1
|
Pennarun G, Picotto J, Bertrand P. Close Ties between the Nuclear Envelope and Mammalian Telomeres: Give Me Shelter. Genes (Basel) 2023; 14:genes14040775. [PMID: 37107534 PMCID: PMC10137478 DOI: 10.3390/genes14040775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The nuclear envelope (NE) in eukaryotic cells is essential to provide a protective compartment for the genome. Beside its role in connecting the nucleus with the cytoplasm, the NE has numerous important functions including chromatin organization, DNA replication and repair. NE alterations have been linked to different human diseases, such as laminopathies, and are a hallmark of cancer cells. Telomeres, the ends of eukaryotic chromosomes, are crucial for preserving genome stability. Their maintenance involves specific telomeric proteins, repair proteins and several additional factors, including NE proteins. Links between telomere maintenance and the NE have been well established in yeast, in which telomere tethering to the NE is critical for their preservation and beyond. For a long time, in mammalian cells, except during meiosis, telomeres were thought to be randomly localized throughout the nucleus, but recent advances have uncovered close ties between mammalian telomeres and the NE that play important roles for maintaining genome integrity. In this review, we will summarize these connections, with a special focus on telomere dynamics and the nuclear lamina, one of the main NE components, and discuss the evolutionary conservation of these mechanisms.
Collapse
Affiliation(s)
- Gaëlle Pennarun
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Julien Picotto
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
2
|
Abstract
Mechanistic modeling in biology allows to investigate, based on first principles, if putative hypotheses are compatible with observations and to drive further experimental works. Along this line, polymer modeling has been instrumental in 3D genomics to better understand the impact of key mechanisms on the spatial genome organization. Here, I describe how polymer-based models can be practically used to study the role of epigenome in chromosome folding. I illustrate this methodology in the context of Drosophila epigenome folding.
Collapse
Affiliation(s)
- Daniel Jost
- University of Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France.
| |
Collapse
|
3
|
Nishimura K, Komiya M, Hori T, Itoh T, Fukagawa T. 3D genomic architecture reveals that neocentromeres associate with heterochromatin regions. J Cell Biol 2018; 218:134-149. [PMID: 30396998 PMCID: PMC6314543 DOI: 10.1083/jcb.201805003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/21/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Although centromeres usually associate with heterochromatic repetitive sequences, such repetitive sequences are not detected around neocentromeres. Nishimura et al. performed systematic 4C analysis of cells containing differently positioned neocentromeres and demonstrate that these neocentromeres commonly associate with distant heterochromatin-rich regions at the 3D level. The centromere is an important genomic locus for chromosomal segregation. Although the centromere is specified by sequence-independent epigenetic mechanisms in most organisms, it is usually composed of highly repetitive sequences, which associate with heterochromatin. We have previously generated various chicken DT40 cell lines containing differently positioned neocentromeres, which do not contain repetitive sequences and do not associate with heterochromatin. In this study, we performed systematic 4C analysis using three cell lines containing differently positioned neocentromeres to identify neocentromere-associated regions at the 3D level. This analysis reveals that these neocentromeres commonly associate with specific heterochromatin-rich regions, which were distantly located from neocentromeres. In addition, we demonstrate that centromeric chromatin adopts a compact structure, and centromere clustering also occurs in vertebrate interphase nuclei. Interestingly, the occurrence of centromere–heterochromatin associations depend on CENP-H, but not CENP-C. Our analyses provide an insight into understanding the 3D architecture of the genome, including the centromeres.
Collapse
Affiliation(s)
- Kohei Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masataka Komiya
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Takehiko Itoh
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Kwon HK, Chen HM, Mathis D, Benoist C. Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat Immunol 2017; 18:1238-1248. [PMID: 28892470 PMCID: PMC5679728 DOI: 10.1038/ni.3835] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
FoxP3 conditions the transcriptional signature and functional facets of regulatory T cells (Treg cells). Its mechanism of action, whether as an activator or a repressor, has remained unclear. Here, chromatin analysis showed that FoxP3 bound active enhancer elements, not repressed chromatin, around loci over- or under-expressed in Treg cells. We evaluated the impact of a panel of FoxP3 mutants on its transcriptional activity and interactions with DNA, transcriptional cofactors and chromatin. Computational integration, confirmed by biochemical interaction and size analyses, showed that FoxP3 existed in distinct multimolecular complexes. It was active and primarily an activator when complexed with the transcriptional factors RELA, IKZF2 and KAT5. In contrast, FoxP3 was inactive when complexed with the histone methyltransferase EZH2 and transcription factors YY1 and IKZF3. The latter complex partitioned to a peripheral region of the nucleus, as shown by super-resolution microscopy. Thus, FoxP3 acts in multimodal fashion to directly activate or repress transcription, in a context- and partner-dependent manner, to govern Treg cell phenotypes.
Collapse
Affiliation(s)
- Ho-Keun Kwon
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| | - Hui-Min Chen
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston MA 02115, USA
| |
Collapse
|
5
|
Matsuda A, Asakawa H, Haraguchi T, Hiraoka Y. Spatial organization of the Schizosaccharomyces pombe genome within the nucleus. Yeast 2016; 34:55-66. [PMID: 27766670 DOI: 10.1002/yea.3217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is a useful experimental system for studying the organization of chromosomes within the cell nucleus. S. pombe has a small genome that is organized into three chromosomes. The small size of the genome and the small number of chromosomes are advantageous for cytological and genome-wide studies of chromosomes; however, the small size of the nucleus impedes microscopic observations owing to limits in spatial resolution during imaging. Recent advances in microscopy, such as super-resolution microscopy, have greatly expanded the use of S. pombe as a model organism in a wide range of studies. In addition, biochemical studies, such as chromatin immunoprecipitation and chromosome conformation capture, have provided complementary approaches. Here, we review the spatial organization of the S. pombe genome as determined by a combination of cytological and biochemical studies. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| |
Collapse
|
6
|
Fabbretti F, Iannetti I, Guglielmi L, Perconti S, Evangelistella C, Proietti De Santis L, Bongiorni S, Prantera G. Confocal Analysis of Nuclear Lamina Behavior during Male Meiosis and Spermatogenesis in Drosophila melanogaster. PLoS One 2016; 11:e0151231. [PMID: 26963718 PMCID: PMC4786128 DOI: 10.1371/journal.pone.0151231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/25/2016] [Indexed: 11/19/2022] Open
Abstract
Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL), underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage. Nevertheless, very few data are present in the literature on the NL behavior during this process. Here we show the first and complete description of NL behavior during meiosis and spermatogenesis in Drosophila melanogaster. By confocal imaging, we characterized the NL modifications from mitotic stages, through meiotic divisions to sperm differentiation with an anti-laminDm0 antibody against the major component of the Drosophila NL. We observed that continuous changes in the NL structure occurred in parallel with chromatin reorganization throughout the whole process and that meiotic divisions occurred in a closed context. Finally, we analyzed NL in solofuso meiotic mutant, where chromatin segregation is severely affected, and found the strict correlation between the presence of chromatin and that of NL.
Collapse
Affiliation(s)
- Fabiana Fabbretti
- Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
- * E-mail: (GP); (FF)
| | - Ilaria Iannetti
- Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
| | - Loredana Guglielmi
- Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
| | - Susanna Perconti
- Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
| | | | | | - Silvia Bongiorni
- Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
| | - Giorgio Prantera
- Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
- * E-mail: (GP); (FF)
| |
Collapse
|
7
|
Abstract
Telomeres are obligatory chromosomal landmarks that demarcate the ends of linear chromosomes to distinguish them from broken ends and can also serve to organize the genome. In both budding and fission yeast, they cluster at the periphery of the nucleus, potentially to establish a compartment of silent chromatin. To gain insight into telomere organization in higher organisms, we investigated their distribution in interphase nuclei of Drosophila melanogaster. We focused on the syncytial blastoderm, an excellent developmental stage for live imaging due to the synchronous division of the nuclei at this time. We followed the EGFP-labeled telomeric protein HOAP in vivo and found that the 16 telomeres yield four to six foci per nucleus, indicative of clustering. Furthermore, we confirmed clustering in other somatic tissues. Importantly, we observed that HOAP signal intensity in the clusters increases in interphase, potentially due to loading of HOAP to newly replicated telomeres. To determine the rules governing clustering, we used in vivo imaging and fluorescence in situ hybridization to test several predictions. First, we inspected mutant embryos that develop as haploids and found that clustering is not mediated by associations between homologs. Second, we probed specifically for a telomere of novel sequence and found strong evidence against DNA sequence identity and homology as critical factors. Third, we ruled out predominance of intrachromosomal interactions by marking both ends of a chromosome. Based on these results, we propose that clustering is independent of sequence and is likely maintained by an as yet undetermined factor.
Collapse
|
8
|
PP2A-twins is antagonized by greatwall and collaborates with polo for cell cycle progression and centrosome attachment to nuclei in drosophila embryos. PLoS Genet 2011; 7:e1002227. [PMID: 21852958 PMCID: PMC3154958 DOI: 10.1371/journal.pgen.1002227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/10/2011] [Indexed: 12/13/2022] Open
Abstract
Cell division and development are regulated by networks of kinases and phosphatases. In early Drosophila embryogenesis, 13 rapid nuclear divisions take place in a syncytium, requiring fine coordination between cell cycle regulators. The Polo kinase is a conserved, crucial regulator of M-phase. We have recently reported an antagonism between Polo and Greatwall (Gwl), another mitotic kinase, in Drosophila embryos. However, the nature of the pathways linking them remained elusive. We have conducted a comprehensive screen for additional genes functioning with polo and gwl. We uncovered a strong interdependence between Polo and Protein Phosphatase 2A (PP2A) with its B-type subunit Twins (Tws). Reducing the maternal contribution of Polo and PP2A-Tws together is embryonic lethal. We found that Polo and PP2A-Tws collaborate to ensure centrosome attachment to nuclei. While a reduction in Polo activity leads to centrosome detachments observable mostly around prophase, a reduction in PP2A-Tws activity leads to centrosome detachments at mitotic exit, and a reduction in both Polo and PP2A-Tws enhances the frequency of detachments at all stages. Moreover, we show that Gwl antagonizes PP2A-Tws function in both meiosis and mitosis. Our study highlights how proper coordination of mitotic entry and exit is required during embryonic cell cycles and defines important roles for Polo and the Gwl-PP2A-Tws pathway in this process. The development and survival of all living organisms relies on the fine regulation of cell division at the molecular level. This coordination depends on kinases and phosphatases, enzymes that catalyze the addition and removal of phosphate groups on specific target proteins. The genes encoding these enzymes have been largely conserved between species during evolution. In a previous paper published in PLoS Genetics, we found an antagonism between the Polo and Greatwall mitotic kinases in the fruit fly model. In this study, we have used fly genetics to identify additional genes that function with polo and greatwall during early embryogenesis. We have found a specific form of the Protein Phosphatase 2A (PP2A-Tws) that collaborates with the Polo kinase at a stage when multiple nuclei rapidly divide in a large, single-cell early embryo. We found that Polo and PP2A-Tws are both required for the proper cohesion between nuclei and the centrosomes, which are essential structures for mitosis and embryonic development. We also found that the Greatwall kinase antagonizes the PP2A-Tws phosphatase to promote mitosis and meiosis. Our genetic study sheds new light on cell cycle regulation and is consistent with recent results from biochemical studies using frog cell extracts.
Collapse
|
9
|
Abstract
INTRODUCTIONThe fruit fly Drosophila melanogaster has long been used to study the genetic factors involved in development, and the ability to localize molecules within the organism that allow genetic manipulation can be quite useful. This article discusses some of the issues relating to fixation of various Drosophila tissues for analysis by immunofluorescence microscopy. References to specific fixation protocols are included. The proper fixation protocol will depend on the structure to be visualized, the degree of preservation required, the preservation of antigenicity of the molecules of interest, and the level of resolution of the subsequent imaging. In addition, the fixation of thick tissues requires a protocol that effectively fixes the interior of the sample while not cross-linking the matrix so heavily that antibodies or other probes cannot penetrate efficiently and be washed out of the tissue. Particular attention is given to the handling of embryos, because these are used frequently and require special consideration.
Collapse
|
10
|
Fish KN, Sweet RA, Deo AJ, Lewis DA. An automated segmentation methodology for quantifying immunoreactive puncta number and fluorescence intensity in tissue sections. Brain Res 2008; 1240:62-72. [PMID: 18793619 DOI: 10.1016/j.brainres.2008.08.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/14/2008] [Accepted: 08/15/2008] [Indexed: 02/05/2023]
Abstract
A number of human brain diseases have been associated with disturbances in the structure and function of cortical synapses. Answering fundamental questions about the synaptic machinery in these disease states requires the ability to image and quantify small synaptic structures in tissue sections and to evaluate protein levels at these major sites of function. We developed a new automated segmentation imaging method specifically to answer such fundamental questions. The method takes advantage of advances in spinning disk confocal microscopy, and combines information from multiple iterations of a fluorescence intensity/morphological segmentation protocol to construct three-dimensional object masks of immunoreactive (IR) puncta. This new methodology is unique in that high- and low-fluorescing IR puncta are equally masked, allowing for quantification of the number of fluorescently-labeled puncta in tissue sections. In addition, the shape of the final object masks highly represents their corresponding original data. Thus, the object masks can be used to extract information about the IR puncta (e.g., average fluorescence intensity of proteins of interest). Importantly, the segmentation method presented can be easily adapted for use with most existing microscopy analysis packages.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
11
|
Bearer EL. Overview of image analysis, image importing, and image processing using freeware. ACTA ACUST UNITED AC 2008; Chapter 14:Unit 14.15. [PMID: 18265322 DOI: 10.1002/0471142727.mb1415s63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Quantitative image analysis turns microscopic data that might otherwise be merely descriptive into reliable mechanistic information. This unit provides an overview of the types of analysis that have been useful in the past, as well as descriptions of emerging applications. In addition, two protocols are included for importing data and for the first steps of data manipulation in the more common analytical applications of the freeware, NIH Image and ImageJ, as well as commercially available imaging software, Adobe Photoshop.
Collapse
Affiliation(s)
- E L Bearer
- Brown University, Providence, Rhode Island, USA
| |
Collapse
|
12
|
Scaria GS, Ramsay G, Katzen AL. Two components of the Myb complex, DMyb and Mip130, are specifically associated with euchromatin and degraded during prometaphase throughout development. Mech Dev 2008; 125:646-61. [PMID: 18424081 DOI: 10.1016/j.mod.2008.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 01/21/2023]
Abstract
The Drosophila Myb protein, DMyb, is a transcription factor important for cell proliferation and development. Unlike the mRNAs produced by mammalian myb genes, Drosophila myb transcripts do not fluctuate substantially during the cell cycle. A comprehensive analysis of the localization and degradation of the DMyb protein has now revealed that DMyb is present in nuclei during S phase of all mitotically active tissues throughout embryogenesis and larval development. However, DMyb and Mip130, another member of the Myb complex, are not uniformly distributed throughout the nucleus. Instead, both proteins, which colocalize, appear to be specifically excluded from heterochromatic regions of chromosomes. Furthermore, DMyb and Mip130 are unstable proteins that are degraded during prometaphase of mitosis. The timing of their degradation is reminiscent of Cyclin A, but at least for DMyb, the mechanism differs; although DMyb degradation is dependent on core APC/C components, it does not depend on the Fizzy or Fizzy-related adaptor proteins. DMyb levels are also high in actively endoreplicating polyploid cells, but there is no indication of cyclical degradation. We conclude that cell cycle specific degradation of DMyb and Mip130 is likely to be utilized as a key regulatory mechanism in down-regulating their levels and the activity of the Myb complex.
Collapse
Affiliation(s)
- George S Scaria
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland Avenue, 2370 MBRB, Chicago IL 60607-7170, USA
| | | | | |
Collapse
|
13
|
Kuznetsova IS, Enukashvily NI, Noniashvili EM, Shatrova AN, Aksenov ND, Zenin VV, Dyban AP, Podgornaya OI. Evidence for the existence of satellite DNA-containing connection between metaphase chromosomes. J Cell Biochem 2007; 101:1046-61. [PMID: 17340617 DOI: 10.1002/jcb.21237] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Physical connections between mitotic chromosomes have been reported previously. It was assumed that the interchromosome connection was based on the DNA-protein thread. However, the data about DNA sequences and protein component in the thread is fragmentary. We demonstrated on the mouse cultured cell line and prematurely condensed chromosomes that: (a) all four mouse satellite DNA fragments (major and minor satellite, mouse satellite 3 (MS3) and mouse satellite 4 (MS4)) were involved in the thread formation; (b) MS4 was involved in the thread to the least extent among all the other fragments; (c) telomere was never a member of the thread; (d) the thread was synthesized at a late G(2) phase; (e) RNA helicase p68 and CENP-B were among the protein components of the interchromosome connection. It was shown by FACS analysis that in mouse and human cell lines: (1) the flow karyotype spectrums were never free from chromosome aggregates; (2) chromosome association did not depend on the chromosome length and each chromosome was free to associate with the other.
Collapse
Affiliation(s)
- I S Kuznetsova
- Institute of Cytology RAS, Tikhoretsky Avenue 4, St Petersburg, Russia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The cell nucleus is a highly structured compartment where nuclear components are thought to localize in non-random positions. Correct positioning of large chromatin domains may have a direct impact on the localization of other nuclear components, and can therefore influence the global functionality of the nuclear compartment. DNA methylation of cytosine residues in CpG dinucleotides is a prominent epigenetic modification of the chromatin fiber. DNA methylation, in conjunction with the biochemical modification pattern of histone tails, is known to lock chromatin in a close and transcriptionally inactive conformation. The relationship between DNA methylation and large-scale organization of nuclear architecture, however, is poorly understood. Here we briefly summarize present concepts of nuclear architecture and current data supporting a link between DNA methylation and the maintenance of large-scale nuclear organization.
Collapse
Affiliation(s)
- J Espada
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | | |
Collapse
|
15
|
Hall VJ, Cooney MA, Shanahan P, Tecirlioglu RT, Ruddock NT, French AJ. Nuclear lamin antigen and messenger RNA expression in bovine in vitro produced and nuclear transfer embryos. Mol Reprod Dev 2005; 72:471-82. [PMID: 16161164 DOI: 10.1002/mrd.20381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nuclear lamina is a complex meshwork of nuclear lamin filaments that lies on the interface of the nuclear envelope and chromatin and is important for cell maintenance, nucleoskeleton support, chromatin remodeling, and protein recruitment to the inner nucleolus. Protein and mRNA patterns for the major nuclear lamins were investigated in bovine in vitro fertilized (IVF) and nuclear transfer embryos. Expression of lamins A/C and B were examined in IVF bovine germinal vesicle (GV) oocytes, metaphase II oocytes, zygotes, 2-cell, 8-cell, 16-32-cell embryos, morulae, and blastocysts (n = 10). Lamin A/C was detected in 9/10 immature oocytes, 10/10 zygotes, 8/10 2-cell embryos, 4/10 morulae, 10/10 blastocysts but absent during the maternal embryonic transition. Lamin B was ubiquitously expressed during IVF preimplantation development but was only detected in 4/10 GV oocytes. Messenger RNA expression confirms that the major lamins, A/C and B1 are expressed throughout preimplantation development and transcribed by the embryo proper. Lamin A/C and B expression were observed (15 min, 30 min, 60 min, 120 min) following somatic cell nuclear transfer using adult fibroblasts and at the 2-cell, 8-cell, 16-32-cell, morula and blastocyst stage (n = 5). Altered expression levels and localization of nuclear lamins A/C and B was determined in nuclear transfer embryos during the first 2 hr post fusion, coincidental with only partial nuclear envelope breakdown as well as during the initial cleavage divisions, but was restored by the morula stage. This mechanical and molecular disruption of the nuclear lamina provides key evidence for incomplete nuclear remodeling and reprogramming following somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Vanessa J Hall
- Centre for Early Human Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
16
|
McCain J, Danzy L, Hamdi A, Dellafosse O, DiMario P. Tracking nucleolar dynamics with GFP-Nopp140 during Drosophila oogenesis and embryogenesis. Cell Tissue Res 2005; 323:105-15. [PMID: 16158326 DOI: 10.1007/s00441-005-0044-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/21/2005] [Indexed: 11/28/2022]
Abstract
We expressed two green fluorescent protein (GFP)-tagged Nopp140 isoforms in transgenic Drosophila melanogaster to study nucleolar dynamics during oogenesis and early embryogenesis. Specifically, we wanted to test whether the quiescent oocyte nucleus stored maternal Nopp140 and then to determine precisely when nucleoli formed during embryogenesis. During oogenesis nurse cell nucleoli accumulated GFP-Nopp140 gradually such that posterior nurse cell nucleoli in egg chambers at stage 10 were usually brighter than the more anterior nurse cell nucleoli. Nucleoli within apoptotic nurse cells disassembled in stages 12 and 13, but not all GFP-Nopp140 entered the oocyte through inter-connecting cytoplasmic bridges. Oocytes, on the other hand, lost their nucleoli by stage 3, but GFP-Nopp140 gradually accumulated in oocyte nuclei during stages 8-13. Most oocyte nuclei at stage 10 stored GFP-Nopp140 uniformly, but many stage 10 oocytes accumulated GFP-Nopp140 in presumed endobodies or in multiple smaller spheres. All oocyte nuclei at stages 11-12 were uniformly labeled, and GFP-Nopp140 diffused to the cytoplasm upon nuclear disassembly in stage 13. GFP-Nopp140 reappeared during embryogenesis; initial nucleologenesis occurred in peripheral somatic nuclei during embryonic stage 13, one stage earlier than reported previously. These GFP-Nopp140-containing foci disassembled at the 13th syncytial mitosis, and a second nucleologenesis occurred in early stage 14. The resulting nucleoli occupied nuclear regions closest to the periphery of the embryos. Pole cells contained GFP-Nopp140 during the syncytial embryonic stages, but their nucleologenesis started at gastrulation.
Collapse
Affiliation(s)
- Jennifer McCain
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, 70803-1715, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Eukaryotic genomes are distributed on linear chromosomes that are grouped together in the nucleus, an organelle separated from the cytoplasm by a characteristic double membrane studded with large proteinaceous pores. The chromatin within chromosomes has an as yet poorly characterized higher-order structure, but in addition to this, chromosomes and specific subchromosomal domains are nonrandomly positioned in nuclei. This review examines functional implications of the long-range organization of the genome in interphase nuclei. A rigorous test of the physiological importance of nuclear architecture is achieved by introducing mutations that compromise both structure and function. Focussing on such genetic approaches, we address general concepts of interphase nuclear order, the role of the nuclear envelope (NE) and lamins, and finally the importance of spatial organization for DNA replication and heritable gene expression.
Collapse
Affiliation(s)
- Angela Taddei
- University of Geneva, Department of Molecular Biology, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
18
|
Wilson PG, Simmons R, Saighal S, Shigali S. Novel nuclear defects in KLP61F-deficient mutants in Drosophila are partially suppressed by loss of Ncd function. J Cell Sci 2004; 117:4921-33. [PMID: 15367580 DOI: 10.1242/jcs.01334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
KLP61F in Drosophila and other BimC kinesins are essential for spindle bipolarity across species; loss of BimC function generates high frequencies of monopolar spindles. Concomitant loss of Kar3 kinesin function increases the frequency of bipolar spindles although the underlying mechanism is not known. Recent studies raise the question of whether BimC kinesins interact with a non-microtubule spindle matrix rather than spindle microtubules. Here we present cytological evidence that loss of KLP61F function generates novel defects during M-phase in the organization and integrity of the nuclear lamina, an integral component of the nuclear matrix. Larval neuroblasts and spermatocytes of klp61F mutants showed deep involutions in the nuclear lamina extending toward the centrally located centrosomes. Repositioning of centrosomes to form monopolar spindles probably does not cause invaginations as similar invaginations formed in spermatocytes lacking centrosomes entirely. Immunofluorescence microscopy indicated that non-claret disjunctional (Ncd) is a component of the nuclear matrix in somatic cells and spermatocytes. Loss of Ncd function increases the frequency of bipolar spindles in klp61F mutants. Nuclear defects were incompletely suppressed; micronuclei formed near telophase at the poles of bipolar spindle in klp61F ncd spermatocytes. Our results are consistent with a model in which KLP61F prevents Ncd-mediated collapse of a nonmicrotubule matrix derived from the interphase nucleus.
Collapse
Affiliation(s)
- Patricia G Wilson
- Georgia State University, Department of Biology, 24 Peachtree Center, Atlanta 30303, USA.
| | | | | | | |
Collapse
|
19
|
Beçak ML, Beçak W, Pereira A. Somatic pairing, endomitosis and chromosome aberrations in snakes (Viperidae and Colubridae). AN ACAD BRAS CIENC 2003; 75:285-300. [PMID: 12947479 DOI: 10.1590/s0001-37652003000300004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The positioning of macrochromosomes of Bothrops jararaca and Bothrops insularis (Viperidae) was studied in undistorted radial metaphases of uncultured cells (spermatogonia and oogonia) not subjected to spindle inhibitors. Colchicinized metaphases from uncultured (spleen and intestine) and cultured tissues (blood) were also analyzed. We report two antagonic non-random chromosome arrangements in untreated premeiotic cells: the parallel configuration with homologue chromosomes associated side by side in the metaphase plate and the antiparallel configuration having homologue chromosomes with antipolar distribution in the metaphase ring. The antiparallel aspect also appeared in colchicinized cells. The spatial chromosome arrangement in both configurations is groupal size-dependent and maintained through meiosis. We also describe, in untreated gonia cells, endomitosis followed by reductional mitosis which restores the diploid number. In B. jararaca males we observed that some gonad regions present changes in the meiotic mechanism. In this case, endoreduplicated cells segregate the diplochromosomes to opposite poles forming directly endoreduplicated second metaphases of meiosis with the suppression of first meiosis. By a successive division, these cells form nuclei with one set of chromosomes. Chromosome doubling in oogonia is known in hybrid species and in parthenogenetic salamanders and lizards. This species also presented chromosome rearrangements leading to aneuploidies in mitosis and meiosis. It is suggested that somatic pairing, endomitosis, meiotic alterations, and chromosomal aberrations can be correlated processes. Similar aspects of nuclei configurations, endomitosis and reductional mitosis were found in other Viperidae and Colubridae species.
Collapse
Affiliation(s)
- Maria Luiza Beçak
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, 05503-900, Brasil.
| | | | | |
Collapse
|
20
|
Hayakawa T, Haraguchi T, Masumoto H, Hiraoka Y. Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J Cell Sci 2003; 116:3327-38. [PMID: 12840071 DOI: 10.1242/jcs.00635] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterochromatin protein 1 (HP1) plays an important role in heterochromatin formation. Three subtypes of HP1, namely HP1alpha, beta, and gamma, have been identified in humans. In this study, using yellow fluorescent protein (YFP) fusion constructs, we examined the intracellular localization of human HP1 subtypes during the cell cycle. During interphase, all three HP1 subtypes were localized to centromeric heterochromatin and to promyelocytic leukemia (PML) nuclear bodies. Different preferences, however, were observed among the subtypes: during interphase HP1beta localized most preferentially to centromeric heterochromatin, whereas HP1alpha and gamma were more preferentially localized to PML nuclear bodies. During metaphase, only HP1alpha, was localized to the centromere. We thus determined which molecular domains of HP1 were necessary for their intracellular localization. Our results showed that the C-terminal fragment (amino acid residues 101-180) of HP1alpha was necessary for localization to the metaphase centromere and the N-terminal fragment (amino acid residues 1-76) of HP1beta was necessary for localization to the interphase centromere. Interestingly, simultaneous observations of residues 101-180 of HP1alpha and residues 1-76 of HP1beta in living HeLa cells revealed that during late prophase, the HP1beta fragment dissociated from centromeric regions and the HP1alpha fragment accumulated in centromeric regions. These results indicate that different specific regions of human HP1alpha and HP1beta mediate localization to metaphase and interphase centromeric regions resulting in association of different subtypes of HP1 with the centromere at different times during the cell cycle.
Collapse
Affiliation(s)
- Tomohiro Hayakawa
- CREST Research Project, Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | | | | | | |
Collapse
|
21
|
Maiato H, Sunkel CE, Earnshaw WC. Dissecting mitosis by RNAi in Drosophila tissue culture cells. Biol Proced Online 2003; 5:153-161. [PMID: 14569613 PMCID: PMC162172 DOI: 10.1251/bpo57] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 06/09/2003] [Accepted: 06/09/2003] [Indexed: 11/23/2022] Open
Abstract
Here we describe a detailed methodology to study the function of genes whose products function during mitosis by dsRNA-mediated interference (RNAi) in cultured cells of Drosophila melanogaster. This procedure is particularly useful for the analysis of genes for which genetic mutations are not available or for the dissection of complicated phenotypes derived from the analysis of such mutants. With the advent of whole genome sequencing it is expected that RNAi-based screenings will be one method of choice for the identification and study of novel genes involved in particular cellular processes. In this paper we focused particularly on the procedures for the proper phenotypic analysis of cells after RNAi-mediated depletion of proteins required for mitosis, the process by which the genetic information is segregated equally between daughter cells. We use RNAi of the microtubule-associated protein MAST/Orbit as an example for the usefulness of the technique.
Collapse
Affiliation(s)
- Helder Maiato
- Laboratório de Genética Molecular, Instituto de Biologia Molecular e Celular, Universidade do Porto. Rua Campo Alegre, 823, 4150-180 Porto. Portugal
| | | | | |
Collapse
|
22
|
Matsuoka H, Kosai Y, Saito M, Takeyama N, Suto H. Single-cell viability assessment with a novel spectro-imaging system. J Biotechnol 2002; 94:299-308. [PMID: 11861088 DOI: 10.1016/s0168-1656(01)00431-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single-cell viability assessment by means of plural dye probes require the spectral and temporal analysis of microscopic images of the test cells. To meet this requirement, we have developed a simple and compact spectro-imaging system using an image slicer and a grism. The image slicer was made of a bundle of 100 optical fibers. The field of view is divided into 10 x 10 sections. The spectral data of each section could be recorded every 5 s in the range from 400 to 800 nm at 5 nm resolution. The viability changes of yeast or tobacco single-cells were measured with this system. Using BY-2 cells, for example, the response to a chemical stress of saponin was measured by means of two fluorescent probes. The spectral-spatial-temporal data of fluorescein and DNA bound ethidium bromide provided us with useful information about the dynamic change of cell membrane permeability from which the cell viability was assessed.
Collapse
Affiliation(s)
- Hideaki Matsuoka
- Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan.
| | | | | | | | | |
Collapse
|
23
|
Aulner N, Monod C, Mandicourt G, Jullien D, Cuvier O, Sall A, Janssen S, Laemmli UK, Käs E. The AT-hook protein D1 is essential for Drosophila melanogaster development and is implicated in position-effect variegation. Mol Cell Biol 2002; 22:1218-32. [PMID: 11809812 PMCID: PMC134649 DOI: 10.1128/mcb.22.4.1218-1232.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the expression pattern of the D1 gene and the localization of its product, the AT hook-bearing nonhistone chromosomal protein D1, during Drosophila melanogaster development. D1 mRNAs and protein are maternally contributed, and the protein localizes to discrete foci on the chromosomes of early embryos. These foci correspond to 1.672- and 1.688-g/cm(3) AT-rich satellite repeats found in the centromeric heterochromatin of the X and Y chromosomes and on chromosomes 3 and 4. D1 mRNA levels subsequently decrease throughout later development, followed by the accumulation of the D1 protein in adult gonads, where two distributions of D1 can be correlated to different states of gene activity. We show that the EP473 mutation, a P-element insertion upstream of D1 coding sequences, affects the expression of the D1 gene and results in an embryonic homozygous lethal phenotype correlated with the depletion of D1 protein during embryogenesis. Remarkably, decreased levels of D1 mRNA and protein in heterozygous flies lead to the suppression of position-effect variegation (PEV) of the white gene in the white-mottled (w(m4h)) X-chromosome inversion. Our results identify D1 as a DNA-binding protein of known sequence specificity implicated in PEV. D1 is the primary factor that binds the centromeric 1.688-g/cm(3) satellite repeats which are likely involved in white-mottled variegation. We propose that the AT-hook D1 protein nucleates heterochromatin assembly by recruiting specialized transcriptional repressors and/or proteins involved in chromosome condensation.
Collapse
Affiliation(s)
- Nathalie Aulner
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UMR 5099, 31062 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shim K, Blake KJ, Jack J, Krasnow MA. TheDrosophila ribbongene encodes a nuclear BTB domain protein that promotes epithelial migration and morphogenesis. Development 2001; 128:4923-33. [PMID: 11731471 DOI: 10.1242/dev.128.23.4923] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development of the Drosophila tracheal (respiratory) system, the cell bodies and apical and basal surfaces of the tracheal epithelium normally move in concert as new branches bud and grow out to form tubes. We show that mutations in the Drosophila ribbon (rib) gene disrupt this coupling: the basal surface continues to extend towards its normal targets, but movement and morphogenesis of the tracheal cell bodies and apical surface is severely impaired, resulting in long basal membrane protrusions but little net movement or branch formation. rib mutant tracheal cells are still responsive to the Branchless fibroblast growth factor (FGF) that guides branch outgrowth, and they express apical membrane markers normally. This suggests that the defect lies either in transmission of the FGF signal from the basal surface to the rest of the cell or in the apical cell migration and tubulogenesis machinery. rib encodes a nuclear protein with a BTB/POZ domain and Pipsqueak DNA-binding motif. It is expressed in the developing tracheal system and other morphogenetically active epithelia, many of which are also affected in rib mutants. We propose that Rib is a key regulator of epithelial morphogenesis that promotes migration and morphogenesis of the tracheal cell bodies and apical surface and other morphogenetic movements.
Collapse
Affiliation(s)
- K Shim
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University, Stanford, CA 94305-5307, USA
| | | | | | | |
Collapse
|
25
|
Abstract
By using a fluorescence in situ hybridization technique we revealed that for nine different q-arm telomere markers the positioning of chromosomes in human G(1) interphase nuclei was chromosome size-dependent. The q-arm telomeres of large chromosomes are more peripherally located than telomeres on small chromosomes. This highly organized arrangement of chromatin within the human nucleus was discovered by determining the x and y coordinates of the hybridization sites and calculating the root-mean-square radial distance to the nuclear centers in human fibroblasts. We demonstrate here that global organization within the G(1) interphase nucleus is affected by one of the most fundamental physical quantities-chromosome size or mass-and propose two biophysical models, a volume exclusion model and a mitotic preset model, to explain our finding.
Collapse
Affiliation(s)
- H B Sun
- Biomedical Engineering Program, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
26
|
Goday C, Panzera Y, Esteban MR. A simple cytological technique to analyze nuclear divisions during preblastodermic development in Drosophila. Chromosome Res 1999; 7:445-8. [PMID: 10560967 DOI: 10.1023/a:1009245712709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C Goday
- Centro Investigaciones Biológicas (CSIC), Madrid, Spain.
| | | | | |
Collapse
|
27
|
Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA. Differences in the localization and morphology of chromosomes in the human nucleus. J Biophys Biochem Cytol 1999; 145:1119-31. [PMID: 10366586 PMCID: PMC2133153 DOI: 10.1083/jcb.145.6.1119] [Citation(s) in RCA: 677] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using fluorescence in situ hybridization we show striking differences in nuclear position, chromosome morphology, and interactions with nuclear substructure for human chromosomes 18 and 19. Human chromosome 19 is shown to adopt a more internal position in the nucleus than chromosome 18 and to be more extensively associated with the nuclear matrix. The more peripheral localization of chromosome 18 is established early in the cell cycle and is maintained thereafter. We show that the preferential localization of chromosomes 18 and 19 in the nucleus is reflected in the orientation of translocation chromosomes in the nucleus. Lastly, we show that the inhibition of transcription can have gross, but reversible, effects on chromosome architecture. Our data demonstrate that the distribution of genomic sequences between chromosomes has implications for nuclear structure and we discuss our findings in relation to a model of the human nucleus that is functionally compartmentalized.
Collapse
MESH Headings
- Cell Cycle/drug effects
- Cell Line
- Cell Nucleus/drug effects
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cells, Cultured
- Centromere/metabolism
- Centromere/ultrastructure
- Chromosomes, Human, Pair 18/chemistry
- Chromosomes, Human, Pair 18/genetics
- Chromosomes, Human, Pair 18/metabolism
- Chromosomes, Human, Pair 18/ultrastructure
- Chromosomes, Human, Pair 19/chemistry
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 19/metabolism
- Chromosomes, Human, Pair 19/ultrastructure
- DNA/metabolism
- Dactinomycin/pharmacology
- Dichlororibofuranosylbenzimidazole/pharmacology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Histone Deacetylase Inhibitors
- Histone Deacetylases/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- In Situ Hybridization, Fluorescence
- Lymphocytes/cytology
- Lymphocytes/drug effects
- Lymphocytes/metabolism
- Nuclear Matrix/drug effects
- Nuclear Matrix/genetics
- Nuclear Matrix/metabolism
- RNA Polymerase II/antagonists & inhibitors
- RNA Polymerase II/metabolism
- Telomere/metabolism
- Telomere/ultrastructure
- Transcription, Genetic/drug effects
- Translocation, Genetic
Collapse
Affiliation(s)
- J A Croft
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- W F Marshall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
29
|
Abstract
We used fluorescence in situ hybridization (FISH) to study the positions of human chromosomes on the mitotic rings of cultured human lymphocytes, MRC-5 fibroblasts, and CCD-34Lu fibroblasts. The homologous chromosomes of all three cell types had relatively random positions with respect to each other on the mitotic rings of prometaphase rosettes and anaphase cells. Also, the positions of the X and Y chromosomes, colocalized with the somatic homologues in male cells, were highly variable from one mitotic ring to another. Although random chromosomal positions were found in different pairs of CCD-34Lu and MRC-5 late-anaphases, the separations between the same homologous chromosomes in paired late-anaphase and telophase chromosomal masses were highly correlated. Thus, although some loose spatial associations of chromosomes secondary to interphase positioning may exist on the mitotic rings of some cells, a fixed order of human chromosomes and/or a rigorous separation of homologous chromosomes on the mitotic ring are not necessary for normal mitosis. Furthermore, the relative chromosomal positions on each individual metaphase plate are most likely carried through anaphase into telophase.
Collapse
Affiliation(s)
- D C Allison
- Department of Surgery, MCO Microscopy Imaging Center, Medical College of Ohio, Toledo, Ohio 43614, USA.
| | | |
Collapse
|
30
|
Abstract
The leptotene/zygotene transition of meiosis, as defined by classical cytological studies, is the period when homologous chromosomes, already being discernible individualized entities, begin to be close together or touching over portions of their lengths. This period also includes the bouquet stage: Chromosome ends, which have already become integral components of the inner nuclear membrane, move into a polarized configuration, along with other nuclear envelope components. Chromosome movements, active or passive, also occur. The detailed nature of interhomologue interactions during this period, with special emphasis on the involvement of chromosome ends, and the overall role for meiosis and recombination of chromosome movement and, especially, the bouquet stage are discussed.
Collapse
Affiliation(s)
- D Zickler
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France.
| | | |
Collapse
|
31
|
Gemkow MJ, Verveer PJ, Arndt-Jovin DJ. Homologous association of the Bithorax-Complex during embryogenesis: consequences for transvection in Drosophila melanogaster. Development 1998; 125:4541-52. [PMID: 9778512 DOI: 10.1242/dev.125.22.4541] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transvection is the phenomenon by which the expression of a gene can be controlled by its homologous counterpart in trans, presumably due to pairing of alleles in diploid interphase cells. Transvection or trans-sensing phenomena have been reported for several loci in Drosophila, the most thoroughly studied of which is the Bithorax-Complex (BX-C). It is not known how early trans-sensing occurs nor the extent or duration of the underlying physical interactions. We have investigated the physical proximity of homologous genes of the BX-C during Drosophila melanogaster embryogenesis by applying fluorescent in situ hybridization techniques together with high-resolution confocal light microscopy and digital image processing. The association of homologous alleles of the BX-C starts in nuclear division cycle 13, reaches a plateau of 70% in postgastrulating embryos, and is not perturbed by the transcriptional state of the genes throughout embryogenesis. Pairing frequencies never reach 100%, indicating that the homologous associations are in equilibrium with a dissociated state. We determined the effects of translocations and a zeste protein null mutation, both of which strongly diminish transvection phenotypes, on the extent of diploid homologue pairing. Although translocating one allele of the BX-C from the right arm of chromosome 3 to the left arm of chromosome 3 or to the X chromosome abolished trans-regulation of the Ultrabithorax gene, pairing of homologous alleles surprisingly was reduced only to 20–30%. A zeste protein null mutation neither delayed the onset of pairing nor led to unpairing of the homologous alleles. These data are discussed in the light of different models for trans-regulation. We examined the onset of pairing of the chromosome 4 as well as of loci near the centromere of chromosome 3 and near the telomere of 3R in order to test models for the mechanism of homologue pairing.
Collapse
Affiliation(s)
- M J Gemkow
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, FRG
| | | | | |
Collapse
|
32
|
Abstract
Telomeres are the termini of linear eukaryotic chromosomes consisting of tandem repeats of DNA and proteins that bind to these repeat sequences. Telomeres ensure the complete replication of chromosome ends, impart protection to ends from nucleolytic degradation, end-to-end fusion, and guide the localization of chromosomes within the nucleus. In addition, a combination of genetic, biochemical, and molecular biological approaches have implicated key roles for telomeres in diverse cellular processes such as regulation of gene expression, cell division, cell senescence, and cancer. This review focuses on recent advances in our understanding of the organization of telomeres, telomere replication, proteins that bind telomeric DNA, and the establishment of telomere length equilibrium.
Collapse
Affiliation(s)
- K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore
| | | |
Collapse
|
33
|
Andrulis ED, Neiman AM, Zappulla DC, Sternglanz R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 1998; 394:592-5. [PMID: 9707122 DOI: 10.1038/29100] [Citation(s) in RCA: 387] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional silencing in Saccharomyces cerevisiae at the HM mating-type loci and telomeres occurs through the formation of a heterochromatin-like structure. HM silencing is regulated by cis-acting elements, termed silencers, and by trans-acting factors that bind to the silencers. These factors attract the four SIR (silent information regulator) proteins, three of which (SIR2-4) spread from the silencers to alter chromatin, hence silencing nearby genes. We show here that an HMR locus with a defective silencer can be silenced by anchoring the locus to the nuclear periphery. This was accomplished by fusing integral membrane proteins to the GAL4 DNA-binding domain and overproducing the hybrid proteins, causing them to accumulate in the endoplasmic reticulum and the nuclear membrane. We expressed the hybrid proteins in a strain carrying an HMR silencer with GAL4-binding sites (UAS(G)) replacing silencer elements, causing the silencer to become anchored to the nuclear periphery and leading to silencing of a nearby reporter gene. This silencing required the hybrids of the GAL4 DNA-binding domain with membrane proteins, the UAS(G) sites and the SIR proteins. Our results indicate that perinuclear localization helps to establish transcriptionally silent chromatin.
Collapse
Affiliation(s)
- E D Andrulis
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook 11794-5215, USA
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
35
|
Cléard F, Delattre M, Spierer P. SU(VAR)3-7, a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position-effect variegation. EMBO J 1997; 16:5280-8. [PMID: 9311988 PMCID: PMC1170160 DOI: 10.1093/emboj/16.17.5280] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An increase in the dose of the Su(var)3-7 locus of Drosophila melanogaster enhances the genomic silencing of position-effect variegation caused by centromeric heterochromatin. Here we show that the product of Su(var)3-7 is a nuclear protein which associates with pericentromeric heterochromatin at interphase, whether on diploid chromosomes from embryonic nuclei or on polytene chromosomes from larval salivary glands. The protein also associates with the partially heterochromatic chromosome 4. As these phenotypes and localizations resemble those described by others for the Su(var)2-5 locus and its heterochromatin-associated protein HP1, the presumed co-operation of the two proteins was tested further. The effect of the dose of Su(var)3-7 on silencing of a number of variegating rearrangements and insertions is strikingly similar to the effect of the dose of Su(var)2-5 reported by others. In addition, the two loci interact genetically, and the two proteins co-immunoprecipitate from nuclear extracts. The results suggest that SU(VAR)3-7 and HP1 co-operate in building the genomic silencing associated with heterochromatin.
Collapse
Affiliation(s)
- F Cléard
- Department of Zoology and Animal Biology, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
36
|
Cenci G, Rawson RB, Belloni G, Castrillon DH, Tudor M, Petrucci R, Goldberg ML, Wasserman SA, Gatti M. UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes Dev 1997; 11:863-75. [PMID: 9106658 DOI: 10.1101/gad.11.7.863] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The end-to-end association of chromosomes through their telomeres has been observed in normal cells of certain organisms, as well as in senescent and tumor cells. The molecular mechanisms underlying this phenomenon are currently unknown. We show here that five independent mutant alleles in the Drosophila UbcD1 gene cause frequent telomere-telomere attachments during both mitosis and male meiosis that are not seen in wild type. These telomeric associations involve all the telomeres of the D. melanogaster chromosome complement, albeit with different frequencies. The pattern of telomeric associations observed in UbcD1 mutants suggests strongly that the interphase chromosomes of wild-type larval brain cells maintain a Rab1 orientation within the nucleus, with the telomeres and centromeres segregated to opposite sides of the nucleus. The UbcD1 gene encodes a class I ubiquitin-conjugating (E2) enzyme. This indicates that ubiquitin-mediated proteolysis is normally needed to ensure proper telomere behavior during Drosophila cell division. We therefore suggest that at least one of the targets of UbcD1 ubiquitination is a telomere-associated polypeptide that may help maintain proper chromosomal orientation during interphase.
Collapse
Affiliation(s)
- G Cenci
- Dipartimento di Genetica e Biologia Molecolare, Universitá di Roma La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Baluska F, Volkmann D, Barlow PW. Nuclear components with microtubule-organizing properties in multicellular eukaryotes: functional and evolutionary considerations. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 175:91-135. [PMID: 9203357 DOI: 10.1016/s0074-7696(08)62126-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleus and the microtubular cytoskeleton of eukaryotic cells appear to be structurally and functionally interrelated. Together they constitute a "cell body". One of the most important components of this body is a primary microtubule-organizing center (MTOC-I) located on or near the nuclear surface and composed of material that, in addition to constitutive centrosomal material, also comprises some nuclear matrix components. The MTOC-I shares a continuity with the mitotic spindle and, in animal cells, with the centrosome also. Secondary microtubule-organizing centers (MTOC-IIs) are a special feature of walled plant cells and are found at the plasma membrane where they organize arrays of cortical MTs that are essential for ordered cell wall synthesis and hence for cellular morphogenesis. MTOC-IIs are held to be similar in origin to the MTOC-I, but their material has been translocated to the cell periphery, perhaps by MTs organized and radiating from the MTOC-I. Many intranuclear, matrix-related components have been identified to participate in MT organization during mitosis and cytokinesis; some of them also seem to be related to the condensation and decondensation of chromatin during the mitotic chromosome cycle.
Collapse
Affiliation(s)
- F Baluska
- Botanisches Institut, Universität Bonn, Germany
| | | | | |
Collapse
|
38
|
|
39
|
Abstract
Little is known about what determines the nuclear matrix or how its reorganization is regulated during mitosis. In this study we report on a monoclonal antibody, mAb2A, which identifies a novel nuclear structure in Drosophila embryos which forms a diffuse meshwork at interphase but which undergoes a striking reorganization into a spindle-like structure during pro- and metaphase. Double labelings with alpha-tubulin and mAb2A antibodies demonstrate that the microtubules of the mitotic apparatus co-localize with this mAb2A labeled structure during metaphase, suggesting it may serve a role in microtubule spindle assembly and/or function during nuclear division. That the mAb2A-labeled nuclear structure is essential for cell division and/or maintenance of nuclear integrity was directly demonstrated by microinjection of mAb2A into early syncytial embryos which resulted in a disintegration of nuclear morphology and perturbation of mitosis.
Collapse
Affiliation(s)
- K M Johansen
- Department of Zoology and Genetics, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
40
|
Zhu X, Kumar R, Mandal M, Sharma N, Sharma HW, Dhingra U, Sokoloski JA, Hsiao R, Narayanan R. Cell cycle-dependent modulation of telomerase activity in tumor cells. Proc Natl Acad Sci U S A 1996; 93:6091-5. [PMID: 8650224 PMCID: PMC39194 DOI: 10.1073/pnas.93.12.6091] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Telomerase is a ribonucleoprotein complex that is thought to add telomeric repeats onto the ends of chromosomes during the replicative phase of the cell cycle. We tested this hypothesis by arresting human tumor cell lines at different stages of the cell cycle. Induction of quiescence by serum deprivation did not affect telomerase activity. Cells arrested at the G1/S phase of the cell cycle showed similar levels of telomerase to asynchronous cultures; progression through the S phase was associated with increased telomerase activity. The highest level of telomerase activity was detected in S-phase cells. In contrast, cells arrested at G2/M phase of the cell cycle were almost devoid of telomerase activity. Diverse cell cycle blockers, including transforming growth factor beta1 and cytotoxic agents, also caused inhibition of telomerase activity. These results establish a direct link between telomerase activity and progression through the cell cycle.
Collapse
Affiliation(s)
- X Zhu
- Division of Oncology, Roche Research Center, Hoffman-La Roche, Inc., Nutley, NJ 07110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dernburg AF, Broman KW, Fung JC, Marshall WF, Philips J, Agard DA, Sedat JW. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 1996; 85:745-59. [PMID: 8646782 DOI: 10.1016/s0092-8674(00)81240-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY Position-effect variegation (PEV) describes the stochastic transcriptional silencing of a gene positioned adjacent to heterochromatin. Using FISH, we have tested whether variegated expression of the eye-color gene brown in Drosophila is influenced by its nuclear localization. In embryonic nuclei, a heterochromatic insertion at the brown locus is always spatially isolated from other heterochromatin. However, during larval development this insertion physically associates with other heterochromatic regions on the same chromosome in a stochastic manner. These observations indicate that the brown gene is silenced by specific contact with centromeric heterochromatin. Moreover, they provide direct evidence for long-range chromosome interactions and their impact on three-dimensional nuclear architecture, while providing a cohesive explanation for the phenomenon of PEV.
Collapse
Affiliation(s)
- A F Dernburg
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0554, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Marshall WF, Dernburg AF, Harmon B, Agard DA, Sedat JW. Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 1996; 7:825-42. [PMID: 8744953 PMCID: PMC275932 DOI: 10.1091/mbc.7.5.825] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Specific interactions of chromatin with the nuclear envelope (NE) in early embryos of Drosophila melanogaster have been mapped and analyzed. Using fluorescence in situ hybridization, the three-dimensional positions of 42 DNA probes, primarily to chromosome 2L, have been mapped in nuclei of intact Drosophila embryos, revealing five euchromatic and two heterochromatic regions associated with the NE. These results predict that there are approximately 15 NE contacts per chromosome arm, which delimit large chromatin loops of approximately 1-2 Mb. These NE association sites do not strictly correlate with scaffold-attachment regions, heterochromatin, or binding sites of known chromatin proteins. Pairs of neighboring probes surrounding one NE association site were used to delimit the NE association site more precisely, suggesting that peripheral localization of a large stretch of chromatin is likely to result from NE association at a single discrete site. These NE interactions are not established until after telophase, by which time the nuclear envelope has reassembled around the chromosomes, and they are thus unlikely to be involved in binding of NE vesicles to chromosomes following mitosis. Analysis of positions of these probes also reveals that the interphase nucleus is strongly polarized in a Rabl configuration which, together with specific targeting to the NE or to the nuclear interior, results in each locus occupying a highly determined position within the nucleus.
Collapse
Affiliation(s)
- W F Marshall
- Department Biochemistry and Biophysics, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The nuclear matrix is an integral part of nuclear structure which undergoes a profound reorganization during the cell cycle reflecting major changes in functional requirements. This includes the processes of DNA replication and gene expression at interphase and partitioning of the nuclear contents during mitosis. Using a monoclonal antibody (mAb2A) which specifically stains a novel nuclear meshwork which reorganizes during the cell cycle in Drosophila, we have initiated a study to: 1) more closely analyze this structural reorganization; 2) clone and characterize the antigens recognized by this antibody; and 3) isolate other interacting proteins in order to gain insight into the regulation of this process. The mAb2A-labeled structure changes from what appears as a diffuse meshwork at interphase to a distinct spindle-like scaffold at prophase. Since at metaphase the microtubules of the mitotic apparatus co-localize with the mAb2A spindle structure, a model is considered whereby the nuclear mAb2A-labeled scaffolding reorganizes during the cell cycle to provide a guide for the establishment of the mitotic apparatus. The mAb2A has identified two separate antigens, each of which shows similar distribution patterns. One of these antigens has been partially cloned and contains an unusual tandem ser-thr kinase domain. The association of this kinase homologue with a nuclear scaffold which reorganizes during the cell cycle suggests that it may be involved in regulating changes in nuclear architecture during the cell cycle and/or in mediating the downstream consequences of such changes.
Collapse
Affiliation(s)
- K M Johansen
- Department of Zoology and Genetics, Iowa State University, Ames 50011, USA
| |
Collapse
|
44
|
Paddy MR, Saumweber H, Agard DA, Sedat JW. Time-resolved, in vivo studies of mitotic spindle formation and nuclear lamina breakdown in Drosophila early embryos. J Cell Sci 1996; 109 ( Pt 3):591-607. [PMID: 8907705 DOI: 10.1242/jcs.109.3.591] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Time-resolved, two-component, three-dimensional fluorescence light microscopy imaging in living Drosophila early embryos is used to demonstrate that a large fraction of the nuclear envelope lamins remain localized to a rim in the nuclear periphery until well into metaphase. The process of lamin delocalization and dispersal, typical of ‘open’ forms of mitosis, does not begin until about the time the final, metaphase geometry of the mitotic spindle is attained. Lamin dispersal is completed about the time that the chromosomal movements of anaphase begin. This pattern of nuclear lamina breakdown appears to be intermediate between traditional designations of ‘open’ and ‘closed’ mitoses. These results thus clarify earlier observations of lamins in mitosis in fixed Drosophila early embryos, clearly showing that the observed lamin localization does not result from a structurally defined ‘spindle envelope’ that persists throughout mitosis. During this extended time interval of lamin localization in the nuclear periphery, the lamina undergoes an extensive series of structural rearrangements that are closely coupled to, and likely driven by, the movements of the centrosomes and microtubules that produce the mitotic spindle. Furthermore, throughout this time the nuclear envelope structure is permeable to large macromolecules, which are excluded in interphase. While the functional significance of these structural dynamics is not yet clear, it is consistent with a functional role for the lamina in mitotic spindle formation.
Collapse
Affiliation(s)
- M R Paddy
- Center for Structural Biology and Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610-0235, USA
| | | | | | | |
Collapse
|
45
|
Francis-Lang H, Davis I, Ish-Horowicz D. Asymmetric localization of Drosophila pair-rule transcripts from displaced nuclei: evidence for directional nuclear export. EMBO J 1996; 15:640-9. [PMID: 8599947 PMCID: PMC449982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Drosophila pair-rule transcripts accumulate exclusively apical of the layer of peripheral nuclei in syncytial blastoderm stage embryos. Here, we use aneuploid embryos to test zygotic gene requirements for pair-rule transcript localization. As apical localization is maintained in all genotypes tested, the required components must be maternally encoded. In aneuploid embryos with multiple layers or cortical nuclei, pair-rule transcripts lie apical of both superficial and internalized nuclei. In the latter case, the transcripts are 'pseudo-apical', i.e. apical of the nuclei from which they derive, but basal of superficial nuclei. We show that internalized nuclei maintain their apico-basal nuclear orientation, and that they lack the apical cytoskeletal assemblies which lie adjacent to superficial nuclei. These results support a mechanism of localizing pair-rule transcripts by directional (vectorial) nuclear export.
Collapse
|
46
|
Yokota H, van den Engh G, Hearst JE, Sachs RK, Trask BJ. Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Biophys Biochem Cytol 1995; 130:1239-49. [PMID: 7559748 PMCID: PMC2120584 DOI: 10.1083/jcb.130.6.1239] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We determined the folding of chromosomes in interphase nuclei by measuring the distance between points on the same chromosome. Over 25,000 measurements were made in G0/G1 nuclei between DNA sequences separated by 0.15-190 megabase pairs (Mbp) on three human chromosomes. The DNA sequences were specifically labeled by fluorescence in situ hybridization. The relationship between mean-square interphase distance and genomic separation has two linear phases, with a transition at approximately 2 Mbp. This biphasic relationship indicates the existence of two organizational levels at scales > 100 kbp. On one level, chromatin appears to be arranged in large loops several Mbp in size. Within each loop, chromatin is randomly folded. On the second level, specific loop-attachment sites are arranged to form a supple, backbonelike structure, which also shows characteristic random walk behavior. This random walk/giant loop model is the simplest model that fully describes the observed large-scale spatial relationships. Additional evidence for large loops comes from measurements among probes in Xq28, where interphase distance increases and then locally decreases with increasing genomic separation.
Collapse
Affiliation(s)
- H Yokota
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
47
|
Sandison DR, Piston DW, Williams RM, Webb WW. Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes. APPLIED OPTICS 1995; 34:3576-3588. [PMID: 21052173 DOI: 10.1364/ao.34.003576] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Development of a laser scanning microscope for simultaneous three-dimensional imaging in both a full-field laser scanning mode (FLSM) and a confocal laser scanning mode (CLSM) permits the direct comparison of axial resolution and out-of-focus background rejection as a function of sample thickness for both FLSM and CLSM with varying detector aperture (pinhole) radii. The sample-dependent detector aperture radii that optimize the signal-to-noise ratio (S/N) in the CLSM are experimentally determined. The results verify earlier calculations [Appl. Opt. 33, 603 (1994)]. Using these results, we discuss the practical and theoretical limits on the S/N in the CLSM and compare them with those of a full-field epifluorescence microscope (FEM) that is enhanced by image deconvolution. The specimen volume over which the FLSM exhibits imaging properties that are equivalent to a FEM is calculated in the appendices.
Collapse
|
48
|
Hicke B, Rempel R, Maller J, Swank RA, Hamaguchi JR, Bradbury EM, Prescott DM, Cech TR. Phosphorylation of the Oxytricha telomere protein: possible cell cycle regulation. Nucleic Acids Res 1995; 23:1887-93. [PMID: 7596814 PMCID: PMC306959 DOI: 10.1093/nar/23.11.1887] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the macronucleus of the ciliate Oxytricha nova, telomeres end with single-stranded (T4G4)2 DNA bound to a heterodimeric telomere protein (alpha beta). Both the alpha and beta subunits (alpha-TP and beta-TP) were phosphorylated in asynchronously growing Oxytricha; beta-TP was phosphorylated to a much higher degree. In vitro, mouse cyclin-dependent kinases (Cdks) phosphorylated beta-TP in a lysine-rich domain that is not required for specific DNA binding but is implicated in higher order structure formation of telomeres. Therefore, phosphorylation of beta-TP could modulate a function of the telomere protein that is separate from specific DNA binding. Phosphoamino acid analysis revealed that the mouse Cdks modify predominantly threonine residues in beta-TP, consistent with the observation that beta-TP contains two consensus Cdk recognition sequences containing threonine residues. In Xenopus egg extracts that undergo cell cycling, beta-TP was phosphorylated in M phase and dephosphorylated in interphase. This work provides the first direct evidence of phosphorylation at telomeres in any organism, as well as indirect evidence for cell cycle regulation of telomere phosphorylation. The Cdc2/cyclin A and Cdc2/cyclin B kinases are required for major mitotic events. An attractive model is that phosphorylation of beta-TP by these kinases is required for the breakdown of telomere associations with each other and/or with nuclear structures prior to nuclear division.
Collapse
Affiliation(s)
- B Hicke
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado, Boulder 80309-0215, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhórn R, Bradbury EM. Well-defined genome architecture in the human sperm nucleus. Chromosoma 1995; 103:577-90. [PMID: 7587580 DOI: 10.1007/bf00357684] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using fluorescence in situ hybridization, conventional epifluorescence microscopy, and laser scanning confocal microscopy followed by three-dimensional reconstruction we describe a well-defined higher order packaging of the human genome in the sperm cell nucleus. This was determined by the spatial localization of centromere and telomere regions of all chromosomes and supported by localization of subtelomere sequences of chromosome 3 and the entire chromosome 2. The nuclear architecture in the human sperm is characterized by the clustering of the 23 centromeres into a compact chromocenter positioned well inside the nucleus. The ends of the chromosomes are exposed to the nuclear periphery where both the subtelomere and the telomere sequences of the chromosome arms are joined into dimers. Thus chromosomes in the human sperm nucleus are looped into a hairpin-like configuration. The biological implications of this nuclear architecture in spermatogenesis and male pronuclear formation following fertilization are discussed.
Collapse
MESH Headings
- Cell Nucleus/ultrastructure
- Centromere/ultrastructure
- Chromosomes, Human/ultrastructure
- Chromosomes, Human, Pair 2/ultrastructure
- Chromosomes, Human, Pair 3/ultrastructure
- Humans
- Image Processing, Computer-Assisted
- In Situ Hybridization, Fluorescence/methods
- Male
- Microscopy, Atomic Force
- Microscopy, Confocal
- Microscopy, Fluorescence
- Nuclear Envelope/chemistry
- Spermatozoa/chemistry
- Spermatozoa/ultrastructure
- Telomere/ultrastructure
Collapse
Affiliation(s)
- A O Zalensky
- Department of Biological Chemistry, University of California at Davis 95616, USA
| | | | | | | | | | | |
Collapse
|
50
|
Gunawardena S, Heddle E, Rykowski MC. ‘Chromosomal puffing’ in diploid nuclei of Drosophila melanogaster. J Cell Sci 1995; 108 ( Pt 5):1863-72. [PMID: 7657710 DOI: 10.1242/jcs.108.5.1863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In situ hybridization has become a powerful technique for dissecting nuclear structure. By localizing nucleic acids with high precision, it is possible to infer the native structure of chromosomes, replication factories and transcript processing complexes. To increase the value of this technique, we have established the limits of resolution of two-color in situ hybridization to chromosomal DNA in diploid chromosomes of Drosophila embryonic nuclei. Using high-resolution 3-dimensional optical microscopy and computational image analysis, we establish that we can distinguish the location of chromosomal sequences that lie 27–29 kb apart within a 40 kb transcription unit with an accuracy of about 100 nm. Contrary to observations made in mammalian tissue culture cells, we find that when the gene is expressed, it assumes an open configuration, and that the extent of decondensation is variable from chromosome to chromosome. Further experiments suggest that variation in gene structure results from asynchrony in transcriptional elongation. We suggest that the phenomenon we observe is the diploid analog to chromosomal puffing that occurs in the transcriptionally active regions of Drosophila polytene chromosomes.
Collapse
Affiliation(s)
- S Gunawardena
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson 85724, USA
| | | | | |
Collapse
|