1
|
Mousa M, Husein A, El-Anwar M, Yusoff N, Alhelay H, Alazhari B, Alsharari F, Alzarea B, Sghaireen M, Abdullah JY. Evaluating the support and associated strain distribution in unilateral obturator with different designs: An experimental and finite element study. PLoS One 2025; 20:e0321710. [PMID: 40344034 DOI: 10.1371/journal.pone.0321710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/10/2025] [Indexed: 05/11/2025] Open
Abstract
This study aimed to evaluate support (the resistance to tissue-ward movement) and strain distribution in unilateral obturators with four designs using Digital Image Correlation (DIC) and Finite Element Analysis (FEA). Twelve epoxy-resin models were prepared to receive removable obturators that have four designs, including acrylic resin-based obturators (ARO), linear (LDO), tripodal (TDO), and a newly modified one termed fully tripodal design obturator (FTDO) were used for DIC. The models were installed in a DIC set to receive a vertical load of 150N. The strain on the dentate and defect sides was evaluated using DIC software. Mathematically, four finite element models were prepared to receive vertical and lateral loads of 100N on two points. The support and strain were assessed using the ANSYS workbench. Using DIC, the ARO demonstrated the highest strain values on the defect area and as an entire prosthesis, followed by the LDO on the defect side. Using FEA, the TDO produced the highest strain value with anterior (oblique) and posterior loads. LDO produced the lowest support and highest strain on the anterior teeth compared to TDO and FTDO. ARO resulted in the highest total strain, while the TDO produced the lowest. Both TDO and FTDO were comparable in terms of strains and support.
Collapse
Affiliation(s)
- Mohammed Mousa
- Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudia Arabia
| | - Adam Husein
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Preventive and Restorative Dentistry, University of Sharjah, College of Dental Medicine, Sharjah, UAE
| | - Mohamed El-Anwar
- Department of Mechanical Engineering, National Research Centre, Giza, Cairo, Egypt
| | - Norwahida Yusoff
- School of Mechanical Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Hussein Alhelay
- Mahayel Specialist Dental Center, Aseer Health Cluster, Asser, Saudi Arabia
| | - Badi Alazhari
- Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudia Arabia
| | - Fadhel Alsharari
- Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudia Arabia
| | - Bader Alzarea
- Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudia Arabia
| | - Mohammed Sghaireen
- Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka, Saudia Arabia
| | - Johari Yap Abdullah
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Dental Research Unit, Center for Transdisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
2
|
Trefny FN, Glyde M, Hosgood G, Hayes A, Day R. Effect of Plate Length on Construct Stiffness and Strain in a Synthetic Short-Fragment Fracture Gap Model Stabilized with a 3.5-mm Locking Compression Plate. Vet Comp Orthop Traumatol 2025; 38:63-70. [PMID: 39168141 DOI: 10.1055/s-0044-1789263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To evaluate the effect of 3.5-mm locking compression plate (LCP) length on construct stiffness and plate and bone model strain in a synthetic, short-fragment, fracture-gap model. STUDY DESIGN Six replicates of 6-hole, 8-hole, 10-hole, and 12-hole LCP constructs on a short-fragment, tubular Delrin fracture gap model underwent four-point compression and tension bending. Construct stiffness and surface strain, calculated using three-dimensional digital image correlation, were compared across plate length and region of interest (ROI) on the construct. RESULTS The 12-hole plates (80% plate-bone ratio) had significantly higher construct stiffness than 6-hole, 8-hole, and 10-hole plates and significantly lower plate strain than 6-hole plates at all ROIs. Strain on the bone model was significantly lower in constructs with 10-hole and 12-hole plates than 6-hole plates under both compression and tension bending. CONCLUSION Incremental increases in construct stiffness and incremental decreases in plate strain were only identified when comparing 6-hole, 8-hole, and 10-hole plates to 12-hole plates, and 6-hole to 12-hole plates, respectively. Strain on the bone model showed an incremental decrease when comparing 6-hole to 10-hole and 12-hole plates. A long plate offered biomechanical advantages of increased construct stiffness and reduced plate and bone model strain, over a short plate in this in vitro model.
Collapse
Affiliation(s)
- Fabian N Trefny
- Division of Health Sciences, School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Mark Glyde
- Division of Health Sciences, School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Giselle Hosgood
- Division of Health Sciences, School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Alex Hayes
- Department of Medical Engineering and Physics, Royal Perth Hospital, Perth, Australia
| | - Robert Day
- Department of Medical Engineering and Physics, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
3
|
Werner M, Drossel WG, Löffler S, Hammer N. Time-dependent effects of ethanol-glycerin embalming on iliotibial band biomechanics. J Mech Behav Biomed Mater 2025; 163:106887. [PMID: 39823785 DOI: 10.1016/j.jmbbm.2025.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/10/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
When conducting biomechanical testing or clinical training using embalmed human soft tissues, it is essential to understand their impact on biomechanical properties and their time dependence. Previous studies have investigated this influence, but specific variations over different embalming durations have not been thoroughly addressed to date. Ninety-seven human iliotibial band specimens were obtained from nine donors. All specimens were embalmed in ethanol-glycerin for varying durations: one day, eight days, and fourteen days. Prior to the mechanical trials, the specimens underwent osmotic water adjustment, tapering and standardized clamping. Uniaxial tensile tests were conducted to determine elastic modulus, ultimate tensile strength, and ultimate strain. Surface strain measurements were performed using a digital image correlation system. Ethanol-glycerin embalming of soft tissues significantly affects ultimate strain after one day of submersion time, elastic modulus after eight days, and the ultimate tensile strength after fourteen days. For applications requiring consistent and reliable material properties reflecting a (supra-)vital state, caution is advised against using embalmed tissues even following short submersion durations in ethanol-glycerin.
Collapse
Affiliation(s)
- Michael Werner
- Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany; Institute of Anatomy, University of Leipzig, Leipzig, Germany.
| | | | - Sabine Löffler
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Niels Hammer
- Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany; Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany; Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Perrella M, Bifulco A, Aronne A, Imparato C, Climaco I, Bartoli M, Bruno M, Cricrì G, Armentani E. Epoxy-based nanocomposites containing sustainable fillers for the realization of speckle patterns for digital image correlation analysis. Sci Rep 2025; 15:6848. [PMID: 40011536 DOI: 10.1038/s41598-025-89963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
The Digital Image Correlation (DIC) is a non-contact technique that analyses a sequence of images providing full field measurement of displacements and strains over time. The DIC experimental set-up requires a speckle pattern. In this work a new epoxy-based nanocomposite, containing TiO2 nanoparticles and coffee-derived biochar fillers, was developed to obtain an ecofriendly flame-retardant material with suitable mechanical and optical properties for its use as speckle pattern for DIC applications. The optimized formulation is characterized by a uniform distribution of TiO2 and biochar particles and can be employed as self-standing material during the manufacturing of composite reinforcements. The physicochemical properties, mechanical behaviour and fire performances of the nanocomposite are described. The incorporation of the additives in the epoxy resin increases the Young's modulus by around 30% and almost doubles the burn-through time with respect to pristine resin, suggesting a slight condensed phase mechanism arising from the synergistic action of TiO2 and biochar. The effectiveness for creating DIC speckle patterns is validated by comparing the experimental strains measured by means of DIC analysis with those obtained through a traditional technique. Finally, the durability of the speckle patterns was assessed by accelerated thermal aging tests, confirming the potential application of the material in structural health monitoring of composite structures.
Collapse
Affiliation(s)
- Michele Perrella
- Department of Chemical, Materials and Production Engineering, Università di Napoli Federico II, Piazzale Tecchio 80, Naples, 80125, Italy.
| | - Aurelio Bifulco
- Department of Chemical, Materials and Production Engineering, Università di Napoli Federico II, Piazzale Tecchio 80, Naples, 80125, Italy
| | - Antonio Aronne
- Department of Chemical, Materials and Production Engineering, Università di Napoli Federico II, Piazzale Tecchio 80, Naples, 80125, Italy
| | - Claudio Imparato
- Department of Chemical, Materials and Production Engineering, Università di Napoli Federico II, Piazzale Tecchio 80, Naples, 80125, Italy
| | - Immacolata Climaco
- Department of Chemical, Materials and Production Engineering, Università di Napoli Federico II, Piazzale Tecchio 80, Naples, 80125, Italy
| | - Mattia Bartoli
- Center for Sustainable Future Technologies-CSFT@POLITO, Via Livorno 60, Turin, 10144, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin, 10129, Italy
| | - Matteo Bruno
- Department of Chemical, Materials and Production Engineering, Università di Napoli Federico II, Piazzale Tecchio 80, Naples, 80125, Italy
- INFN Sezione di Napoli, National Institute for Nuclear Physics, via Cintia, Naples, 80126, Italy
| | - Gabriele Cricrì
- Department of Industrial Engineering, Università di Napoli Federico II, Piazzale Tecchio 80, Naples, 80125, Italy
| | - Enrico Armentani
- Department of Chemical, Materials and Production Engineering, Università di Napoli Federico II, Piazzale Tecchio 80, Naples, 80125, Italy
| |
Collapse
|
5
|
Mousavi S, Hardy JG. In-situ microscopy and digital image correlation to study the mechanical characteristics of polymer-based materials. DISCOVER MATERIALS 2025; 5:41. [PMID: 39981354 PMCID: PMC11836150 DOI: 10.1007/s43939-025-00208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
In-situ microscopic methods can help researchers to analyse microstructural changes of materials structures under different conditions (e.g., temperature and pressure) at various length scales. Digital Image Correlation (DIC) combines image registration and tracking to enable accurate measurements of changes in materials in 2D and 3D. This review focuses on combining microscopy and DIC to study the properties of materials (including natural/synthetic biomaterials, biological samples and their composites) in academic, public and industry settings, including exciting examples of bioimaging.
Collapse
Affiliation(s)
- Seyedtaghi Mousavi
- Department of Biochemistry, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB UK
- Materials Science Lancaster, Lancaster University, Lancaster, Lancashire LA1 4YB UK
| |
Collapse
|
6
|
Cronje JY, Mogale N, Govender S, de Beer MA, Oberholster AJ, McDuling C, Verbeek R, Nkwenika T, Keough N. The elastic properties of the tendinous and capsular layers of the rotator cuff complex using fresh tissue-a biomechanical study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2025; 35:68. [PMID: 39932599 PMCID: PMC11814050 DOI: 10.1007/s00590-024-04168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Elastic modulus is an important biomechanical component that indicates stiffness or elasticity of biological material. Recently the use of digital image correlation (DIC) in elastic modulus studies on fresh tissue has shown great accuracy in estimating elastic properties; thus, the aim of this study was to investigate the elasticity of capsular and tendinous layers of the rotator cuff complex employing this method. MATERIALS AND METHODS The supraspinatus, infraspinatus, and subscapularis from eight (n = 8) fresh/frozen tissue shoulders were reverse dissected from their origins. The muscles were separated from one another and dissected to produce 20 × 20 mm tendinous and capsular strips for each muscle. DIC was employed to measure the strain of the tendinous and capsular portions of each of the muscles during tensile testing, and tangent elastic modulus values were obtained. RESULTS The tendinous layers for supraspinatus, infraspinatus, and subscapularis yielded higher average tangent elastic moduli readings (62.1 MPa, 67.1 MPa, and 59.6 MPa, respectively) compared to their capsular counterparts (29.0 MPa, 32.5 MPa, and 41.5 MPa, respectively). CONCLUSION Different elastic moduli findings for the tendinous and capsular layers suggest these layers should be considered independently during surgical repair to avoid biomechanical imbalance which may result if these layers were to be repaired as one singular layer.
Collapse
Affiliation(s)
| | | | | | | | | | - Chris McDuling
- Council for Scientific and Industrial Research, Pretoria, South Africa
| | | | | | - Natalie Keough
- University of Pretoria, Pretoria, South Africa
- University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Galteri G, Montanari S, Dozza G, Palanca M, Cristofolini L. Short humeral stem in total shoulder arthroplasty does not jeopardize primary implant stability. JSES Int 2025; 9:212-218. [PMID: 39898196 PMCID: PMC11784511 DOI: 10.1016/j.jseint.2024.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Background The trend of the modern humeral components in total shoulder arthroplasty is toward shorter and shorter humeral stems. However, the question remains whether short uncemented stems can provide the same implant stability as long stems. This study aimed to evaluate and compare the torsional primary stability and the pull-out extraction force of both a long and a short version of the same stem. Materials and methods Ten humeral components (five long stems and five short stems) were press-fitted into ten synthetic composite humeri. A torsional load was applied to generate the most critical loading condition. The specimens were loaded with 100 cycles between 2 Nm and 10 Nm, at 1 Hz. A 3D Digital Image Correlation system was used to measure the relative displacement between the prosthesis and the host bone during the test. After completing the torsional test, the pull-out force was measured. Differences between the long and short stem on the biomechanical parameters (permanent migrations, inducible micromotion, and extraction force) were tested with the nonparametric Mann-Whitney test (P < .05). Results The main rotational inducible micromotion was around the craniocaudal axis. No significant differences were found between the rotational permanent migrations of the long and short stem around the craniocaudal (P = .421), anteroposterior (P = .841), and mediolateral axes (P = .452). No significant differences were found between the rotational inducible micromotions of the long and short stem around the craniocaudal (P = .222), anteroposterior (P = .420), and mediolateral axes (P = .655). No significant differences were found between the permanent translations of the long and short stem along the craniocaudal (P = .341), anteroposterior (P = .420), and mediolateral (P = .429) directions. No significant differences were found between the translations of the long and short stem in terms of inducible translation in the craniocaudal (P = .547), anteroposterior (P = .999), and mediolateral axes (P = .285). Similar extraction force (P = .35) was found. Discussion and Conclusion No statistically significant difference was found between the long-stem and short-stem implants. These results show that short uncemented stems can provide adequate primary mechanical stability. As the long-stem version of this stem is already clinically used, the present findings suggest that the short version can be reasonably expected to deliver similar outcomes in terms of implant stability.
Collapse
Affiliation(s)
- Giulia Galteri
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sara Montanari
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giacomo Dozza
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Palanca
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Timilsina S, Jo CW, Lee KH, Sohn K, Kim JS. Dual-Modal Sensing Skin Adaptive to Daylight, Darkness, and Ultraviolet Light for Simultaneous Full-Field Deformation Measurement and Mechanoluminescence Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409384. [PMID: 39447093 PMCID: PMC11727239 DOI: 10.1002/advs.202409384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Mechanoluminescence (ML) and digital image correlation (DIC) have emerged as promising optical methods to visualize and measure deformation fields. In this study, a dual-modal sensing skin, called the ML-DIC skin is introduced, that is capable of emitting ML and facilitating DIC measurements under various lighting conditions, including daylight, night or darkness, and UV irradiation. Four ML-DIC skins are fabricated with or without carbon nanotubes (CNTs) using a composite powder consisting of SrAl2O4: Eu,Dy (SAO), and acrylic resin, with CNT milling times of 48, 72, and 96 h for three of four skins, respectively. DIC measurements are performed under multiple lighting conditions for measuring photoluminescence, persistence luminescence, and reflection. Uniaxial tension tests demonstrate the superior performance of ML-DIC skins with CNTs compared with pristine SAO skins, with the skin subjected to 48 h of CNT dispersion exhibiting optimal performance. Further investigations focus on ML emission and DIC measurements near the crack-tip vicinity of static and propagating cracks as well as on surfaces above subsurface cracks. The integration of ML and DIC techniques offers a versatile approach for comprehensive deformation analysis applicable to diverse environments, with implications for materials science, engineering, and structural health monitoring.
Collapse
Affiliation(s)
- Suman Timilsina
- KNU Research Institute of Artificial Intelligent Diagnosis Technology of Multi‐scale Organic and Inorganic StructureKyungpook National UniversityKyeongbuk37224Republic of Korea
| | - Cheol Woo Jo
- School of Advanced Science and Technology ConvergenceKyungpook National UniversityKyeongbuk37224Republic of Korea
| | - Kwang Ho Lee
- Department of Automotive EngineeringKyungpook National UniversityKyeongbuk37224Republic of Korea
| | - Kee‐Sun Sohn
- Nanotechnology and Advanced Materials EngineeringSejong University209 Neungdong roGwangjin‐guSeoul143‐747Republic of Korea
| | - Ji Sik Kim
- School of Nano & Advanced Materials EngineeringKyungpook National UniversityKyeongbuk37224Republic of Korea
| |
Collapse
|
9
|
Montanari S, Barbanti Bròdano G, Serchi E, Stagni R, Gasbarrini A, Conti A, Cristofolini L. Experimental ex vivo characterization of the biomechanical effects of laminectomy and posterior fixation of the lumbo-sacral spine. Sci Rep 2024; 14:30001. [PMID: 39622942 PMCID: PMC11612212 DOI: 10.1038/s41598-024-80741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Laminectomy and posterior fixation are well-established surgical techniques to decompress nervous structures in case of lumbar spinal stenosis. While laminectomy is suspected to increase the instability of the spine, posterior fixation is associated with some complications such as adjacent segment degeneration. This study aimed to investigate how laminectomy and posterior fixation alter the biomechanics of the lumbar spine in terms of range of motion (ROM) and strains on the intervertebral discs. Twelve L2-S1 cadaveric spines were mechanically tested in flexion, extension, and lateral bending in the intact condition, after two-level laminectomy and after L4-S1 posterior fixation. The ROM of the spine segment was measured in each spine condition, and each loading configuration. The strain distribution on the surface of all the intervertebral discs was measured with Digital Image Correlation. Laminectomy significantly increased the ROM in flexion (p = 0.028) and lateral bending (p = 0.035). Posterior fixation decreased the ROM in all the loading configurations. Laminectomy did not significantly modify the strain distribution in the discs. Posterior fixation significantly increased the principal tensile and compressive strains in the disc adjacent the fixation both in flexion and in lateral bending. These findings can elucidate one of the clinical causes of the adjacent segment degeneration onset.
Collapse
Affiliation(s)
- Sara Montanari
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum - University of Bologna, Via Umberto Terracini 24-28, Bologna, 40131, Italy
| | | | - Elena Serchi
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Rita Stagni
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Alfredo Conti
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum - University of Bologna, Via Umberto Terracini 24-28, Bologna, 40131, Italy.
| |
Collapse
|
10
|
Trefny FN, Glyde MR, Hosgood GL, Day RE, Hayes A. Effect of Plate Screw Configuration on Construct Stiffness and Plate Strain in a Synthetic Short Fragment Small Gap Fracture Model Stabilized with a 12-Hole 3.5-mm Locking Compression Plate. Vet Comp Orthop Traumatol 2024. [PMID: 39366420 DOI: 10.1055/s-0044-1791701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
OBJECTIVE The aim of the study was to determine the effect of a short and long working length screw configuration on construct stiffness and plate strain in a synthetic, short fragment, small gap fracture model stabilized with a 12-hole 3.5-mm locking compression plate (LCP). STUDY DESIGN Six replicates of short and long working length constructs on a short fragment, small gap fracture model underwent four-point bending. Construct stiffness and plate strain were compared across working length and along the plate. RESULTS With the LCP on the compression surface (compression bending), the short working length had a significantly higher construct stiffness and lower plate strain than the long working length. Conversely, with the LCP on the tension surface (tension bending), transcortical contact between 150 and 155 N induced load sharing at the fracture gap, which significantly increased construct stiffness and decreased plate strain in the long working length. At 100 N (precontact), the short working length had a significantly higher construct stiffness and lower plate strain than the long working length, comparable with our compressing bending results. CONCLUSION In compression bending, and before transcortical contact occurred in tension bending, the short working length had a significantly higher construct stiffness and lower plate strain than the long working length. Load sharing due to transcortical contact observed in our model in tension bending will vary with fracture gap, working length, and loading condition. These results must be interpreted with caution when considering clinical relevance or potential in vivo biomechanical advantages.
Collapse
Affiliation(s)
- Fabian N Trefny
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Mark R Glyde
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | | | - Robert E Day
- Health Technology Management Unit, East Metropolitan Health Service, Royal Perth Hospital, Perth, Australia
| | - Alex Hayes
- Health Technology Management Unit, East Metropolitan Health Service, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
11
|
Danz JC, Stöckli S, Rank CP. Precision and accuracy of craniofacial growth and orthodontic treatment evaluation by digital image correlation: a prospective cohort study. FRONTIERS IN ORAL HEALTH 2024; 5:1419481. [PMID: 39130491 PMCID: PMC11310159 DOI: 10.3389/froh.2024.1419481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction A precise and accurate method for structural superimposition is essential for analyzing dentofacial growth and orthodontic or surgical treatment in longitudinal studies. The errors associated with different superimposition methods have not yet been assessed in high-quality studies. Objectives This study aimed to assess the precision and accuracy of digital image correlation (DIC) for structural superimposition. Methods Two cephalometric images from 30 consecutive patients were superimposed using three DIC methods, each measured twice by two examiners. Areas including the contours of the sella, the whole cranial base (CB), and Walker's point and lamina cribrosa (WPLC) were compared using a random coefficient model. Inter-rater and intra-rater errors were assessed for each method. Results WPLC provided the best precision for image rotation and cephalometric landmarks. Systematic bias was observed between the WPLC and CB methods for image rotation and most landmarks. The intra-rater error in image rotation during DIC was strongly correlated with the intra-rater error in the landmarks of the anterior nasal spine, articulare, and pogonion. Conclusion Structural superimposition using DIC with WPLC is a precise method for analyzing dentofacial growth and orthodontic or surgical treatment. Moreover, the best method is the measurement of longitudinal dental and craniofacial changes on structurally superimposed cephalometric radiographs with WPLC and a reference grid including the true vertical and horizontal lines from Walker's point.
Collapse
Affiliation(s)
- Jan Christian Danz
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine ZMK, University of Bern, Bern, Switzerland
| | - Simone Stöckli
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine ZMK, University of Bern, Bern, Switzerland
| | | |
Collapse
|
12
|
Valente R, Mourato A, Xavier J, Sousa P, Domingues T, Tavares P, Avril S, Tomás A, Fragata J. Experimental Protocols to Test Aortic Soft Tissues: A Systematic Review. Bioengineering (Basel) 2024; 11:745. [PMID: 39199703 PMCID: PMC11351783 DOI: 10.3390/bioengineering11080745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Experimental protocols are fundamental for quantifying the mechanical behaviour of soft tissue. These data are crucial for advancing the understanding of soft tissue mechanics, developing and calibrating constitutive models, and informing the development of more accurate and predictive computational simulations and artificial intelligence tools. This paper offers a comprehensive review of experimental tests conducted on soft aortic tissues, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, based on the Scopus, Web of Science, IEEE, Google Scholar and PubMed databases. This study includes a detailed overview of the test method protocols, providing insights into practical methodologies, specimen preparation and full-field measurements. The review also briefly discusses the post-processing methods applied to extract material parameters from experimental data. In particular, the results are analysed and discussed providing representative domains of stress-strain curves for both uniaxial and biaxial tests on human aortic tissue.
Collapse
Affiliation(s)
- Rodrigo Valente
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - André Mourato
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
- Intelligent Systems Associate Laboratory, LASI, 4800-058 Guimarães, Portugal
| | - Pedro Sousa
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Tiago Domingues
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Paulo Tavares
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Stéphane Avril
- Mines Saint-Etienne, University of Lyon, Inserm, Sainbiose U1059, Campus Santé Innovation, 10, rue de la Marandière, 42270 Saint-Priest-en-Jarez, France;
| | - António Tomás
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
| | - José Fragata
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
- Department of Surgery and Human Morphology, NOVA Medical School, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisboa, Portugal
| |
Collapse
|
13
|
Montanari S, Serchi E, Conti A, Barbanti Bròdano G, Stagni R, Cristofolini L. Effect of two-level decompressive procedures on the biomechanics of the lumbo-sacral spine: an ex vivo study. Front Bioeng Biotechnol 2024; 12:1400508. [PMID: 39045539 PMCID: PMC11263119 DOI: 10.3389/fbioe.2024.1400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Hemilaminectomy and laminectomy are decompressive procedures commonly used in case of lumbar spinal stenosis, which involve the removal of the posterior elements of the spine. These procedures may compromise the stability of the spine segment and create critical strains in the intervertebral discs. Thus, this study aimed to investigate if decompressive procedures could alter the biomechanics of the lumbar spine. The focus was on the changes in the range of motion and strain distribution of the discs after two-level hemilaminectomy and laminectomy. Twelve L2-S1 cadaver specimens were prepared and mechanically tested in flexion, extension and both left and right lateral bending, in the intact condition, after a two-level hemilaminectomy on L4 and L5 vertebrae, and a full laminectomy. The range of motion (ROM) of the entire segment was assessed in all the conditions and loading configurations. In addition, Digital Image Correlation was used to measure the strain distribution on the surface of each specimen during the mechanical tests, focusing on the disc between the two decompressed vertebrae and in the two adjacent discs. Hemilaminectomy did not significantly affect the ROM, nor the strain on the discs. Laminectomy significantly increased the ROM in flexion, compared to the intact state. Laminectomy significantly increased the tensile strains on both L3-L4 and L4-L5 disc (p = 0.028 and p = 0.014) in ipsilateral bending, and the compressive strains on L4-L5 intervertebral disc, in both ipsilateral and contralateral bending (p = 0.014 and p = 0.0066), with respect to the intact condition. In conclusion, this study found out that hemilaminectomy did not significantly impact the biomechanics of the lumbar spine. Conversely, after the full laminectomy, flexion significantly increased the range of motion and lateral bending was the most critical configuration for largest principal strain.
Collapse
Affiliation(s)
- Sara Montanari
- Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | - Elena Serchi
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Conti
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | | | - Rita Stagni
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Mühling M, Sandriesser S, Dendorfer S, Augat P. Assessment of implant internal stresses under physiological femoral loading: Translation to a simplified bending load model. J Biomech 2024; 172:112229. [PMID: 39004041 DOI: 10.1016/j.jbiomech.2024.112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
The success of surgical treatment for fractures hinges on various factors, notably accurate surgical indication. The process of developing and certifying a new osteosynthesis device is a lengthy and costly process that requires multiple cycles of review and validation. Current methods, however, often rely on predecessor standards rather than physiological loads in specific anatomical locations. This study aimed to determine actual loads experienced by an osteosynthesis plate, exemplified by a standard locking plate for the femoral shaft, utilizing finite elements analysis (FEA) and to obtain the bending moments for implant development standard tests. A protocol was developed, involving the creation and validation of a fractured femur model fixed with a locking plate, mechanical testing, and FEA. The model's validation demonstrated exceptional accuracy in predicting deformations, and the FEA revealed peak stresses in the fracture bridging zone. Results of a parametric analysis indicate that larger fracture gaps significantly impact implant mechanical behavior, potentially compromising stability. This study underscores the critical need for realistic physiological conditions in implant evaluations, providing an innovative translational approach to identify internal loads and optimize implant designs. In conclusion, this research contributes to enhancing the understanding of implant performance under physiological conditions, promoting improved designs and evaluations in fracture treatments.
Collapse
Affiliation(s)
- M Mühling
- Institute for Biomechanics, BG Unfallklinik Murnau, Prof.-Küntscher-Str. 8, 82418 Murnau, Germany; Institute for Biomechanics, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| | - S Sandriesser
- Institute for Biomechanics, BG Unfallklinik Murnau, Prof.-Küntscher-Str. 8, 82418 Murnau, Germany; Institute for Biomechanics, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - S Dendorfer
- Laboratory for Biomechanics, Ostbayerische Technische Hochschule Regensburg, Seybothstraße 2, 93053 Regensburg, Germany; Regensburg Center of Biomedical Engineering, OTH and University Regensburg, Galgenbergstr. 30, 93053 Regensburg, Germany
| | - P Augat
- Institute for Biomechanics, BG Unfallklinik Murnau, Prof.-Küntscher-Str. 8, 82418 Murnau, Germany; Institute for Biomechanics, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| |
Collapse
|
15
|
Mürer FK, Tekseth KR, Chattopadhyay B, Olstad K, Akram MN, Breiby DW. Multimodal 2D and 3D microscopic mapping of growth cartilage by computational imaging techniques - a short review including new research. Biomed Phys Eng Express 2024; 10:045041. [PMID: 38744257 DOI: 10.1088/2057-1976/ad4b1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Being able to image the microstructure of growth cartilage is important for understanding the onset and progression of diseases such as osteochondrosis and osteoarthritis, as well as for developing new treatments and implants. Studies of cartilage using conventional optical brightfield microscopy rely heavily on histological staining, where the added chemicals provide tissue-specific colours. Other microscopy contrast mechanisms include polarization, phase- and scattering contrast, enabling non-stained or 'label-free' imaging that significantly simplifies the sample preparation, thereby also reducing the risk of artefacts. Traditional high-performance microscopes tend to be both bulky and expensive.Computational imagingdenotes a range of techniques where computers with dedicated algorithms are used as an integral part of the image formation process. Computational imaging offers many advantages like 3D measurements, aberration correction and quantitative phase contrast, often combined with comparably cheap and compact hardware. X-ray microscopy is also progressing rapidly, in certain ways trailing the development of optical microscopy. In this study, we first briefly review the structures of growth cartilage and relevant microscopy characterization techniques, with an emphasis on Fourier ptychographic microscopy (FPM) and advanced x-ray microscopies. We next demonstrate with our own results computational imaging through FPM and compare the images with hematoxylin eosin and saffron (HES)-stained histology. Zernike phase contrast, and the nonlinear optical microscopy techniques of second harmonic generation (SHG) and two-photon excitation fluorescence (TPEF) are explored. Furthermore, X-ray attenuation-, phase- and diffraction-contrast computed tomography (CT) images of the very same sample are presented for comparisons. Future perspectives on the links to artificial intelligence, dynamic studies andin vivopossibilities conclude the article.
Collapse
Affiliation(s)
- Fredrik K Mürer
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
- SINTEF Helgeland AS, Halvor Heyerdahls vei 33, 8626 Mo i Rana, Norway
| | - Kim R Tekseth
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Basab Chattopadhyay
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Kristin Olstad
- Faculty of Veterinary Medicine, Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU), Equine section, PO Box 5003, 1432 Ås, Norway
| | - Muhammad Nadeem Akram
- Department of Microsystems, University of South-Eastern Norway (USN), 3184 Borre, Norway
| | - Dag W Breiby
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
- Department of Microsystems, University of South-Eastern Norway (USN), 3184 Borre, Norway
| |
Collapse
|
16
|
Pratt SJP, Plunkett CM, Kuzu G, Trinh T, Barbara J, Choconta P, Quackenbush D, Huynh T, Smith A, Barnes SW, New J, Pierce J, Walker JR, Mainquist J, King FJ, Elliott J, Hammack S, Decker RS. A high throughput cell stretch device for investigating mechanobiology in vitro. APL Bioeng 2024; 8:026129. [PMID: 38938688 PMCID: PMC11210978 DOI: 10.1063/5.0206852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanobiology is a rapidly advancing field, with growing evidence that mechanical signaling plays key roles in health and disease. To accelerate mechanobiology-based drug discovery, novel in vitro systems are needed that enable mechanical perturbation of cells in a format amenable to high throughput screening. Here, both a mechanical stretch device and 192-well silicone flexible linear stretch plate were designed and fabricated to meet high throughput technology needs for cell stretch-based applications. To demonstrate the utility of the stretch plate in automation and screening, cell dispensing, liquid handling, high content imaging, and high throughput sequencing platforms were employed. Using this system, an assay was developed as a biological validation and proof-of-concept readout for screening. A mechano-transcriptional stretch response was characterized using focused gene expression profiling measured by RNA-mediated oligonucleotide Annealing, Selection, and Ligation with Next-Gen sequencing. Using articular chondrocytes, a gene expression signature containing stretch responsive genes relevant to cartilage homeostasis and disease was identified. The possibility for integration of other stretch sensitive cell types (e.g., cardiovascular, airway, bladder, gut, and musculoskeletal), in combination with alternative phenotypic readouts (e.g., protein expression, proliferation, or spatial alignment), broadens the scope of high throughput stretch and allows for wider adoption by the research community. This high throughput mechanical stress device fills an unmet need in phenotypic screening technology to support drug discovery in mechanobiology-based disease areas.
Collapse
Affiliation(s)
- Stephen J. P. Pratt
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | | | - Guray Kuzu
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Ton Trinh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joshua Barbara
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Paula Choconta
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Doug Quackenbush
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Truc Huynh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Anders Smith
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - S. Whitney Barnes
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joel New
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Pierce
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - John R. Walker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Mainquist
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Frederick J. King
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Jimmy Elliott
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Scott Hammack
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Rebekah S. Decker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| |
Collapse
|
17
|
Tomizawa Y, Wali KH, Surti M, Suhail Y, Kshitiz, Hoshino K. Lightsheet microscopy integrates single-cell optical visco-elastography and fluorescence cytometry of 3D live tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590392. [PMID: 38766194 PMCID: PMC11100606 DOI: 10.1101/2024.04.20.590392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Most common cytometry methods, including flow cytometry, observe suspended or fixed cells and cannot evaluate their structural roles in 3D tissues. However, cellular physical interactions are critical in physiological, developmental, and pathological processes. Here, we present a novel optical visco-elastography that characterizes single-cellular physical interactions by applying in-situ micro-mechanical perturbation to live microtissues under 3D lightsheet microscopy. The 4D digital image correlation (DIC) analysis of ~20,000 nodes tracked the compressive deformation of 3D tissues containing ~500 cells. The computational 3D image segmentation allowed cell-by-cell qualitative observation and statistical analysis, directly correlating multi-channel fluorescence and viscoelasticity. To represent epithelia-stroma interactions, we used a 3D organoid model of maternal-fetal interface and visualized solid-like, well-aligned displacement and liquid-like random motion between individual cells. The statistical analysis through our unique cytometry confirmed that endometrial stromal fibroblasts stiffen in response to decidualization. Moreover, we demonstrated in the 3D model that interaction with placental extravillous trophoblasts partially reverses the attained stiffness, which was supported by the gene expression analysis. Placentation shares critical cellular and molecular significance with various fundamental biological events such as cancer metastasis, wound healing, and gastrulation. Our analysis confirmed existing beliefs and discovered new insights, proving the broad applicability of our method.
Collapse
Affiliation(s)
- Yuji Tomizawa
- Department of Biomedical Engineering, University of Connecticut, CT
| | - Khadija H Wali
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
| | - Manav Surti
- Department of Biomedical Engineering, University of Connecticut, CT
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
- Systems Biology Institute, Yale University, West Haven, CT
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, CT
| |
Collapse
|
18
|
Distefano F, Epasto G. Effect of density grading on the mechanical behaviour of advanced functionally graded lattice structures. J Mech Behav Biomed Mater 2024; 153:106477. [PMID: 38428204 DOI: 10.1016/j.jmbbm.2024.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Lattice structures have found significant applications in the biomedical field due to their interesting combination of mechanical and biological properties. Among these, functionally graded structures sparked interest because of their potential of varying their mechanical properties throughout the volume, allowing the design of biomedical devices able to match the characteristics of a graded structure like human bone. The aim of this works is the study of the effect of the density grading on the mechanical response and the failure mechanisms of a novel functionally graded lattice structure, namely Triply Arranged Octagonal Rings (TAOR). The mechanical behaviour was compared with the same lattice structures having constant density ratio. Electron Beam Melting technology was used to manufacture titanium alloy specimens with global relative densities from 10% to 30%. Functionally graded structures were obtained by increasing the relative density along the specimen, by individually designing the lattice's layers. Scanning electron and a digital microscopy were used to evaluate the dimensional mismatch between actual and designed structures. Compressive tests were carried out to obtain the mechanical properties and to evaluate the collapse modes of the structures in relation to their average relative density and lattice grading. Open-source Digital Image Correlation algorithm was applied to evaluate the deformation behaviour of the structures and to calculate their elastic moduli. The results showed that uniform density structures provide higher mechanical properties than functionally graded ones. The Digital Image Correlation results showed the possibility of effectively designing the different layers of functionally graded structures selecting desired local mechanical properties to mimic the different characteristics of cortical and cancellous bone.
Collapse
Affiliation(s)
- Fabio Distefano
- Department of Engineering, University of Messina, Contrada di Dio, Vill. Sant'Agata, 98166, Messina, Italy
| | - Gabriella Epasto
- Department of Engineering, University of Messina, Contrada di Dio, Vill. Sant'Agata, 98166, Messina, Italy.
| |
Collapse
|
19
|
Fischer M, Mylo MD, Lorenz LS, Böckenholt L, Beismann H. Stereo Camera Setup for 360° Digital Image Correlation to Reveal Smart Structures of Hakea Fruits. Biomimetics (Basel) 2024; 9:191. [PMID: 38534876 DOI: 10.3390/biomimetics9030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
About forty years after its first application, digital image correlation (DIC) has become an established method for measuring surface displacements and deformations of objects under stress. To date, DIC has been used in a variety of in vitro and in vivo studies to biomechanically characterise biological samples in order to reveal biomimetic principles. However, when surfaces of samples strongly deform or twist, they cannot be thoroughly traced. To overcome this challenge, different DIC setups have been developed to provide additional sensor perspectives and, thus, capture larger parts of an object's surface. Herein, we discuss current solutions for this multi-perspective DIC, and we present our own approach to a 360° DIC system based on a single stereo-camera setup. Using this setup, we are able to characterise the desiccation-driven opening mechanism of two woody Hakea fruits over their entire surfaces. Both the breaking mechanism and the actuation of the two valves in predominantly dead plant material are models for smart materials. Based on these results, an evaluation of the setup for 360° DIC regarding its use in deducing biomimetic principles is given. Furthermore, we propose a way to improve and apply the method for future measurements.
Collapse
Affiliation(s)
- Matthias Fischer
- Westfälische Hochschule, Münsterstraße 265, 46397 Bocholt, Germany
| | - Max D Mylo
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg im Breisgau, Germany
- Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Köhler-Allee 078, 79110 Freiburg im Breisgau, Germany
| | - Leon S Lorenz
- Westfälische Hochschule, Münsterstraße 265, 46397 Bocholt, Germany
| | - Lars Böckenholt
- Westfälische Hochschule, Münsterstraße 265, 46397 Bocholt, Germany
| | - Heike Beismann
- Westfälische Hochschule, Münsterstraße 265, 46397 Bocholt, Germany
| |
Collapse
|
20
|
Galteri G, Palanca M, Alesi D, Zaffagnini S, Morellato K, Gruppioni E, Cristofolini L. Reliable in vitro method for the evaluation of the primary stability and load transfer of transfemoral prostheses for osseointegrated implantation. Front Bioeng Biotechnol 2024; 12:1360208. [PMID: 38576443 PMCID: PMC10991734 DOI: 10.3389/fbioe.2024.1360208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Osseointegrated transfemoral prostheses experience aseptic complications with an incidence between 3% and 30%. The main aseptic risks are implant loosening, adverse bone remodeling, and post-operative periprosthetic fractures. Implant loosening can either be due to a lack of initial (primary) stability of the implant, which hinders bone ingrowth and therefore prevents secondary stability, or, in the long-term, to the progressive resorption of the periprosthetic bone. Post-operative periprosthetic fractures are most often caused by stress concentrations. A method to simultaneously evaluate the primary stability and the load transfer is currently missing. Furthermore, the measurement errors are seldom reported in the literature. In this study a method to reliably quantify the bone implant interaction of osseointegrated transfemoral prostheses in terms of primary stability and load transfer was developed, and its precision was quantified. Micromotions between the prosthesis and the host bone and the strains on the cortical bone were measured on five human cadaveric femurs with a typical commercial osseointegrated implant. To detect the primary stability of the implant and the load transfer, cyclic loads were applied, simulating the peak load during gait. Digital Image Correlation was used to measure displacements and bone strains simultaneously throughout the test. Permanent migrations and inducible micromotions were measured (three translations and three rotations), while, on the same specimen, the full-field strain distribution on the bone surface was measured. The repeatability tests showed that the devised method had an intra-specimen variability smaller than 6 μm for the translation, 0.02 degrees for the rotations, and smaller than 60 microstrain for the strain distribution. The inter-specimen variability was larger than the intra-specimen variability due to the natural differences between femurs. Altogether, the measurement uncertainties (intrinsic measurement errors, intra-specimen repeatability and inter-specimen variability) were smaller than critical levels of biomarkers for adverse remodelling and aseptic loosening, thus allowing to discriminate between stable and unstable implants, and to detect critical strain magnitudes in the host bone. In conclusion, this work showed that it is possible to measure the primary stability and the load transfer of an osseointegrated transfemoral prosthesis in a reliable way using a combination of mechanical testing and DIC.
Collapse
Affiliation(s)
- Giulia Galteri
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Palanca
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | | | | | | | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Sensini A, Stamati O, Marchiori G, Sancisi N, Gotti C, Giavaresi G, Cristofolini L, Focarete ML, Zucchelli A, Tozzi G. Full-field strain distribution in hierarchical electrospun nanofibrous poly-L(lactic) acid/collagen scaffolds for tendon and ligament regeneration: A multiscale study. Heliyon 2024; 10:e26796. [PMID: 38444492 PMCID: PMC10912460 DOI: 10.1016/j.heliyon.2024.e26796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Regeneration of injured tendons and ligaments (T/L) is a worldwide need. In this study electrospun hierarchical scaffolds made of a poly-L (lactic) acid/collagen blend were developed reproducing all the multiscale levels of aggregation of these tissues. Scanning electron microscopy, microCT and tensile mechanical tests were carried out, including a multiscale digital volume correlation analysis to measure the full-field strain distribution of electrospun structures. The principal strains (εp1 and εp3) described the pattern of strains caused by the nanofibers rearrangement, while the deviatoric strains (εD) revealed the related internal sliding of nanofibers and bundles. The results of this study confirmed the biomimicry of such electrospun hierarchical scaffolds, paving the way to further tissue engineering and clinical applications.
Collapse
Affiliation(s)
- Alberto Sensini
- Department of Complex Tissue Regeneration and cell Biology-Inspired Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
- Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | | | - Gregorio Marchiori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Sancisi
- Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | - Carlo Gotti
- Advanced Mechanics and Materials – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Cristofolini
- Department of Complex Tissue Regeneration and cell Biology-Inspired Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum—Università di Bologna, I-40064, Ozzano dell'Emilia, Bologna, Italy
| | - Maria Letizia Focarete
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum—Università di Bologna, I-40064, Ozzano dell'Emilia, Bologna, Italy
- Department of Chemistry 'G. Ciamician' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | - Andrea Zucchelli
- Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Advanced Mechanics and Materials – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Gianluca Tozzi
- Centre for Advanced Manufacturing and Materials, School of Engineering, University of Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
22
|
Iwasaki N, Karali A, Roldo M, Blunn G. Full-Field Strain Measurements of the Muscle-Tendon Junction Using X-ray Computed Tomography and Digital Volume Correlation. Bioengineering (Basel) 2024; 11:162. [PMID: 38391648 PMCID: PMC10886230 DOI: 10.3390/bioengineering11020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
We report, for the first time, the full-field 3D strain distribution of the muscle-tendon junction (MTJ). Understanding the strain distribution at the junction is crucial for the treatment of injuries and to predict tear formation at this location. Three-dimensional full-field strain distribution of mouse MTJ was measured using X-ray computer tomography (XCT) combined with digital volume correlation (DVC) with the aim of understanding the mechanical behavior of the junction under tensile loading. The interface between the Achilles tendon and the gastrocnemius muscle was harvested from adult mice and stained using 1% phosphotungstic acid in 70% ethanol. In situ XCT combined with DVC was used to image and compute strain distribution at the MTJ under a tensile load (2.4 N). High strain measuring 120,000 µε, 160,000 µε, and 120,000 µε for the first principal stain (εp1), shear strain (γ), and von Mises strain (εVM), respectively, was measured at the MTJ and these values reduced into the body of the muscle or into the tendon. Strain is concentrated at the MTJ, which is at risk of being damaged in activities associated with excessive physical activity.
Collapse
Affiliation(s)
- Nodoka Iwasaki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
23
|
Nguyen Q, Lejeune E. Segmenting mechanically heterogeneous domains via unsupervised learning. Biomech Model Mechanobiol 2024; 23:349-372. [PMID: 38217746 DOI: 10.1007/s10237-023-01779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/30/2023] [Indexed: 01/15/2024]
Abstract
From biological organs to soft robotics, highly deformable materials are essential components of natural and engineered systems. These highly deformable materials can have heterogeneous material properties, and can experience heterogeneous deformations with or without underlying material heterogeneity. Many recent works have established that computational modeling approaches are well suited for understanding and predicting the consequences of material heterogeneity and for interpreting observed heterogeneous strain fields. In particular, there has been significant work toward developing inverse analysis approaches that can convert observed kinematic quantities (e.g., displacement, strain) to material properties and mechanical state. Despite the success of these approaches, they are not necessarily generalizable and often rely on tight control and knowledge of boundary conditions. Here, we will build on the recent advances (and ubiquity) of machine learning approaches to explore alternative approaches to detect patterns in heterogeneous material properties and mechanical behavior. Specifically, we will explore unsupervised learning approaches to clustering and ensemble clustering to identify heterogeneous regions. Overall, we find that these approaches are effective, yet limited in their abilities. Through this initial exploration (where all data and code are published alongside this manuscript), we set the stage for future studies that more specifically adapt these methods to mechanical data.
Collapse
Affiliation(s)
- Quan Nguyen
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
24
|
Mylo MD, Poppinga S. Digital image correlation techniques for motion analysis and biomechanical characterization of plants. FRONTIERS IN PLANT SCIENCE 2024; 14:1335445. [PMID: 38273955 PMCID: PMC10808816 DOI: 10.3389/fpls.2023.1335445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Temporally and spatially complex 3D deformation processes appear in plants in a variety of ways and are difficult to quantify in detail by classical cinematographic methods. Furthermore, many biomechanical test methods, e.g. regarding compression or tension, result in quasi-2D deformations of the tested structure, which are very time-consuming to analyze manually regarding strain fields. In materials testing, the contact-free optical 2D- or 3D-digital image correlation method (2D/3D-DIC) is common practice for similar tasks, but is still rather seldom used in the fundamental biological sciences. The present review aims to highlight the possibilities of 2D/3D-DIC for the plant sciences. The equipment, software, and preparative prerequisites are introduced in detail and advantages and disadvantages are discussed. In addition to the analysis of wood and trees, where DIC has been used since the 1990s, this is demonstrated by numerous recent approaches in the contexts of parasite-host attachment, cactus joint biomechanics, fruit peel impact resistance, and slow as well as fast movement phenomena in cones and traps of carnivorous plants. Despite some technical and preparative efforts, DIC is a very powerful tool for full-field 2D/3D displacement and strain analyses of plant structures, which is suitable for numerous in-depth research questions in the fields of plant biomechanics and morphogenesis.
Collapse
Affiliation(s)
- Max D. Mylo
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering – IMTEK, University of Freiburg, Freiburg, Germany
| | - Simon Poppinga
- Botanical Garden, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
25
|
Zhang L, You H, Gao T, Yu M, Lee CH, Yu Y. MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2023; 417:116280. [PMID: 38292246 PMCID: PMC10824406 DOI: 10.1016/j.cma.2023.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gradient-based meta-learning methods have primarily been applied to classical machine learning tasks such as image classification. Recently, PDE-solving deep learning methods, such as neural operators, are starting to make an important impact on learning and predicting the response of a complex physical system directly from observational data. Taking the material modeling problems for example, the neural operator approach learns a surrogate mapping from the loading field to the corresponding material response field, which can be seen as learning the solution operator of a hidden PDE. The microstructure and mechanical parameters of each material specimen correspond to the (possibly heterogeneous) parameter field in this hidden PDE. Due to the limitation on experimental measurement techniques, the data acquisition for each material specimen is commonly challenging and costly. This fact calls for the utilization and transfer of existing knowledge to new and unseen material specimens, which corresponds to sampling efficient learning of the solution operator of a hidden PDE with a different parameter field. Herein, we propose a novel meta-learning approach for neural operators, which can be seen as transferring the knowledge of solution operators between governing (unknown) PDEs with varying parameter fields. Our approach is a provably universal solution operator for multiple PDE solving tasks, with a key theoretical observation that underlying parameter fields can be captured in the first layer of neural operator models, in contrast to typical final-layer transfer in existing meta-learning methods. As applications, we demonstrate the efficacy of our proposed approach on PDE-based datasets and a real-world material modeling problem, illustrating that our method can handle complex and nonlinear physical response learning tasks while greatly improving the sampling efficiency in unseen tasks.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Mathematics, Lehigh University, Bethlehem, PA, USA
| | - Huaiqian You
- Department of Mathematics, Lehigh University, Bethlehem, PA, USA
| | - Tian Gao
- IBM Research, Yorktown Heights, NY, USA
| | - Mo Yu
- Pattern Recognition Center, WeChat AI, Tencent Inc, China
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Yue Yu
- Department of Mathematics, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
26
|
Mangileva D, Kursanov A, Katsnelson L, Solovyova O. Unsupervised deep network for image texture transformation: Improving the quality of cross-correlation analysis and mechanical vortex visualisation during cardiac fibrillation. Heliyon 2023; 9:e22207. [PMID: 38053873 PMCID: PMC10694166 DOI: 10.1016/j.heliyon.2023.e22207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Visualisation of cardiac fibrillation plays a very considerable role in cardiophysiological study and clinical applications. One of the ways to obtain the image of these phenomena is the registration of mechanical displacement fields reflecting the track from electrical activity. In this work, we read these fields using cross-correlation analysis from the video of open pig's epicardium at the start of fibrillation recorded with electrocardiogram. However, the quality of obtained displacement fields remains low due to the weak pixels heterogeneity of the frames. It disables to see more clearly such interesting phenomena as mechanical vortexes that underline the mechanical dysfunction of fibrillation. The applying of chemical or mechanical markers to solve this problem can affect the course of natural processes and falsify the results. Therefore, we developed a novel scheme of an unsupervised deep neural network that is based on the state-of-art positional coding technology for a multilayer perceptron. This network enables to generate a couple of frames with a more heterogeneous pixel texture, that is more suitable for cross-correlation analysis methods, from two consecutive frames. The novel network scheme was tested on synthetic pairs of images with different texture heterogeneity and frequency of displacement fields and also it was compared with different filters on our cardiac tissue image dataset. The testing showed that the displacement fields obtained with our method are closer to the ground truth than those which were computed only with the cross-correlation analysis in low contrast images case where filtering is impossible. Moreover, our model showed the best results comparing with the one of the popular filter CLAHE on our dataset. As a result, using our approach, it was possible to register more clearly a mechanical vortex on the epicardium at the start of fibrillation continuously for several milliseconds for the first time.
Collapse
Affiliation(s)
- Daria Mangileva
- Department of Computational Mathematics and Computer Science, Ural Federal University, Ekaterinburg, 620002, Russia
| | - Alexander Kursanov
- Department of Computational Mathematics and Computer Science, Ural Federal University, Ekaterinburg, 620002, Russia
- Institute of Immunology and Physiology, Ural Branch of Russian Sciences Academy, Ekaterinburg, 620049, Russia
| | - Leonid Katsnelson
- Department of Computational Mathematics and Computer Science, Ural Federal University, Ekaterinburg, 620002, Russia
- Institute of Immunology and Physiology, Ural Branch of Russian Sciences Academy, Ekaterinburg, 620049, Russia
| | - Olga Solovyova
- Department of Computational Mathematics and Computer Science, Ural Federal University, Ekaterinburg, 620002, Russia
- Institute of Immunology and Physiology, Ural Branch of Russian Sciences Academy, Ekaterinburg, 620049, Russia
| |
Collapse
|
27
|
Maillet M, Kammoun M, Avril S, Ho Ba Tho MC, Trabelsi O. Non-destructive Characterization of Skeletal Muscle Extracellular Matrix Morphology by Combining Optical Coherence Tomography (OCT) Imaging with Tissue Clearing. Ann Biomed Eng 2023; 51:2323-2336. [PMID: 37310491 DOI: 10.1007/s10439-023-03274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Histology is an essential step to visualize and analyze the microstructure of any biological tissue; however, histological processing is often irreversible, and histological samples are unable to be imaged or tested further. In this work, a novel non-destructive protocol is proposed for morphological analysis of skeletal muscles, combining Optical Coherence Tomography (OCT) imaging with Tissue Clearing. Imaging combining OCT and Propylene Glycol (PG) as a tissue-clearing agent, was performed on rat tail and extensor digitorum longus (EDL) muscle. The results show that the extracellular matrix morphology of skeletal muscles, including muscular fibers and the whole microstructure architecture were clearly identified. PG improved OCT imaging as measured by image quality metric Contrast Per Pixel CPP (increases by 3.9%), Naturalness Image Quality Evaluator NIQE (decreases by 23%), and Volume of Interest VOI size (higher for CPP and lower for NIQE values). The tendon microstructure was observed with less precision, as collagen fibers could not be clearly detected. The reversibility of the optical effects of the PG on the immersed tissue (in a Phosphate-Buffered Saline solution) was studied comparing native and rehydrated OCT image acquisition from a single EDL sample. Optical properties and microstructure visibility (CPP and NIQE) have been recovered to 99% of the native sample values. Moreover, clearing process caused shrinkage of the tissue recovered to 86% of the original width. Future work will aim to employ the proposed experimental protocol to identify the local mechanical properties of biological tissues.
Collapse
Affiliation(s)
- Maxence Maillet
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France
| | - Malek Kammoun
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France
| | - Stéphane Avril
- Mines Saint-Etienne, Univ Jean Monnet Saint-Etienne, Inserm, U 1059 Sainbiose, 42023, Saint-Etienne, France
| | - Marie-Christine Ho Ba Tho
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France
| | - Olfa Trabelsi
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France.
| |
Collapse
|
28
|
Zdero R, Brzozowski P, Schemitsch EH. Experimental Methods for Studying the Contact Mechanics of Joints. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4914082. [PMID: 37780487 PMCID: PMC10541306 DOI: 10.1155/2023/4914082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Biomechanics researchers often experimentally measure static or fluctuating dynamic contact forces, areas, and stresses at the interface of natural and artificial joints, including the shoulders, elbows, hips, and knees. This information helps explain joint contact mechanics, as well as mechanisms that may contribute to disease, damage, and degradation. Currently, the most common in vitro experimental technique involves a thin pressure-sensitive film inserted into the joint space; but, the film's finite thickness disturbs the joint's ordinary articulation. Similarly, the most common in vivo experimental technique uses video recording of 3D limb motion combined with dynamic analysis of a 3D link-segment model to calculate joint contact force, but this does not provide joint contact area or stress distribution. Moreover, many researchers may be unaware of older or newer alternative techniques that may be more suitable for their particular research application. Thus, this article surveys over 50 years of English-language scientific literature in order to (a) describe the basic working principles, advantages, and disadvantages of each technique, (b) examine the trends among the studies and methods, and (c) make recommendations for future directions. This article will hopefully inform biomechanics investigators about various in vitro and in vivo experimental methods for studying the contact mechanics of joints.
Collapse
Affiliation(s)
- Radovan Zdero
- Orthopaedic Biomechanics Lab, Victoria Hospital, London, Canada
| | | | - Emil H. Schemitsch
- Orthopaedic Biomechanics Lab, Victoria Hospital, London, Canada
- Division of Orthopaedic Surgery, Western University, London, Canada
| |
Collapse
|
29
|
Galteri G, Cristofolini L. In vitro and in silico methods for the biomechanical assessment of osseointegrated transfemoral prostheses: a systematic review. Front Bioeng Biotechnol 2023; 11:1237919. [PMID: 37662439 PMCID: PMC10469938 DOI: 10.3389/fbioe.2023.1237919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The amputee population according to the World-Health-Organization is about 40 million. However, there is a high abandon rate of socket prostheses for the lower limb (25%-57%). The direct connection between the external prosthesis and the patient's bone makes osseointegrated prostheses for transfemoral amputees advantageous (e.g., improvement of the motor control) compared to socket prostheses, which are currently the gold standard. However, similarly to other uncemented prostheses, the osseointegrated ones are at risk of aseptic loosening and adverse bone remodelling caused by stress-shielding. The preclinical assessment of these prostheses has already been evaluated using different methods which did not provide unanimous and comparable evidence. To compare data from different investigations, a clear and detailed overview of the methods used to assess the performance is necessary. In this review 17 studies investigating the primary stability, stress shielding and stress concentration of osseointegrated transfemoral prostheses are examined. Primary stability consists in the biomechanical stability upon implant insertion. Primary stability is assessed measuring extraction force (either with a pull-out or a push-out test) and micromotion at the interface between the implant and the host bone with LVDT (in vitro test) or numerical models. Stress-shielding causes adaptive changes in the bone density around metal implants, and thus in the bone strength and stiffness. Stress-shielding is assessed with strain gauges or numerical models measuring the load transfer and the strain distribution on the surface of the femur, and between the implant and the bone respectively. Stress concentration can lead to the formation of cracks inside the bone, resulting in fractures. The stress concentration is assessed measuring the load transfer and the strain energy density at the interface between the implant and the bone, using numerical models. As a result, a global view and consensus about the methods are missing from all these tests. Indeed, different setup and loading scenario were used in the in vitro test, while different model parameters (e.g., bone properties) were used in the numerical models. Once the preclinical assessment method is established, it would be important to define thresholds and acceptance criteria for each of the possible failure scenarios investigated.
Collapse
Affiliation(s)
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Jones AD, Crossland SR, Nixon JE, Siddle HJ, Russell DA, Culmer PR. STrain Analysis and Mapping of the Plantar Surface (STAMPS): A novel technique of plantar load analysis during gait. Proc Inst Mech Eng H 2023; 237:841-854. [PMID: 37353979 DOI: 10.1177/09544119231181797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Diabetic foot ulceration is driven by peripheral neuropathy, resulting in abnormal foot biomechanics and elevated plantar load. Plantar load comprises normal pressure and tangential shear stress. Currently, there are no in-shoe devices measuring both components of plantar load. The STAMPS (STrain Analysis and Mapping of the Plantar Surface) system was developed to address this and utilises digital image correlation (DIC) to determine the strain sustained by a plastically deformable insole, providing an assessment of plantar load at the foot-surface interface during gait. STAMPS was developed as a multi-layered insole, comprising a deformable mid-layer, onto which a stochastic speckle pattern film is applied. A custom-built imaging platform is used to obtain high resolution pre- and post-walking images. Images are imported into commercially available DIC software (GOM Correlate, 2020) to obtain pointwise strain data. The strain and displacement data are exported and post-processed with custom analysis routines (MATLAB, Mathworks Inc.), to obtain the resultant global and regional peak strain (SMAG), antero-posterior strain (SAP) and medio-lateral strain (SML). To validate the core technique an experimental test process used a Universal Mechanical Tester (UMT) system (UMT TriboLab, Bruker) to apply controlled vertical and tangential load regimes to the proposed multi-layer insole. A pilot study was then conducted to assess the efficacy of using the STAMPS system to measure in-shoe plantar strain in three healthy participants. Each participant walked 10 steps on the STAMPS insole using a standardised shoe. They also walked 10 m in the same shoe using a plantar pressure measurement insole (Novel Pedar®) to record peak plantar pressure (PPP) as a gold-standard comparator. The results of the experimental validation tests show that with increased normal force, at a constant shear distance, SMAG increased in a linear fashion. Furthermore, they showed that with increased shear distance, at a constant force, SMAG increased. The results of the pilot study found participant 1 demonstrated greatest SMAG in the region toes 3-5 (15.31%). The highest mean SMAG for participant 2 was at the hallux (29.31%). Participant 3 exhibited highest strain in the regions of the first and second metatarsal heads (58.85% and 41.62% respectively). Increased PPP was strongly associated with increased SMAG with a Spearman's correlation coefficient 0.673 (p < 0.0001). This study has demonstrated the efficacy of a novel method to assess plantar load across the plantar surface of the foot. Experimental testing validated the sensitivity of the method to both normal pressure and tangential shear stress. This technique was successfully incorporated into the STAMPS insole to reliably measure and quantify the cumulative degree of strain sustained by a plastically deformable insole during a period of gait, which can be used to infer plantar loading patterns. Future work will explore how these measures relate to different pathologies, such as regions at risk of diabetic foot ulceration.
Collapse
Affiliation(s)
- Alexander D Jones
- Leeds Vascular Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Sarah R Crossland
- Leeds School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Jane E Nixon
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Heidi J Siddle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - David A Russell
- Leeds Vascular Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Peter R Culmer
- Leeds School of Mechanical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
31
|
Oddes Z, Solav D. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation. J Mech Behav Biomed Mater 2023; 140:105708. [PMID: 36801779 DOI: 10.1016/j.jmbbm.2023.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Reliable identification of soft tissue material parameters is frequently required in a variety of applications, particularly for biomechanical simulations using finite element analysis (FEA). However, determining representative constitutive laws and material parameters is challenging and often comprises a bottleneck that hinders the successful implementation of FEA. Soft tissues exhibit a nonlinear response and are commonly modeled using hyperelastic constitutive laws. In-vivo material parameter identification, for which standard mechanical tests (e.g., uniaxial tension and compression) are inapplicable, is commonly achieved using finite macro-indentation test. Due to the lack of analytical solutions, the parameters are commonly identified using inverse FEA (iFEA), in which simulated results and experimental data are iteratively compared. However, determining what data must be collected to accurately identify a unique parameter set remains unclear. This work investigates the sensitivities of two types of measurements: indentation force-depth data (e.g., measured using an instrumented indenter) and full-field surface displacements (e.g., using digital image correlation). To eliminate model fidelity and measurement-related errors, we employed an axisymmetric indentation FE model to produce synthetic data for four 2-parameter hyperelastic constitutive laws: compressible Neo-Hookean, and nearly incompressible Mooney-Rivlin, Ogden, and Ogden-Moerman models. For each constitutive law, we computed the objective functions representing the discrepancies in the reaction force, the surface displacement, and their combination, and visualized them for hundreds of parameter sets, spanning a representative range as found in the literature for the bulk soft tissue complex in human lower limbs. Moreover, we quantified three identifiability metrics, which provided insights into the uniqueness (or lack thereof) and the sensitivities. This approach provides a clear and systematic evaluation of the parameter identifiability, which is independent of the selection of the optimization algorithm and initial guesses required in iFEA. Our analysis indicated that the indenter's force-depth data, despite being commonly used for parameter identification, was insufficient for reliably and accurately identifying both parameters for all the investigated material models and that the surface displacement data improved the parameter identifiability in all cases, although the Mooney-Rivlin parameters remained poorly identifiable. Informed by the results, we then discuss several identification strategies for each constitutive model. Finally, we openly provide the codes used in this study, to allow others to further investigate the indentation problem according to their specifications (e.g., by modifying the geometries, dimensions, mesh, material models, boundary conditions, contact parameters, or objective functions).
Collapse
Affiliation(s)
- Zohar Oddes
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel
| | - Dana Solav
- Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel.
| |
Collapse
|
32
|
Nelson TM, Quiros KAM, Dominguez EC, Ulu A, Nordgren TM, Eskandari M. Diseased and healthy murine local lung strains evaluated using digital image correlation. Sci Rep 2023; 13:4564. [PMID: 36941463 PMCID: PMC10026788 DOI: 10.1038/s41598-023-31345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/22/2023] Open
Abstract
Tissue remodeling in pulmonary disease irreversibly alters lung functionality and impacts quality of life. Mechanical ventilation is amongst the few pulmonary interventions to aid respiration, but can be harmful or fatal, inducing excessive regional (i.e., local) lung strains. Previous studies have advanced understanding of diseased global-level lung response under ventilation, but do not adequately capture the critical local-level response. Here, we pair a custom-designed pressure-volume ventilator with new applications of digital image correlation, to directly assess regional strains in the fibrosis-induced ex-vivo mouse lung, analyzed via regions of interest. We discuss differences between diseased and healthy lung mechanics, such as distensibility, heterogeneity, anisotropy, alveolar recruitment, and rate dependencies. Notably, we compare local and global compliance between diseased and healthy states by assessing the evolution of pressure-strain and pressure-volume curves resulting from various ventilation volumes and rates. We find fibrotic lungs are less-distensible, with altered recruitment behaviors and regional strains, and exhibit disparate behaviors between local and global compliance. Moreover, these diseased characteristics show volume-dependence and rate trends. Ultimately, we demonstrate how fibrotic lungs may be particularly susceptible to damage when contrasted to the strain patterns of healthy counterparts, helping to advance understanding of how ventilator induced lung injury develops.
Collapse
Affiliation(s)
- T M Nelson
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - K A M Quiros
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - E C Dominguez
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA
| | - A Ulu
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
| | - T M Nordgren
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA
- BREATHE Center, School of Medicine, University of California, Riverside, CA, USA
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - M Eskandari
- Department of Mechanical Engineering, University of California, Riverside, CA, USA.
- BREATHE Center, School of Medicine, University of California, Riverside, CA, USA.
- Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
33
|
Prusa G, Bauer L, Santos I, Thorwächter C, Woiczinski M, Kistler M. Strain evaluation of axially loaded collateral ligaments: a comparison of digital image correlation and strain gauges. Biomed Eng Online 2023; 22:13. [PMID: 36774524 PMCID: PMC9922447 DOI: 10.1186/s12938-023-01077-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
The response of soft tissue to loading can be obtained by strain assessment. Typically, strain can be measured using electrical resistance with strain gauges (SG), or optical sensors based on the digital image correlation (DIC), among others. These sensor systems are already established in other areas of technology. However, sensors have a limited range of applications in medical technology due to various challenges in handling human soft materials. The aim of this study was to compare directly attached foil-type SG and 3D-DIC to determine the strain of axially loaded human ligament structures. Therefore, the medial (MCL) and lateral (LCL) collateral ligaments of 18 human knee joints underwent cyclic displacement-controlled loading at a rate of 20 mm/min in two test trials. In the first trial, strain was recorded with the 3D-DIC system and the reference strain of the testing machine. In the second trial, strain was additionally measured with a directly attached SG. The results of the strain measurement with the 3D-DIC system did not differ significantly from the reference strain in the first trial. The strains assessed in the second trial between reference and SG, as well as between reference and 3D-DIC showed significant differences. This suggests that using an optical system based on the DIC with a given unrestricted view is an effective method to measure the superficial strain of human ligaments. In contrast, directly attached SGs provide only qualitative comparable results. Therefore, their scope on human ligaments is limited to the evaluation of changes under different conditions.
Collapse
Affiliation(s)
- Gwendolin Prusa
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| | - Leandra Bauer
- grid.5252.00000 0004 1936 973XDepartment of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Inês Santos
- grid.5252.00000 0004 1936 973XDepartment of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Christoph Thorwächter
- grid.5252.00000 0004 1936 973XDepartment of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Matthias Woiczinski
- grid.5252.00000 0004 1936 973XDepartment of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Manuel Kistler
- grid.5252.00000 0004 1936 973XDepartment of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| |
Collapse
|
34
|
Lamont S, Fropier J, Abadie J, Piat E, Constantinescu A, Roux C, Vernerey F. Profiling oocytes with neural networks from images and mechanical data. J Mech Behav Biomed Mater 2023; 138:105640. [PMID: 36566663 DOI: 10.1016/j.jmbbm.2022.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The success rate of assisted reproductive technologies could be greatly improved by selectively choosing egg cells (oocytes) with the greatest chance of fertilization. The goal of mechanical profiling is, thus, to improve predictive oocyte selection by isolating the mechanical properties of oocytes and correlating them to their reproductive potential. The restrictions on experimental platforms, however - including minimal invasiveness and practicality in laboratory implementation - greatly limits the data that can be acquired from a single oocyte. In this study, we perform indentation studies on human oocytes and characterize the mechanical properties of the zona pellucida, the outer layer of the oocyte. We obtain excellent fitting with our physical model when indenting with a flat surface and clearly illustrate localized shear-thinning behavior of the zona pellucida, which has not been previously reported. We conclude by outlining a promising methodology for isolating the mechanical properties of the cytoplasm using neural networks and optical images taken during indentation.
Collapse
Affiliation(s)
- Samuel Lamont
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America
| | - Juliette Fropier
- Laboratoire de Mécanique des Solides - CNRS - École Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Joel Abadie
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030 Besançon, cedex, France
| | - Emmanuel Piat
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030 Besançon, cedex, France
| | - Andrei Constantinescu
- Laboratoire de Mécanique des Solides - CNRS - École Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Christophe Roux
- Service de Biologie et Médecine de la Reproduction - Cryobiologie - CECOS Franche-Comté Bourgogne, CHRU Jean Minjoz, 3 Bd Fleming, 25030 Besançon cedex, France
| | - Franck Vernerey
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| |
Collapse
|
35
|
Karali A, Dall'Ara E, Zekonyte J, Kao AP, Blunn G, Tozzi G. Effect of radiation-induced damage of trabecular bone tissue evaluated using indentation and digital volume correlation. J Mech Behav Biomed Mater 2023; 138:105636. [PMID: 36608532 DOI: 10.1016/j.jmbbm.2022.105636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Exposure to X-ray radiation for an extended amount of time can cause damage to the bone tissue and therefore affect its mechanical properties. Specifically, high-resolution X-ray Computed Tomography (XCT), in both synchrotron and lab-based systems, has been employed extensively for evaluating bone micro-to-nano architecture. However, to date, it is still unclear how long exposures to X-ray radiation affect the mechanical properties of trabecular bone, particularly in relation to lab-XCT systems. Indentation has been widely used to identify local mechanical properties such as hardness and elastic modulus of bone and other biological tissues. The purpose of this study is therefore, to use indentation and XCT-based investigative tools such as digital volume correlation (DVC) to assess the microdamage induced by long exposure of trabecular bone tissue to X-ray radiation and how this affects its local mechanical properties. Trabecular bone specimens were indented before and after X-ray exposures of 33 and 66 h, where variation of elastic modulus was evaluated at every stage. The resulting elastic modulus was decreased, and micro-cracks appeared in the specimens after the first long X-ray exposure and crack formation increased after the second exposure. High strain concentration around the damaged tissue exceeding 1% was also observed from DVC analysis. The outcomes of this study show the importance of designing appropriate XCT-based experiments in lab systems to avoid degradation of the bone tissue mechanical properties due to radiation and these results will help to inform future studies that require long X-ray exposure for in situ experiments or generation of reliable subject-specific computational models.
Collapse
Affiliation(s)
- Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK.
| | - Enrico Dall'Ara
- Departement of Oncology and Metabolism and Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Alexander P Kao
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Gianluca Tozzi
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
36
|
Moravia A, Simoëns S, El Hajem M, Bou-Saïd B, Menut M, Kulisa P, Lermusiaux P, Della-Schiava N. Particle Image Velocimetry to Evaluate Pulse Wave Velocity in Aorta Phantom with the lnD-U Method. Cardiovasc Eng Technol 2023; 14:141-151. [PMID: 36127496 DOI: 10.1007/s13239-022-00642-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Pulse wave velocity (PWV) is an indicator of arterial stiffness used in the prediction of cardiovascular disease such as atherosclerosis. Non-invasive methods performed with ultrasound probes allow one to compute PWV and aortic stiffness through the measurement of the aortic diameter (D) and blood flow velocity (U) with the lnD-U method. This technique based on in vivo acquisitions lacks validation since the aortic elasticity modulus cannot be verified with mechanical strength tests. METHOD In the present study, an alternative validation is carried out on an aorta phantom hosted in an aortic flow simulator which mimics pulsatile inflow conditions. This in vitro setup included a Particle Image Velocimetry device to visualize flow in a 2D longitudinal section of the phantom, compute velocity fields (U), and track wall displacements in the aorta phantom to measure the apparent diameter (AD) variations throughout cycles. RESULTS The lnD-U method was then applied to evaluate PWV (5.79 ± 0.33 m/s) and calculate the Young's modulus of the aorta phantom (0.56 ± 0.12 MPa). This last value was compared to the elasticity modulus (0.53 ± 0.07 MPa) evaluated with tensile strength tests on samples cut from the silicone phantom. CONCLUSION The PIV technique PWV measurement showed good agreement with the direct tensile test method with a 5.6% difference in Young's modulus. Considering the uncertainties from the two methods, the measured elasticities are consistent and close to a 50-60 years old male aortic behavior. The choice of silicone for the phantom material is a relevant and promising option to mimic the human aorta on in vitro systems.
Collapse
Affiliation(s)
- Anaïs Moravia
- Université de Lyon, INSA de Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CNRS, LMFA UMR 5509, Villeurbanne, France.
- Ecole Centrale Lyon, LMFA, 36 avenue Guy de Collongue, 69134, Ecully, France.
| | - Serge Simoëns
- Université de Lyon, INSA de Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CNRS, LMFA UMR 5509, Villeurbanne, France
| | - Mahmoud El Hajem
- Université de Lyon, INSA de Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CNRS, LMFA UMR 5509, Villeurbanne, France
| | - Benyebka Bou-Saïd
- Université de Lyon, CNRS, INSA de Lyon, LaMCoS UMR5259, Villeurbanne, France
| | - Marine Menut
- CISTEN, 66 Bd. N. Bohr, CS 52132, 69603, Villeurbanne, France
| | - Pascale Kulisa
- Université de Lyon, INSA de Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CNRS, LMFA UMR 5509, Villeurbanne, France
| | - Patrick Lermusiaux
- Vascular and Endovascular Department, Hospices Civils de Lyon, Lyon, France
| | | |
Collapse
|
37
|
Govender S, Cronjé JY, Keough N, Oberholster AJ, van Schoor AN, de Jager EJ, Naicker J. Emerging Imaging Techniques in Anatomy: For Teaching, Research and Clinical Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1392:19-42. [DOI: 10.1007/978-3-031-13021-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
38
|
Li H, Li X, Collado-Lara G, Lattwein KR, Mastik F, Beurskens R, van der Steen AFW, Verweij MD, de Jong N, Kooiman K. Coupling Two Ultra-high-Speed Cameras to Elucidate Ultrasound Contrast-Mediated Imaging and Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:388-397. [PMID: 36241587 DOI: 10.1016/j.ultrasmedbio.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound contrast-mediated medical imaging and therapy both rely on the dynamics of micron- and nanometer-sized ultrasound cavitation nuclei, such as phospholipid-coated microbubbles and phase-change droplets. Ultrasound cavitation nuclei respond non-linearly to ultrasound on a nanosecond time scale that necessitates the use of ultra-high-speed imaging to fully visualize these dynamics in detail. In this study, we developed an ultra-high-speed optical imaging system that can record up to 20 million frames per second (Mfps) by coupling two small-sized, commercially available, 10-Mfps cameras. The timing and reliability of the interleaved cameras needed to achieve 20 Mfps was validated using two synchronized light-emitting diode strobe lights. Once verified, ultrasound-activated microbubble responses were recorded and analyzed. A unique characteristic of this coupled system is its ability to be reconfigured to provide orthogonal observations at 10 Mfps. Acoustic droplet vaporization was imaged from two orthogonal views, by which the 3-D dynamics of the phase transition could be visualized. This optical imaging system provides the temporal resolution and experimental flexibility needed to further elucidate the dynamics of ultrasound cavitation nuclei to potentiate the clinical translation of ultrasound-mediated imaging and therapy developments.
Collapse
Affiliation(s)
- Hongchen Li
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Xiufeng Li
- Section of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Gonzalo Collado-Lara
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kirby R Lattwein
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frits Mastik
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert Beurskens
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Section of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Section of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Section of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Techens C, Montanari S, Bereczki F, Eltes PE, Lazary A, Cristofolini L. Biomechanical consequences of cement discoplasty: An in vitro study on thoraco-lumbar human spines. Front Bioeng Biotechnol 2022; 10:1040695. [PMID: 36532589 PMCID: PMC9755512 DOI: 10.3389/fbioe.2022.1040695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/23/2022] [Indexed: 10/24/2023] Open
Abstract
With the ageing of the population, there is an increasing need for minimally invasive spine surgeries to relieve pain and improve quality of life. Percutaneous Cement Discoplasty is a minimally invasive technique to treat advanced disc degeneration, including vacuum phenomenon. The present study aimed to develop an in vitro model of percutaneous cement discoplasty to investigate its consequences on the spine biomechanics in comparison with the degenerated condition. Human spinal segments (n = 27) were tested at 50% body weight in flexion and extension. Posterior disc height, range of motion, segment stiffness, and strains were measured using Digital Image Correlation. The cement distribution was also studied on CT scans. As main result, percutaneous cement discoplasty restored the posterior disc height by 41% for flexion and 35% for extension. Range of motion was significantly reduced only in flexion by 27%, and stiffness increased accordingly. The injected cement volume was 4.56 ± 1.78 ml (mean ± SD). Some specimens (n = 7) exhibited cement perforation of one endplate. The thickness of the cement mass moderately correlated with the posterior disc height and range of motion with different trends for flexions vs. extension. Finally, extreme strains on the discs were reduced by percutaneous cement discoplasty, with modified patterns of the distribution. To conclude, this study supported clinical observations in term of recovered disc height close to the foramen, while percutaneous cement discoplasty helped stabilize the spine in flexion and did not increase the risk of tissue damage in the annulus.
Collapse
Affiliation(s)
- Chloé Techens
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- Department of Spinal Surgery, Department of Orthopaedics, Semmelweis University, Budapest, Hungary
| | - Sara Montanari
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | - Ferenc Bereczki
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Peter Endre Eltes
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- Department of Spinal Surgery, Department of Orthopaedics, Semmelweis University, Budapest, Hungary
| | - Aron Lazary
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- Department of Spinal Surgery, Department of Orthopaedics, Semmelweis University, Budapest, Hungary
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| |
Collapse
|
40
|
Lavigne T, Mazier A, Perney A, Bordas SPA, Hild F, Lengiewicz J. Digital Volume Correlation for large deformations of soft tissues: Pipeline and proof of concept for the application to breast ex vivo deformations. J Mech Behav Biomed Mater 2022; 136:105490. [PMID: 36228403 DOI: 10.1016/j.jmbbm.2022.105490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
Being able to reposition tumors from prone imaging to supine surgery stances is key for bypassing current invasive marking used for conservative breast surgery. This study aims to demonstrate the feasibility of using Digital Volume Correlation (DVC) to measure the deformation of a female quarter thorax between two different body positioning when subjected to gravity. A segmented multipart mesh (bones, cartilage and tissue) was constructed and a three-step FE-based DVC procedure with heterogeneous elastic regularization was implemented. With the proposed framework, the large displacement field of a hard/soft breast sample was recovered with low registration residuals and small error between the measured and manually determined deformations of phase interfaces. The present study showed the capacity of FE-based DVC to faithfully capture large deformations of hard/soft tissues.
Collapse
Affiliation(s)
- T Lavigne
- Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg
| | - A Mazier
- Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg
| | - A Perney
- Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg; Centre des Materiaux, Mines ParisTech, PSL University, 63-65 Rue Henri Auguste Desbrueres, Corbeil-Essonnes, 91100, France
| | - S P A Bordas
- Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg; Visiting professor at Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - F Hild
- University Paris-Saclay, CentraleSupelec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mecanique Paris-Saclay, 4 avenue des Sciences, 91190, Gif-sur-Yvette, France
| | - J Lengiewicz
- Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg; Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN), Pawinskiego 5B, Warsaw, 02-106, Poland
| |
Collapse
|
41
|
You H, Zhang Q, Ross CJ, Lee CH, Hsu MC, Yu Y. A Physics-Guided Neural Operator Learning Approach to Model Biological Tissues From Digital Image Correlation Measurements. J Biomech Eng 2022; 144:121012. [PMID: 36218246 PMCID: PMC9632476 DOI: 10.1115/1.4055918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/04/2022] [Indexed: 11/08/2022]
Abstract
We present a data-driven workflow to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios, without postulating a specific constitutive model form nor possessing knowledge of the material microstructure. To this end, a material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve anterior leaflet, with which we build a neural operator learning model. The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material microstructure properties learned implicitly from the data and naturally embedded in the network parameters. Using various combinations of loading protocols, we compare the predictivity of this framework with finite element analysis based on three conventional constitutive models. From in-distribution tests, the predictivity of our approach presents good generalizability to different loading conditions and outperforms the conventional constitutive modeling at approximately one order of magnitude. When tested on out-of-distribution loading ratios, the neural operator learning approach becomes less effective. To improve the generalizability of our framework, we propose a physics-guided neural operator learning model via imposing partial physics knowledge. This method is shown to improve the model's extrapolative performance in the small-deformation regime. Our results demonstrate that with sufficient data coverage and/or guidance from partial physics constraints, the data-driven approach can be a more effective method for modeling biological materials than the traditional constitutive modeling.
Collapse
Affiliation(s)
- Huaiqian You
- Department of Mathematics, Lehigh University, Bethlehem, PA 18015
| | - Quinn Zhang
- Department of Mathematics, Lehigh University, Bethlehem, PA 18015
| | - Colton J. Ross
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011
| | - Yue Yu
- Department of Mathematics, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
42
|
Crossland SR, Siddle HJ, Culmer P, Brockett CL. A plantar surface shear strain methodology utilising Digital Image Correlation. J Mech Behav Biomed Mater 2022; 136:105482. [PMID: 36209589 DOI: 10.1016/j.jmbbm.2022.105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
The increase in the global diabetic population is leading to an increase in associated complications such as diabetic foot ulceration (DFU), associated amputations, morbidity, which substantial treatment costs. Early identification of DFU risk is therefore of great benefit. International guidelines recommend off-loading is the most important intervention for healing and prevention of DFU, with current research focused on pressure measurement techniques. The contribution of strain to DFU formation is not well understood due to challenges in measurement. The limited data available in the literature suggest that plantar strain is involved in ulcer formation. As a consequence, there is a need for plantar strain measurement systems to advance understanding and inform clinical treatment. A method was developed to determine plantar strain based on a Digital Image Correlation (DIC) approach. A speckle pattern is applied to the plantar aspect of the foot using a low ink transference method. A raised walkway with transparent panels is combined with a calibrated camera to capture images of the plantar aspect throughout a single stance phase. Plantar strain is then determined using 2D DIC and custom analysis summarises these data into clinically relevant metrics. A feasibility study involving six healthy participants was used to assess the efficacy of this new technique. The feasibility study successfully captured plantar surface strain characteristics continuously throughout the stance phase for all participants. Peak mean and averaged mean strains varied in location between participants when mapped into anatomical regions of plantar interest, ranging from the calcaneus to the metatarsal heads and hallux. This method provides the ability to measure plantar skin strain for use in both research and clinical environments. It has the potential to inform improved understanding of the role of strain in DFU formation. Further studies using this technique can support these ambitions and help differentiate between healthy and abnormal plantar strain regimes.
Collapse
Affiliation(s)
- Sarah R Crossland
- Department of Mechanical Engineering, University of Leeds, Leeds, UK.
| | - Heidi J Siddle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter Culmer
- Department of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Claire L Brockett
- Department of Mechanical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
43
|
Zhang M, Ge P, Fu Z, Dan X, Li G. Mechanical Property Test of Grass Carp Skin Material Based on the Digital Image Correlation Method. SENSORS (BASEL, SWITZERLAND) 2022; 22:8364. [PMID: 36366062 PMCID: PMC9656585 DOI: 10.3390/s22218364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Fish is a common and widely distributed creature. Its skin has a unique physiological structure and plays an important role in many fields. Fish skin also has important potential value for bionics research. This study aims to provide a method and a reliable data for the study of bionics. A method of measuring the mechanical properties of fish skin samples using a binocular stereo digital image correlation (DIC) system combined with a synchronous tensile testing machine was proposed. The mechanical properties (e.g., elastic modulus E and strain) of grass fish skin samples (GFSA) were tested in hydrophilic and dry states. A dual-frequency laser interferometer was used to calibrate the tensile testing machine synchronously, and the feasibility and strain accuracy of DIC in GFSA measurement were verified by finite element method (FEM). The results show differences in the mechanical properties of GFSA between different individuals, different parts, and different states. Under the same stress, the head was easy to deform, and the strain was the largest, and E was the smallest. The tail result was the opposite of the head result.
Collapse
Affiliation(s)
- Mei Zhang
- School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
| | - Pengxiang Ge
- School of Instrument Science and Opto-Electrics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhongnan Fu
- School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
| | - Xizuo Dan
- School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
| | - Guihua Li
- School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
| |
Collapse
|
44
|
Nelson TM, Quiros KAM, Mariano CA, Sattari S, Ulu A, Dominguez EC, Nordgren TM, Eskandari M. Associating local strains to global pressure-volume mouse lung mechanics using digital image correlation. Physiol Rep 2022; 10:e15466. [PMID: 36207795 PMCID: PMC9547081 DOI: 10.14814/phy2.15466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary diseases alter lung mechanical properties, can cause loss of function, and necessitate use of mechanical ventilation, which can be detrimental. Investigations of lung tissue (local) scale mechanical properties are sparse compared to that of the whole organ (global) level, despite connections between regional strain injury and ventilation. We examine ex vivo mouse lung mechanics by investigating strain values, local compliance, tissue surface heterogeneity, and strain evolutionary behavior for various inflation rates and volumes. A custom electromechanical, pressure-volume ventilator is coupled with digital image correlation to measure regional lung strains and associate local to global mechanics by analyzing novel pressure-strain evolutionary measures. Mean strains at 5 breaths per minute (BPM) for applied volumes of 0.3, 0.5, and 0.7 ml are 5.0, 7.8, and 11.3%, respectively, and 4.7, 8.8, and 12.2% for 20 BPM. Similarly, maximum strains among all rate and volume combinations range 10.7%-22.4%. Strain values (mean, range, mode, and maximum) at peak inflation often exhibit significant volume dependencies. Additionally, select evolutionary behavior (e.g., local lung compliance quantification) and tissue heterogeneity show significant volume dependence. Rate dependencies are generally found to be insignificant; however, strain values and surface lobe heterogeneity tend to increase with increasing rates. By quantifying strain evolutionary behavior in relation to pressure-volume measures, we associate time-continuous local to global mouse lung mechanics for the first time and further examine the role of volume and rate dependency. The interplay of multiscale deformations evaluated in this work can offer insights for clinical applications, such as ventilator-induced lung injury.
Collapse
Affiliation(s)
- Talyah M. Nelson
- Department of Mechanical EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | | | - Crystal A. Mariano
- Department of Mechanical EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Samaneh Sattari
- Department of Mechanical EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Arzu Ulu
- BREATHE CenterSchool of Medicine University of CaliforniaRiversideCaliforniaUSA,Division of Biomedical SciencesSchool of Medicine, University of CaliforniaRiversideCaliforniaUSA
| | - Edward C. Dominguez
- BREATHE CenterSchool of Medicine University of CaliforniaRiversideCaliforniaUSA,Division of Biomedical SciencesSchool of Medicine, University of CaliforniaRiversideCaliforniaUSA
| | - Tara M. Nordgren
- BREATHE CenterSchool of Medicine University of CaliforniaRiversideCaliforniaUSA,Division of Biomedical SciencesSchool of Medicine, University of CaliforniaRiversideCaliforniaUSA
| | - Mona Eskandari
- Department of Mechanical EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,BREATHE CenterSchool of Medicine University of CaliforniaRiversideCaliforniaUSA,Department of BioengineeringUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
45
|
Layered mechanical and electrical properties of porcine articular cartilage. Med Biol Eng Comput 2022; 60:3019-3028. [DOI: 10.1007/s11517-022-02653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/28/2022] [Indexed: 10/14/2022]
|
46
|
Uzan AY, Milo O, Politi Y, Bar-On B. Principles of elastic bridging in biological materials. Acta Biomater 2022; 153:320-330. [PMID: 36167236 DOI: 10.1016/j.actbio.2022.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/01/2022]
Abstract
Load-bearing biological materials employ specialized elastic bridging regions to connect material parts with substantially different properties. While such bridging regions emerge in diverse systems of biological systems, their functional-mechanical origins are yet disclosed. Here, we hypothesize that these elastic bridging regions evolved primarily to minimize the near-interface stress effects in the biological material and, supported by experiments and simulations, we develop a simple theoretical model for such stress-minimizing bridging modulus. Our theoretical model describes well extensive experimental data of diverse biomechanical systems, suggesting that despite their compositionally distinct bridging regions, they share a similar mechanical adaptation strategy for stress minimization. The theoretical model developed in this study may directly serve as a design guideline for bio-inspired materials, biomedical applications, and advanced interfacial architectures with high resilience to mechanical failure. STATEMENT OF SIGNIFICANCE: Biological materials exhibit unconventional structural-mechanical strategies allowing them to attain extreme load-bearing capabilities. Here, we identify the strategy of biological materials to connect parts of distinct elastic properties in an optimal manner of stress minimization. Our findings are compatible with broad types of biological materials, including biopolymers, biominerals, and their bio-composite combinations, and may promote novel engineering designs of advanced biomedical and synthetic materials.
Collapse
Affiliation(s)
- Avihai Yosef Uzan
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Or Milo
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yael Politi
- B CUBE-Center for Molecular Bioengineering, Technische Universitat Dresden, Dresden 01307, Germany
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel..
| |
Collapse
|
47
|
Experimental validation of a subject-specific finite element model of lumbar spine segment using digital image correlation. PLoS One 2022; 17:e0272529. [PMID: 36084092 PMCID: PMC9462677 DOI: 10.1371/journal.pone.0272529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Pathologies such as cancer metastasis and osteoporosis strongly affect the mechanical properties of the vertebral bone and increase the risk of fragility fractures. The prediction of the fracture risk with a patient-specific model, directly generated from the diagnostic images of the patient, could help the clinician in the choice of the correct therapy to follow. But before such models can be used to support any clinical decision, their credibility must be demonstrated through verification, validation, and uncertainty quantification. In this study we describe a procedure for the generation of such patient-specific finite element models and present a first validation of the kinematics of the spine segment. Quantitative computed tomography images of a cadaveric lumbar spine segment presenting vertebral metastatic lesions were used to generate the model. The applied boundary conditions replicated a specific experimental test where the spine segment was loaded in compression-flexion. Model predictions in terms of vertebral surface displacements were compared against the full-field experimental displacements measured with Digital Image Correlation. A good agreement was obtained from the local comparison between experimental data and simulation results (R2 > 0.9 and RMSE% <8%). In conclusion, this work demonstrates the possibility to apply the developed modelling pipeline to predict the displacement field of human spine segment under physiological loading conditions, which is a first fundamental step in the credibility assessment of these clinical decision-support technology.
Collapse
|
48
|
Meador WD, Mathur M, Kakaletsis S, Lin CY, Bersi MR, Rausch MK. Biomechanical phenotyping of minuscule soft tissues: An example in the rodent tricuspid valve. EXTREME MECHANICS LETTERS 2022; 55:101799. [PMID: 39474062 PMCID: PMC11521389 DOI: 10.1016/j.eml.2022.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The biomechanical phenotype of soft tissues - i.e., the sum of spatially- and directionally-varying mechanical properties - is a critical marker of tissue health and disease. While biomechanical phenotyping is always challenging, it is particularly difficult with miniscule tissues. For example, tissues from small animal models are often only millimeters in size, which prevents the use of traditional test methods, such as uniaxial tensile testing. To overcome this challenge, our current work describes and tests a novel experimental and numerical pipeline. First, we introduce a micro-bulge test device with which we pressurize and inflate miniscule soft tissues. We combine this microbulge device with an optical coherence tomography device to also image the samples during inflation. Based on pressure data and images we then perform inverse finite element simulations to identify our tissues' unknown material parameters. For validation, we identify the material parameters of a thin sheet of latex rubber via both uniaxial tensile testing and via our novel pipeline. Next, we demonstrate our pipeline against anterior tricuspid valve leaflets from rats. The resulting material parameters for these tissues compare excellently with data collected in sheep via standard planar biaxial testing. Additionally, we show that our device is compatible with other imaging modalities such as 2-Photon microscopy. To this end, we image the in-situ microstructural changes of the leaflets during inflation using second harmonic generation imaging. In summary, we introduce a novel pipeline to biomechanically phenotype miniscule soft tissues and demonstrate its value by phenotyping the biomechanics of the anterior tricuspid valve leaflets from rats.
Collapse
Affiliation(s)
- William D Meador
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Mrudang Mathur
- University of Texas at Austin, Department of Mechanical Engineering, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Sotirios Kakaletsis
- University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, 2617 Wichita Street, Austin, 78712, TX, United States of America
| | - Chien-Yu Lin
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Matthew R Bersi
- Washington University in St. Louis, Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, St. Louis, 63130, MO, United States of America
| | - Manuel K Rausch
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America
- University of Texas at Austin, Department of Mechanical Engineering, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
- University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, 2617 Wichita Street, Austin, 78712, TX, United States of America
| |
Collapse
|
49
|
Trochanteric Nails for the Reduction of Intertrochanteric Fractures: A Biomechanical Analysis Based on Finite Element Analysis and DIC System. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Purpose
Intertrochanteric fractures are common among femoral fractures in the elderly population. The trochanteric nail is a standard internal fixator used in treating femoral intertrochanteric fractures. The technique of femoral fracture reduction affects the postoperative outcome. Here, we applied finite element analysis (FEA) to study mechanical effects of different reduction approaches using the trochanteric nail in treating both stable and unstable intertrochanteric fractures.
Methods
We combined FEA and in vitro experiments using a digital imaging correlation (DIC) technique to study effects of different alignment conditions after treating 4 cases of intertrochanteric fractures using the trochanteric nail system. A downward force of 2250 N was applied to the femoral head, and the distal end of the femur was fixed. The observed indicators were the femur displacement, together with the stress on the femur and trochanteric nail system. In addition, the displacement distribution was analyzed using DIC.
Results
In the case of space reduction, the force was transmitted by the trochanteric nail system, resulting in greater stress imposed on the femur or the trochanteric nail system. In the case of closed reduction, the stress was much smaller. In the case of unstable fracture reduction, closed reduction was associated with a smaller contact area at the fracture site, resulting in greater stress on both trochanter and the trochanteric nail system.
Conclusion
When the trochanteric nail system was used for fixation, the fracture site was well aligned, reducing the stress on the femur or the trochanteric nail.
Collapse
|
50
|
Schmidt CC, Spicer CS, Papadopoulos DV, Delserro SM, Tomizuka Y, Zink TR, Blake RJ, Smolinski MP, Miller MC, Greenwell JM, Carrazana-Suarez LF, Smolinski PJ. The Rotator Cable Does Not Stress Shield the Crescent Area During Shoulder Abduction. J Bone Joint Surg Am 2022; 104:1292-1300. [PMID: 35856930 DOI: 10.2106/jbjs.21.01142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND It is accepted by the orthopaedic community that the rotator cable (RCa) acts as a suspension bridge that stress shields the crescent area (CA). The goal of this study was to determine if the RCa does stress shield the CA during shoulder abduction. METHODS The principal strain magnitude and direction in the RCa and CA and shoulder abduction force were measured in 20 cadaveric specimens. Ten specimens underwent a release of the anterior cable insertion followed by a posterior release. In the other 10, a release of the posterior cable insertion was followed by an anterior release. Testing was performed for the native, single-release, and full-release conditions. The thicknesses of the RCa and CA were measured. RESULTS Neither the principal strain magnitude nor the strain direction in either the RCa or the CA changed with single or full RCa release (p ≥ 0.493). There were no changes in abduction force after single or full RCa release (p ≥ 0.180). The RCa and CA thicknesses did not differ from one another at any location (p ≥ 0.195). CONCLUSIONS The RCa does not act as a suspension bridge and does not stress shield the CA. The CA primarily transfers shoulder abduction force to the greater tuberosity. CLINICAL RELEVANCE The CA is important in force transmission during shoulder abduction, and efforts should be made to restore its continuity with a repair or reconstruction.
Collapse
Affiliation(s)
- Christopher C Schmidt
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher S Spicer
- Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dimitrios V Papadopoulos
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sean M Delserro
- Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yoshiaki Tomizuka
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Thomas R Zink
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ryan J Blake
- Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael P Smolinski
- Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark Carl Miller
- Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James M Greenwell
- Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Luis F Carrazana-Suarez
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Patrick J Smolinski
- Shoulder and Elbow Mechanical Research Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|