1
|
Enhancing the anti-leukemia immunity of acute lymphocytic leukemia-derived exosome-based vaccine by downregulation of PD-L1 expression. Cancer Immunol Immunother 2022; 71:2197-2212. [DOI: 10.1007/s00262-021-03138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
|
2
|
Obleukhova I, Kiryishina N, Falaleeva S, Lopatnikova J, Kurilin V, Kozlov V, Vitsin A, Cherkasov A, Kulikova E, Sennikov S. Use of antigen-primed dendritic cells for inducing antitumor immune responses in vitro in patients with non-small cell lung cancer. Oncol Lett 2017; 15:1297-1306. [PMID: 29399182 DOI: 10.3892/ol.2017.7403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer is associated with a reduction in immature and mature circulating dendritic cells (DCs), and with an impaired migratory capacity, compared with healthy donors. Therefore, modern approaches to the in vitro generation of DCs loaded with tumor antigens and their use for inducing antitumor immune responses in vivo are being investigated. The purpose of the present study was to investigate the phenotypic and functional characteristics of peripheral blood DC subsets in patients with non-small cell lung cancer (NSCLC), and the development of an antitumor cytotoxic response by mononuclear cells (MNCs) from patients using in vitro generated antigen-primed DCs. Heparinized peripheral venous blood samples were obtained from 10 healthy donors and 20 patients with a histologically verified diagnosis of NSCLC. The ability of antigen-activated DCs to stimulate the activity of MNCs against autologous tumor cells was evaluated using a cytotoxic test. Peripheral blood DC subsets from patients with NSCLC were identified to be decreased and to exhibit an impaired ability to mature, compared with healthy donors. Furthermore, DCs generated from MNCs from patients with NSCLC were able to stimulate a specific cytotoxic response when loaded with autologous tumor lysates or RNA and matured, in vitro. A perforin and granzyme B-dependent mode of cytotoxicity was primarily induced. The ability of DCs loaded with tumor antigens to increase the cytotoxic activity of MNCs against NSCLC cells in vitro indicates the effective induction and co-stimulation of T lymphocytes by the generated DCs.
Collapse
Affiliation(s)
- Irina Obleukhova
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | | | - Svetlana Falaleeva
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Julia Lopatnikova
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Vasiliy Kurilin
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Vadim Kozlov
- Novosibirsk Regional Clinical Oncology Center, Novosibirsk 630108, Russia
| | | | | | - Ekaterina Kulikova
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Sergey Sennikov
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| |
Collapse
|
3
|
Sennikov SV, Khantakova JN, Kulikova EV, Obleukhova IA, Shevchenko JA. Modern strategies and capabilities for activation of the immune response against tumor cells. Tumour Biol 2017; 39:1010428317698380. [PMID: 28513301 DOI: 10.1177/1010428317698380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells are professional antigen-presenting cells and the most potent stimulators of various immune responses, such as antitumor responses. Modern studies have not shown an effective antitumor immune response development in patients with malignant tumors. The major cause is the decrease in functional activity of dendritic cells in cancer patients through irregularities in the maturation process to a functionally active form and in the antigen presentation process to naive T lymphocytes. This review describes the main stages of cellular antitumor immune response induction in vitro, aimed at resolving the problems that are blocking the full functioning of dendritic cells, and additional stimulation of antitumor immune response.
Collapse
Affiliation(s)
- Sergey Vital'evich Sennikov
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Julia Nikolaevna Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Ekaterina Vladimirovna Kulikova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Irina Alexandrovna Obleukhova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Julia Alexandrovna Shevchenko
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| |
Collapse
|
4
|
Mossoba ME, Medin JA. Cancer immunotherapy using virally transduced dendritic cells: animal studies and human clinical trials. Expert Rev Vaccines 2014; 5:717-32. [PMID: 17181444 DOI: 10.1586/14760584.5.5.717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The immune system uses a process known as 'immunosurveillance' to help prevent the outgrowth of tumors. In cancer immunotherapy, a major goal is for immunity against tumor-associated antigens to be generated or strengthened in patients. To achieve this goal, several approaches have been tested, including the use of highly potent antigen-presenting cells called dendritic cells (DCs), which can activate T cells efficiently. Presentation of peptides derived from tumor antigens on the surface of DCs can stimulate strong antitumor immunity. Using recombinant viral vectors encoding tumor-associated antigens, DCs can be engineered efficiently to express sustained levels of tumor-antigen peptides. This review discusses the effectiveness of virally transduced DCs in treating tumors and generating antigen-specific T-cell responses. It covers mouse and nonhuman primate studies, preclinical in vitro human cell experiments and clinical trials.
Collapse
Affiliation(s)
- Miriam E Mossoba
- Department of Medical Biophysics, University of Toronto, 67 College Street, Room 426, Toronto, Ontario, M5G 2MI, Canada.
| | | |
Collapse
|
5
|
Bobryshev YV, Karagodin VP, Orekhov AN. Dendritic cells and their role in immune reactions of atherosclerosis. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1990519x1302003x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Nieto-Sampedro M, Valle-Argos B, Gómez-Nicola D, Fernández-Mayoralas A, Nieto-Díaz M. Inhibitors of Glioma Growth that Reveal the Tumour to the Immune System. Clin Med Insights Oncol 2011; 5:265-314. [PMID: 22084619 PMCID: PMC3201112 DOI: 10.4137/cmo.s7685] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treated glioblastoma patients survive from 6 to 14 months. In the first part of this review, we describe glioma origins, cancer stem cells and the genomic alterations that generate dysregulated cell division, with enhanced proliferation and diverse response to radiation and chemotherapy. We review the pathways that mediate tumour cell proliferation, neo-angiogenesis, tumor cell invasion, as well as necrotic and apoptotic cell death. Then, we examine the ability of gliomas to evade and suppress the host immune system, exhibited at the levels of antigen recognition and immune activation, limiting the effective signaling between glioma and host immune cells.The second part of the review presents current therapies and their drawbacks. This is followed by a summary of the work of our laboratory during the past 20 years, on oligosaccharide and glycosphingolipid inhibitors of astroblast and astrocytoma division. Neurostatins, the O-acetylated forms of gangliosides GD1b and GT1b naturally present in mammalian brain, are cytostatic for normal astroblasts, but cytotoxic for rat C6 glioma cells and human astrocytoma grades III and IV, with ID50 values ranging from 200 to 450 nM. The inhibitors do not affect neurons or fibroblasts up to concentrations of 4 μM or higher.At least four different neurostatin-activated, cell-mediated antitumoral processes, lead to tumor destruction: (i) inhibition of tumor neovascularization; (ii) activation of microglia; (iii) activation of natural killer (NK) cells; (iv) activation of cytotoxic lymphocytes (CTL). The enhanced antigenicity of neurostatin-treated glioma cells, could be related to their increased expression of connexin 43. Because neurostatins and their analogues show specific activity and no toxicity for normal cells, a clinical trial would be the logical next step.
Collapse
Affiliation(s)
- Manuel Nieto-Sampedro
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Beatriz Valle-Argos
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Diego Gómez-Nicola
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | | |
Collapse
|
7
|
Perrins CJ, Bobryshev YV. Current advances in understanding of immunopathology of atherosclerosis. Virchows Arch 2010; 458:117-23. [DOI: 10.1007/s00428-010-1006-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 10/05/2010] [Accepted: 10/20/2010] [Indexed: 01/13/2023]
|
8
|
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells with the unique ability of primary immune response initiation. DCs originate from bone marrow progenitors, which circulate in the peripheral blood and subsequently penetrate peripheral tissues, where they give rise to immature DCs. In peripheral tissues, DCs continuously monitor the microenvironment and, when the cells encounter 'danger' signals, DCs undergo differentiation and maturation. Maturing DCs usually migrate to lymphatic tissues, where they form contacts with T cells to initiate a primary immune response. DCs were identified in arteries in 1995 and since then, further knowledge has been gained about the peculiarities of vascular-associated DCs and their role in atherosclerosis. Immune reactions toward modified lipoproteins and other factors ignited by resident vascular DCs as well as by newly arrived DCs, which originate from blood monocytes, are believed to destabilize arterial homeostasis from very earlier stages of atherogenesis. There is a remarkable heterogeneity of DCs in atherosclerotic lesions. Some DCs mature and become capable of forming clusters with T cells directly within the arterial wall. The predictive value of the numbers of circulating DC precursors in coronary artery disease and in atherosclerosis has been assessed, and it has been shown that DCs have a role in plaque destabilization. Over recent decades, DCs have proven to be a valuable instrument in immunotherapy approaches against cancer and various autoimmune diseases, and this explains the demand that the accumulated knowledge be applied to the field of atherosclerosis immunotherapy.
Collapse
|
9
|
Chiriva-Internati M, Yu Y, Mirandola L, Jenkins MR, Chapman C, Cannon M, Cobos E, Kast WM. Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer. PLoS One 2010; 5:e10471. [PMID: 20485677 PMCID: PMC2868870 DOI: 10.1371/journal.pone.0010471] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 04/12/2010] [Indexed: 12/24/2022] Open
Abstract
Sperm protein (Sp17) is an attractive target for ovarian cancer (OC) vaccines because of its over-expression in primary as well as in metastatic lesions, at all stages of the disease. Our studies suggest that a Sp17-based vaccine can induce an enduring defense against OC development in C57BL/6 mice with ID8 cells, following prophylactic and therapeutic treatments. This is the first time that a mouse counterpart of a cancer testis antigen (Sp17) was shown to be expressed in an OC mouse model, and that vaccination against this antigen significantly controlled tumor growth. Our study shows that the CpG-adjuvated Sp17 vaccine overcomes the issue of immunologic tolerance, the major barrier to the development of effective immunotherapy for OC. Furthermore, this study provides a better understanding of OC biology by showing that Th-17 cells activation and contemporary immunosuppressive T-reg cells inhibition is required for vaccine efficacy. Taken together, these results indicate that prophylactic and therapeutic vaccinations can induce long-standing protection against OC and delay tumor growth, suggesting that this strategy may provide additional treatments of human OC and the prevention of disease onset in women with a family history of OC.
Collapse
Affiliation(s)
- Maurizio Chiriva-Internati
- Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Recent advances in multivalent self adjuvanting glycolipopeptide vaccine strategies against breast cancer. Arch Immunol Ther Exp (Warsz) 2009; 57:409-23. [PMID: 19866342 DOI: 10.1007/s00005-009-0049-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/19/2009] [Indexed: 12/27/2022]
Abstract
Breast cancer (BrCa) is the second leading cause of cancer-related deaths for women worldwide. Evidence from both patients and mouse cancer models suggests that the simultaneous induction of BrCa-specific CD4(+) T cells, CD8(+) cytotoxic T cells, and antibodies is crucial for providing immune resistance. However, almost all current vaccines address only a single arm of the immune system, which may explain their lack of efficacy. We believe that the correct response to monovalent vaccines' "failure" is to increase our knowledge about antitumor protective immunity and to develop a multivalent vaccine molecule that can simultaneously induce multiple arms of the immune system. We highlight here recent advances in anti-BrCa peptide-based vaccine strategies with an emphasis on the self adjuvanting multivalent glycolipopeptide vaccine strategy recently developed in our laboratory and which showed promising results in both immunotherapeutic and immunoprophylactic settings.
Collapse
|
11
|
Mutual helper effect in copulsing of dendritic cells with 2 antigens: a novel approach for improvement of dendritic-based vaccine efficacy against tumors and infectious diseases simultaneously. J Immunother 2009; 32:325-32. [PMID: 19342973 DOI: 10.1097/cji.0b013e31819aa31e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To develop an efficient dendritic cell (DC)-based immunotherapy protocol, we examined whether simultaneous pulsing of DCs with a given antigen and a third-party antigen could enhance their antigen presentation capacity. Purified splenic DCs of Balb/c mice were pulsed separately with immunoglobulin G, ovalbumin, conalbumin, P15 peptide of Mycobacterium tuberculosis, and prostate-specific antigen or double combinations of the aforementioned antigens. In some settings, DCs pulsed with 1 antigen were mixed equally with those pulsed with another antigen. Antigen-pulsed DCs were injected into the footpad of syngeneic mice and proliferation of whole, CD4 and CD8 depleted lymph node cells was measured after restimulation with cognate antigen. Antigen-specific production of interferon-gamma (IFNgamma) was tested in culture supernatants. Frequency of responding lymph node cells was determined by IFNgamma enzyme-linked immunosorbent spot assay. Our results showed that copulsing of DCs with 2 unrelated antigens increased the capacity of DCs to induce antigen-specific T-cell proliferation against both antigens up to 16-fold. Injection of 2 populations of DCs each pulsed with a different antigen, increased proliferation of primed T cells significantly as well. Both CD4 and CD8 depleted populations showed vigorous proliferative response in copulsing system. In addition, copulsing of DCs with 2 antigens resulted in higher frequency of antigen-specific responding cells and significantly more IFNgamma production. Our results clearly showed that unrelated peptides and proteins could be used to enhance efficacy of DC-based vaccines and in this system, each antigen served to help the other one, a condition that we termed as "mutual helper effect."
Collapse
|
12
|
Bobryshev YV, Tran D, Killingsworth MC, Buckland M, Lord RVN. Dendritic cells in Barrett's esophagus and esophageal adenocarcinoma. J Gastrointest Surg 2009; 13:44-53. [PMID: 18685901 DOI: 10.1007/s11605-008-0613-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/08/2008] [Indexed: 01/31/2023]
Abstract
BACKGROUND Like other premalignant conditions that develop in the presence of chronic inflammation, the development and progression of Barrett's esophagus is associated with the development of an immune response, but how this immune response is regulated is poorly understood. A comprehensive literature search failed to find any report of the presence of dendritic cells in Barrett's intestinal metaplasia and esophageal adenocarcinoma and this prompted our study. MATERIAL AND METHODS We used immunohistochemical staining and electron microscopy to examine whether dendritic cells are present in Barrett's esophagus and esophageal adenocarcinoma. Immunohistochemical staining with CD83, a specific marker for dendritic cells, was performed on paraffin-embedded sections of Barrett's intestinal metaplasia (IM, n = 12), dysplasia (n = 11) and adenocarcinoma (n = 14). RESULTS CD83+ cells were identified in the lamina propria surrounding intestinal type glands in Barrett's IM, dysplasia, and cancer tissues. Computerized quantitative analysis showed that the numbers of dendritic cells were significantly higher in cancer tissues. Double immunostaining with CD83, CD20, and CD3, and electron microscopy demonstrated that dendritic cells are present in Barrett's esophagus and form clusters with T cells and B cells directly within the lamina propria. CONCLUSIONS These findings demonstrate that dendritic cells are present in Barrett's tissues, with a significant increase in density in adenocarcinoma compared to benign Barrett's esophagus. Dendritic cells may have a role in the pathogenesis and immunotherapy treatment of Barrett's esophagus and adenocarcinoma.
Collapse
Affiliation(s)
- Yuri V Bobryshev
- Department of Surgery and Centre for Immunology, St Vincent's Hospital, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
13
|
Dörrie J, Schaft N, Müller I, Wellner V, Schunder T, Hänig J, Oostingh GJ, Schön MP, Robert C, Kämpgen E, Schuler G. Introduction of functional chimeric E/L-selectin by RNA electroporation to target dendritic cells from blood to lymph nodes. Cancer Immunol Immunother 2008; 57:467-77. [PMID: 17768622 PMCID: PMC11041385 DOI: 10.1007/s00262-007-0385-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Inefficient migration of dendritic cells (DC) to regional lymph nodes (LN) upon intracutaneous injection is a major obstacle for effective DC vaccination. Intravenous vaccination is unfavorable, because DC cannot migrate directly from the blood into LN. METHODS To enable human monocyte-derived (mo)DC to enter LN directly from the blood, we manipulated them by RNA electroporation to express a human chimeric E/L-selectin (CD62E/CD62L) protein, which binds to peripheral node addressin expressed on high endothelial venules. RESULTS Transfection efficiency exceeded 95%, and high E/L-selectin surface expression was detected for >48 h. E/L-selectin RNA-transfected DC displayed an identical mature DC phenotype as mock-transfected DC. Furthermore, E/L-selectin-transfected DC maintained their normal CCR7-mediated migration capacity, and their ability to prime and expand functional cytotoxic T cells recognizing MelanA. Most importantly, E/L-selectin-RNA-transfected DC gained the capability to attach to and roll on sialyl-Lewis(X) in vitro. OUTLOOK The presented strategy can be readily translated into the clinic, as it involves no stable genetic manipulation or viral transformation, and allows targeting of a large number of LN.
Collapse
Affiliation(s)
- Jan Dörrie
- Department of Dermatology, University Hospital Erlangen, Hartmannstr. 14, 91052 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, University Hospital Erlangen, Hartmannstr. 14, 91052 Erlangen, Germany
| | - Ina Müller
- Department of Dermatology, University Hospital Erlangen, Hartmannstr. 14, 91052 Erlangen, Germany
| | - Verena Wellner
- Department of Dermatology, University Hospital Erlangen, Hartmannstr. 14, 91052 Erlangen, Germany
| | - Tanja Schunder
- Department of Dermatology, University Hospital Erlangen, Hartmannstr. 14, 91052 Erlangen, Germany
| | - Jens Hänig
- Department of Dermatology, University Hospital Erlangen, Hartmannstr. 14, 91052 Erlangen, Germany
| | - Gertie J. Oostingh
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine
and Department of Dermatology, University of Würzburg, Würzburg, Germany
| | - Michael P. Schön
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine
and Department of Dermatology, University of Würzburg, Würzburg, Germany
| | | | - Eckhart Kämpgen
- Department of Dermatology, University Hospital Erlangen, Hartmannstr. 14, 91052 Erlangen, Germany
| | - Gerold Schuler
- Department of Dermatology, University Hospital Erlangen, Hartmannstr. 14, 91052 Erlangen, Germany
| |
Collapse
|
14
|
Ochoa-Callejero L, Berraondo P, Crettaz J, Olagüe C, Vales A, Ruiz J, Prieto J, Tennant BC, Menne S, González-Aseguinolaza G. Woodchuck dendritic cells generated from peripheral blood mononuclear cells and transduced with recombinant human adenovirus serotype 5 induce antigen-specific cellular immune responses. J Med Virol 2007; 79:522-9. [PMID: 17385694 DOI: 10.1002/jmv.20808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Woodchucks infected with the woodchuck hepatitis virus (WHV) is the best available animal model for testing the immunotherapeutic effects of dendritic cells (DCs) in the setting of a chronic infection, as woodchucks develop a persistent infection resembling that seen in humans infected with the hepatitis B virus. In the present study, DCs were generated from woodchuck peripheral blood mononuclear cells (wDCs) in the presence of human granulocyte macrophage colony-stimulating factor (hGM-CSF) and human interleukin 4 (hIL-4). After 7 days of culture, cells with morphology similar to DCs were stained positively with a cross-reactive anti-human CD86 antibody. Functional analysis showed that uptake of FITC-dextran by wDCs was very efficient and was partially inhibited after LPS-induced maturation. Furthermore, wDCs stimulated allogenic lymphocytes and induced proliferation. Moreover, wDCs were transduced efficiently with a human adenovirus serotype 5 for the expression of beta-galactosidase. Following transduction and in vivo administration of such DCs into woodchucks, an antigen-specific cellular immune response was induced. These results demonstrate that wDCs can be generated from the peripheral blood. Following transfection with a recombinant adenovirus wDCs can be used as a feasible and effective tool for eliciting WHV-specific T-cell responses indicating their potential to serve as prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Laura Ochoa-Callejero
- Laboratory of Gene Therapy of Viral Hepatitis, Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu Q, Chen W. Developing effective tumor vaccines: basis, challenges and perspectives. FRONTIERS OF MEDICINE IN CHINA 2007; 1:11-9. [PMID: 24557610 DOI: 10.1007/s11684-007-0003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 10/20/2006] [Indexed: 06/03/2023]
Abstract
A remarkable advance in tumor immunology during the last decade is the elucidation of the antigenic basis of tumor recognition and destruction. A variety of tumor antigens have been identified using several strategies including conventional experiments and newly developed bioinformatics. Among these antigens, cancer/testis antigen (CT antigen) is considered to be the most promising target for immunotherapy by vaccination. Successful immunotherapy of tumors requires understanding of the natural relationship between the immune system and tumor in the status of differentiation, invasion and maturation. Continued progress in development of effective cancer vaccines depends on the identification of appropriate target antigens, the establishment of optimal immunization strategies without harmful autoimmune responses and the ability of manipulating tumor microenvironment to circumvent immune suppression and to augment the anti-tumor immune response.
Collapse
Affiliation(s)
- Qingwen Xu
- Department of Immunology, Peking University Health Science Center, Beijing, 100083, China
| | | |
Collapse
|
16
|
Yan J, Allendorf DJ, Brandley B. Yeast whole glucan particle (WGP) beta-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. Expert Opin Biol Ther 2006; 5:691-702. [PMID: 15934844 DOI: 10.1517/14712598.5.5.691] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Beta-glucans, biological response modifiers (BRMs) derived from the cell walls of yeast and other sources, have been demonstrated to prime leukocyte complement receptor 3 (CR3), thus enabling these cells to kill tumours opsonised with complement fragment iC3b. Many tumours activate complement via the classical pathway mediated by antitumour monoclonal antibodies (mAbs) or natural antibodies. Studies into the cellular and molecular mechanisms of action have demonstrated that orally administrated yeast beta-glucans are ingested and processed by macrophages. These macrophages secrete the active moiety that primes neutrophil CR3 to kill iC3b-opsonised tumour cells. Extensive studies in preclinical animal tumour models have demonstrated the efficacy of combined oral particulate yeast beta-glucan with antitumour mAb therapy in terms of tumour regression and long-term survival. It is proposed that the addition of beta-glucan will further improve the clinical therapeutic efficacy of antitumour mAbs in cancer patients.
Collapse
Affiliation(s)
- Jun Yan
- James Graham Brown Cancer Center, Tumour Immunobiology Program, University of Louisville, 580 S. Preston Street, Louisville, KY 40202, USA.
| | | | | |
Collapse
|
17
|
Babatz J, Röllig C, Löbel B, Folprecht G, Haack M, Günther H, Köhne CH, Ehninger G, Schmitz M, Bornhäuser M. Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells. Cancer Immunol Immunother 2006; 55:268-76. [PMID: 16034561 PMCID: PMC11031026 DOI: 10.1007/s00262-005-0021-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 05/03/2005] [Indexed: 12/21/2022]
Abstract
PURPOSE Dendritic cells (DCs) are characterized by their extraordinary capacity to induce T-cell responses, providing the opportunity of DC-based cancer vaccination protocols. In the present study, we conducted a phase I/II clinical trial to determine the capability of DCs differentiated from immunomagnetically isolated CD14+ monocytes and pulsed with a carcinoembryonic antigen-derived altered peptide (CEAalt) to induce specific CD8+ T cells in cancer patients. EXPERIMENTAL DESIGN Nine patients with CEA-positive colorectal cancer (n=7) or lung cancer (n=2) were enrolled in this study. Autologous CD14+ monocytes were isolated by large-scale immunomagnetic separation and differentiated to mature DCs in sufficient numbers and at high purity. After incubation with the CEAalt peptide and keyhole limpet hemocyanin, DCs were administered to patients intravenously at dose levels of 1 x 10(7) and 5 x 10(7) cells. Patients received four immunizations every second week. RESULTS ELISPOT analysis revealed a vaccine-induced increase in the number of CEAalt peptide-specific Interferon (IFN)-gamma producing CD8+ T cells in five of nine patients and of CD8+ T lymphocytes recognizing the native CEA peptide in three of nine patients. In addition, CD8+ T lymphocytes derived from one patient exhibiting an immunological response after vaccination efficiently lysed peptide-loaded T2 cells and tumor cells. Immunization was well tolerated by all patients without severe signs of toxicity. CONCLUSION Vaccination with CEAalt-pulsed DCs derived from immunomagnetically isolated CD14+ monocytes efficiently expand peptide-specific CD8+ T lymphocytes in vivo and may be a promising alternative for cancer immunotherapy.
Collapse
Affiliation(s)
- Jana Babatz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Bärbel Löbel
- Institut für Immunologie, Medizinische Fakultät, TU Dresden, Germany
| | - Gunnar Folprecht
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Michael Haack
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Heinrich Günther
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Claus-Henning Köhne
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Gerhard Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Marc Schmitz
- Institut für Immunologie, Medizinische Fakultät, TU Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| |
Collapse
|
18
|
|
19
|
Peng S, Kim TW, Lee JH, Yang M, He L, Hung CF, Wu TC. Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum Gene Ther 2005; 16:584-93. [PMID: 15916483 PMCID: PMC3181105 DOI: 10.1089/hum.2005.16.584] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dendritic cell-based vaccines have become an important approach for the treatment of malignancies. Numerous techniques have recently been designed to optimize dendritic cell activation, tumor antigen delivery to dendritic cells, and induction of tumor-specific immune responses in vivo. Dendritic cells (DCs), however, have a limited life span because they are subject to apoptotic cell death mediated by T cells, hindering their long-term ability to prime antigen-specific T cells. Small interfering RNA targeting Bak and Bax antiapoptotic proteins can be used to allow transfected DCs to resist killing by T cells in vivo. In this study, we show that human papillomavirus E7-loaded dendritic cells transfected with BAK/BAX siRNA downregulate Bak and Bax protein expression and become resistant to killing by T cells, leading to enhanced E7-specific CD8+ T cell activation and antitumor effects in vivo. More importantly, we found that vaccination with E7-loaded DCs transfected with BAK/BAX siRNA was capable of generating a strong therapeutic effect in vaccinated mice, compared with DCs transfected with control siRNA. Our data indicate that transfection of dendritic cells with BAK/BAX siRNA represents a plausible strategy for enhancing dendritic cell-based vaccine potency.
Collapse
Affiliation(s)
- Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Franco A. CTL-based cancer preventive/therapeutic vaccines for carcinomas: role of tumour-associated carbohydrate antigens. Scand J Immunol 2005; 61:391-7. [PMID: 15882430 DOI: 10.1111/j.1365-3083.2005.01596.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, we discuss the use of glycopeptides containing tumour-associated carbohydrate antigens (TACA) as preventive vaccines for carcinomas. The results of our recent studies suggest that CD8(+) cytotoxic T cells are capable of recognizing small TACA in a conventional class I MHC-restricted fashion. TACA-specific T-cell receptors are highly degenerate and their fine specificity includes the glycosylated amino acid linker together with the sugar moiety. TF, a disaccharide and Tn, its immediate precursor, are TACA largely expressed in carcinomas that can be successfully used as vaccines when conjugated to designer peptide backbones with optimal binding affinity for class I MHC molecules.
Collapse
MESH Headings
- Animals
- Antigens, Tumor-Associated, Carbohydrate/biosynthesis
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/biosynthesis
- Cancer Vaccines/chemical synthesis
- Carcinoma/immunology
- Carcinoma/prevention & control
- Glycopeptides/chemistry
- Glycopeptides/immunology
- H-2 Antigens/chemistry
- H-2 Antigens/immunology
- Histocompatibility Antigens Class I/immunology
- Humans
- Mice
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination
Collapse
Affiliation(s)
- A Franco
- Torrey Pines Institute for Molecular Studies; and University of California, San Diego, CA 92121, USA.
| |
Collapse
|
21
|
Hegmans JPJJ, Hemmes A, Aerts JG, Hoogsteden HC, Lambrecht BN. Immunotherapy of Murine Malignant Mesothelioma Using Tumor Lysate–pulsed Dendritic Cells. Am J Respir Crit Care Med 2005; 171:1168-77. [PMID: 15764728 DOI: 10.1164/rccm.200501-057oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exploiting the immunostimulatory capacities of dendritic cells holds great promise for cancer immunotherapy. Currently, dendritic cell-based immunotherapy is evaluated clinically in a number of malignancies, including melanoma and urogenital and lung cancer, showing variable but promising results. OBJECTIVE To evaluate if pulsed dendritic cells induce protective immunity against malignant mesothelioma in a mouse model. METHODS Malignant mesothelioma was induced in mice by intraperitoneal injection of the AB1 mesothelioma cell line, leading to death within 28 days. For immunotherapy, dendritic cells were pulsed overnight either with AB1 tumor cell line lysate, AB1-derived exosomes, or ex vivo AB1 tumor lysate, and injected either before (Days -14 and -7) at the day of (Day 0) or after (Days +1 and +8) tumor implantation. MAIN RESULTS Mice receiving tumor lysate-pulsed dendritic cells before tumor implantation demonstrated protective antitumor immunity with prolonged survival (> 3 months) and even resisted secondary tumor challenge. Tumor protection was associated with strong tumor-specific cytotoxic T-lymphocyte responses. Adoptive transfer of splenocytes or purified CD8+ T lymphocytes transferred tumor protection to unimmunized mice in vivo. When given after tumor implantation in a therapeutic setting, pulsed dendritic cells prevented mesothelioma outgrowth. With higher tumor load and delayed administration after tumor implantation, dendritic cells were no longer effective. CONCLUSIONS We demonstrate in this murine model that immunotherapy using pulsed dendritic cells may emerge as a powerful tool to control mesothelioma outgrowth. In the future, immunotherapy using dendritic cells could be used as adjuvant to control local recurrence after multimodality treatment for malignant mesothelioma.
Collapse
Affiliation(s)
- Joost P J J Hegmans
- Department of Pulmonary Medicine, Erasmus MC, H-Ee2253a, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Bobryshev YV. Dendritic cells in atherosclerosis: current status of the problem and clinical relevance. Eur Heart J 2005; 26:1700-4. [PMID: 15855191 DOI: 10.1093/eurheartj/ehi282] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells. DCs were identified in arteries in 1995 and, since then, further knowledge has been gained indicating the importance of DCs in atherosclerosis. Vascular DCs have been shown to become activated from a very early stage of atherosclerosis. Some DCs cluster with T cells directly within atherosclerotic lesions, while others migrate to lymphoid organs to activate T cells. Dyslipidaemia systemically alters DC function and recent findings suggest that DCs play a role in plaque destabilization. This review summarizes the current status of the problem.
Collapse
Affiliation(s)
- Yuri V Bobryshev
- Surgical Professorial Unit, Level 5, DeLacy Building, St Vincent's Hospital Sydney, University of New South Wales, Darlinghurst, New South Wales 2010, Australia.
| |
Collapse
|