1
|
Kumar M, Singh K, Topno RK, Madhukar M, Siddiqui NA, Sinha SK, Pandey K, Sahoo GC. Prevalence of Japanese encephalitis infection in children below 15 years' age, Bihar. Diagn Microbiol Infect Dis 2025; 111:116579. [PMID: 39577103 DOI: 10.1016/j.diagmicrobio.2024.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Japanese encephalitis (JE) is the leading cause of acute encephalitis syndromes (AES). Although Bihar has comprehensive data on JE, it ranks third behind Uttar Pradesh and Assam in terms of reported cases. We wanted to determine the incidence of JE cases in Bihar and the endemic districts. In Patna, Muzaffarpur and Gaya, Bihar, this study revealed that JEV is one of the major causes of AES and its epidemiology. We analyzed blood and CSF samples from AES patients delivered to a viral diagnostic laboratory between January 2018 and December 2022 for IgM antibodies against JEV using the enzyme immunoassay recommended by NIV, Pune, India. We detected JEV IgM in 193 (8.79 %) of 2195 individuals. Patient demographics included age, gender and place of residence. Most patients were 6-10 years old and had the disease in June. We need to increase awareness initiatives and cross-sector prevention despite the decline in case fatality rate.
Collapse
Affiliation(s)
- Maneesh Kumar
- Viral Research and Diagnostic Laboratory, Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Kamal Singh
- Viral Research and Diagnostic Laboratory, Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Roshan Kamal Topno
- Department of Epidemiology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Major Madhukar
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Niyamat Ali Siddiqui
- Department of Biostatistics, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Sanjay Kumar Sinha
- Department of Biostatistics, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Ganesh Chandra Sahoo
- Viral Research and Diagnostic Laboratory, Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India.
| |
Collapse
|
2
|
Li C, Wan J, Wang D, Xiao L, Li X, Zhang C, Wang Z. Comparative Analysis of Hemagglutination Inhibition and Plaque Reduction Neutralization Tests for Japanese Encephalitis Virus Antibody Detection. Viruses 2025; 17:104. [PMID: 39861893 PMCID: PMC11768560 DOI: 10.3390/v17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Japanese encephalitis (JE) is a zoonotic disease caused by the Japanese encephalitis virus (JEV), belonging to the Flaviviridae family. Diagnosis of Japanese encephalitis (JE) based on clinical signs alone is challenging due to the high proportion of subclinical cases. The Plaque Reduction Neutralization Test (PRNT) is considered the gold standard for detecting JE-specific antibodies because of its high specificity. However, PRNT is complex, time-consuming, and requires live viruses, limiting its applicability in routine diagnostics. In this study, we compared the sensitivity and correlation of the Hemagglutination Inhibition (HI) assay and PRNT for detecting JE antibodies in avian serum samples. We conducted a comparative analysis of the outcomes obtained from the PRNT and HI using 240 serum samples collected from 30 JEV-immunized avian subjects at various time points. Comparative analysis revealed a significant correlation between the HI and PRNT (R2 = 0.9321, p ≤ 0.0001). The Bland-Altman analysis also exhibited favorable concordance between the two assays. Consequently, HI may function as a viable substitute for PRNT in the screening of a substantial number of serum samples.
Collapse
Affiliation(s)
- Cui Li
- China Institute of Veterinary Drug Control, Beijing 100081, China; (C.L.); (J.W.); (D.W.); (L.X.); (X.L.)
| | - Jianqing Wan
- China Institute of Veterinary Drug Control, Beijing 100081, China; (C.L.); (J.W.); (D.W.); (L.X.); (X.L.)
| | - Deli Wang
- China Institute of Veterinary Drug Control, Beijing 100081, China; (C.L.); (J.W.); (D.W.); (L.X.); (X.L.)
| | - Lu Xiao
- China Institute of Veterinary Drug Control, Beijing 100081, China; (C.L.); (J.W.); (D.W.); (L.X.); (X.L.)
| | - Xuni Li
- China Institute of Veterinary Drug Control, Beijing 100081, China; (C.L.); (J.W.); (D.W.); (L.X.); (X.L.)
| | - Cunshuai Zhang
- China Institute of Veterinary Drug Control, Beijing 100081, China; (C.L.); (J.W.); (D.W.); (L.X.); (X.L.)
| | - Zhao Wang
- China Institute of Veterinary Drug Control, Beijing 100081, China; (C.L.); (J.W.); (D.W.); (L.X.); (X.L.)
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University, Jinan 250117, China
| |
Collapse
|
3
|
Owliaee I, Khaledian M, Shojaeian A, Madanchi H, Yarani R, Boroujeni AK, Shoushtari M. Antimicrobial Peptides Against Arboviruses: Mechanisms, Challenges, and Future Directions. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10430-0. [PMID: 39776036 DOI: 10.1007/s12602-024-10430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
This review delves into the potential of antimicrobial peptides (AMPs) as promising candidates for combating arboviruses, focusing on their mechanisms of antiviral activity, challenges, and future directions. AMPs have shown promise in preventing arbovirus attachment to host cells, inducing interferon production, and targeting multiple viral stages, illustrating their multifaceted impact on arbovirus infections. Structural elucidation of AMP-viral complexes is explored to deepen the understanding of molecular determinants governing viral neutralization, paving the way for structure-guided design. Furthermore, this review highlights the potential of AMP-based combination therapies to create synergistic effects that enhance overall treatment outcomes while minimizing the likelihood of resistance development. Challenges such as susceptibility to proteases, toxicity, and scalable production are discussed alongside strategies to address these limitations. Additionally, the expanding applications of AMPs as vaccine adjuvants and antiviral delivery systems are emphasized, underscoring their versatility beyond direct antiviral functions.
Collapse
Affiliation(s)
- Iman Owliaee
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Mehran Khaledian
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99442, Iran
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Shoushtari
- Department of Virology, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
4
|
Lee PI, Hsueh PR, Chuang JH, Liu MT. Changing epidemic patterns of infectious diseases during and after COVID-19 pandemic in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00113-0. [PMID: 39048396 DOI: 10.1016/j.jmii.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Mitigation measures aimed at curbing the transmission of the severe acute respiratory syndrome coronavirus 2 effectively suppressed the occurrence of many respiratory infections other than coronavirus disease 2019. Several infections experienced a resurgence following the relaxation of non-pharmaceutical interventions, surpassing pre-pandemic levels in Taiwan. This phenomenon, known as immune debt, primarily affected respiratory infections in young children, including respiratory syncytial virus (RSV) infection. Infections transmitted by means other than droplets or contact did not exhibit significant changes in their epidemic patterns, such as varicella and Japanese encephalitis. Alterations in seasonality were noted for RSV infection and influenza, and these changes are also linked to immune debt. The recent emergence of severe pediatric pneumonia in northern China may be associated with immune debt and the rise of macrolide-resistant Mycoplasma pneumoniae associated with severe illness.
Collapse
Affiliation(s)
- Ping-Ing Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Jen-Hsiang Chuang
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan.
| | - Ming-Tsan Liu
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan.
| |
Collapse
|
5
|
Sun CQ, Fu YQ, Ma X, Shen JR, Hu B, Zhang Q, Wang LK, Hu R, Chen JJ. Trends in temporal and spatial changes of Japanese encephalitis in Chinese mainland, 2004-2019: A population-based surveillance study. Travel Med Infect Dis 2024; 60:102724. [PMID: 38692338 DOI: 10.1016/j.tmaid.2024.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/23/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Japanese encephalitis (JE) is a serious health concern in China, with approximately 80 % of global infections occurring in China. To develop effective prevention and control strategies, this study explored the epidemiological characteristics of JE in China based on spatiotemporal data, to understand the patterns and trends of JE incidence in different regions and time periods. METHOD The incidence and mortality rates of JE were extracted from the Public Health Data Center, the official website of the National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System from 2004 to 2019. Joinpoint regression was applied to examine the spatiotemporal patterns and annual percentage change in incidence and mortality of the JE. RESULTS From 2004 to 2019, a total of 43,569 cases of JE were diagnosed, including 2081 deaths. The annual incidence rate of JE decreased from 0.4171/100,000 in 2004 to 0.0298/100,000 in 2019, with an annual percentage change (APC) of -13.5 % (P < 0.001). The annual mortality rate of JE showed three stages of change, with inflection points in 2006 and 2014. The incidence and mortality rates of JE have declined in all provinces of China, and more cases were reported in 0-14 years of age, accounting for nearly 80 % of all patients. CONCLUSIONS The morbidity and mortality rates of JE in China are generally on a downward trend, and emphasis should be placed on strengthening disease surveillance in special areas and populations, popularizing vaccination, and increasing publicity.
Collapse
Affiliation(s)
- Chang-Qing Sun
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China; School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| | - Yun-Qiang Fu
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| | - Xuan Ma
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Jun-Ru Shen
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Bo Hu
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Qiang Zhang
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Lian-Ke Wang
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Rui Hu
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Jia-Jun Chen
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| |
Collapse
|
6
|
Wang R, Xie Z. The responsibility of thwarting and managing Japanese encephalitis cannot be understated-Outbreaks or resurgences may manifest, catching us off guard. PLoS Negl Trop Dis 2023; 17:e0011698. [PMID: 37917595 PMCID: PMC10621813 DOI: 10.1371/journal.pntd.0011698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Affiliation(s)
- Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Ahn J, Yu JE, Kim H, Sung J, Han G, Sohn MH, Seong BL. AB 5-Type Toxin as a Pentameric Scaffold in Recombinant Vaccines against the Japanese Encephalitis Virus. Toxins (Basel) 2023; 15:425. [PMID: 37505694 PMCID: PMC10467048 DOI: 10.3390/toxins15070425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Japanese encephalitis virus (JEV) is an enveloped icosahedral capsid virus with a prime neutralizing epitope present in E protein domain III (EDIII). E dimers are rearranged into a five-fold symmetry of icosahedrons. Cholera toxin B (CTB) and heat-labile enterotoxin B (LTB) of AB5-type toxin was used as the structural scaffold for emulating the pentameric axis of EDIII. We produced homo-pentameric EDIII through the genetic fusion of LTB or CTB in E. coli without recourse to additional refolding steps. Harnessing an RNA-mediated chaperone further enhanced the soluble expression and pentameric assembly of the chimeric antigen. The pentameric assembly was validated by size exclusion chromatography (SEC), non-reduced gel analysis, and a GM1 binding assay. CTB/LTB-EDIII chimeric antigen triggered high neutralizing antibodies against the JEV Nakayama strain after immunization in mice. Altogether, our proof-of-principle study creating a JEV-protective antigen via fusion with an AB5-type toxin as both a pentameric scaffold and a built-in adjuvant posits the bacterially produced recombinant chimeric antigen as a cost-effective alternative to conventional inactivated vaccines against JEV.
Collapse
Affiliation(s)
- Jina Ahn
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
| | - Hanna Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
| | - Jemin Sung
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
| | - Gyoonhee Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Baik-Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul 03721, Republic of Korea
| |
Collapse
|
8
|
Feifei L, Hairong L, Linsheng Y, Li W, Lijuan G, Gemei Z, Lan Z. The spatial-temporal pattern of Japanese encephalitis and its influencing factors in Guangxi, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 111:105433. [PMID: 37037290 DOI: 10.1016/j.meegid.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Japanese encephalitis (JE) is a major global public health threat. Using Japanese encephalitis incidence data from 2004 to 2010 in Guangxi Province, China, this study comprehensively explored the driving forces and the interactive effects between environmental and social factors of Japanese encephalitis using the Geo-detector method. The results indicated that the incidence of Japanese encephalitis showed a fluctuating downward trend from 2004 to 2010. The onset of JE was seasonal, mainly concentrated in June-July, and highly aggregated in northwestern Guangxi. Among the factors associated with Japanese encephalitis, days with temperatures >30 °C, accumulated temperatures >25 °C, slope, the normalized difference vegetation index, the gross domestic product of tertiary industries, the gross domestic product of primary industries and the number of pigs slaughtered showed higher contributions to Japanese encephalitis incidence. An enhanced interactive effect was found between environmental and social factors, and the interaction between days with humidity levels >80% and the gross domestic product of tertiary industries had the greatest combined effect on JE. These findings enhanced the understanding of the combined effect of social and environmental factors on the incidence of Japanese encephalitis and could help improve Japanese encephalitis transmission control and prevention strategies.
Collapse
Affiliation(s)
- Li Feifei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Hairong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Linsheng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wang Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gu Lijuan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhong Gemei
- Guangxi Center for Disease Prevention and Control, Guangxi 530000, China
| | - Zhang Lan
- National Institute of Environmental Health, China CDC, Beijing 100021, China
| |
Collapse
|
9
|
Pinapati KK, Tandon R, Tripathi P, Srivastava N. Recent advances to overcome the burden of Japanese encephalitis: A zoonotic infection with problematic early detection. Rev Med Virol 2023; 33:e2383. [PMID: 35983697 DOI: 10.1002/rmv.2383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Japanese encephalitis (JE) is a vector-borne neurotropic disease caused by Japanese encephalitis virus (JEV) associated with high mortality rate distributed from Eastern and Southern Asia to Northern Queensland (Australia). The challenges in early detection and lack of point-of-care biomarkers make it the most important Flavivirus causing encephalitis. There is no specific treatment for the disease, although vaccines are licenced. In this review, we focussed on point-of-care biomarkers as early detection tools and developing the effective therapeutic agents that could halt JE. We have also provided molecular details of JEV, disease progression, and its pathogenesis with recent findings which might bring insights to overcome the disease burden.
Collapse
Affiliation(s)
- Kishore Kumar Pinapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| | - Reetika Tandon
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| | - Pratima Tripathi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| |
Collapse
|
10
|
Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra SS, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol 2022; 167:1739-1762. [PMID: 35654913 PMCID: PMC9162114 DOI: 10.1007/s00705-022-05481-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
Japanese encephalitis virus (JEV), a single-stranded, enveloped RNA virus, is a health concern across Asian countries, associated with severe neurological disorders, especially in children. Primarily, pigs, bats, and birds are the natural hosts for JEV, but humans are infected incidentally. JEV requires a few host proteins for its entry and replication inside the mammalian host cell. The endoplasmic reticulum (ER) plays a significant role in JEV genome replication and assembly. During this process, the ER undergoes stress due to its remodelling and accumulation of viral particles and unfolded proteins, leading to an unfolded protein response (UPR). Here, we review the overall strategy used by JEV to infect the host cell and various cytopathic effects caused by JEV infection. We also highlight the role of JEV structural proteins (SPs) and non-structural proteins (NSPs) at various stages of the JEV life cycle that are involved in up- and downregulation of different host proteins and are potentially relevant for developing efficient therapeutic drugs.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Akanksha Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pardeep Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - S. S. Maitra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| |
Collapse
|
11
|
Chen T, Zhu S, Wei N, Zhao Z, Niu J, Si Y, Cao S, Ye J. Protective Immune Responses Induced by an mRNA-LNP Vaccine Encoding prM-E Proteins against Japanese Encephalitis Virus Infection. Viruses 2022; 14:1121. [PMID: 35746593 PMCID: PMC9227124 DOI: 10.3390/v14061121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Japanese encephalitis virus (JEV) is an important zoonotic pathogen, which causes central nervous system symptoms in humans and reproductive disorders in swine. It has led to severe impacts on human health and the swine industry; however, there is no medicine available for treating yet. Therefore, vaccination is the best preventive measure for this disease. In the study, a modified mRNA vaccine expressing the prM and E proteins of the JEV P3 strain was manufactured, and a mouse model was used to assess its efficacy. The mRNA encoding prM and E proteins showed a high level of protein expression in vitro and were encapsulated into a lipid nanoparticle (LNP). Effective neutralizing antibodies and CD8+ T-lymphocytes-mediated immune responses were observed in vaccinated mice. Furthermore, the modified mRNA can protect mice from a lethal challenge with JEV and reduce neuroinflammation caused by JEV. This study provides a new option for the JE vaccine and lays a foundation for the subsequent development of a more efficient and safer JEV mRNA vaccine.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuo Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Zikai Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjun Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Youhui Si
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Karatash AV, Bilanova LP, Bilash SM, Pronina OM, Bilash VP, Hryn KV, Hryn VG, Oliinichenko YO. PROGRESS AND PROBLEMS OF VACCINATION AGAINST CORONAVIRUS INFECTION COVID-19. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-50-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|