1
|
Schaeffer J, Weber IP, Thompson AJ, Keynes RJ, Franze K. Axons in the Chick Embryo Follow Soft Pathways Through Developing Somite Segments. Front Cell Dev Biol 2022; 10:917589. [PMID: 35874821 PMCID: PMC9304555 DOI: 10.3389/fcell.2022.917589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
During patterning of the peripheral nervous system, motor axons grow sequentially out of the neural tube in a segmented fashion to ensure functional integration of the motor roots between the surrounding cartilage and bones of the developing vertebrae. This segmented outgrowth is regulated by the intrinsic properties of each segment (somite) adjacent to the neural tube, and in particular by chemical repulsive guidance cues expressed in the posterior half. Yet, knockout models for such repulsive cues still display initial segmentation of outgrowing motor axons, suggesting the existence of additional, yet unknown regulatory mechanisms of axon growth segmentation. As neuronal growth is not only regulated by chemical but also by mechanical signals, we here characterized the mechanical environment of outgrowing motor axons. Using atomic force microscopy-based indentation measurements on chick embryo somite strips, we identified stiffness gradients in each segment, which precedes motor axon growth. Axon growth was restricted to the anterior, softer tissue, which showed lower cell body densities than the repulsive stiffer posterior parts at later stages. As tissue stiffness is known to regulate axon growth during development, our results suggest that motor axons also respond to periodic stiffness gradients imposed by the intrinsic mechanical properties of somites.
Collapse
Affiliation(s)
- Julia Schaeffer
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Inserm, U1216, Grenoble Institut Neurosciences, Univ. Grenoble Alpes, Grenoble, France
- *Correspondence: Julia Schaeffer, ; Kristian Franze,
| | - Isabell P. Weber
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Amelia J. Thompson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Roger J. Keynes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- *Correspondence: Julia Schaeffer, ; Kristian Franze,
| |
Collapse
|
2
|
Post A, Wang E, Cosgriff-Hernandez E. A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices. Ann Biomed Eng 2018; 47:366-380. [PMID: 30488311 DOI: 10.1007/s10439-018-02171-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Sustained biomaterial thromboresistance has long been a goal and challenge in blood-contacting device design. Endothelialization is one of the most successful strategies to achieve long-term thromboresistance of blood-contacting devices, with the endothelial cell layer providing dynamic hemostatic regulation. It is well established that endothelial cell behavior is influenced by interactions with the underlying extracellular matrix (ECM). Numerous researchers have sought to exploit these interactions to generate improved blood-contacting devices by investigating the expression of hemostatic regulators in endothelial cells on various ECM coatings. The ability to select substrates that promote endothelial cell-mediated thromboresistance is crucial to advancing material design strategies to improve cardiovascular device outcomes. This review provides an overview of endothelial cell regulation of hemostasis, the major components found within the cardiovascular basal lamina, and the interactions of endothelial cells with prominent ECM components of the basement membrane. A summary of ECM-mimetic strategies used in cardiovascular devices is provided with a focus on the effects of key adhesion modalities on endothelial cell regulators of hemostasis.
Collapse
Affiliation(s)
- Allison Post
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ellen Wang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, University of Texas, 107 W. Dean Keaton, BME 3.503D, 1 University Station, C0800, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Miao T, Wan Z, Sun L, Li X, Xing L, Bai Y, Wang F, Yang H. Extracellular matrix remodeling and matrix metalloproteinases (ajMMP-2 like and ajMMP-16 like) characterization during intestine regeneration of sea cucumber Apostichopus japonicus. Comp Biochem Physiol B Biochem Mol Biol 2017; 212:12-23. [PMID: 28687360 DOI: 10.1016/j.cbpb.2017.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
Remodeling of extracellular matrix (ECM) regulated by matrix metalloproteinases (MMPs) is essential for tissue regeneration. In the present study, we used immunohistochemistry (IHC) techniques against ECM components to reveal changes of ECM during intestine regeneration of Apostichopus japonicus. The expression of collagen I and laminin reduced apparently from the eviscerated intestine, while fibronectin exhibited continuous expression in all regeneration stages observed. Meanwhile, we cloned two MMP genes from A. japonicus by RACE PCR. The full-length cDNA of ajMMP-2 like is 2733bp and contains a predicted open reading frame (ORF) of 1716bp encoding 572 amino acids. The full-length cDNA of ajMMP-16 like is 2705bp and contains an ORF of 1452bp encoding 484 amino acids. The predicted protein sequences of each MMP contain two conserved domains, ZnMc_MMP and HX. Homology and phylogenetic analysis revealed that ajMMP-2 like and ajMMP-16 like share high sequence similarity with MMP-2 and MMP-16 from Strongylocentrotus purpuratus, respectively. Then we investigated spatio-temporal expression of ajMMP-2 like and ajMMP-16 like during different regeneration stages by qRT-PCR and IHC. The expression pattern of them showed a roughly opposite trend from that of ECM components. According to our results, a fibronectin-dominate temporary matrix is created in intestine regeneration, and it might provide structural integrity for matrix and promote cell movement. We also hypothesize that ajMMP-2 like and ajMMP-16 like could accelerate cell migration and regulate interaction between ECM components and growth factors. This work provides new evidence of ECM and MMPs involvement in sea cucumber regeneration.
Collapse
Affiliation(s)
- Ting Miao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Zixuan Wan
- Wyoming Seminary College Preparatory School, Kingston, PA 18704, USA
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yucen Bai
- China Rural Technology Development Center, Beijing 100045, China
| | - Fang Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
4
|
Bujak E, Pretto F, Ritz D, Gualandi L, Wulhfard S, Neri D. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues. Exp Cell Res 2014; 327:135-45. [PMID: 24925479 DOI: 10.1016/j.yexcr.2014.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/05/2014] [Accepted: 05/26/2014] [Indexed: 02/02/2023]
Abstract
There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer.
Collapse
Affiliation(s)
- Emil Bujak
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | | | - Danilo Ritz
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | - Laura Gualandi
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | - Sarah Wulhfard
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland.
| |
Collapse
|
5
|
Lee JH, Bhang DH, Beede A, Huang TL, Stripp BR, Bloch KD, Wagers AJ, Tseng YH, Ryeom S, Kim CF. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 2014; 156:440-55. [PMID: 24485453 DOI: 10.1016/j.cell.2013.12.039] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/24/2013] [Accepted: 12/27/2013] [Indexed: 11/29/2022]
Abstract
Lung stem cells are instructed to produce lineage-specific progeny through unknown factors in their microenvironment. We used clonal 3D cocultures of endothelial cells and distal lung stem cells, bronchioalveolar stem cells (BASCs), to probe the instructive mechanisms. Single BASCs had bronchiolar and alveolar differentiation potential in lung endothelial cell cocultures. Gain- and loss-of-function experiments showed that BMP4-Bmpr1a signaling triggers calcineurin/NFATc1-dependent expression of thrombospondin-1 (Tsp1) in lung endothelial cells to drive alveolar lineage-specific BASC differentiation. Tsp1 null mice exhibited defective alveolar injury repair, confirming a crucial role for the BMP4-NFATc1-TSP1 axis in lung epithelial differentiation and regeneration in vivo. Discovery of this pathway points to methods to direct the derivation of specific lung epithelial lineages from multipotent cells. These findings elucidate a pathway that may be a critical target in lung diseases and provide tools to understand the mechanisms of respiratory diseases at the single-cell level.
Collapse
Affiliation(s)
- Joo-Hyeon Lee
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Dong Ha Bhang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander Beede
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Barry R Stripp
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kenneth D Bloch
- Anesthesia Center for Critical Care Research and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amy J Wagers
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Joslin Diabetes Center, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Carla F Kim
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Evans CE, Branco-Price C, Johnson RS. HIF-mediated endothelial response during cancer progression. Int J Hematol 2012; 95:471-7. [DOI: 10.1007/s12185-012-1072-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 01/11/2023]
|
7
|
Abstract
Thrombospondins are evolutionarily conserved, calcium-binding glycoproteins that undergo transient or longer-term interactions with other extracellular matrix components. They share properties with other matrix molecules, cytokines, adaptor proteins, and chaperones, modulate the organization of collagen fibrils, and bind and localize an array of growth factors or proteases. At cell surfaces, interactions with an array of receptors activate cell-dependent signaling and phenotypic outcomes. Through these dynamic, pleiotropic, and context-dependent pathways, mammalian thrombospondins contribute to wound healing and angiogenesis, vessel wall biology, connective tissue organization, and synaptogenesis. We overview the domain organization and structure of thrombospondins, key features of their evolution, and their cell biology. We discuss their roles in vivo, associations with human disease, and ongoing translational applications. In many respects, we are only beginning to appreciate the important roles of these proteins in physiology and pathology.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | |
Collapse
|
8
|
Protein profiling of human nonpigmented ciliary epithelium cell secretome: the differentiation factors characterization for retinal ganglion cell line. J Biomed Biotechnol 2011; 2011:901329. [PMID: 21860587 PMCID: PMC3157028 DOI: 10.1155/2011/901329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 12/04/2022] Open
Abstract
The purpose of this paper was to characterize proteins secreted from the human nonpigmented ciliary epithelial (HNPE) cells, which have differentiated a rat retinal ganglion cell line, RGC-5. Undifferentiated RGC-5 cells have been shown to express several marker proteins characteristic of retinal ganglion cells. However, RGC-5 cells do not respond to N-methyl-D aspartate (NMDA), or glutamate. HNPE cells have been shown to secrete numbers of neuropeptides or neuroproteins also found in the aqueous humor, many of which have the ability to influence the activity of neuronal cells. This paper details the profile of HNPE cell-secreted proteins by proteomic approaches. The experimental results revealed the identification of 132 unique proteins from the HNPE cell-conditioned SF-medium. The biological functions of a portion of these identified proteins are involved in cell differentiation. We hypothesized that a differentiation system of HNPE cell-conditioned SF-medium with RGC-5 cells can induce a differentiated phenotype in RGC-5 cells, with functional characteristics that more closely resemble primary cultures of rat retinal ganglion cells. These proteins may replace harsh chemicals, which are currently used to induce cell differentiation.
Collapse
|
9
|
Gawlitta D, Farrell E, Malda J, Creemers LB, Alblas J, Dhert WJA. Modulating endochondral ossification of multipotent stromal cells for bone regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:385-95. [PMID: 20131956 DOI: 10.1089/ten.teb.2009.0712] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For years it has been recognized that engineering of large bone constructs will be feasible only if the hurdle of vascularization is overcome. Attempts to engineer bone tissue have predominantly focused on intramembranous (direct) bone formation. A relatively new and most likely more physiological approach in this line is endochondral bone formation, comprising an intermediate cartilaginous stage. Cartilage in nature is an avascular tissue and its cells are equipped to survive the poor oxygenation and nutritional conditions inherent to implanted tissues. Subsequent terminal differentiation (hypertrophy) of the chondrocytes initiates the formation of a mineralized matrix that will then be converted into bone. Through this mechanism, our long bones grow and most fractures heal through the process of secondary fracture healing. The feasibility of the attractive concept of endochondral bone tissue engineering has already been shown. Most emphasis has gone to the multipotent stromal cells because of their great potential for expansion and differentiation and immunoprivileged nature. This review will focus on the promises and current status of this new field. Further, potent modulators of endochondral bone tissue engineering, including oxygen tension and mechanical stimuli, will be discussed.
Collapse
Affiliation(s)
- Debby Gawlitta
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
De Paepe ME, Greco D, Mao Q. Angiogenesis-related gene expression profiling in ventilated preterm human lungs. Exp Lung Res 2010; 36:399-410. [PMID: 20718599 DOI: 10.3109/01902141003714031] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Preterm infants exposed to oxygen and mechanical ventilation are at risk for bronchopulmonary dysplasia (BPD), a multifactorial chronic lung disorder characterized by arrested alveolar development and nonsprouting, dysmorphic microvascular angiogenesis. The molecular regulation of this BPD-associated pathological angiogenesis remains incompletely understood. In this study, the authors used focused microarray technology to characterize the angiogenic gene expression profile in postmortem lung samples from short-term ventilated preterm infants (born at 24 to 27 weeks' gestation) and age-matched control infants. Microarray analysis identified differential expression of 13 of 112 angiogenesis-related genes. Genes significantly up-regulated in ventilated lungs included the antiangiogenic genes thrombospondin-1, collagen XVIII alpha-1, and tissue inhibitor of metalloproteinase-1 (TIMP1), as well as endoglin, transforming growth factor-alpha, and monocyte chemoattractant protein-1 (CCL2). Increased expression of thrombospondin-1 in ventilated lungs was verified by real-time polymerase chain reaction (PCR) and immunolocalized primarily to intravascular platelets and fibrin aggregates. Down-regulated genes included proangiogenic angiogenin and midkine, as well as vascular endothelial growth factor (VEGF)-B, VEGF receptor-2, and the angiopoietin receptor TEK/Tie-2. In conclusion, short-term ventilated lungs show a shift from traditional angiogenic growth factors to alternative, often antisprouting regulators. This angiogenic shift may be implicated in the regulation of dysmorphic angiogenesis and, consequently, deficient alveolarization characteristic of infants with BPD.
Collapse
Affiliation(s)
- Monique E De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, Rhode Island 02905, USA.
| | | | | |
Collapse
|
11
|
Role of thrombospondin 1 in macrophage inflammation in dysferlin myopathy. J Neuropathol Exp Neurol 2010; 69:643-53. [PMID: 20467328 DOI: 10.1097/nen.0b013e3181e0d01c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Muscle inflammation can be a prominent feature in several muscular dystrophies. In dysferlin myopathy, it is mainly composed of macrophages. To understand the origin of inflammation in dysferlin-deficient muscle, we analyzed soluble factors involved in monocyte chemotaxis released by myoblasts and myotubes from control and dysferlinopathy patients using a transwell system. Dysferlin-deficient myotubes released more soluble factors involved in monocyte chemotaxis compared with controls (p < 0.001). Messenger RNA microarray analysis showed a 3.2-fold increase of thrombospondin 1 (TSP-1) expression in dysferlin-deficient myotubes. Retrotranscriptasepolymerase chain reaction analysis, ELISA, and immunohistochemistry confirmed these results. Dysferlin mRNA knockdown with short-interfering RNA in normal myogenic cells resulted in TSP-1 mRNA upregulation and increased chemotaxis. Furthermore, monocyte chemotaxis was decreased when TSP-1 was blocked by specific antibodies. In muscle biopsies from dysferlinopathy patients, TSP-1 expression was increased in muscle fibers but not in biopsies of patientswith other myopathies with inflammation; TSP-1 was seen in some macrophages in all samples analyzed. Taken together, the data demonstrate that dysferlin-deficient muscle upregulates TSP-1 in vivoand in vitro and indicate that endogenous chemotactic factors arecrucial to the sustained inflammatory process observed in dysferlinopathies.
Collapse
|
12
|
Eroglu C. The role of astrocyte-secreted matricellular proteins in central nervous system development and function. J Cell Commun Signal 2009; 3:167-76. [PMID: 19904629 PMCID: PMC2778595 DOI: 10.1007/s12079-009-0078-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 10/01/2009] [Indexed: 11/28/2022] Open
Abstract
Matricellular proteins, such as thrombospondins (TSPs1-4), SPARC, SPARC-like1 (hevin) and tenascin C are expressed by astrocytes in the central nervous system (CNS) of rodents. The spatial and temporal expression patterns of these proteins suggest that they may be involved in important developmental processes such as cell proliferation and maturation, cell migration, axonal guidance and synapse formation. In addition, upon injury to the nervous system the expression of these proteins is upregulated, suggesting that they play a role in tissue remodeling and repair in the adult CNS. The genes encoding these proteins have been disrupted in mice. Interestingly, none of these proteins are required for survival, and furthermore, there are no evident abnormalities at the gross anatomical level in the CNS. However, detailed analyses of some of these mice in the recent years have revealed interesting CNS phenotypes. Here we will review the expression of these proteins in the CNS. We will discuss a newly described function for thrombospondins in synapse formation in the CNS in detail, and speculate whether other matricellular proteins could play similar roles in nervous system development and function.
Collapse
Affiliation(s)
- Cagla Eroglu
- Cell Biology, Duke University Medical Center, 333A Nanaline Duke Bldg., Box 3709, Durham, NC 27710 USA
| |
Collapse
|
13
|
Lively S, Brown IR. The extracellular matrix protein SC1/Hevin localizes to multivesicular bodies in Bergmann glial fibers in the adult rat cerebellum. Neurochem Res 2009; 35:315-22. [PMID: 19757034 DOI: 10.1007/s11064-009-0057-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/28/2009] [Indexed: 02/06/2023]
Abstract
SC1 is an extracellular matrix molecule prominent in the mammalian brain. In the cerebellum, SC1 localizes to Bergmann glial cells and perisynaptic glial processes that envelop synapses in the molecular layer. In the present study, confocal microscopy revealed a punctate distribution of SC1 along Bergmann glial fibers that colocalized with the intermediate filament GFAP when fibers were viewed in cross-section. Immunoelectron microscopy showed that the punctate SC1 pattern corresponded to the localization of SC1 in multivesicular bodies situated within Bergmann glial fibers. The pattern of SC1 localization was not disrupted following hyperthermia or pilocarpine-induced status epilepticus. The present study suggests that SC1 protein may reach its destination in perisynaptic glial processes and glial endfeet by transport along Bergmann glial fibers in multivesicular bodies and that this process is preserved following stress.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | | |
Collapse
|
14
|
Grado-Ahuir JA, Aad PY, Ranzenigo G, Caloni F, Cremonesi F, Spicer LJ. Microarray analysis of insulin-like growth factor-I-induced changes in messenger ribonucleic acid expression in cultured porcine granulosa cells: possible role of insulin-like growth factor-I in angiogenesis. J Anim Sci 2009; 87:1921-33. [PMID: 19251926 DOI: 10.2527/jas.2008-1222] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Insulin-like growth factor-I in conjunction with gonadotropins are important stimulators of mitosis and ovarian steroid production by granulosa and thecal cells, which are required for normal oocyte development and hormonal feedback signaling to the hypothalamus and pituitary. However, a comprehensive evaluation of the changes in gene expression induced by IGF-I has not been conducted. Our objective was to characterize granulosa cell gene expression in response to IGF-I treatment. Porcine granulosa cells were pooled in 4 biological replicates and treated with FSH (baseline) or FSH+IGF-I for 24 h in vitro. The RNA was collected and hybridized to 8 Affymetrix Porcine GeneChips (Affymetrix, Santa Clara, CA) in a paired design. Differentially regulated gene sequence element sets (P < 0.01) were used as queries in the UniGene database searching for annotated genes. Abundance of messenger RNA (mRNA) for genes differentially expressed in the microarray analysis was determined through multiplex assays of one-step real-time reverse transcription-PCR and further analyzed under a statistical model including the fixed effect of treatment. A total of 388 gene sequence element sets were differentially expressed, and 42 matched annotated genes in the UniGene database. Of the 3 upregulated target genes selected for further quantitative reverse transcription-PCR analysis, only FGF receptor 2 III c (FGFR2IIIc) mRNA abundance was significantly increased by IGF-I. Of the 3 downregulated target genes selected for further analysis, only thrombospondin-1 (THBS1) mRNA abundance was significantly decreased by IGF-I. Further study revealed that neither FSH nor estradiol affected the IGF-I-induced suppression of THBS1 mRNA abundance. These results provide the first comprehensive assessment of IGF-I-induced gene expression in granulosa cells and will contribute to a better understanding of the molecular mechanisms of IGF-I regulation of follicular development. Involvement of FGFR2IIIc and THBS1 in mediating IGF-I-induced granulosa cell steroidogenesis and proliferation during follicular development is novel, but their specific roles will require further elucidation.
Collapse
Affiliation(s)
- J A Grado-Ahuir
- Department of Animal Science, Oklahoma State University, Stillwater 74078, USA
| | | | | | | | | | | |
Collapse
|
15
|
Liu A, Garg P, Yang S, Gong P, Pallero MA, Annis DS, Liu Y, Passaniti A, Mann D, Mosher DF, Murphy-Ullrich JE, Goldblum SE. Epidermal growth factor-like repeats of thrombospondins activate phospholipase Cgamma and increase epithelial cell migration through indirect epidermal growth factor receptor activation. J Biol Chem 2009; 284:6389-402. [PMID: 19129184 DOI: 10.1074/jbc.m809198200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thrombospondin (TSP) 1 is a trimeric multidomain protein that contains motifs that recognize distinct host cell receptors coupled to multiple signaling pathways. Selected TSP1-induced cellular responses are tyrosine kinase-dependent, and TSP1 contains epidermal growth factor (EGF)-like repeats. Specific receptor interactions or functions for the EGF-like repeats have not been identified. We asked whether one or more biological responses to TSP1 might be explained through EGF receptor (EGFR) activation. In A431 cells, TSP1 increased autophosphorylation of Tyr-1068 of EGFR in a dose- and time-dependent manner. The ability of TSP1 to activate EGFR was replicated by the tandem EGF-like repeats as a recombinant protein. The three EGF-like repeats alone produced a high level of Tyr-1068 phosphorylation. EGF-like repeats from TSP2 and TSP4 also activated EGFR. Tyr-1068 phosphorylation was less when individual EGF-like repeats were tested or flanking sequences were added to the three EGF-like repeats. TSP1 and its EGF-like repeats also increased phosphorylation of EGFR Tyr-845, Tyr-992, Tyr-1045, Tyr-1086, and Tyr-1173, activated phospholipase Cgamma, and increased cell migration. No evidence was found for binding of the EGF-like repeats to EGFR. Instead, EGFR activation in response to TSP1 or its EGF-like repeats required matrix metalloprotease activity, including activity of matrix metalloprotease 9. Access to the ligand-binding portion of the EGFR ectodomain was also required. These findings suggest release of an endogenous EGFR ligand in response to ligation of a second unknown receptor by the TSPs.
Collapse
Affiliation(s)
- Anguo Liu
- Mucosal Biology Research Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Blake SM, Strasser V, Andrade N, Duit S, Hofbauer R, Schneider WJ, Nimpf J. Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. EMBO J 2008; 27:3069-80. [PMID: 18946489 DOI: 10.1038/emboj.2008.223] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/26/2008] [Indexed: 11/09/2022] Open
Abstract
Apolipoprotein E receptor 2 (ApoER2), very low-density lipoprotein receptor (VLDLR), and Dab1 are the main components of the Reelin signalling cascade. Reelin is the sole ligand defined so far in signalling through this pathway. Postnatal migration of neuronal precursors from the subventricular zone (SVZ) to the olfactory bulb (OB), however, depends on ApoER2 and Dab1, but functions independently of Reelin. Here, we show that thrombospondin-1 (THBS-1) is a novel physiological ligand for ApoER2 and VLDLR. THBS-1 is present in the SVZ and along the entire rostral migratory stream (RMS). It binds to ApoER2 and VLDLR and induces phosphorylation of Dab1. In contrast to Reelin, it does not induce Dab1 degradation or Akt phosphorylation, but stabilizes neuronal precursor chains derived from subventricular explants. Lack of THBS-1 results in anatomical abnormalities of the RMS and leads to a reduction of postnatal neuronal precursors entering the OB.
Collapse
Affiliation(s)
- Sophia M Blake
- Department of Medical Biochemistry, Max F Perutz Laboratories, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
17
|
Allori AC, Sailon AM, Warren SM. Biological Basis of Bone Formation, Remodeling, and Repair—Part II: Extracellular Matrix. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:275-83. [DOI: 10.1089/ten.teb.2008.0083] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alexander C. Allori
- Institute of Reconstructive Plastic Surgery, New York University Medical Center, New York, New York
| | - Alexander M. Sailon
- Institute of Reconstructive Plastic Surgery, New York University Medical Center, New York, New York
| | - Stephen M. Warren
- Institute of Reconstructive Plastic Surgery, New York University Medical Center, New York, New York
| |
Collapse
|
18
|
Pallero MA, Elzie CA, Chen J, Mosher DF, Murphy-Ullrich JE. Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis. FASEB J 2008; 22:3968-79. [PMID: 18653767 DOI: 10.1096/fj.07-104802] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anoikis, apoptotic cell death due to loss of cell adhesion, is critical for regulation of tissue homeostasis in tissue remodeling. Fibrogenesis is associated with reduced fibroblast apoptosis. The matricellular protein thrombospondin 1 (TSP1) regulates cell adhesion and motility during tissue remodeling and in fibrogenesis. The N-terminal domain of TSP1 binds to the calreticulin-LRP1 receptor co-complex to signal down-regulation of cell adhesion and increased cell motility through focal adhesion disassembly. TSP1 signaling through calreticulin-LRP1 activates cell survival signals such as PI3-kinase. Therefore, we tested the hypothesis that TSP1 supports cell survival under adhesion-independent conditions to facilitate tissue remodeling. Here, we show that platelet TSP1, its N-terminal domain (NoC1) as a recombinant protein, or a peptide comprising the calreticulin-LRP1 binding site [amino acids 17-35 (hep I)] in the N-terminal domain promotes fibroblast survival under anchorage-independent conditions. TSP1 activates Akt and decreases apoptotic signaling through caspase 3 and PARP1 in suspended fibroblasts. Inhibition of PI3K/Akt activity blocks TSP1-mediated anchorage-independent survival. Fibroblasts lacking LRP1 or expressing calreticulin lacking the TSP1 binding site do not respond to TSP1 with anchorage-independent survival. These data define a novel role for TSP1 signaling through the calreticulin/LRP1 co-complex in tissue remodeling and fibrotic responses through stimulation of anoikis resistance.-Pallero, M. A., Elzie, C. A., Chen, J., Mosher, D. F., Murphy-Ullrich, J. E. Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis.
Collapse
Affiliation(s)
- Manuel A Pallero
- Department of Pathology, VH 668 1530 3rd Ave., South, Birmingham, AL 35294-0019, USA
| | | | | | | | | |
Collapse
|
19
|
Yu K, Ge J, Summers JB, Li F, Liu X, Ma P, Kaminski J, Zhuang J. TSP-1 secreted by bone marrow stromal cells contributes to retinal ganglion cell neurite outgrowth and survival. PLoS One 2008; 3:e2470. [PMID: 18575624 PMCID: PMC2430538 DOI: 10.1371/journal.pone.0002470] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 05/16/2008] [Indexed: 01/30/2023] Open
Abstract
Background Bone marrow stromal cells (BMSCs) are pluripotent and thereby a potential candidate for cell replacement therapy for central nervous system degenerative disorders and traumatic injury. However, the mechanism of their differentiation and effect on neural tissues has not been fully elucidated. This study evaluates the effect of BMSCs on neural cell growth and survival in a retinal ganglion cell (RGCs) model by assessing the effect of changes in the expression of a BMSC-secreted protein, thrombospondin-1 (TSP-1), as a putative mechanistic agent acting on RGCs. Methods and Findings The effect of co-culturing BMSCs and RGCs in vitro was evaluated by measuring the following parameters: neurite outgrowth, RGC survival, BMSC neural-like differentiation, and the effect of TSP-1 on both cell lines under basal secretion conditions and when TSP-1 expression was inhibited. Our data show that BMSCs improved RGC survival and neurite outgrowth. Synaptophysin, MAP-2, and TGF-β expression are up-regulated in RGCs co-cultured with BMSCs. Interestingly, the BMSCs progressively displayed neural-like morphology over the seven-day study period. Restriction display polymerase chain reaction (RD-PCR) was performed to screen for differentially expressed genes in BMSCs cultured alone or co-cultured with RGCs. TSP-1, a multifactorial extracellular matrix protein, is critically important in the formation of neural connections during development, so its function in our co-culture model was investigated by small interfering RNA (siRNA) transfection. When TSP-1 expression was decreased with siRNA silencing, BMSCs had no impact on RGC survival, but reduced neurite outgrowth and decreased expression of synaptophysin, MAP-2 and TGF-β in RGCs. Furthermore, the number of BMSCs with neural-like characteristics was significantly decreased by more than two-fold using siRNA silencing. Conclusions Our data suggest that the TSP-1 signaling pathway might have an important role in neural-like differentiation in BMSCs and neurite outgrowth in RGCs. This study provides new insights into the potential reparative mechanisms of neural cell repair.
Collapse
Affiliation(s)
- Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - James Bradley Summers
- Department of Radiology, University of South Alabama, Mobile, Alabama, United States of America
| | - Fan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ping Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Joseph Kaminski
- Department of Radiology, Medical College of Georgia, Augusta, Georgia, United States of America
- * E-mail: (JK); (JZ)
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- * E-mail: (JK); (JZ)
| |
Collapse
|
20
|
Lu Y, Thomson JM, Wang HYF, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007; 310:442-53. [PMID: 17765889 PMCID: PMC2052923 DOI: 10.1016/j.ydbio.2007.08.007] [Citation(s) in RCA: 365] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/30/2007] [Accepted: 08/01/2007] [Indexed: 12/27/2022]
Abstract
The miR-17-92 locus encodes a cluster of 7 microRNAs transcribed as a single primary transcript. It can accelerate c-Myc induced B cell lymphoma development and is highly expressed in many tumors, including lung tumors. However, the role of miR-17-92 in development has not been well studied. From analysis of microRNAs during lung development, expression of the miR-17-92 cluster is high at early stages, but declines as development proceeds. We used the mouse surfactant protein C (Sftpc) promoter to over-express the cluster in embryonic lung epithelium. Transgenic lungs have a very abnormal lethal phenotype. They contain numerous proliferative epithelial cells that retain high levels of Sox9, a marker of distal progenitors. The differentiation of proximal epithelial cells was also inhibited. Furthermore, a significant increase in the number of neuroendocrine cell clusters was observed in the lungs of dead transgenic pups. We identify a tumor suppressor, Rbl2 which belongs to the Rb family, as a new target for miR-17-5p. Together, these studies suggest that mir-17-92 normally promotes the high proliferation and undifferentiated phenotype of lung epithelial progenitor cells.
Collapse
Affiliation(s)
- Yun Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710
| | | | - Ho Yuen Frank Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710
| | - Scott M. Hammond
- Department of Cell and Developmental Biology
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599
| | - Brigid L.M. Hogan
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710
| |
Collapse
|
21
|
Sozo F, Hooper SB, Wallace MJ. Thrombospondin-1 expression and localization in the developing ovine lung. J Physiol 2007; 584:625-35. [PMID: 17702817 PMCID: PMC2277169 DOI: 10.1113/jphysiol.2007.138735] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fetal lung growth is critically dependent on the degree to which the lungs are expanded by liquid, although the mechanisms involved are unknown. As thrombospondin-1 (TSP-1) can regulate cell proliferation, attachment, spreading and angiogenesis, we investigated the effects of alterations in fetal lung expansion on TSP-1 expression in sheep. TSP-1 mRNA levels were investigated using Northern blot analysis and in situ hybridization, whereas the protein levels were determined by immunohistochemistry. Early growth response 1 (EGR1) mRNA levels were measured by quantitative real-time PCR. TSP-1 was expressed in type-II alveolar epithelial cells and fibroblasts and its mRNA levels increased from 100.0 +/- 14.0% in control fetuses to 347.5 +/- 73.6% at 36 h of increased lung expansion (P < 0.05), and were reduced to 39.4 +/- 6.1% of control levels (100.0 +/- 20.4%) at 20 days of decreased lung expansion (P < 0.05). The percentage of cells positive for TSP-1 mRNA increased from 1.9 +/- 0.4% to 5.2 +/- 0.8% at 36 h of increased fetal lung expansion (P < 0.01). The proportion of tissue stained positive for TSP-1 protein doubled at 36 h of increased lung expansion (23.3 +/- 2.2%) compared to controls (11.7 +/- 3.2%; P < 0.05). Conversely, at 20 days of decreased lung expansion, the percentage of tissue that stained positive for TSP-1 was halved (25.7 +/- 3.2%) compared to controls (39.8 +/- 3.3%; P < 0.05). The increase in TSP-1 expression may be due to increased mRNA levels of the transcription factor EGR1 at 36 h of increased lung expansion (2.7 +/- 0.7-fold of control levels (1.0 +/- 0.2); P < 0.05). Given the known functions of TSP-1 and its localization within the lung, we speculate that TSP-1 may have a significant role in regulating fetal lung growth.
Collapse
Affiliation(s)
- Foula Sozo
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia.
| | | | | |
Collapse
|
22
|
Neuronal expression of muskelin in the rodent central nervous system. BMC Neurosci 2007; 8:28. [PMID: 17474996 PMCID: PMC1876237 DOI: 10.1186/1471-2202-8-28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 05/02/2007] [Indexed: 12/25/2022] Open
Abstract
Background The kelch repeat protein muskelin mediates cytoskeletal responses to the extracellular matrix protein thrombospondin 1, (TSP1), that is known to promote synaptogenesis in the central nervous system (CNS). Muskelin displays intracellular localization and affects cytoskeletal organization in adherent cells. Muskelin is expressed in adult brain and has been reported to bind the Cdk5 activator p39, which also facilitates the formation of functional synapses. Since little is known about muskelin in neuronal tissues, we here analysed the tissue distribution of muskelin in rodent brain and analysed its subcellular localization using cultured neurons from multiple life stages. Results Our data show that muskelin transcripts and polypeptides are expressed throughout the central nervous system with significantly high levels in hippocampus and cerebellum, a finding that resembles the tissue distribution of p39. At the subcellular level, muskelin is found in the soma, in neurite projections and the nucleus with a punctate distribution in both axons and dendrites. Immunostaining and synaptosome preparations identify partial localization of muskelin at synaptic sites. Differential centrifugation further reveals muskelin in membrane-enriched, rather than cytosolic fractions. Conclusion Our results suggest that muskelin represents a multifunctional protein associated with membranes and/or large protein complexes in most neurons of the central nervous system. These data are in conclusion with distinct roles of muskelin's functional interaction partners.
Collapse
|
23
|
Khan IM, Redman SN, Williams R, Dowthwaite GP, Oldfield SF, Archer CW. The development of synovial joints. Curr Top Dev Biol 2007; 79:1-36. [PMID: 17498545 DOI: 10.1016/s0070-2153(06)79001-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During vertebrate evolution, successful adaptation of animal limbs to a variety of ecological niches depended largely on the formation and positioning of synovial joints. The function of a joint is to allow smooth articulation between opposing skeletal elements and to transmit biomechanical loads through the structure, and this is achieved through covering the ends of bones with articular cartilage, lubricating the joint with synovial fluid, using ligaments to bind the skeletal elements together, and encapsulating the joint in a protective fibrous layer of tissue. The diversity of limb generation has been proposed to occur through sequential branching and segmentation of precartilaginous skeletal elements along the proximodistal axis of the limb. The position of future joints is first delimited by areas of higher cell density called interzones initially through an as yet unidentified inductive signal, subsequently specification of these regions is controlled hierarchically by wnt14 and gdf5, respectively. Joint-forming cell fate although specified is not fixed, and joints will fuse if growth factor signaling is perturbed. Cavitation, the separation of the two opposing skeletal elements, and joint morphogenesis, the process whereby the joint cells organize and mature to establish a functional interlocking and reciprocally shaped joint, are slowly being unraveled through studying the plethora of molecules that make up the unique extracellular matrix of the forming structure. The joint lining tissue, articular cartilage, is avascular, and this limits its reparative capacity such that arthritis and associated joint pathologies are the single largest cause of disability in the adult population. Recent discoveries of adult stem cells and more specifically the isolation of chondroprogenitor cells from articular cartilage are extending available therapeutic options, though only with a more complete understanding of synovial joint development can such options have greater chances of success.
Collapse
Affiliation(s)
- I M Khan
- Cardiff School of Biosciences, Cardiff University, Cardiff CF103US, Wales, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Lively S, Ringuette MJ, Brown IR. Localization of the extracellular matrix protein SC1 to synapses in the adult rat brain. Neurochem Res 2006; 32:65-71. [PMID: 17151913 DOI: 10.1007/s11064-006-9226-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
Extracellular matrix molecules play important roles in neural developmental processes such as axon guidance and synaptogenesis. When development is complete, many of these molecules are down-regulated, however the molecules that remain highly expressed are often involved in modulation of synaptic function. SC1 is an example of an extracellular matrix protein whose expression remains high in the adult rat brain. Confocal microscopy revealed that SC1 demonstrates a punctate pattern in synaptic enriched regions of the cerebral cortex and cerebellum. Higher resolution analysis using electron microscopy indicated that SC1 localizes to synapses, particularly the postsynaptic terminal. SC1 was also detected in perisynaptic glial processes that envelop synapses.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | | | | |
Collapse
|
25
|
Tibbitts D, Rao RR, Shin S, West FD, Stice SL. Uniform Adherent Neural Progenitor Populations from Rhesus Embryonic Stem Cells. Stem Cells Dev 2006; 15:200-8. [PMID: 16646666 DOI: 10.1089/scd.2006.15.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rhesus and human embryonic stem cells (ESCs) are similar, making rhesus ESCs an appropriate preclinical allograft model for refining stem cell therapies. Use of rhesus ESC-derived neural progenitors (NPs) in preclinical applications will be enhanced if the neural derivation process is scalable and free from contaminating ESCs or nonneural cells. In this study, we have quantified temporal gene expression changes of rhesus ESC differentiated to uniform NPs using simple feeder-free adherent cultures. NPs exhibited a significant up-regulation of neural-specific genes and a downregulation of pluripotency genes. Additionally, expression of Hu, MAP2, and Tuj1, shows that NPs can form post-mitotic neurons. This study represents a simple and scalable means of producing adherent primate NPs for preclinical testing of neural cell-based therapy.
Collapse
Affiliation(s)
- Deanne Tibbitts
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
26
|
Harper J, Moses MA. Molecular regulation of tumor angiogenesis: mechanisms and therapeutic implications. EXS 2006:223-68. [PMID: 16383021 DOI: 10.1007/3-7643-7378-4_10] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the process of new capillary formation from a pre-existing vessel plays an essential role in both embryonic and postnatal development, in the remodeling of various organ systems, and in several pathologies, particularly cancer. In the last 20 years of angiogenesis research, a variety of angiogenic regulators, both positive and negative, have been identified. The discovery of several anti-angiogenic factors has led to the development of novel cancer therapies based on targeting a tumor's vascular supply. A number of these new therapies are currently being tested in clinical trials in the U.S.A. and elsewhere. A major advance in the field of anti-angiogenic therapy occurred recently when the FDA approved Avastin (bevacizumab), the first solely anti-angiogenesis therapy approved for treatment of human cancer. While it has long been appreciated that tumor growth and progression are dependent on angiogenesis, it is only recently that progress has been made in elucidating the molecular mechanisms that regulate the earliest stage in the angiogenic program, the angiogenic switch. This checkpoint is characterized by the transition of a dormant, avascular tumor into an active, vascular one. Anti-angiogenic therapies to date have essentially been designed to suppress the neovasculature in established tumors. However, identifying the mechanisms that cause a tumor to acquire an angiogenic phenotype may lead to the discovery of new therapeutic modalities and complementary diagnostics that could be used to block the angiogenic switch, thereby preventing subsequent tumor progression. In this chapter on the role of angiogenesis in cancer, we (1) provide an overview of the process of angiogenesis with special regard to the molecules and physiological conditions that regulate this process, (2) review recent studies describing the use of anti-angiogenic approaches in the treatment of a variety of human cancers, and (3) discuss the recent literature focused on the study of the molecules and molecular mechanisms that may be regulating the initiation of the angiogenic phenotype in tumors, and the clinical impact that this knowledge may have in the future.
Collapse
Affiliation(s)
- Jay Harper
- Vascular Biology Program, Children's Hospital Boston, Karp Research Building 12.214, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
27
|
Hiscott P, Paraoan L, Choudhary A, Ordonez JL, Al-Khaier A, Armstrong DJ. Thrombospondin 1, thrombospondin 2 and the eye. Prog Retin Eye Res 2006; 25:1-18. [PMID: 15996506 DOI: 10.1016/j.preteyeres.2005.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thrombospondin 1 and thrombospondin 2 (TSP1 and TSP2), which comprise the subgroup A thrombospondins, are matricellular proteins. As matricellular proteins, they modulate interactions between cells and the cellular environment, regulate cell adhesion and typically are expressed during tissue formative processes. In general, TSP1 and TSP2 counter angiogenesis (including tumour angiogenesis) and play important but contrasting roles during cutaneous repair. The two proteins are involved in development, including that of the eye, although evidence suggests that they have their greatest impact during tissue production in the adult. In the normal adult eye, they tend to be found at sites of ongoing matrix synthesis or cell-matrix interactions. At these sites, the two proteins possibly influence cellular differentiation and/or basement membrane deposition. TSP1 is also present in the intraocular fluids and drainage pathway, where it may function in maintaining the anti-angiogenic environment and in intraocular pressure control, respectively. TSP1 could also be involved in ocular immune privilege. Unlike in skin wounds, where TSP1 is derived from the blood and is present only in the early phases of repair, ocular tissue damage appears to lead to protacted TSP1 synthesis by local cells. This response might help suppress angiogenesis in the transparent tissues of the eye and so lessen visual axis opacification following injury. However, TSP2, which is also produced by damaged ophthalmic tissue and may be especially important in matrix organisation, seems to augment contraction in anomalous intraocular fibrosis. Elucidating the roles of TSP1 and TSP2 in ocular physiology and pathobiology may lead to improved therapies for neovascular, neoplastic, reparative and other ophthalmic diseases.
Collapse
Affiliation(s)
- Paul Hiscott
- Unit of Ophthalmology, School of Clinical Science, University Clinical Departments, The Duncan Building, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Sutton CD, O'Byrne K, Goddard JC, Marshall LJ, Jones L, Garcea G, Dennison AR, Poston G, Lloyd DM, Berry DP. Expression of thrombospondin-1 in resected colorectal liver metastases predicts poor prognosis. Clin Cancer Res 2005; 11:6567-73. [PMID: 16166434 DOI: 10.1158/1078-0432.ccr-05-0439] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to examine the expression and prognostic relevance of thrombospondin-1 (TSP-1) in tumor biopsies taken from a consecutive series of liver resections done at the University Hospitals of Leicester and the Royal Liverpool Hospital. EXPERIMENTAL DESIGN Patients having undergone a liver resection for colorectal liver metastases at our institutions between 1993 and 1999 inclusive were eligible. Inclusion criteria were curative intent, sufficient tumor biopsy, and patient follow-up data. One hundred eighty-two patients were considered in this study. Standard immunohistochemical techniques were used to study the expression of TSP-1 in 5-microm tumor sections from paraffin-embedded tissue blocks. TSP-1 was correlated with survival using the Kaplan-Meier method and log-rank test for univariate analysis and the Cox proportional hazard model for multivariate analysis. RESULTS One hundred eighty-two patients (male, n = 122 and female, n = 60) ages between 25 and 81 years (mean, 61 years) were included. TSP-1 was expressed around blood vessels (n = 45, 25%) or in the stroma (n = 59, 33%). No expression was detected in the remaining tumors. TSP-1 significantly correlated with poor survival on univariate (P = 0.01 for perivascular expression and P = 0.03 for stromal expression) and multivariate analysis (P = 0.01 for perivascular expression). CONCLUSION TSP-1 is a negatively prognostic factor for survival in resected colorectal liver metastases.
Collapse
|
29
|
Addison CL, Nör JE, Zhao H, Linn SA, Polverini PJ, Delaney CE. The response of VEGF-stimulated endothelial cells to angiostatic molecules is substrate-dependent. BMC Cell Biol 2005; 6:38. [PMID: 16262896 PMCID: PMC1291360 DOI: 10.1186/1471-2121-6-38] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 10/31/2005] [Indexed: 11/12/2022] Open
Abstract
Background The microenvironment surrounding cells can exert multiple effects on their biological responses. In particular the extracellular matrix surrounding cells can profoundly influence their behavior. It has been shown that the extracellular matrix composition in tumors is vastly different than that found in normal tissue with increased amounts of certain matrices such as collagen I. It has been previously demonstrated that VEGF stimulation of endothelial cells growing on type I collagen results in the induction of bcl-2 expression and enhanced endothelial cell survival. We sought to investigate whether this increased endothelial cell survival resulted in the failure of angiostatic molecules to inhibit angiogenesis. Results We now demonstrate that VEGF-induced survival on collagen I impairs the ability of three known angiostatic molecules, TSP-1, IP-10 and endostatin to inhibit endothelial cell proliferation. Apoptosis of endothelial cells, growing on collagen I, induced by TSP-1 and IP-10 was also inhibited following VEGF stimulation. In contrast, endostatin induced apoptosis in these same cells. Further analysis determined that endostatin did not decrease the expression of bcl-2 nor did it increase activation of caspase-3 in the presence of VEGF. Alternatively, it appeared that in the presence of VEGF, endostatin induced the activation of caspase-8 in endothelial cells grown on collagen I. Furthermore, only endostatin had the ability to inhibit VEGF-induced sprout formation in collagen I gels. Conclusion These data suggest that TSP-1, IP-10 and endostatin inhibit endothelial cells via different mechanisms and that only endostatin is effective in inhibiting angiogenic activities in the presence of collagen I. Our results suggest that the efficacy of angiostatic treatments may be impaired depending on the context of the extracellular matrix within the tumor environment and thus could impede the efficacy of angiostatic therapies.
Collapse
Affiliation(s)
- Christina L Addison
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, 501 Smyth Rd., Ottawa Ontario, K1H 8L6, Canada
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, 1011 North University Ave., Ann Arbor Michigan 48109-1078, USA
| | - Huijun Zhao
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, 501 Smyth Rd., Ottawa Ontario, K1H 8L6, Canada
| | - Stephanie A Linn
- Oral Medicine, Pathology and Oncology, School of Dentistry, University of Michigan, 1011 North University Ave., Ann Arbor Michigan 48109-1078, USA
| | - Peter J Polverini
- Oral Medicine, Pathology and Oncology, School of Dentistry, University of Michigan, 1011 North University Ave., Ann Arbor Michigan 48109-1078, USA
| | - Christie E Delaney
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, 501 Smyth Rd., Ottawa Ontario, K1H 8L6, Canada
| |
Collapse
|
30
|
Kawano Y, Nakamura S, Nasu K, Fukuda J, Narahara H, Miyakawa I. Expression and regulation of thrombospondin-1 by human endometrial stromal cells. Fertil Steril 2005; 83:1056-9. [PMID: 15820829 DOI: 10.1016/j.fertnstert.2004.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/16/2022]
Abstract
Thrombospondin-1 (TSP-1) production was modulated by EGF, IFN-gamma, and in vitro decidualization. It is suggested that TSP-1 may contribute to the regulation of neovascularization in the endometrium and gestational tissues.
Collapse
Affiliation(s)
- Yasushi Kawano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama, Oita 879-5593, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Xiao Y, Kleeff J, Guo J, Gazdhar A, Liao Q, Di Cesare PE, Büchler MW, Friess H. Cartilage oligomeric matrix protein expression in hepatocellular carcinoma and the cirrhotic liver. J Gastroenterol Hepatol 2004; 19:296-302. [PMID: 14748877 DOI: 10.1111/j.1440-1746.2003.03268.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cartilage oligomeric matrix protein (COMP) is the fifth member of the thrombospondin family of extracellular, calcium-binding proteins. It was initially isolated and characterized in cartilage tissue, where it is thought to contribute to the extracellular matrix composition and cell-extracellular matrix interaction. In the present study the expression of COMP was investigated in normal liver (n=19), liver cirrhosis (n=14) and hepatocellular carcinoma (HCC; n=16) tissues, both at the mRNA and protein level. METHODS AND RESULTS By northern blot and western blot analysis, COMP was absent or rarely expressed in the normal liver and liver cirrhosis tissues, but significantly overexpressed in HCC tissue samples. The COMP mRNA overexpression in HCC was not related to the clinical stage or tumor grade. By in situ hybridization and immunohistochemistry analysis, COMP mRNA and protein expression were localized within the cytoplasm of the tumor cells. CONCLUSION COMP is highly expressed within the tumor cells of HCC, suggesting that COMP might play a role in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Yi Xiao
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Meiniel A, Meiniel R, Gonçalves-Mendes N, Creveaux I, Didier R, Dastugue B. The thrombospondin type 1 repeat (TSR) and neuronal differentiation: roles of SCO-spondin oligopeptides on neuronal cell types and cell lines. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 230:1-39. [PMID: 14692680 DOI: 10.1016/s0074-7696(03)30001-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SCO-spondin is a large glycoprotein secreted by ependymal cells of the subcommissural organ. It shares functional domains called thrombospondin type 1 repeats (TSRs) with a number of developmental proteins expressed in the central nervous system, and involved in axonal pathfinding. Also, SCO-spondin is highly conserved in the chordate phylum and its multiple domain organization is probably a chordate innovation. The putative involvement of SCO-spondin in neuron/glia interaction in the course of development is assessed in various cell culture systems. SCO-spondin interferes with several developmental processes, including neuronal survival, neurite extension, neuronal aggregation, and fasciculation. The TSR motifs, and especially the WSGWSSCSVSCG sequence, are most important in these neuronal responses. Integrins and growth factor receptors may cooperate as integrative signals. We discuss the putative involvement of the subcommissural organ/Reissner's fiber complex in developmental events, as a particular extracellular signaling system.
Collapse
Affiliation(s)
- Annie Meiniel
- INSERUM UMR 384 et Laboratoire de Biochimie médicale, F-63001 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
33
|
Sottile J, Hocking DC. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 2002; 13:3546-59. [PMID: 12388756 PMCID: PMC129965 DOI: 10.1091/mbc.e02-01-0048] [Citation(s) in RCA: 471] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Revised: 06/14/2002] [Accepted: 07/08/2002] [Indexed: 12/11/2022] Open
Abstract
Remodeling of extracellular matrices occurs during development, wound healing, and in a variety of pathological processes including atherosclerosis, ischemic injury, and angiogenesis. Thus, identifying factors that control the balance between matrix deposition and degradation during tissue remodeling is essential for understanding mechanisms that regulate a variety of normal and pathological processes. Using fibronectin-null cells, we found that fibronectin polymerization into the extracellular matrix is required for the deposition of collagen-I and thrombospondin-1 and that the maintenance of extracellular matrix fibronectin fibrils requires the continual polymerization of a fibronectin matrix. Further, integrin ligation alone is not sufficient to maintain extracellular matrix fibronectin in the absence of fibronectin deposition. Our data also demonstrate that the retention of thrombospondin-1 and collagen I into fibrillar structures within the extracellular matrix depends on an intact fibronectin matrix. An intact fibronectin matrix is also critical for maintaining the composition of cell-matrix adhesion sites; in the absence of fibronectin and fibronectin polymerization, neither alpha5beta1 integrin nor tensin localize to fibrillar cell-matrix adhesion sites. These data indicate that fibronectin polymerization is a critical regulator of extracellular matrix organization and stability. The ability of fibronectin polymerization to act as a switch that controls the organization and composition of the extracellular matrix and cell-matrix adhesion sites provides cells with a means of precisely controlling cell-extracellular matrix signaling events that regulate many aspects of cell behavior including cell proliferation, migration, and differentiation.
Collapse
Affiliation(s)
- Jane Sottile
- Department of Medicine, Center for Cardiovascular Research, Rochester, New York 14642, USA.
| | | |
Collapse
|
34
|
Abstract
Thrombospondins are secreted, multidomain macromolecules that act as regulators of cell interactions in vertebrates. Gene knockout mice constructed for two members of this family demonstrate roles in the organization and homeostasis of multiple tissues, with particularly significant activities in the regulation of angiogenesis. This review discusses the functions of thrombospondins with regard to their cellular mechanisms of action and highlights recent advances in understanding how multifactorial molecular interactions, at the cell surface and within extracellular matrix, produce cell-type-specific effects on cell behavior and the organization of matrix and tissues.
Collapse
Affiliation(s)
- J C Adams
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
35
|
Song HS, Son MJ, Lee YM, Kim WJ, Lee SW, Kim CW, Kim KW. Oxygen tension regulates the maturation of the blood-brain barrier. Biochem Biophys Res Commun 2002; 290:325-31. [PMID: 11779173 DOI: 10.1006/bbrc.2001.6205] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The oxygen tension during the development of vascular systems influences vascular vessel formation through regulating angiogenesis. We studied the effect of hypoxia/reoxygenation (H/R) to explain its role in concert with astrocytes involvement in the development of the blood-brain barrier (BBB). On the basis of the fact that the disappearance of hypoxic regions and the decreased expression of vascular endothelial growth factor (VEGF) were observed by immunohistochemistry in a development-dependent manner in rat cerebral cortex, we examined the effects of astrocytes on the BBB-like properties of ECV304 cells by exposing astrocytes to H/R. Conditioned medium of reoxygenated astrocytes inhibited [(3)H]thymidine incorporation and tube formation of ECV 304 cells. When astrocytes were exposed to reoxygenation, the expression of VEGF was reduced, whereas the expression of angiopoietin-1 and thrombospondin-1 was enhanced. Moreover, [(3)H]sucrose permeability assay revealed that astrocytes enhance the barrier function of ECV 304 cells in coculture model within 5 h of reoxygenation. Correspondingly, the occludin expression of ECV 304 cells was slightly increased by the conditioned medium of reoxygenated astrocytes. In conclusion, our study suggests that reoxygenation of astrocytes may act as a significant driving force for the maturation of the BBB during brain development through oxygen-regulated gene(s).
Collapse
Affiliation(s)
- Hyun Seok Song
- Department of Molecular Biology, Pusan National University, Pusan, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Meiniel A. SCO-spondin, a glycoprotein of the subcommissural organ/Reissner's fiber complex: evidence of a potent activity on neuronal development in primary cell cultures. Microsc Res Tech 2001; 52:484-95. [PMID: 11241859 DOI: 10.1002/1097-0029(20010301)52:5<484::aid-jemt1034>3.0.co;2-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the cattle, SCO-spondin was shown to be a brain-secreted glycoprotein specifically expressed in the subcommissural organ (SCO), an ependymal differentiation located in the roof of the Sylvian aqueduct. Furthermore, SCO-spondin makes part of Reissner's fiber (RF), a structure present in the central canal of the spinal cord. Sequencing of overlaping cDNA inserts after successive screening of a cattle SCO cDNA expression library allowed characterization of the complete sequence of this novel protein. Conserved domains were identified including twenty-six thrombospondin type 1 repeats (TSRs), nine low-density lipoprotein receptor LDLr type A domains (LDLRA), two epidermal growth factor EGF-like domains, and homologies to mucins and the von Willebrand factor were found in the amino- and carboxy- termini. In addition, SCO-spondin shows a unique arrangement "in mosaic" of these domains. The putative function of SCO-spondin in neuronal differentiation is discussed regarding these features and homologies with other developmental molecules of the central nervous system exhibiting TSR domains, and involved in axonal guidance.To correlate molecular and functional features of SCO-spondin, we tested the effect of oligopeptides whose sequences include highly conserved regions of the TSRs, LDLRA repeats, and a potent site of attachment to glycosaminoglycan, on cortical and spinal cord neurons in primary cell cultures. Peptides corresponding to SCO-spondin TSRs markedly increased adhesivity and neuritic outgrowth of cortical neurons and induced disaggregation of spinal cord neurons. Thus, SCO-spondin is a candidate to interfere with neuronal development and/or axonal guidance during ontogenesis of the central nervous system in modulating side-to-side and side-to-substratum interactions, and in promoting neuritic outgrowth. RF proper has a wide range of activity on neuronal differentiation, including survival, aggregation, and disaggregation effects and neurite extension of cortical and spinal cord neurones "in vitro." Thus, the SCO/RF complex may interact with developmental processes of the central nervous system including the posterior commissure and spinal cord differentiation.
Collapse
Affiliation(s)
- A Meiniel
- Laboratoire de Biochimie médicale et INSERM U384 28, Place Henri Dunant, 63001 Clermont-Ferrand cedex, France.
| |
Collapse
|
37
|
Gobron S, Creveaux I, Meiniel R, Didier R, Herbet A, Bamdad M, El Bitar F, Dastugue B, Meiniel A. Subcommissural organ/Reissner's fiber complex: characterization of SCO-spondin, a glycoprotein with potent activity on neurite outgrowth. Glia 2000; 32:177-91. [PMID: 11008217 DOI: 10.1002/1098-1136(200011)32:2<177::aid-glia70>3.0.co;2-v] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the developing vertebrate nervous system, several proteins of the thrombospondin superfamily act on axonal pathfinding. By successive screening of a SCO-cDNA library, we have characterized a new member of this superfamily, which we call SCO-spondin. This extracellular matrix glycoprotein of 4,560 amino acids is expressed and secreted early in development by the subcommissural organ (SCO), an ependymal differentiation located in the roof of the Sylvian aqueduct. Furthermore, SCO-spondin makes part of Reissner's fiber (RF), a thread-like structure present in the central canal of the spinal cord. This novel protein shows a unique arrangement of several conserved domains, including 26 thrombospondin type 1 repeats (TSR), nine low-density lipoprotein receptor (LDLr) type A domains, two epidermal growth factor (EGF)-like domains, and N- and C-terminal von Willebrand factor (vWF) cysteine-rich domains, all of which are potent sites of protein-protein interaction. Regarding the huge number of TSR, the putative function of SCO-spondin on axonal guidance is discussed in comparison with other developmental molecules of the CNS exhibiting TSR. To correlate SCO-spondin molecular feature and function, we tested the effect of oligopeptides, whose sequences include highly conserved amino acids of the consensus domains on a neuroblastoma cell line B 104. One of these peptides (WSGWSSCSRSCG) markedly increased neurite outgrowth of B 104 cells and this effect was dose dependent. Thus, SCO-spondin is a favorable substrate for neurite outgrowth and may participate in the posterior commissure formation and spinal cord differentiation during ontogenesis of the central nervous system.
Collapse
Affiliation(s)
- S Gobron
- Institut National de la Santé et de la Recherche Médicale (INSERM, U384) and Laboratoire de Biochimie Médicale, Faculté de Médecine, Clermont-Ferrand Cédex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Adams JC, Tucker RP. The thrombospondin type 1 repeat (TSR) superfamily: Diverse proteins with related roles in neuronal development. Dev Dyn 2000. [DOI: 10.1002/(sici)1097-0177(200006)218:2%3c280::aid-dvdy4%3e3.0.co;2-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
39
|
Abstract
The thrombospondins are a family of proteins found widely in the embryonic extracellular matrix. Like most matrix proteins, thrombospondins are modular and contain a series of repeated domains arrayed between globular amino and carboxyl terminal domains. In recent years, other proteins that share thrombospondin type 1 repeats, or TSRs, have been identified. These include the F-spondin gene family, the members of the semaphorin 5 family, UNC-5, SCO-spondin, and others. Most of these are expressed in the developing nervous system, and many have expression patterns and in vitro properties that suggest potential roles in the guidance of cell and growth cone migration. Both cell- and matrix-binding motifs have been identified in the TSRs of thrombospondin-1, so it has been hypothesized that the properties of these diverse proteins may also depend on the presence of these repeats. Here, we review the cell biology of the TSR module, the extensive literature regarding the distribution and functions of thrombospondins and other TSR superfamily proteins, and evaluate their possible roles during the development of the nervous system.
Collapse
Affiliation(s)
- J C Adams
- MRC-Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, United Kingdom.
| | | |
Collapse
|
40
|
Vanguri VK, Wang S, Godyna S, Ranganathan S, Liau G. Thrombospondin-1 binds to polyhistidine with high affinity and specificity. Biochem J 2000; 347:469-73. [PMID: 10749676 PMCID: PMC1220979 DOI: 10.1042/0264-6021:3470469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thrombospondin-1 (TSP1) is a secreted trimeric glycoprotein of 450 kDa with demonstrated effects on cell growth, adhesion and migration. Its complex biological activity is attributed to its ability to bind to cell-surface receptors, growth factors and extracellular-matrix proteins. In this study, we used a (125)I solid-phase binding assay to demonstrate that TSP1 binds specifically to proteins containing polyhistidine stretches. Based on studies with three different six-histidine-containing recombinant proteins, we derived an average dissociation constant of 5 nM. The binding of (125)I-labelled TSP1 to these proteins was inhibited by peptides containing histidine residues, with the degree of competition being a function of the number of histidines within the peptide. Binding was not inhibited by excess histidine or imidazole, indicating that the imidazole ring is not sufficient for recognition by TSP1. Heparin was a potent inhibitor of binding with a K(i) of 50 nM, suggesting that the heparin-binding domain of TSP1 may be involved in this interaction. This was confirmed by the ability of a recombinant heparin-binding domain of TSP1 to directly compete for TSP1 binding to polyhistidine-containing proteins. Affinity chromatography with a polyhistidine-containing peptide immobilized on agarose revealed that TSP1 in platelet releasates is the major polypeptide retained on the six-histidine-peptide column. We conclude that TSP1 contains a high-affinity binding site for polyhistidine and this is likely to be the molecular basis for the observed binding of TSP1 to histidine-rich glycoprotein. The possibility that other polyhistidine-containing proteins also interact with TSP1 warrants further study.
Collapse
Affiliation(s)
- V K Vanguri
- Department of Vascular Biology, Jerome H. Holland Laboratory, American Red Cross, Rockville, MD 20855, USA
| | | | | | | | | |
Collapse
|
41
|
Melnick M, Chen H, Zhou Y, Jaskoll T. Thrombospondin-2 gene expression and protein localization during embryonic mouse palate development. Arch Oral Biol 2000; 45:19-25. [PMID: 10669089 DOI: 10.1016/s0003-9969(99)00113-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mammalian palate develops from projections of the paired maxillary processes termed palatal shelves. Shelf growth is an essential in normal palatal morphogenesis. Mesenchymal proliferation in the palatal shelves is modulated by transforming growth factor-1 (TGF-1), among other growth factors. Several pathways effect TGF-beta activation, including one which utilizes thrombospondin (TSP). TSP-1 is a major activator of TGF-beta in vivo and has been localized in head mesenchyme, including palates. TSP-2 appears to inhibit TSP-1 activation of latent TGF-beta by competitively binding the latent TGF-beta. Here the TSP-2 mRNA transcript and the immunolocalization of TSP-2 protein with progressive palatogenesis were quantified. There was a significant (p < 0.05) decline of TSP-2 transcript with palatal maturation; there was no evidence correlating the TSP-2 transcription with the amount of activated TGF-beta. At the vertical shelf stage of palatogenesis, TSP-2 protein was found throughout the extracellular matrix of shelf mesenchyme. By the horizontal shelf stage, TSP-2 protein was principally localized to the ossification centres of the developing maxilla, both in extracellular matrix and bone; far less was seen in palatal shelves proper. These results suggest that TSP-2 is multifunctional during embryonic palate formation.
Collapse
Affiliation(s)
- M Melnick
- Laboratory for Developmental Genetics, University of Southern California, Los Angeles 90089-0641, USA.
| | | | | | | |
Collapse
|
42
|
Lymn JS, Rao SJ, Clunn GF, Gallagher KL, O'Neil C, Thompson NT, Hughes AD. Phosphatidylinositol 3-kinase and focal adhesion kinase are early signals in the growth factor-like responses to thrombospondin-1 seen in human vascular smooth muscle. Arterioscler Thromb Vasc Biol 1999; 19:2133-40. [PMID: 10479655 DOI: 10.1161/01.atv.19.9.2133] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thrombospondin-1 (TSP-1) is a matricellular protein that is expressed in negligible amounts in normal blood vessels but is markedly upregulated in vascular injury. Although TSP-1 can act as a pleiotropic regulator for human vascular smooth muscle cells (HVSMCs), the intracellular signaling pathways stimulated by this protein remain obscure. In cultured HVSMCs derived from saphenous vein, TSP-1 induces tyrosine phosphorylation of a number of cellular proteins, with a complex temporal pattern of activation. Immunoprecipitation techniques have identified the early tyrosine-phosphorylated signals as being the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-K) and focal adhesion kinase (FAK). Tyrosine phosphorylation of the p85 subunit of PI 3-K showed a biphasic response to TSP-1 stimulation, which corresponded to a biphasic activation of the lipid kinase. Treatment with both wortmannin and LY294002 inhibited PI 3-K activity of HVSMCs but did not affect tyrosine phosphorylation of the p85 regulatory subunit. TSP-1-stimulated FAK phosphorylation, however, was substantially reduced by these inhibitors, as was the TSP-1-induced chemotaxis of these cells. These results suggest that activation of PI 3-K is an early signal induced by TSP-1 and is critical for chemotaxis. Activation of this kinase precedes and may occur upstream from FAK phosphorylation, although the nature of the interaction between these 2 enzymes remains obscure.
Collapse
Affiliation(s)
- J S Lymn
- Clinical Pharmacology, National Heart and Lung Institute, Imperial College of Science, Technology & Medicine, St. Mary's Hospital,
| | | | | | | | | | | | | |
Collapse
|
43
|
Pijuan-Thompson V, Grammer JR, Stewart J, Silverstein RL, Pearce SF, Tuszynski GP, Murphy-Ullrich JE, Gladson CL. Retinoic acid alters the mechanism of attachment of malignant astrocytoma and neuroblastoma cells to thrombospondin-1. Exp Cell Res 1999; 249:86-101. [PMID: 10328956 DOI: 10.1006/excr.1999.4458] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Based on the hypothesis that the attachment of neuroectodermal cells to thrombospondin-1 (TSP-1) may affect tumor spread and play a role in the anti-tumor effects of retinoic acid, we investigated the expression of TSP-1 in these cells in situ and the effect of retinoic acid on the morphology of TSP-1-adherent neuroblastoma (SK-N-SH) and malignant astrocytoma (U-251MG) cells in vitro. TSP-1-adherent SK-N-SH cells demonstrated process outgrowth, with further neuronal differentiation after retinoic acid treatment, consistent with the in situ studies showing that TSP-1 expression occurs in a differentiation-specific manner in neuroblastic tumors. TSP-1-adherent U-251MG cells failed to spread; however, after retinoic acid treatment the cells demonstrated broad lamellipodia containing radial actin fibers and organization of integrins alpha3beta1 and alpha5beta1 in clusters in lamellipodia and filopodia. The attachment of both SK-N-SH and U-251MG cells to TSP-1 was found to be mediated by heparan sulfate proteoglycans, integrins, and the CLESH-1 adhesion domain first identified in CD36. Heparin and heparitinase treatment inhibited TSP-1 attachment. Integrins alpha3beta1 and alpha5beta1 mediated TSP-1 attachment of SK-N-SH cells, and integrins alpha3beta1, alpha5beta1, and alphavbeta3 mediated TSP-1 attachment of U-251MG cells. Attachment was dependent on the RGD sequence which is located in the carboxy-terminus of TSP-1. Treatment with a pharmacologic dosage of retinoic acid altered the TSP-1 cell adhesion mechanism in both cell lines in that neither heparin nor micromolar concentrations of the RGD peptide inhibited attachment; after treatment, attachment was inhibited by the CSVTCG peptide located in the type I repeat domain of TSP-1 and a recombinant adhesion domain (CLESH-1) from CD36. Expression of CD36 was found in the retinoic acid-treated U-251MG cells. These data indicate that neuroectodermally derived cells utilize several mechanisms to attach to TSP-1, and these are differentially modulated by treatment with retinoic acid. These data also suggest that the CSVTCG sequence of TSP-1 modulates or directs cytoskeletal organization in neuroblastoma and astrocytoma cells.
Collapse
Affiliation(s)
- V Pijuan-Thompson
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, LHRB 567, 701 South 19th Street, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dardik R, Lahav J. Functional changes in the conformation of thrombospondin-1 during complexation with fibronectin or heparin. Exp Cell Res 1999; 248:407-14. [PMID: 10222132 DOI: 10.1006/excr.1999.4415] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondin-1 (TSP-1) interacts specifically with heparin and fibronectin in vitro and colocalizes with fibronectin and heparan sulfate in the extracellular matrix (ECM). Its conformation is strongly dependent on Ca2+ concentration. We have previously shown that both heparin and fibronectin have two binding sites on the TSP-1 subunit which may require conformational change for their occupancy (R. Dardik and J. Lahav, 1987, Eur. J. Biochem. 168, 347; ibid 1989, 185, 581). To investigate the effect of TSP-1 binding to fibronectin and heparin on its functional conformation, TSP-1 was subjected to proteolysis in the presence and absence of ligands and of Ca2+. We found that while trypsin cleavage of free TSP-1 resulted in the inactivation of ligand binding, TSP-1 bound to either fibronectin or heparin remained stably associated with these ligands. Cleavage by thrombin or tissue plasminogen activator (tPA) showed that Ca2+-depleted TSP-1, when bound to fibronectin or to heparin, yielded proteolytic cleavage patterns typical of the Ca2+-containing form. Cleavage by chymotrypsin was not affected by binding to fibronectin or heparin; hence loss of proteolytic susceptibility was not due to steric hindrance by the ligands. Taken together, these results indicate that: (A) binding of TSP-1 to fibronectin or heparin is a two-step mechanism where binding to one site leads to conformational changes that enable binding to the second site; (B) TSP-1 in complex with fibronectin or heparin adopts the Ca2+-containing conformation in the absence of Ca2+; and (C) such complexes are highly resistant to cleavage by tPA and, if cleaved by other enzymes, the TSP-1 fragments remain bound to other ECM components. These characteristics have profound significance for platelet adhesion and cell migration into wounds where Ca2+ concentrations are reduced.
Collapse
Affiliation(s)
- R Dardik
- National Center for Hemophilia, Sheba Medical Center, Tel Hashomer
| | | |
Collapse
|
45
|
Goldblum SE, Young BA, Wang P, Murphy-Ullrich JE. Thrombospondin-1 induces tyrosine phosphorylation of adherens junction proteins and regulates an endothelial paracellular pathway. Mol Biol Cell 1999; 10:1537-51. [PMID: 10233161 PMCID: PMC25335 DOI: 10.1091/mbc.10.5.1537] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Thrombospondin-1 (TSP) induces endothelial cell (EC) actin reorganization and focal adhesion disassembly and influences multiple EC functions. To determine whether TSP might regulate EC-EC interactions, we studied the effect of exogenous TSP on the movement of albumin across postconfluent EC monolayers. TSP increased transendothelial albumin flux in a dose-dependent manner at concentrations >/=1 microg/ml (2.2 nM). Increases in albumin flux were observed as early as 1 h after exposure to 30 microg/ml (71 nM) TSP. Inhibition of tyrosine kinases with herbimycin A or genistein protected against the TSP-induced barrier dysfunction by >80% and >50%, respectively. TSP-exposed monolayers exhibited actin reorganization and intercellular gap formation, whereas pretreatment with herbimycin A protected against this effect. Increased staining of phosphotyrosine-containing proteins was observed in plaque-like structures and at the intercellular boundaries of TSP-treated cells. In the presence of protein tyrosine phosphatase inhibition, TSP induced dose- and time-dependent increments in levels of phosphotyrosine-containing proteins; these TSP dose and time requirements were compatible with those defined for EC barrier dysfunction. Phosphoproteins that were identified include the adherens junction proteins focal adhesion kinase, paxillin, gamma-catenin, and p120(Cas). These combined data indicate that TSP can modulate endothelial barrier function, in part, through tyrosine phosphorylation of EC proteins.
Collapse
Affiliation(s)
- S E Goldblum
- Division of Infectious Diseases, Department of Medicine, Department of Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
46
|
Vacca A, Di Marcotullio L, Giannini G, Farina M, Scarpa S, Stoppacciaro A, Calce A, Maroder M, Frati L, Screpanti I, Gulino A. Thrombospondin-1 is a mediator of the neurotypic differentiation induced by EGF in thymic epithelial cells. Exp Cell Res 1999; 248:79-86. [PMID: 10094815 DOI: 10.1006/excr.1999.4394] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thymic epithelial cell component originates from cranial neural crest as well as from endoderm and ectoderm of the third pharyngeal pouch and branchial cleft. Epidermal growth factor (EGF) has been previously shown to play a crucial role in directing thymic epithelial cells toward a neural-oriented cell fate. To identify genes that are involved in the EGF-induced neurotypic differentiation of the thymic stroma-derived TC-1S cell line, we studied EGF-treated and untreated cells by RNA fingerprinting PCR-based differential screening. We obtained 23 distinct sequences including 18 known genes and 5 sequences previously unreported, which are currently under characterization. Here, we describe the involvement of one of the isolated genes, the thrombospondin-1, as a mediator of the neurotypic differentiation induced by EGF in TC-1S cells. We show that thrombospondin-1 mRNA and protein levels are increased by EGF. Moreover, exogenous thrombospondin-1 is able to enhance the outgrowth of neurite-like processes as well as the expression of neurofilaments and neural cell adhesion molecule in TC-1S cells. These observations suggest that the up-regulation of thrombospondin-1 synthesis induced by EGF contributes to the differentiation choice of thymic epithelial cells toward a neural fate, reminiscent of their neural crest origin.
Collapse
Affiliation(s)
- A Vacca
- Department of Experimental Medicine and Pathology, University "La Sapienza" of Rome, Rome, 00161, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Barnes JL, Mitchell RJ, Kanalas JJ, Barnes VL. Differential expression of thrombospondin and cellular fibronectin during remodeling in proliferative glomerulonephritis. J Histochem Cytochem 1999; 47:533-44. [PMID: 10082755 DOI: 10.1177/002215549904700412] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thrombospondin-1 (TSP-1) and an alternatively spliced fibronectin (Fn)-EIIIA isoform are adhesive proteins associated with embryogenesis and tissue remodeling. We compared, by immunohistochemistry and in situ hybridization, the course of TSP-1 and Fn-EIIIA expression in a model of glomerulonephritis induced by Habu snake venom (HV) and characterized by mesangial cell migration, proliferation, and extracellular matrix (ECM) synthesis. At 24 hr after HV, TSP-1 and Fn-EIIIA proteins localized in the central aspects of lesions associated with platelets and macrophages and at the margins of lesions coinciding with mesangial cell migration (determined by Thy-1 staining). Mesangial cells at this time expressed TSP-1 but not Fn-EIIIA mRNA. TSP-1 protein and mRNA peaked in lesions at 48 hr and were associated with cell proliferation (determined by PCNA, alpha-smooth muscle actin phenotype, and expression of beta-PDGF receptor mRNA). TSP-1 expression declined at 72 hr when expression of ECM synthesis peaked, as determined by increased expression of collagen Type IV, laminin, and TGF-beta1 protein and mRNA. Mesangial cell expression of Fn-EIIIA was first observed at 48 hr and was most abundant at 72 hr after HV. Therefore, platelet- and macrophage-derived Fn-EIIIA and TSP-1 in early lesions are associated with mesangial cell migration. Mesangial cell upregulation of TSP-1 is associated with migration and proliferation but not maximal ECM accumulation, whereas mesangial cell expression of Fn-EIIIA is associated with proliferation and ECM accumulation. These results suggest distinctive temporal and spatial roles for TSP-1 and Fn-EIIIA in remodeling during glomerular disease. (J Histochem Cytochem 47:533-543, 1999)
Collapse
Affiliation(s)
- J L Barnes
- The Medical Research Service, Audie Murphy Memorial Veterans Administration Hospital, San Antonio, Texas, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Using a monoclonal antibody raised against human platelet thrombospondin, we found anti-thrombospondin immunoreactivity in the extracellular matrix of avian embryos, coincident with the ventral pathways followed by trunk neural crest cells. To confirm that the antibody recognized thrombospondin-1 and to determine the tissue of origin of the thrombospondin matrix, a thrombospondin-1 cRNA probe was used for whole mount in situ hybridization. This probe revealed thrombospondin-1 mRNAs in the developing myotome before and during neural crest cell migration. The effect of thrombospondin-1 on neural crest cell migration, morphology, and adhesion was assayed in vitro. Quail trunk neural crest cells cultured on 4 microg/ml of thrombospondin-1 migrate at 1.14 +/- 0.54 microm/min, which is significantly greater than the rate of cell migration on tissue culture plastic. Using a shaker-based adhesion assay, a significantly greater number of neural crest cells remain attached to dishes coated with 4 microg/ml of thrombospondin-1 than to tissue culture plastic alone. The number of neural crest cells that remain attached to 4 microg/ml of thrombospondin-1 is similar to the number that remain attached to dishes coated with 10 microg/ml of fibronectin. These observations indicate that neural crest cells migrate through a thrombospondin-filled extracellular matrix, and that thrombospondin-1 promotes neural crest cell migration and adhesion. Thus, thrombospondin-1 is the first somite-derived extracellular matrix molecule with properties consistent with a role in the promotion of migration into the anterior somite, as opposed to the repulsion of neural crest cells from the posterior half of the somite.
Collapse
Affiliation(s)
- R P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis School of Medicine, 95616, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Hoffman JR, O'Shea KS. Thrombospondin expression in nerve regeneration I. Comparison of sciatic nerve crush, transection, and long-term denervation. Brain Res Bull 1999; 48:413-20. [PMID: 10357074 DOI: 10.1016/s0361-9230(99)00021-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Patterns of expression of the extracellular matrix molecule thrombospondin (TSP) were examined during peripheral nerve regeneration following sciatic nerve crush or transection. In noninjured nerve, was present in the axoplasm, Schwann cells, endoneurium, and perineurium of the adult mouse sciatic nerve. Following nerve crush or nerve transection, levels of TSP rapidly increased distal to the trauma site. Elevated levels of TSP were present distal to regenerating axons, while expression gradually returned to normal proximal to the regenerating axons. When reinnervation was blocked, TSP levels remained high in the endoneurium in excess of 30 days, but TSP was absent by 60 days. Following reanastomosis of the proximal and distal segments after 60 days of denervation, TSP was re-expressed in the distal nerve stump. These results indicate that TSP, which is involved in neuronal migrations in the embryo and neurite outgrowth in vitro, appears to play a role in axonal regeneration in the adult peripheral nervous system.
Collapse
Affiliation(s)
- J R Hoffman
- Department of Anatomy and Cell Biology, The University of Michigan, Ann Arbor, USA.
| | | |
Collapse
|
50
|
Hoffman JR, O'Shea KS. Thrombospondin expression in nerve regeneration II. Comparison of optic nerve crush in the mouse and goldfish. Brain Res Bull 1999; 48:421-7. [PMID: 10357075 DOI: 10.1016/s0361-9230(99)00022-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of the extracellular matrix molecule thrombospondin (TSP) was examined following retrobulbar crush injury of the goldfish and mouse optic nerve. TSP was present within the glia limitans and surrounding axon fascicles of the control normal goldfish optic nerve, but was absent from the normal mouse optic nerve. Following crush injury of the goldfish optic nerve, TSP expression increased dramatically along the path of regenerating axons and returned to near normal levels following axonal outgrowth. In contrast, during the unsuccessful attempt at regeneration following crush injury of the mouse optic nerve, TSP expression was present only in glial fibrillary acidic protein (GFAP)-negative, macrophage-rich regions distal to ganglion cell axons. These results indicate that TSP expression is increased in a temporal pattern along the path of regenerating goldfish optic nerve axons and therefore may be involved in successful central nervous system regeneration. The absence of TSP in the environment encountered by damaged mouse optic nerve axons may correlate with the lack of regeneration observed in the mouse optic nerve.
Collapse
Affiliation(s)
- J R Hoffman
- Department of Anatomy, The University of Michigan, Ann Arbor, USA.
| | | |
Collapse
|