpain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Li K, Liu W, Yu H, Chen J, Tang W, Wang J, Qi M, Sun Y, Xu X, Zhang J, Li X, Guo W, Li X, Song S, Tang S. 68Ga-FAPI PET imaging monitors response to combined TGF-βR inhibition and immunotherapy in metastatic colorectal cancer. J Clin Invest 2024; 134:e170490. [PMID: 38175716 PMCID: PMC10866654 DOI: 10.1172/jci170490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUNDImproving and predicting tumor response to immunotherapy remains challenging. Combination therapy with a transforming growth factor-β receptor (TGF-βR) inhibitor that targets cancer-associated fibroblasts (CAFs) is promising for the enhancement of efficacy of immunotherapies. However, the effect of this approach in clinical trials is limited, requiring in vivo methods to better assess tumor responses to combination therapy.METHODSWe measured CAFs in vivo using the 68Ga-labeled fibroblast activation protein inhibitor-04 (68Ga-FAPI-04) for PET/CT imaging to guide the combination of TGF-β inhibition and immunotherapy. One hundred thirty-one patients with metastatic colorectal cancer (CRC) underwent 68Ga-FAPI and 18F-fluorodeoxyglucose (18F-FDG) PET/CT imaging. The relationship between uptake of 68Ga-FAPI and tumor immunity was analyzed in patients. Mouse cohorts of metastatic CRC were treated with the TGF-βR inhibitor combined with KN046, which blocks programmed death ligand 1 (PD-L1) and CTLA-4, followed by 68Ga-FAPI and 18F-FDG micro-PET/CT imaging to assess tumor responses.RESULTSPatients with metastatic CRC demonstrated high uptake rates of 68Ga-FAPI, along with suppressive tumor immunity and poor prognosis. The TGF-βR inhibitor enhanced tumor-infiltrating T cells and significantly sensitized metastatic CRC to KN046. 68Ga-FAPI PET/CT imaging accurately monitored the dynamic changes of CAFs and tumor response to combined the TGF-βR inhibitor with immunotherapy.CONCLUSION68Ga-FAPI PET/CT imaging is powerful in assessing tumor immunity and the response to immunotherapy in metastatic CRC. This study supports future clinical application of 68Ga-FAPI PET/CT to guide precise TGF-β inhibition plus immunotherapy in CRC patients, recommending 68Ga-FAPI and 18F-FDG dual PET/CT for CRC management.TRIAL REGISTRATIONCFFSTS Trial, ChiCTR2100053984, Chinese Clinical Trial Registry.FUNDINGNational Natural Science Foundation of China (82072695, 32270767, 82272035, 81972260).
Collapse
Affiliation(s)
- Ke Li
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Wei Liu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Hang Yu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Jiwei Chen
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenxuan Tang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Qi
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Yuyun Sun
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Xiaoping Xu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Ji Zhang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Xinxiang Li
- Department of Oncology and
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijian Guo
- Department of Oncology and
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Shaoli Song
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Shuang Tang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| |
Collapse
|
16
|
Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40:335. [PMID: 37855975 DOI: 10.1007/s12032-023-02204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex malignancy responsible for the second-highest cancer deaths worldwide. TGF-β maintains normal cellular homeostasis by inhibiting the cell cycle and inducing apoptosis, but its elevated level is correlated with colorectal cancer progression, as TGF-β is a master regulator of the epithelial-to-mesenchymal transition, a critical step of metastasis. Tumors, including CRC, use elevated TGF-β levels to avoid immune surveillance by modulating immune cell differentiation, proliferation, and effector function. Presently, the treatment of advanced CRC is mainly based on chemotherapy, with multiple adverse effects. Thus, there is a need to develop alternate tactics because CRC continue to be mostly resistant to the present therapeutic regimen. TGF-β blockade has emerged as a promising therapeutic target in cancer therapy. Blocking TGF-β with phytochemicals and other molecules, such as antisense oligonucleotides, monoclonal antibodies, and bifunctional traps, alone or in combination, may be a safer and more effective way to treat CRC. Furthermore, combination immunotherapy comprising TGF-β blockers and immune checkpoint inhibitors is gaining popularity because both molecules work synergistically to suppress the immune system. Here, we summarize the current understanding of TGF-β as a therapeutic target for managing CRC and its context-dependent tumor-promoting or tumor-suppressing nature.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
17
|
De Chiara L, Semeraro R, Mazzinghi B, Landini S, Molli A, Antonelli G, Angelotti ML, Melica ME, Maggi L, Conte C, Peired AJ, Cirillo L, Raglianti V, Magi A, Annunziato F, Romagnani P, Lazzeri E. Polyploid tubular cells initiate a TGF-β1 controlled loop that sustains polyploidization and fibrosis after acute kidney injury. Am J Physiol Cell Physiol 2023; 325:C849-C861. [PMID: 37642236 PMCID: PMC10635654 DOI: 10.1152/ajpcell.00081.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Polyploidization of tubular cells (TC) is triggered by acute kidney injury (AKI) to allow survival in the early phase after AKI, but in the long run promotes fibrosis and AKI-chronic kidney disease (CKD) transition. The molecular mechanism governing the link between polyploid TC and kidney fibrosis remains to be clarified. In this study, we demonstrate that immediately after AKI, expression of cell cycle markers mostly identifies a population of DNA-damaged polyploid TC. Using transgenic mouse models and single-cell RNA sequencing we show that, unlike diploid TC, polyploid TC accumulate DNA damage and survive, eventually resting in the G1 phase of the cell cycle. In vivo and in vitro single-cell RNA sequencing along with sorting of polyploid TC shows that these cells acquire a profibrotic phenotype culminating in transforming growth factor (TGF)-β1 expression and that TGF-β1 directly promotes polyploidization. This demonstrates that TC polyploidization is a self-sustained mechanism. Interactome analysis by single-cell RNA sequencing revealed that TGF-β1 signaling fosters a reciprocal activation loop among polyploid TC, macrophages, and fibroblasts to sustain kidney fibrosis and promote CKD progression. Collectively, this study contributes to the ongoing revision of the paradigm of kidney tubule response to AKI, supporting the existence of a tubulointerstitial cross talk mediated by TGF-β1 signaling produced by polyploid TC following DNA damage.NEW & NOTEWORTHY Polyploidization in tubular epithelial cells has been neglected until recently. Here, we showed that polyploidization is a self-sustained mechanism that plays an important role during chronic kidney disease development, proving the existence of a cross talk between infiltrating cells and polyploid tubular cells. This study contributes to the ongoing revision of kidney adaptation to injury, posing polyploid tubular cells at the center of the process.
Collapse
Affiliation(s)
- Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Alice Molli
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Giulia Antonelli
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria Elena Melica
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Carolina Conte
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Anna Julie Peired
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Valentina Raglianti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), Careggi University Hospital, Florence, Italy
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Elena Lazzeri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
18
|
Rohil A, Talekar S, Shammas KM, Ajay AK. Putting transcriptional brakes on fibrosis: a negative regulator of TGFβ signaling. Trends Cell Biol 2023; 33:734-735. [PMID: 37380582 PMCID: PMC11956362 DOI: 10.1016/j.tcb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Due to the pleiotropic effect of transforming growth factor β (TGFβ) signaling inhibition, function-specific targeted inhibition of TGFβ signaling is required. In a recent study, Yang et al. found that Krüppel-like factor (KLF)-13 acts as a negative regulator of TGFβ. Thus, activating KLF13 in fibrotic tissues may protect them from fibrosis by decreasing TGFβ signaling.
Collapse
Affiliation(s)
- Ayanna Rohil
- Renal Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siddhi Talekar
- Renal Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid M Shammas
- Renal Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amrendra K Ajay
- Renal Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Castiglioni A, Yang Y, Williams K, Gogineni A, Lane RS, Wang AW, Shyer JA, Zhang Z, Mittman S, Gutierrez A, Astarita JL, Thai M, Hung J, Yang YA, Pourmohamad T, Himmels P, De Simone M, Elstrott J, Capietto AH, Cubas R, Modrusan Z, Sandoval W, Ziai J, Gould SE, Fu W, Wang Y, Koerber JT, Sanjabi S, Mellman I, Turley SJ, Müller S. Combined PD-L1/TGFβ blockade allows expansion and differentiation of stem cell-like CD8 T cells in immune excluded tumors. Nat Commun 2023; 14:4703. [PMID: 37543621 PMCID: PMC10404279 DOI: 10.1038/s41467-023-40398-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
TGFβ signaling is associated with non-response to immune checkpoint blockade in patients with advanced cancers, particularly in the immune-excluded phenotype. While previous work demonstrates that converting tumors from excluded to inflamed phenotypes requires attenuation of PD-L1 and TGFβ signaling, the underlying cellular mechanisms remain unclear. Here, we show that TGFβ and PD-L1 restrain intratumoral stem cell-like CD8 T cell (TSCL) expansion and replacement of progenitor-exhausted and dysfunctional CD8 T cells with non-exhausted T effector cells in the EMT6 tumor model in female mice. Upon combined TGFβ/PD-L1 blockade IFNγhi CD8 T effector cells show enhanced motility and accumulate in the tumor. Ensuing IFNγ signaling transforms myeloid, stromal, and tumor niches to yield an immune-supportive ecosystem. Blocking IFNγ abolishes the anti-PD-L1/anti-TGFβ therapy efficacy. Our data suggest that TGFβ works with PD-L1 to prevent TSCL expansion and replacement of exhausted CD8 T cells, thereby maintaining the T cell compartment in a dysfunctional state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhe Zhang
- Genentech, South San Francisco, CA, USA
| | | | | | | | - Minh Thai
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nixon BG, Gao S, Wang X, Li MO. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat Rev Immunol 2023; 23:346-362. [PMID: 36380023 PMCID: PMC10634249 DOI: 10.1038/s41577-022-00796-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
The immune system responds to cancer in two main ways. First, there are prewired responses involving myeloid cells, innate lymphocytes and innate-like adaptive lymphocytes that either reside in premalignant tissues or migrate directly to tumours, and second, there are antigen priming-dependent responses, in which adaptive lymphocytes are primed in secondary lymphoid organs before homing to tumours. Transforming growth factor-β (TGFβ) - one of the most potent and pleiotropic regulatory cytokines - controls almost every stage of the tumour-elicited immune response, from leukocyte development in primary lymphoid organs to their priming in secondary lymphoid organs and their effector functions in the tumour itself. The complexity of TGFβ-regulated immune cell circuitries, as well as the contextual roles of TGFβ signalling in cancer cells and tumour stromal cells, necessitates the use of rigorous experimental systems that closely recapitulate human cancer, such as autochthonous tumour models, to uncover the underlying immunobiology. The diverse functions of TGFβ in healthy tissues further complicate the search for effective and safe cancer therapeutics targeting the TGFβ pathway. Here we discuss the contextual complexity of TGFβ signalling in tumour-elicited immune responses and explain how understanding this may guide the development of mechanism-based cancer immunotherapy.
Collapse
Affiliation(s)
- Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Shengyu Gao
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xinxin Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Burciaga-Flores M, Márquez-Aguirre AL, Dueñas S, Gasperin-Bulbarela J, Licea-Navarro AF, Camacho-Villegas TA. First pan-specific vNAR against human TGF-β as a potential therapeutic application: in silico modeling assessment. Sci Rep 2023; 13:3596. [PMID: 36869086 PMCID: PMC9982792 DOI: 10.1038/s41598-023-30623-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Immunotherapies based on antibody fragments have been developed and applied to human diseases, describing novel antibody formats. The vNAR domains have a potential therapeutic use related to their unique properties. This work used a non-immunized Heterodontus francisci shark library to obtain a vNAR with recognition of TGF-β isoforms. The isolated vNAR T1 selected by phage display demonstrated binding of the vNAR T1 to TGF-β isoforms (-β1, -β2, -β3) by direct ELISA assay. These results are supported by using for the first time the Single-Cycle kinetics (SCK) method for Surface plasmon resonance (SPR) analysis for a vNAR. Also, the vNAR T1 shows an equilibrium dissociation constant (KD) of 9.61 × 10-8 M against rhTGF-β1. Furthermore, the molecular docking analysis revealed that the vNAR T1 interacts with amino acid residues of TGF-β1, which are essential for interaction with type I and II TGF-β receptors. The vNAR T1 is the first pan-specific shark domain reported against the three hTGF-β isoforms and a potential alternative to overcome the challenges related to the modulation of TGF-β levels implicated in several human diseases such as fibrosis, cancer, and COVID-19.
Collapse
Affiliation(s)
- Mirna Burciaga-Flores
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México
| | - Ana Laura Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México
| | - Salvador Dueñas
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México
| | - Jahaziel Gasperin-Bulbarela
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México
| | - Alexei F Licea-Navarro
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México.
| | - Tanya A Camacho-Villegas
- CONACYT - Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México.
| |
Collapse
|
22
|
San-Román-Gil M, Torres-Jiménez J, Pozas J, Esteban-Villarrubia J, Albarrán-Fernández V, Álvarez-Ballesteros P, Chamorro-Pérez J, Rosero-Rodríguez D, Orejana-Martín I, Martínez-Delfrade Í, Reguera-Puertas P, Fuentes-Mateos R, Ferreiro-Monteagudo R. Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma. Cancers (Basel) 2023; 15:863. [PMID: 36765821 PMCID: PMC9913409 DOI: 10.3390/cancers15030863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second most common cause of cancer-related death in Europe. High microsatellite instability (MSI-H) due to a deficient DNA mismatch repair (dMMR) system can be found in 5% of metastatic CRC (mCRC) and has been established as a biomarker of response to immunotherapy in these tumors. Therefore, immune checkpoint inhibitors (ICIs) in mCRC with these characteristics were evaluated with results showing remarkable response rates and durations of response. The majority of mCRC cases have high levels of DNA mismatch repair proteins (pMMR) with consequent microsatellite stability or low instability (MSS or MSI-low), associated with an inherent resistance to ICIs. This review aims to provide a comprehensive analysis of the possible approaches to overcome the mechanisms of resistance and evaluates potential biomarkers to establish the role of ICIs in pMMR/MSS/MSI-L (MSS) mCRC.
Collapse
Affiliation(s)
- María San-Román-Gil
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Javier Torres-Jiménez
- Medical Oncology Department, Clínico San Carlos University Hospital, 28040 Madrid, Spain
| | - Javier Pozas
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | - Jesús Chamorro-Pérez
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Chan MKK, Chan ELY, Ji ZZ, Chan ASW, Li C, Leung KT, To KF, Tang PMK. Transforming growth factor-β signaling: from tumor microenvironment to anticancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:316-343. [PMID: 37205317 PMCID: PMC10185444 DOI: 10.37349/etat.2023.00137] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/09/2023] [Indexed: 05/21/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is an important pathway for promoting the pathogenesis of inflammatory diseases, including cancer. The roles of TGF-β signaling are heterogeneous and versatile in cancer development and progression, both anticancer and protumoral actions are reported. Interestingly, increasing evidence suggests that TGF-β enhances disease progression and drug resistance via immune-modulatory actions in the tumor microenvironment (TME) of solid tumors. A better understanding of its regulatory mechanisms in the TME at the molecular level can facilitate the development of precision medicine to block the protumoral actions of TGF-β in the TME. Here, the latest information about the regulatory mechanisms and translational research of TGF-β signaling in the TME for therapeutic development had been summarized.
Collapse
Affiliation(s)
- Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Emily Lok-Yiu Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: Patrick Ming-Kuen Tang, Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
24
|
Zhang J, Hu Z, Horta CA, Yang J. Regulation of epithelial-mesenchymal transition by tumor microenvironmental signals and its implication in cancer therapeutics. Semin Cancer Biol 2023; 88:46-66. [PMID: 36521737 DOI: 10.1016/j.semcancer.2022.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been implicated in various aspects of tumor development, including tumor invasion and metastasis, cancer stemness, and therapy resistance. Diverse stroma cell types along with biochemical and biophysical factors in the tumor microenvironment impinge on the EMT program to impact tumor progression. Here we provide an in-depth review of various tumor microenvironmental signals that regulate EMT in cancer. We discuss the molecular mechanisms underlying the role of EMT in therapy resistance and highlight new therapeutic approaches targeting the tumor microenvironment to impact EMT and tumor progression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zhimin Hu
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Calista A Horta
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
26
|
Metropulos AE, Munshi HG, Principe DR. The difficulty in translating the preclinical success of combined TGFβ and immune checkpoint inhibition to clinical trial. EBioMedicine 2022; 86:104380. [PMID: 36455409 PMCID: PMC9706619 DOI: 10.1016/j.ebiom.2022.104380] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for solid tumors. However, even in cancers generally considered ICI-sensitive, responses can vary significantly. Thus, there is an ever-increasing interest in identifying novel means of improving therapeutic responses, both for cancers in which ICIs are indicated and those for which they have yet to show significant anti-tumor activity. To this end, Transforming Growth Factor β (TGFβ) signaling is emerging as an important barrier to the efficacy of ICIs. Accordingly, several preclinical studies now support the use of combined TGFβ and immune checkpoint blockade, with near-uniform positive results across a wide range of tumor types. However, as these approaches have started to emerge in clinical trials, the addition of TGFβ inhibitors has often failed to show a meaningful benefit beyond the current generation of ICIs alone. Here, we summarize landmark clinical studies exploring combined TGFβ and immune checkpoint blockade. These studies not only reinforce the difficulty in translating results from rodents to clinical trials in immune-oncology but also underscore the need to re-evaluate the design of trials exploring this approach, incorporating both mechanism-driven combination strategies and novel, predictive biomarkers to identify the patients most likely to derive clinical benefit.
Collapse
Affiliation(s)
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| | | |
Collapse
|
27
|
Roles of TGF- β in cancer hallmarks and emerging onco-therapeutic design. Expert Rev Mol Med 2022; 24:e42. [PMID: 36345661 DOI: 10.1017/erm.2022.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a double-edged sword in cancer treatment because of its pivotal yet complex and roles played during cancer initiation/development. Current anti-cancer strategies involving TGF-β largely view TGF-β as an onco-therapeutic target that not only substantially hinders its full utilisation for cancer control, but also considerably restricts innovations in this field. Thereby, how to take advantages of therapeutically favourable properties of TGF-β for cancer management represents an interesting and less investigated problem. Here, by categorising cancer hallmarks into four critical transition events and one enabling characteristic controlling cancer initiation and progression, and delineating TGF-β complexities according to these cancer traits, we identify the suppressive role of TGF-β in tumour initiation and early-stage progression and its promotive functionalities in cancer metastasis as well as other cancer hallmarks. We also propose the feasibility and possible scenarios of combining cold atmospheric plasma (CAP) with onco-therapeutics utilising TGF-β for cancer control given the intrinsic properties of CAP against cancer hallmarks.
Collapse
|
28
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
29
|
Chan MKK, Chung JYF, Tang PCT, Chan ASW, Ho JYY, Lin TPT, Chen J, Leung KT, To KF, Lan HY, Tang PMK. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550:215925. [DOI: 10.1016/j.canlet.2022.215925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
30
|
Wang D, Li Y, Ge H, Ghadban T, Reeh M, Güngör C. The Extracellular Matrix: A Key Accomplice of Cancer Stem Cell Migration, Metastasis Formation, and Drug Resistance in PDAC. Cancers (Basel) 2022; 14:cancers14163998. [PMID: 36010993 PMCID: PMC9406497 DOI: 10.3390/cancers14163998] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is rich in dense fibrotic stroma that are composed of extracellular matrix (ECM) proteins. A disruption of the balance between ECM synthesis and secretion and the altered expression of matrix remodeling enzymes lead to abnormal ECM dynamics in PDAC. This pathological ECM promotes cancer growth, survival, invasion, and alters the behavior of fibroblasts and immune cells leading to metastasis formation and chemotherapy resistance, which contribute to the high lethality of PDAC. Additionally, recent evidence highlights that ECM, as a major structural component of the tumor microenvironment, is a highly dynamic structure in which ECM proteins establish a physical and biochemical niche for cancer stem cells (CSCs). CSCs are characterized by self-renewal, tumor initiation, and resistance to chemotherapeutics. In this review, we will discuss the effects of the ECM on tumor biological behavior and its molecular impact on the fundamental signaling pathways in PDAC. We will also provide an overview of how the different ECM components are able to modulate CSCs properties and finally discuss the current and ongoing therapeutic strategies targeting the ECM. Given the many challenges facing current targeted therapies for PDAC, a better understanding of molecular events involving the interplay of ECM and CSC will be key in identifying more effective therapeutic strategies to eliminate CSCs and ultimately to improve survival in patients that are suffering from this deadly disease.
Collapse
|
31
|
Chen Y, Bai B, Ying K, Pan H, Xie B. Anti-PD-1 combined with targeted therapy: Theory and practice in gastric and colorectal cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188775. [DOI: 10.1016/j.bbcan.2022.188775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
32
|
Li L, Wen Q, Ding R. Therapeutic targeting of VEGF and/or TGF-β to enhance anti-PD-(L)1 therapy: The evidence from clinical trials. Front Oncol 2022; 12:905520. [PMID: 35957885 PMCID: PMC9360509 DOI: 10.3389/fonc.2022.905520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022] Open
Abstract
Normalizing the tumor microenvironment (TME) is a potential strategy to improve the effectiveness of immunotherapy. Vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β pathways play an important role in the development and function of the TME, contributing to the immunosuppressive status of TME. To inhibit VEGF and/or TGF-β pathways can restore TME from immunosuppressive to immune-supportive status and enhance sensitivity to immunotherapy such as programmed death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitors. In this review, we described the existing preclinical and clinical evidence supporting the use of anti-VEGF and/or anti-TGF-β therapies to enhance cancer immunotherapy. Encouragingly, adopting anti-VEGF and/or anti-TGF-β therapies as a combination treatment with anti-PD-(L)1 therapy have been demonstrated as effective and tolerable in several solid tumors in clinical trials. Although several questions need to be solved, the clinical value of this combination strategy is worthy to be studied further.
Collapse
Affiliation(s)
- Linwei Li
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qinglian Wen, ; Ruilin Ding,
| | - Ruilin Ding
- Institute of Drug Clinical Trial/GCP Center, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qinglian Wen, ; Ruilin Ding,
| |
Collapse
|
33
|
Dunai C, Ames E, Ochoa MC, Fernandez-Sendin M, Melero I, Simonetta F, Baker J, Alvarez M. Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:65-122. [PMID: 35798507 DOI: 10.1016/bs.ircmb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Myriam Fernandez-Sendin
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Centre in Onco-Haematology, Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
34
|
Pomponio R, Tang Q, Mei A, Caron A, Coulibaly B, Theilhaber J, Rogers-Grazado M, Sanicola-Nadel M, Naimi S, Olfati-Saber R, Combeau C, Pollard J, Lin TT, Wang R. An integrative approach of digital image analysis and transcriptome profiling to explore potential predictive biomarkers for TGFβ blockade therapy. Acta Pharm Sin B 2022; 12:3594-3601. [PMID: 36176910 PMCID: PMC9513441 DOI: 10.1016/j.apsb.2022.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
Increasing evidence suggests that the presence and spatial localization and distribution pattern of tumor infiltrating lymphocytes (TILs) is associate with response to immunotherapies. Recent studies have identified TGFβ activity and signaling as a determinant of T cell exclusion in the tumor microenvironment and poor response to PD-1/PD-L1 blockade. Here we coupled the artificial intelligence (AI)-powered digital image analysis and gene expression profiling as an integrative approach to quantify distribution of TILs and characterize the associated TGFβ pathway activity. Analysis of T cell spatial distribution in the solid tumor biopsies revealed substantial differences in the distribution patterns. The digital image analysis approach achieves 74% concordance with the pathologist assessment for tumor-immune phenotypes. The transcriptomic profiling suggests that the TIL score was negatively correlated with TGFβ pathway activation, together with elevated TGFβ signaling activity observed in excluded and desert tumor phenotypes. The present results demonstrate that the automated digital pathology algorithm for quantitative analysis of CD8 immunohistochemistry image can successfully assign the tumor into one of three infiltration phenotypes: immune desert, immune excluded or immune inflamed. The association between “cold” tumor-immune phenotypes and TGFβ signature further demonstrates their potential as predictive biomarkers to identify appropriate patients that may benefit from TGFβ blockade.
Collapse
|
35
|
Abstract
Transforming growth factor-β (TGFβ) signalling controls multiple cell fate decisions during development and tissue homeostasis; hence, dysregulation of this pathway can drive several diseases, including cancer. Here we discuss the influence that TGFβ exerts on the composition and behaviour of different cell populations present in the tumour immune microenvironment, and the context-dependent functions of this cytokine in suppressing or promoting cancer. During homeostasis, TGFβ controls inflammatory responses triggered by exposure to the outside milieu in barrier tissues. Lack of TGFβ exacerbates inflammation, leading to tissue damage and cellular transformation. In contrast, as tumours progress, they leverage TGFβ to drive an unrestrained wound-healing programme in cancer-associated fibroblasts, as well as to suppress the adaptive immune system and the innate immune system. In consonance with this key role in reprogramming the tumour microenvironment, emerging data demonstrate that TGFβ-inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize with other immunotherapies - including immune checkpoint blockade - to unleash robust antitumour immune responses in preclinical cancer models. Despite initial challenges in clinical translation, these findings have sparked the development of multiple therapeutic strategies that inhibit the TGFβ pathway, many of which are currently in clinical evaluation.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
36
|
Benjamin DJ, Lyou Y. Advances in Immunotherapy and the TGF-β Resistance Pathway in Metastatic Bladder Cancer. Cancers (Basel) 2021; 13:cancers13225724. [PMID: 34830879 PMCID: PMC8616345 DOI: 10.3390/cancers13225724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Bladder cancer accounts for a significant burden to global public health. Despite advances in therapeutics with the advent of immunotherapy, only a small subset of patients benefit from immunotherapy. In this review, we examine the evidence that suggests that the TGF-β pathway may present a resistance mechanism to immunotherapy. In addition, we present possible therapies that may overcome the TGF-β resistance pathway in the treatment of bladder cancer. Abstract Bladder cancer accounts for nearly 200,000 deaths worldwide yearly. Urothelial carcinoma (UC) accounts for nearly 90% of cases of bladder cancer. Cisplatin-based chemotherapy has remained the mainstay of treatment in the first-line setting for locally advanced or metastatic UC. More recently, the treatment paradigm in the second-line setting was drastically altered with the approval of several immune checkpoint inhibitors (ICIs). Given that only a small subset of patients respond to ICI, further studies have been undertaken to understand potential resistance mechanisms to ICI. One potential resistance mechanism that has been identified in the setting of metastatic UC is the TGF-β signaling pathway. Several pre-clinical and ongoing clinical trials in multiple advanced tumor types have evaluated several therapies that target the TGF-β pathway. In addition, there are ongoing and planned clinical trials combining TGF-β inhibition with ICI, which may provide a promising therapeutic approach for patients with advanced and metastatic UC.
Collapse
Affiliation(s)
- David J. Benjamin
- Chao Family Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, UC Irvine Medical Center, Orange, CA 92868, USA;
| | - Yung Lyou
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence: ; Tel.: +1-626-256-2805; Fax: +1-625-301-8233
| |
Collapse
|
37
|
Perez VM, Kearney JF, Yeh JJ. The PDAC Extracellular Matrix: A Review of the ECM Protein Composition, Tumor Cell Interaction, and Therapeutic Strategies. Front Oncol 2021; 11:751311. [PMID: 34692532 PMCID: PMC8526858 DOI: 10.3389/fonc.2021.751311] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for a dense fibrotic stroma that is interlaced with a collagen-based extracellular matrix (ECM) that plays an important role in tumor biology. Traditionally thought to only provide a physical barrier from host responses and systemic chemotherapy, new studies have demonstrated that the ECM maintains biomechanical and biochemical properties of the tumor microenvironment (TME) and restrains tumor growth. Recent studies have shown that the ECM augments tumor stiffness, interstitial fluid pressure, cell-to-cell junctions, and microvascularity using a mix of biomechanical and biochemical signals to influence tumor fate for better or worse. In addition, PDAC tumors have been shown to use ECM-derived peptide fragments as a nutrient source in nutrient-poor conditions. While collagens are the most abundant proteins found in the ECM, several studies have identified growth factors, integrins, glycoproteins, and proteoglycans in the ECM. This review focuses on the dichotomous nature of the PDAC ECM, the types of collagens and other proteins found in the ECM, and therapeutic strategies targeting the PDAC ECM.
Collapse
Affiliation(s)
- Vincent M Perez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph F Kearney
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
38
|
Li X, Yang Y, Huang Q, Deng Y, Guo F, Wang G, Liu M. Crosstalk Between the Tumor Microenvironment and Cancer Cells: A Promising Predictive Biomarker for Immune Checkpoint Inhibitors. Front Cell Dev Biol 2021; 9:738373. [PMID: 34692696 PMCID: PMC8529050 DOI: 10.3389/fcell.2021.738373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the landscape of cancer treatment and are emerging as promising curative treatments in different type of cancers. However, only a small proportion of patients have benefited from ICIs and there is an urgent need to find robust biomarkers for individualized immunotherapy and to explore the causes of immunotherapy resistance. In this article, we review the roles of immune cells in the tumor microenvironment (TME) and discuss the effects of ICIs on these cell populations. We discuss the potential of the functional interaction between the TME and cancer cells as a predictive biomarker for ICIs. Furthermore, we outline the potential personalized strategies to improve the effectiveness of ICIs with precision.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yueyao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Qian Huang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Deng
- School of Basic Medical Science, Chengdu University, Chengdu, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
The TGF-β Pathway: A Pharmacological Target in Hepatocellular Carcinoma? Cancers (Basel) 2021; 13:cancers13133248. [PMID: 34209646 PMCID: PMC8268320 DOI: 10.3390/cancers13133248] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Transforming Growth Factor-beta (TGF-β) superfamily members are essential for tissue homeostasis and consequently, dysregulation of their signaling pathways contributes to the development of human diseases. In the liver, TGF-β signaling participates in all the stages of disease progression from initial liver injury to hepatocellular carcinoma (HCC). During liver carcinogenesis, TGF-β plays a dual role on the malignant cell, behaving as a suppressor factor at early stages, but contributing to later tumor progression once cells escape from its cytostatic effects. Moreover, TGF-β can modulate the response of the cells forming the tumor microenvironment that may also contribute to HCC progression, and drive immune evasion of cancer cells. Thus, targeting the TGF-β pathway may constitute an effective therapeutic option for HCC treatment. However, it is crucial to identify biomarkers that allow to predict the response of the tumors and appropriately select the patients that could benefit from TGF-β inhibitory therapies. Here we review the functions of TGF-β on HCC malignant and tumor microenvironment cells, and the current strategies targeting TGF-β signaling for cancer therapy. We also summarize the clinical impact of TGF-β inhibitors in HCC patients and provide a perspective on its future use alone or in combinatorial strategies for HCC treatment.
Collapse
|
40
|
Budi EH, Schaub JR, Decaris M, Turner S, Derynck R. TGF-β as a driver of fibrosis: physiological roles and therapeutic opportunities. J Pathol 2021; 254:358-373. [PMID: 33834494 DOI: 10.1002/path.5680] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Many chronic diseases are marked by fibrosis, which is defined by an abundance of activated fibroblasts and excessive deposition of extracellular matrix, resulting in loss of normal function of the affected organs. The initiation and progression of fibrosis are elaborated by pro-fibrotic cytokines, the most critical of which is transforming growth factor-β1 (TGF-β1). This review focuses on the fibrogenic roles of increased TGF-β activities and underlying signaling mechanisms in the activated fibroblast population and other cell types that contribute to progression of fibrosis. Insight into these roles and mechanisms of TGF-β as a universal driver of fibrosis has stimulated the development of therapeutic interventions to attenuate fibrosis progression, based on interference with TGF-β signaling. Their promise in preclinical and clinical settings will be discussed. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Erine H Budi
- Pliant Therapeutics Inc, South San Francisco, CA, USA
| | | | | | - Scott Turner
- Pliant Therapeutics Inc, South San Francisco, CA, USA
| | - Rik Derynck
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|