1
|
Gorodilova AV, Kharisova CB, Osinnikova MN, Kitaeva KV, Filin IY, Mayasin YP, Solovyeva VV, Rizvanov AA. The Well-Forgotten Old: Platelet-Rich Plasma in Modern Anti-Aging Therapy. Cells 2024; 13:1755. [PMID: 39513862 PMCID: PMC11545519 DOI: 10.3390/cells13211755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Currently, approaches to personalized medicine are actively developing. For example, the use of platelet-rich plasma (PRP) is actively growing every year. As a result of activation, platelets release a wide range of growth factors, cytokines, chemokines, and angiogenic factors, after which these molecules regulate chemotaxis, inflammation, and vasomotor function and play a crucial role in restoring the integrity of damaged vascular walls, angiogenesis, and tissue regeneration. Due to these characteristics, PRP has a wide potential in regenerative medicine and gerontology. PRP products are actively used not only in esthetic medicine but also to stimulate tissue regeneration and relieve chronic inflammation. PRP therapy has a number of advantages, but the controversial results of clinical studies, a lack of standardization of the sample preparation of the material, and insufficient objective data on the evaluation of efficacy do not allow us to unambiguously look at the use of PRP for therapeutic purposes. In this review, we will examine the current clinical efficacy of PRP-based products and analyze the contribution of PRP in the therapy of diseases associated with aging.
Collapse
Affiliation(s)
- Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (C.B.K.); (M.N.O.); (K.V.K.); (I.Y.F.); (Y.P.M.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420008 Kazan, Russia
| |
Collapse
|
2
|
Gooneratne TD, Homer-Vanniasinkam S, Wijeyaratne SM. Beneficial Effects of Insulin on Ischemia Reperfusion Injury in Human Skeletal Muscle. Vasc Specialist Int 2022; 38:28. [PMID: 36216364 PMCID: PMC9550711 DOI: 10.5758/vsi.220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/28/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Exaggerated leucocyte activity is a crucial step in the pathophysiology of skeletal muscle ischemia-reperfusion injury (IRI). We tested the hypothesis that insulin, via its' anti-leukocyte activity, attenuates skeletal muscle IRI in humans. Materials and Methods This randomized, blinded, placebo-controlled trial was conducted in patients with skeletal muscle ischemia who required revascularization. Treatment protocols were similar among them except for the insulin group, which received an infusion of insulin at 2.5 U/h. The degree of endothelial adhesiveness; leukocyte activity and pro-inflammatory status via P-selectin, tumor necrosis factor (TNF)-alpha, and myeloperoxidase (MPO) levels in the venous effluent; and clinical outcomes were measured. Results Twenty-four consenting patients were randomized to the insulin or control group. There were no significant differences between the two groups except for the median serum insulin level, which was higher in the insulin group (P<0.01). No serious intervention-related adverse events were observed. P-selectin (55.04-99.86 pg/mL; P<0.001), MPO (110.8-160.6 pg/mL; P<0.001), and TNF-alpha (12.16-36.01 pg/mL; P<0.001) levels demonstrated a significant increase post-reperfusion in the 'control' group, reaching a peak value at 2 hours post-reperfusion. The increase in all three markers from baseline was significantly diminished in the insulin group at the two-hour (P-selectin, P=0.001; MPO, P=0.001; TNF-alpha, P=0.005) and four-hour (P-selectin, P=0.003; MPO, P=0.002; TNF-alpha, P=0.01) intervals. The differences in clinical outcomes between the insulin and control groups were not statistically significant. Conclusion In clinical practice, insulin has the potential to attenuate the severity of skeletal muscle IRI inhibiting P-selectin, MPO, and TNF-alpha levels.
Collapse
|
3
|
The potential applications of microparticles in the diagnosis, treatment, and prognosis of lung cancer. Lab Invest 2022; 20:404. [PMID: 36064415 PMCID: PMC9444106 DOI: 10.1186/s12967-022-03599-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022]
Abstract
Microparticles (MPs) are 100–1000 nm heterogeneous submicron membranous vesicles derived from various cell types that express surface proteins and antigenic profiles suggestive of their cellular origin. MPs contain a diverse array of bioactive chemicals and surface receptors, including lipids, nucleic acids, and proteins, which are essential for cell-to-cell communication. The tumour microenvironment (TME) is enriched with MPs that can directly affect tumour progression through their interactions with receptors. Liquid biopsy, a minimally invasive test, is a promising alternative to tissue biopsy for the early screening of lung cancer (LC). The diverse biomolecular information from MPs provides a number of potential biomarkers for LC risk assessment, early detection, diagnosis, prognosis, and surveillance. Remodelling the TME, which profoundly influences immunotherapy and clinical outcomes, is an emerging strategy to improve immunotherapy. Tumour-derived MPs can reverse drug resistance and are ideal candidates for the creation of innovative and effective cancer vaccines. This review described the biogenesis and components of MPs and further summarised their main isolation and quantification methods. More importantly, the review presented the clinical application of MPs as predictive biomarkers in cancer diagnosis and prognosis, their role as therapeutic drug carriers, particularly in anti-tumour drug resistance, and their utility as cancer vaccines. Finally, we discussed current challenges that could impede the clinical use of MPs and determined that further studies on the functional roles of MPs in LC are required.
Collapse
|
4
|
Ma CIJ, Burgess J, Brill JA. Maturing secretory granules: Where secretory and endocytic pathways converge. Adv Biol Regul 2021; 80:100807. [PMID: 33866198 DOI: 10.1016/j.jbior.2021.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Secretory granules (SGs) are specialized organelles responsible for the storage and regulated release of various biologically active molecules from the endocrine and exocrine systems. Thus, proper SG biogenesis is critical to normal animal physiology. Biogenesis of SGs starts at the trans-Golgi network (TGN), where immature SGs (iSGs) bud off and undergo maturation before fusing with the plasma membrane (PM). How iSGs mature is unclear, but emerging studies have suggested an important role for the endocytic pathway. The requirement for endocytic machinery in SG maturation blurs the line between SGs and another class of secretory organelles called lysosome-related organelles (LROs). Therefore, it is important to re-evaluate the differences and similarities between SGs and LROs.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jason Burgess
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
5
|
Endothelial Glycocalyx as a Regulator of Fibrotic Processes. Int J Mol Sci 2021; 22:ijms22062996. [PMID: 33804258 PMCID: PMC7999025 DOI: 10.3390/ijms22062996] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels’ mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events. In the present review, we described the mechanisms that disturb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase. We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic events and on the possible pharmacological strategies to preserve this delicate structure.
Collapse
|
6
|
Chen CM, Lu HC, Tung YT, Chen W. Antiplatelet Therapy for Acute Respiratory Distress Syndrome. Biomedicines 2020; 8:biomedicines8070230. [PMID: 32708068 PMCID: PMC7399831 DOI: 10.3390/biomedicines8070230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and devastating syndrome that contributes to serious morbidities and mortality in critically ill patients. No known pharmacologic therapy is beneficial in the treatment of ARDS, and the only effective management is through a protective lung strategy. Platelets play a crucial role in the pathogenesis of ARDS, and antiplatelet therapy may be a potential medication for ARDS. In this review, we introduce the overall pathogenesis of ARDS, and then focus on platelet-related mechanisms underlying the development of ARDS, including platelet adhesion to the injured vessel wall, platelet-leukocyte-endothelium interactions, platelet-related lipid mediators, and neutrophil extracellular traps. We further summarize antiplatelet therapy, including aspirin, glycoprotein IIb/IIIa receptor antagonists, and P2Y12 inhibitors for ARDS in experimental and clinical studies and a meta-analysis. Novel aspirin-derived agents, aspirin-triggered lipoxin, and aspirin-triggered resolvin D1 are also described here. In this narrative review, we summarize the current knowledge of the role of platelets in the pathogenesis of ARDS, and the potential benefits of antiplatelet therapy for the prevention and treatment of ARDS.
Collapse
Affiliation(s)
- Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan;
- The iEGG and Animal Biotechnology Center, and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiao-Ching Lu
- Division of Respiratory Therapy, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei City 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (Y.-T.T.); (W.C.); Tel.: +886-227361661 (Y.-T.T.); +886-5-2779365 (ext. 6172) (W.C.)
| | - Wei Chen
- Department of Life Sciences, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Correspondence: (Y.-T.T.); (W.C.); Tel.: +886-227361661 (Y.-T.T.); +886-5-2779365 (ext. 6172) (W.C.)
| |
Collapse
|
7
|
Pennell EN, Wagner KH, Mosawy S, Bulmer AC. Acute bilirubin ditaurate exposure attenuates ex vivo platelet reactive oxygen species production, granule exocytosis and activation. Redox Biol 2019; 26:101250. [PMID: 31226648 PMCID: PMC6586953 DOI: 10.1016/j.redox.2019.101250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Bilirubin, a by-product of haem catabolism, possesses potent endogenous antioxidant and platelet inhibitory properties. These properties may be useful in inhibiting inappropriate platelet activation and ROS production; for example, during storage for transfusion. Given the hydrophobicity of unconjugated bilirubin (UCB), we investigated the acute platelet inhibitory and ROS scavenging ability of a water-soluble bilirubin analogue, bilirubin ditaurate (BRT) on ex vivo platelet function to ascertain its potential suitability for inclusion during platelet storage. Methods The inhibitory potential of BRT (10–100 μM) was assessed using agonist induced platelet aggregation, dense granule exocytosis and flow cytometric analysis of P-selectin and GPIIb/IIIa expression. ROS production was investigated by analysis of H2DCFDA fluorescence following agonist simulation while mitochondrial ROS production investigated using MitoSOX™ Red. Platelet mitochondrial membrane potential and viability was assessed using TMRE and Zombie Green™ respectively. Results Our data shows ≤35 μM BRT significantly inhibits both dense and alpha granule exocytosis as measured by ATP release and P-selectin surface expression, respectively. Significant inhibition of GPIIb/IIIa expression was also reported upon ≤35 μM BRT exposure. Furthermore, platelet exposure to ≤10 μM BRT significantly reduces platelet mitochondrial ROS production. Despite the inhibitory effect of BRT, platelet viability, mitochondrial membrane potential and agonist induced aggregation were not perturbed. Conclusions These data indicate, for the first time, that BRT, a water-soluble bilirubin analogue, inhibits platelet activation and reduces platelet ROS production ex vivo and may, therefore, may be of use in preserving platelet function during storage. The impact of conjugated bilirubin on platelet function has not been investigated to date. Bilirubin ditaurate (BDT) is a water-soluble analogue of conjugated bilirubin. BDT attenuates ex vivo platelet activation and ROS generation. Conjugated forms of bilirubin might inhibit platelet activation during storage.
Collapse
Affiliation(s)
- Evan Noel Pennell
- School of Medical Science, Griffith University, Gold Coast, Australia
| | - Karl-Heinz Wagner
- Research Platform Active Aging, Department of Nutritional Science, University of Vienna, Austria.
| | - Sapha Mosawy
- School of Medical Science, Griffith University, Gold Coast, Australia; Endeavour College of Natural Health, Melbourne, Australia
| | | |
Collapse
|
8
|
Kremers BMM, Birocchi S, van Oerle R, Zeerleder S, Spronk HMH, Mees BME, Luken BM, Ten Cate H, Ten Cate-Hoek AJ. Searching for a Common Thrombo-Inflammatory Basis in Patients With Deep Vein Thrombosis or Peripheral Artery Disease. Front Cardiovasc Med 2019; 6:33. [PMID: 31001542 PMCID: PMC6454153 DOI: 10.3389/fcvm.2019.00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/12/2019] [Indexed: 01/30/2023] Open
Abstract
Background: Inflammation and hypercoagulability play a pivotal role in venous thromboembolism and atherothrombosis. Since venous thrombosis increases the risk of atherothrombotic events and vice versa, common mechanisms may be involved. Objectives: To elucidate the role of neutrophils and coagulation in the occurrence of atherothrombotic events in patients with a history of deep vein thrombosis (DVT or peripheral artery disease (PAD). Materials and Methods: We studied 115 patients from two cohorts (75 DVT, 40 PAD). From those with PAD, 20 patients had progressive disease; from those with DVT, 25 patients had a recurrent DVT and 25 suffered from post thrombotic syndrome (PTS); patients were age and sex matched to DVT and PAD patients without events. Markers of neutrophil recruitment (p-selectin) and activation [nucleosomes, human neutrophil elastase- α1anti-trypsin (HNE-AT)], an anti-inflammatory marker (Lipoxin A4) and a clotting activity marker (d-dimer), were measured with ELISA. Coagulation potential was analyzed by thrombin generation (CAT method). Results: Higher nucleosome levels were found in DVT patients [11.3 U/mL (7.4–17.7)] compared to PAD patients [7.1 U/mL (5.1–13.8)], lower HNE-AT levels were found in DVT patients [33.4 ng/mL (23.5–40.5)] in comparison to PAD patients [158 ng/mL (88.1–283)]. No difference in nucleosome levels was found between DVT patients with cardiovascular (CV) events [12.6 U/mL (8.2–16.1)], and PAD patients with CV events [6.9 U/mL (4.9–11.2)]. Lipoxin A4 levels appeared to be significantly lower in DVT [2.4 ng/mL (1.7–4.8)] vs. PAD [35.6 ng/mL (16.6–80.1)], with similar results in DVT patients with CV events vs. PAD patients with CV events. Thrombin generation showed higher ETP [160.4% (141.1–215.4)], and peak height [292.1% (177.9–330)] values in DVT patients. D-dimer levels were significantly lower in the DVT cohort [330 ng/mL (220–550)] compared to the PAD cohort [550 ng/mL (369–959)]. Conclusion: In DVT patients, neutrophil activity does not appear to be an important driver of CV events. Although neutrophil activity is more pronounced in PAD, its effect is partly dampened by Lipoxin A4. Moreover, no associations were found between NET products and coagulation activity, suggesting that neutrophil activation does not play a pivotal role in the risk of thrombosis in either DVT or PAD.
Collapse
Affiliation(s)
- Bram M M Kremers
- Laboratory for Clinical Thrombosis and Hemostasis, Maastricht, Netherlands
| | | | - Rene van Oerle
- Laboratory for Clinical Thrombosis and Hemostasis, Maastricht, Netherlands
| | - Sacha Zeerleder
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland.,Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Henri M H Spronk
- Laboratory for Clinical Thrombosis and Hemostasis, Maastricht, Netherlands
| | - Barend M E Mees
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Brenda M Luken
- Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Hugo Ten Cate
- Laboratory for Clinical Thrombosis and Hemostasis, Maastricht, Netherlands.,Thrombosis Expertise Center, Maastricht, Netherlands.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Arina J Ten Cate-Hoek
- Laboratory for Clinical Thrombosis and Hemostasis, Maastricht, Netherlands.,Thrombosis Expertise Center, Maastricht, Netherlands
| |
Collapse
|
9
|
El-Gamal H, Parray AS, Mir FA, Shuaib A, Agouni A. Circulating microparticles as biomarkers of stroke: A focus on the value of endothelial- and platelet-derived microparticles. J Cell Physiol 2019; 234:16739-16754. [PMID: 30912147 DOI: 10.1002/jcp.28499] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Stroke is one of the leading causes of mortality and disability worldwide. Numerous pathophysiological mechanisms involving blood vessels, coagulation and inflammation contribute to the vascular occlusion. Perturbations in these pathways can be detected by numerous methods including changes in endoplasmic membrane remodeling and rearrangement leading to the shedding of microparticles (MPs) from various cellular origins in the blood. MPs are small membrane-derived vesicles that are shed from nearly all cells in the body in resting state or upon stimulation. MPs act as biological messengers to transfer information to adjacent and distant cells thus regulating various biological processes. MPs may be important biomarkers and tools for the identification of the risk and diagnosis of cerebrovascular diseases. Endothelial activation and dysfunction and altered thrombotic responses are two of the main features predisposing to stroke. Endothelial MPs (EMPs) have been recognized as both biomarkers and effectors of endothelial cell activation and injury while platelet-derived MPs (PMPs) carry a strong procoagulant potential and are activated in thrombotic states. Therefore, we reviewed here the role of EMPs and PMPs as biomarkers of stroke. Most studies reported high circulating levels of EMPs and PMPs in addition to other cell origins in stroke patients and have been linked to stroke severity, the size of infarction, and prognosis. The identification and quantification of EMPs and PMPs may thus be useful for the diagnosis and management of stroke.
Collapse
Affiliation(s)
- Heba El-Gamal
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Aijaz S Parray
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fayaz A Mir
- Interim Translational Research Institute (iTRI), Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
|
11
|
Chan SH, Tsai KW, Chiu SY, Kuo WH, Chen HY, Jiang SS, Chang KJ, Hung WC, Wang LH. Identification of the Novel Role of CD24 as an Oncogenesis Regulator and Therapeutic Target for Triple-Negative Breast Cancer. Mol Cancer Ther 2018; 18:147-161. [DOI: 10.1158/1535-7163.mct-18-0292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
|
12
|
Abstract
Sepsis in children is typically presumed to be bacterial in origin until proven otherwise, but frequently bacterial cultures ultimately return negative. Although viruses may be important causative agents of culture-negative sepsis worldwide, the incidence, disease burden and mortality of viral-induced sepsis is poorly elucidated. Consideration of viral sepsis is critical as its recognition carries implications on appropriate use of antibacterial agents, infection control measures, and, in some cases, specific, time-sensitive antiviral therapies. This review outlines our current understanding of viral sepsis in children and addresses its epidemiology and pathophysiology, including pathogen-host interaction during active infection. Clinical manifestation, diagnostic testing, and management options unique to viral infections will be outlined.
Collapse
Affiliation(s)
- Neha Gupta
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Robert
- Division of Pediatric Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michele Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Bruno A, Dovizio M, Tacconelli S, Contursi A, Ballerini P, Patrignani P. Antithrombotic Agents and Cancer. Cancers (Basel) 2018; 10:cancers10080253. [PMID: 30065215 PMCID: PMC6115803 DOI: 10.3390/cancers10080253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 02/08/2023] Open
Abstract
Platelet activation is the first response to tissue damage and, if unrestrained, may promote chronic inflammation-related cancer, mainly through the release of soluble factors and vesicles that are rich in genetic materials and proteins. Platelets also sustain cancer cell invasion and metastasis formation by fostering the development of the epithelial-mesenchymal transition phenotype, cancer cell survival in the bloodstream and arrest/extravasation at the endothelium. Furthermore, platelets contribute to tumor escape from immune elimination. These findings provide the rationale for the use of antithrombotic agents in the prevention of cancer development and the reduction of metastatic spread and mortality. Among them, low-dose aspirin has been extensively evaluated in both preclinical and clinical studies. The lines of evidence have been considered appropriate to recommend the use of low-dose aspirin for primary prevention of cardiovascular disease and colorectal cancer by the USA. Preventive Services Task Force. However, two questions are still open: (i) the efficacy of aspirin as an anticancer agent shared by other antiplatelet agents, such as clopidogrel; (ii) the beneficial effect of aspirin improved at higher doses or by the co-administration of clopidogrel. This review discusses the latest updates regarding the mechanisms by which platelets promote cancer and the efficacy of antiplatelet agents.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Annalisa Contursi
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Patrizia Ballerini
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| |
Collapse
|
14
|
Di Liddo R, Bertalot T, Borean A, Pirola I, Argentoni A, Schrenk S, Cenzi C, Capelli S, Conconi MT, Parnigotto PP. Leucocyte and Platelet-rich Fibrin: a carrier of autologous multipotent cells for regenerative medicine. J Cell Mol Med 2018; 22:1840-1854. [PMID: 29314633 PMCID: PMC5824368 DOI: 10.1111/jcmm.13468] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022] Open
Abstract
The wound healing is a complex process wherein inflammation, proliferation and regeneration evolve according to a spatio-temporal pattern from the activation of coagulation cascade to the formation of a plug clot including fibrin matrix, blood-borne cells and cytokines/growth factors. Creating environments conducive to tissue repair, the haemoderivatives are commonly proposed for the treatment of hard-to-heal wounds. Here, we explored in vitro the intrinsic regenerative potentialities of a leucocyte- and platelet-rich fibrin product, known as CPL-MB, defining the stemness grade of cells sprouting from the haemoderivative. Using highly concentrated serum-based medium to simulate wound conditions, we isolated fibroblast-like cells (CPL-CMCs) adhering to plastic and showing stable in vitro propagation, heterogeneous stem cell expression pattern, endothelial adhesive properties and immunomodulatory profile. Due to their blood derivation and expression of CXCR4, CPL-CMCs have been suggested to be immature cells circulating in peripheral blood at quiescent state until activation by both coagulation event and inflammatory stimuli such as stromal-derived factor 1/SDF1. Expressing integrins (CD49f, CD103), vascular adhesion molecules (CD106, CD166), endoglin (CD105) and remodelling matrix enzymes (MMP2, MMP9, MMP13), they showed a transendothelial migratory potential besides multipotency. Taken together, our data suggested that a standardized, reliable and economically feasible blood product such as CPL-MB functions as an artificial stem cell niche that, under permissive conditions, originate ex vivo immature cells that could be useful for autologous stem cell-based therapies.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
- Foundation for Biology and Regenerative MedicineTissue Engineering and Signaling (TES) ONLUSPadovaItaly
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Alessio Borean
- Department of Immunohematology and Transfusion MedicineSan Martino HospitalBellunoItaly
| | - Ivan Pirola
- Department of Immunohematology and Transfusion MedicineSan Martino HospitalBellunoItaly
| | - Alberto Argentoni
- Foundation for Biology and Regenerative MedicineTissue Engineering and Signaling (TES) ONLUSPadovaItaly
| | - Sandra Schrenk
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Carola Cenzi
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
- Department of Chemistry and Technology of DrugsSapienza University of RomeItaly
| | - Stefano Capelli
- Department of Immunohematology and Transfusion MedicineSan Martino HospitalBellunoItaly
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
- Foundation for Biology and Regenerative MedicineTissue Engineering and Signaling (TES) ONLUSPadovaItaly
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative MedicineTissue Engineering and Signaling (TES) ONLUSPadovaItaly
| |
Collapse
|
15
|
The Pathophysiological Mechanisms and the Quest for Biomarkers in Psoriasis, a Stress-Related Skin Disease. DISEASE MARKERS 2018; 2018:5823684. [PMID: 29619128 PMCID: PMC5829341 DOI: 10.1155/2018/5823684] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/24/2022]
Abstract
Psoriasis is a physically, emotionally, and socially invalidating multifactorial disorder, with a significant impact on the patients' quality of life. Stress is one of the leading triggers for psoriasis and has been associated with disease onset and subsequent flare-ups, while the flare-ups by themselves often lead to psychological discomfort. The treatment of psoriasis is individualized, depending on the patients' measurable severity of illness, as well as the impact the skin condition has on patients' quality of life, as assessed by standardized questionnaires. The clinical scales used nowadays for measuring the severity of psoriasis are characterized by low reproducibility and high variability between examiners. Hence, there is a real need to identify objectively measurable biomarkers to standardize the assessment of the severity of psoriasis. We aim to review the pathophysiological mechanisms involved in psoriasis, focusing on the most critical advances in psoriasis biomarker discovery, pointing out those biomarkers which have also been studied in other stress-related conditions, thus emphasizing the relationship between psoriasis and stress.
Collapse
|
16
|
Koenig O, Zengerle D, Perle N, Hossfeld S, Neumann B, Behring A, Avci-Adali M, Walker T, Schlensak C, Wendel HP, Nolte A. RNA-Eluting Surfaces for the Modulation of Gene Expression as A Novel Stent Concept. Pharmaceuticals (Basel) 2017; 10:ph10010023. [PMID: 28208634 PMCID: PMC5374427 DOI: 10.3390/ph10010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression–modulating stents releasing specific small interfering RNAs (siRNAs) or messenger RNAs (mRNAs) to the vascular wall might have the potential to improve the regeneration of the vessel wall and to inhibit adverse effects as a new promising therapeutic strategy. Different poly (lactic-co-glycolic acid) (PLGA) resomers for their ability as an siRNA delivery carrier against intercellular adhesion molecule (ICAM)-1 with a depot effect were tested. Biodegradability, hemocompatibility, and high cell viability were found in all PLGAs. We generated PLGA coatings with incorporated siRNA that were able to transfect EA.hy926 and human vascular endothelial cells. Transfected EA.hy926 showed significant siICAM-1 knockdown. Furthermore, co-transfection of siRNA and enhanced green fluorescent protein (eGFP) mRNA led to the expression of eGFP as well as to the siRNA transfection. Using our PLGA and siRNA multilayers, we reached high transfection efficiencies in EA.hy926 cells until day six and long-lasting transfection until day 20. Our results indicate that siRNA and mRNA nanoparticles incorporated in PLGA films have the potential for the modulation of gene expression after stent implantation to achieve accelerated regeneration of endothelial cells and to reduce the risk of restenosis.
Collapse
Affiliation(s)
- Olivia Koenig
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Diane Zengerle
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Nadja Perle
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Susanne Hossfeld
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Bernd Neumann
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Andreas Behring
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Meltem Avci-Adali
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Tobias Walker
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Christian Schlensak
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Hans Peter Wendel
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Andrea Nolte
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| |
Collapse
|
17
|
Sternberg Z, Chichelli T, Sternberg D, Sawyer R, Ching M, Janicke D, Ambrus JL, Yu J, Munschauer F. Relationship between Inflammation and Aspirin and Clopidogrel Antiplatelet Responses in Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2015; 25:327-34. [PMID: 26586373 DOI: 10.1016/j.jstrokecerebrovasdis.2015.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/18/2015] [Accepted: 10/01/2015] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE We measured serum levels of proinflammatory/prothrombotic markers P-selectin, CD40L, matrix metalloproteinase 9 (MMP-9), intracellular adhesion molecule 1 (ICAM-1), and interleukin (IL)-6 in ischemic stroke patients, correlating their levels with the results of aspirin (ASA) and clopidogrel antiplatelet responses, using 3 "point of care" platelet function instruments, thromboelastograph (TEG), Accumetrics (ACU), and impedance aggregometer (IMP). METHODS Patients on chronic ASA regimen at the time of stroke were switched to 300 mg clopidogrel loading dose and 75 mg clopidogrel maintenance dose. Serum levels of the aforementioned inflammatory mediators were measured in 51 patients at baseline (on ASA regimen), and at 26 ± 5 hours and 64 ± 18 hours postclopidogrel administration by enzyme-linked immunosorbent assay. RESULTS P-selectin, CD40L, and MMP-9 serum levels were reduced; ICAM-1 and IL-6 serum levels showed no difference postclopidogrel administration relative to baseline. Patients' stratification based on ASA dose showed more significant reductions in P-selectin, CD40L, and MMP-9 serum levels postclopidogrel administration in patients who were on baseline 81 mg ASA, as compared to patients on 325 mg ASA. Measurement with TEG was sensitive for correlating ASA antiplatelet responses to serum levels of inflammatory markers, whereas measurements with ACU and IMP were sensitive for correlating clopidogrel antiplatelet responses to serum levels of inflammatory markers. CONCLUSION Clopidogrel exerts both platelet-dependent and platelet-independent anti-inflammatory effects. The association between platelet function and inflammation depends on the platelet function analyzer, the type of antiplatelet agent, the nature of the inflammatory marker, and the time of measurement relative to the time of drug administration.
Collapse
Affiliation(s)
- Zohara Sternberg
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, New York.
| | - Trevor Chichelli
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, New York
| | - Daniel Sternberg
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, New York
| | - Robert Sawyer
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, New York
| | - Marilou Ching
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, New York
| | - David Janicke
- Department of Emergency Medicine, Buffalo Medical Center, Buffalo, New York
| | - Julian L Ambrus
- Department of Internal Medicine, Buffalo Medical Center, Buffalo, New York
| | - Jinhee Yu
- Department of Biostatistics, University of Buffalo, Buffalo, New York
| | - Frederick Munschauer
- Department of Neurology, Stroke Center, Buffalo Medical Center, Buffalo, New York
| |
Collapse
|
18
|
Yue Z, Wang A, Zhu Z, Tao L, Li Y, Zhou L, Chen W, Lu Y. Holothurian glycosaminoglycan inhibits metastasis via inhibition of P-selectin in B16F10 melanoma cells. Mol Cell Biochem 2015; 410:143-54. [PMID: 26318439 DOI: 10.1007/s11010-015-2546-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022]
Abstract
P-selectin-mediated tumor cell adhesion to platelets is a well-established stage in the process of tumor metastasis. Through computerized structural analysis, we found a marine-derived polysaccharide, holothurian glycosaminoglycan (hGAG), behaved as a ligand-competitive inhibitor of P-selectin, indicating its potential to disrupt the binding of P-selectin to cell surface receptor and activation of downstream regulators of tumor cell migration. Our experimental data demonstrated that hGAG significantly inhibited P-selectin-mediated adhesion of tumor cells to platelets and tumor cell migration in vitro and reduced subsequent pulmonary metastasis in vivo. Furthermore, abrogation of the P-selectin-mediated adhesion of tumor cells led to down-regulation of protein levels of integrins, FAK and MMP-2/9 in B16F10 cells, which is a crucial molecular mechanism of hGAG to inhibit tumor metastasis. In conclusion, hGAG has emerged as a novel anti-cancer agent via blocking P-selectin-mediated malignant events of tumor metastasis.
Collapse
Affiliation(s)
- Zhiqiang Yue
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Aiyun Wang
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, 210023, China.,Jiangsu Provincial Center for Research and Development of Marine Drugs, Nanjing, 210023, Jiangsu, China
| | - Zhijie Zhu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Li Tao
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Yao Li
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Liang Zhou
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Wenxing Chen
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, 210023, China.,Jiangsu Provincial Center for Research and Development of Marine Drugs, Nanjing, 210023, Jiangsu, China
| | - Yin Lu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China. .,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, 210023, China. .,Jiangsu Provincial Center for Research and Development of Marine Drugs, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
19
|
|
20
|
Manne BK, Getz TM, Hughes CE, Alshehri O, Dangelmaier C, Naik UP, Watson SP, Kunapuli SP. Fucoidan is a novel platelet agonist for the C-type lectin-like receptor 2 (CLEC-2). J Biol Chem 2013; 288:7717-7726. [PMID: 23341451 DOI: 10.1074/jbc.m112.424473] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fucoidan, a sulfated polysaccharide from Fucus vesiculosus, decreases bleeding time and clotting time in hemophilia, possibly through inhibition of tissue factor pathway inhibitor. However, its effect on platelets and the receptor by which fucoidan induces cellular processes has not been elucidated. In this study, we demonstrate that fucoidan induces platelet activation in a concentration-dependent manner. Fucoidan-induced platelet activation was completely abolished by the pan-Src family kinase (SFK) inhibitor, PP2, or when Syk is inhibited. PP2 abolished phosphorylations of Syk and Phospholipase C-γ2. Fucoidan-induced platelet activation had a lag phase, which is reminiscent of platelet activation by collagen and CLEC-2 receptor agonists. Platelet activation by fucoidan was only slightly inhibited in FcRγ-chain null mice, indicating that fucoidan was not acting primarily through GPVI receptor. On the other hand, fucoidan-induced platelet activation was inhibited in platelet-specific CLEC-2 knock-out murine platelets revealing CLEC-2 as a physiological target of fucoidan. Thus, our data show fucoidan as a novel CLEC-2 receptor agonist that activates platelets through a SFK-dependent signaling pathway. Furthermore, the efficacy of fucoidan in hemophilia raises the possibility that decreased bleeding times could be achieved through activation of platelets.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Todd M Getz
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Craig E Hughes
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Osama Alshehri
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Carol Dangelmaier
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Ulhas P Naik
- Cardiovascular Research Institute, University of Delaware, Newark, Delaware 19716
| | - Steve P Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Satya P Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
21
|
|
22
|
Subramanian H, Gambaryan S, Panzer S, Gremmel T, Walter U, Mannhalter C. The Thr715Pro variant impairs terminal glycosylation of P-selectin. Thromb Haemost 2012; 108:963-72. [PMID: 23014585 DOI: 10.1160/th12-01-0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/21/2012] [Indexed: 12/22/2022]
Abstract
P-selectin variant 715Pro is associated with lower concentrations of plasma P-selectin and reduced risk for thrombosis. We examined the influence of 715Pro on P-selectin synthesis, post-translational processing, surface expression and function using HEK293 cells, which do not express endogenous P-selectin. Mass spectrometry revealed that HEK293 cells produced recombinant P-selectin which has a glycosylation pattern comparable to platelet P-selectin. Compared to wild-type transfectants, 715Pro transfectants have ~50% less terminally glycosylated P-selectin and accumulate more immature P-selectin in Golgi. Following Brefeldin A treatment, the majority of 715Pro P-selectin is not modified by Golgi enzymes, while wild-type P-selectin undergoes complete modification. Flow cytometry revealed that 715Pro transfectants have ~20% less P-selectin on the cell surface compared to wild-type transfectants. Secretion of P-selectin by 715Pro transfectants was about 38% lower compared to wild-type transfectants. Binding of HL-60 cells to 715Pro transfectants was ~29% lower than to wild-type transfectants. This observation was confirmed by the presence of fewer platelet-monocyte aggregates (PMA) in the blood of healthy individuals and patients with angiographically proven atherosclerosis, carrying 715Pro P-selectin compared to individuals with wild-type P-selectin. We conclude that the 715Pro variant impairs terminal glycosylation of P-selectin in Golgi, leading to reduced amounts of mature P-selectin and subsequently less surface expression and secretion of P-selectin. The reduced surface expression of 715Pro P-selectin contributes to inefficient adhesion to HL-60 cells or monocytes.
Collapse
|
23
|
Jefferson A, Wijesurendra RS, McAteer MA, Choudhury RP. Development and application of endothelium-targeted microparticles for molecular magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:247-56. [PMID: 22407676 DOI: 10.1002/wnan.1164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular imaging of disease states can enhance diagnosis allowing for accurate and more effective treatment. By specifically targeting molecules differentially expressed in disease states, researchers and clinicians have a means of disease characterization at a cellular or tissue level. Targeted micron-sized particles of iron oxide (MPIO) have been used as molecule-specific contrast agents for use with magnetic resonance imaging (MRI), and early evidence suggests they may be suitable for use with other imaging modalities. Targeting of MPIO to markers of disease is commonly achieved through the covalent attachment of antibodies to the surface of the particles, providing an imaging agent that is both highly specific and which binds with high affinity. When comparing micron-sized particles with nanometre-sized particles, the former provide substantial signal dropout in MRI and confer the sensitivity to detect low levels of target. Furthermore, larger particles appear to bind to targets more potently than smaller particles. Animal models have also demonstrated favorable blood clearance characteristics of MPIO, which are important in achieving favorable signal over background and to attain clearance and disposal. Although the current generation of commercially available MPIO are not suitable for administration into humans, future work may focus on the development of biodegradable and nonimmunogenic MPIO that may allow the use of these imaging agents in a clinical setting.
Collapse
Affiliation(s)
- Andrew Jefferson
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | |
Collapse
|
24
|
Mazoyer E, Caen JP, Tenza D, Cramer EM. The Anti-aggregating Peptide KRDS Impairs a-granule Release, Whereas RGDS Does Not. Platelets 2009; 6:91-8. [DOI: 10.3109/09537109509078449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Abstract
alpha-Granules are essential to normal platelet activity. These unusual secretory granules derive their cargo from both regulated secretory and endocytotic pathways in megakaryocytes. Rare, inheritable defects of alpha-granule formation in mice and man have enabled identification of proteins that mediate cargo trafficking and alpha-granule formation. In platelets, alpha-granules fuse with the plasma membrane upon activation, releasing their cargo and increasing platelet surface area. The mechanisms that control alpha-granule membrane fusion have begun to be elucidated at the molecular level. SNAREs and SNARE accessory proteins that control alpha-granule secretion have been identified. Proteomic studies demonstrate that hundreds of bioactive proteins are released from alpha-granules. This breadth of proteins implies a versatile functionality. While initially known primarily for their participation in thrombosis and hemostasis, the role of alpha-granules in inflammation, atherosclerosis, antimicrobial host defense, wound healing, angiogenesis, and malignancy has become increasingly appreciated as the function of platelets in the pathophysiology of these processes has been defined. This review will consider the formation, release, and physiologic roles of alpha-granules with special emphasis on work performed over the last decade.
Collapse
Affiliation(s)
- Price Blair
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| |
Collapse
|
26
|
Biogenesis of Dense-Core Secretory Granules. TRAFFICKING INSIDE CELLS 2009. [PMCID: PMC7122546 DOI: 10.1007/978-0-387-93877-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dense core granules (DCGs) are vesicular organelles derived from outbound traffic through the eukaryotic secretory pathway. As DCGs are formed, the secretory pathway can also give rise to other types of vesicles, such as those bound for endosomes, lysosomes, and the cell surface. DCGs differ from these other vesicular carriers in both content and function, storing highly concentrated cores’ of condensed cargo in vesicles that are stably maintained within the cell until a specific extracellular stimulus causes their fusion with the plasma membrane. These unique features are imparted by the activities of membrane and lumenal proteins that are specifically delivered to the vesicles during synthesis. This chapter will describe the DCG biogenesis pathway, beginning with the sorting of DCG proteins from proteins that are destined for other types of vesicle carriers. In the trans-Golgi network (TGN), sorting occurs as DCG proteins aggregate, causing physical separation from non-DCG proteins. Recent work addresses the nature of interactions that produce these aggregates, as well as potentially important interactions with membranes and membrane proteins. DCG proteins are released from the TGN in vesicles called immature secretory granules (ISGs). The mechanism of ISG formation is largely unclear but is not believed to rely on the assembly of vesicle coats like those observed in other secretory pathways. The required cytosolic factors are now beginning to be identified using in vitro systems with purified cellular components. ISG transformation into a mature fusion-competent, stimulus-dependent DCG occurs as endoproteolytic processing of many DCG proteins causes continued condensation of the lumenal contents. At the same time, proteins that fail to be incorporated into the condensing core are removed by a coat-mediated budding mechanism, which also serves to remove excess membrane and membrane proteins from the maturing vesicle. This chapter will summarize the work leading to our current view of granule synthesis, and will discuss questions that need to be addressed in order to gain a more complete understanding of the pathway.
Collapse
|
27
|
Chauhan AK, Goerge T, Schneider SW, Wagner DD. Formation of platelet strings and microthrombi in the presence of ADAMTS-13 inhibitor does not require P-selectin or beta3 integrin. J Thromb Haemost 2007; 5:583-9. [PMID: 17166247 DOI: 10.1111/j.1538-7836.2007.02361.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ultra-large von Willebrand factor (ULVWF) and the receptor P-selectin are released from endothelial Weibel-Palade bodies during injury or inflammation. VWF mediates platelet adhesion and P-selectin promotes leukocyte rolling. ADAMTS-13 limits the duration of platelet adhesion by cleaving the ULVWF. In the absence of ADAMTS-13, long VWF filaments decorated with platelets form. Recent in vitro studies suggested that P-selectin might anchor these platelet strings to endothelium, but whether the same mechanism exists in vivo remains to be elucidated. METHODS We address the role of P-selectin and beta(3) integrin in platelet string formation in vivo using intravital microscopy by infusing inhibitory ADAMTS-13 antibody in P-selectin-/- and beta(3)-deficient mice and activating the endothelium by injecting histamine. RESULTS We show that inhibition of ADAMTS-13 combined with endothelial activation leads to similar extents of platelet string formation in wild-type, P-selectin- and integrin beta(3)-deficient mice. Further, in venules the platelet strings can coalesce into VWF-platelet aggregates. This process utilizes neither the platelet beta(3) integrin nor P-selectin. We also show in vitro that platelets can act as a bridge between the VWF fibers and that VWF can self-associate even in areas devoid of platelets. CONCLUSIONS The formation or retention of the platelet strings does not require P-selectin or the endothelial VWF receptor alpha(v)beta(3). Furthermore, in the presence of low ADAMTS-13 activity, VWF-dependent and alpha(IIb)beta(3)-independent platelet clustering occurs in veins, as has been shown at high arterial shear rates. Our study further supports the importance of regulation of VWF multimer size upon secretion from Weibel-Palade bodies.
Collapse
Affiliation(s)
- A K Chauhan
- CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
28
|
Reitsma S, Slaaf DW, Vink H, van Zandvoort MAMJ, oude Egbrink MGA. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454:345-59. [PMID: 17256154 PMCID: PMC1915585 DOI: 10.1007/s00424-007-0212-8] [Citation(s) in RCA: 1316] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 01/09/2007] [Indexed: 12/19/2022]
Abstract
This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging.
Collapse
Affiliation(s)
- Sietze Reitsma
- Department of Biophysics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Dick W. Slaaf
- Department of Biophysics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Marc A. M. J. van Zandvoort
- Department of Biophysics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Mirjam G. A. oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
29
|
Abstract
In the past, inflammation has been associated with infections and with the immune system. But more recent evidence suggests that a much broader range of diseases have telltale markers for inflammation. Inflammation is the basic mechanism available for repair of tissue after an injury and consists of a cascade of cellular and microvascular reactions that serve to remove damaged and generate new tissue. The cascade includes elevated permeability in microvessels, attachment of circulating cells to the vessels in the vicinity of the injury site, migration of several cell types, cell apoptosis, and growth of new tissue and blood vessels. This review provides a summary of the major microvascular, cellular, and molecular mechanisms that regulate elements of the inflammatory cascade. The analysis is largely focused on the identification of the major participants, notably signaling and adhesion molecules, and their mode of action in the inflammatory cascade. We present a new hypothesis for the generation of inflammatory mediators in plasma that are derived from the digestive pancreatic enzymes responsible for digestion. The inflammatory cascade offers a large number of opportunities for development of quantitative models that describe various aspects of human diseases.
Collapse
Affiliation(s)
- Geert W Schmid-Schönbein
- Department of Bioengineering, The Whitaker Institute for Biomedical Engineering, University of California San Diego, La Jolla, California 92093-0412, USA.
| |
Collapse
|
30
|
Cai S, Dole VS, Bergmeier W, Scafidi J, Feng H, Wagner DD, Davis AE. A Direct Role for C1 Inhibitor in Regulation of Leukocyte Adhesion. THE JOURNAL OF IMMUNOLOGY 2005; 174:6462-6. [PMID: 15879149 DOI: 10.4049/jimmunol.174.10.6462] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma C1 inhibitor (C1INH) is a natural inhibitor of complement and contact system proteases. Heterozygosity for C1INH deficiency results in hereditary angioedema, which is mediated by bradykinin. Treatment with plasma C1INH is effective not only in patients with hereditary angioedema, but also in a variety of other disease models, in which such therapy is accompanied by diminished neutrophil infiltration. The underlying mechanism has been explained primarily as a result of the inhibition of the complement and contact systems. We have shown that C1INH expresses the sialyl-Lewis(x) tetrasaccharide on its N-linked glycan, via which it binds to E- and P-selectins and interferes with leukocyte-endothelial adhesion in vitro. Here we show that both native C1INH and reactive center cleaved C1INH significantly inhibit selectin-mediated leukocyte adhesion in several in vitro and in vivo models, whereas N-deglycosylated C1INH loses such activities. The data support the hypothesis that C1INH plays a direct role in leukocyte-endothelial cell adhesion, that the activity is mediated by carbohydrate, and that it is independent of protease inhibitory activity. Direct involvement of C1INH in modulation of selectin-mediated cell adhesion may be an important mechanism in the physiologic suppression of inflammation, and may partially explain its utility in therapy of inflammatory diseases.
Collapse
Affiliation(s)
- Shenghe Cai
- The CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Weibel-Palade bodies (WPB) are the regulated secretory organelles of endothelial cells. These cigar-shaped membrane-bound structures function in both hemostasis and inflammation but their biogenesis is poorly understood. Here, we review what is currently known about their formation. The content of WPBs is dominated by the hemostatic factor von Willebrand factor (VWF), whose complex biogenesis ends in the formation of high molecular weight multimers. VWF is also organized into proteinaceous tubules which underlie the striated interior of WPBs as seen in the EM. VWF expression is necessary for formation of WPBs, and its heterologous expression can even lead to the specific recruitment of WPB membrane proteins, including the leukocyte receptor P-selectin, the tetraspanin CD63, and Rab27a. Unusually, the VWF propeptide is implicated in the biogenesis of WPBs, being essential for formation of the storage compartment. The elongation of the cigars and the formation of the tubules are determined by non-covalent interactions between pro- and mature VWF proteins. Surprisingly, high molecular weight multimers seem neither necessary nor sufficient to trigger formation of a storage compartment, and do not seem to have any role in WPB biogenesis. Von Willebrand's disease, usually caused by mutations within VWF, has provided many of the insights into the way in which VWF drives the formation of these organelles.
Collapse
Affiliation(s)
- Grégoire Michaux
- Department of Biochemistry, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
32
|
Arvan P, Castle D. Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell Biol 2004; 2:327-31. [PMID: 14731510 DOI: 10.1016/0962-8924(92)90181-l] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Formation of secretion granules in regulated secretory cells involves packaging a subject of proteins undergoing intracellular transport into specific vesicular carriers that function in stimulus-dependent exocytosis. Recent findings suggest that immature granules are a site of passive sorting, involving condensation of regulated secretory proteins. Proteins that are not condensed are stored to a lesser degree and are enriched in unstimulated, constitutive-like secretion. While these observations have helped to distinguish possible mechanisms of secretory protein sorting, there are only recent hints about the sorting processes that may be required to create the regulated secretory carrier membranes.
Collapse
Affiliation(s)
- P Arvan
- Division of Endocrinology, Beth Israel Hospital, Boston, MA 02215, USA
| | | |
Collapse
|
33
|
Abstract
Macrophages, phagocytic cells involved in an early phase of host defense, are known to express the P-selectin ligand, PSGL-1. Heretofore, P-selectin has only been found on platelets and endothelial cells. Here, we demonstrate that peritoneal macrophages isolated by peritoneal lavage of unchallenged mice express P-selectin on the plasma membrane. The peritoneal macrophages synthesize P-selectin, as indicated by metabolic labeling experiments. P-Selectin is constitutively expressed on the extracellular surface of macrophages but is only partially colocalized with PSGL-1. P-Selectin is rapidly translocated from the macrophage plasma membrane to intracellular vesicles and to lysosomes. Peritoneal macrophages assemble into cell strings under flow conditions based upon macrophage–macrophage interactions mediated by P-selectin and PSGL-1. This is the first description of a leukocyte shown to express both P-selectin and PSGL-1.
Collapse
Affiliation(s)
- Boris Tchernychev
- Center for Hemostasis, Thrombosis and Vascular Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | |
Collapse
|
34
|
Abstract
Regulated secretion and exocytosis require the selective packaging of regulated secretory proteins in secretory storage organelles and the controlled docking and fusion of these organelles with the plasma membrane. Secretory granule biogenesis involves sorting of secretory proteins and membrane components both at the level of the trans-Golgi network and the immature secretory granule. Sorting is thought to be mediated by selective protein aggregation and the interaction of these proteins with specific membrane domains. There is now considerable interest in the understanding of the complex lipid-protein and protein-protein interactions at the trans-Golgi network and the granule membrane. A role for lipid microdomains and associated sorting receptors in membrane targeting and granule formation is vividly discussed for (neuro)endocrine cells. In exocrine cells, however, little has been known of granule membrane composition and membrane protein function. With the cloning and characterization of granule membrane proteins and their interactions at the inner leaflet of zymogen granules of pancreatic acinar cells, it is now possible to elucidate their function in membrane targeting and sorting of zymogens at the molecular level.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert Koch Str 6, 35037 Marburg, Germany
| |
Collapse
|
35
|
Padilla A, Moake JL, Bernardo A, Ball C, Wang Y, Arya M, Nolasco L, Turner N, Berndt MC, Anvari B, López JA, Dong JF. P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface. Blood 2003; 103:2150-6. [PMID: 14630802 DOI: 10.1182/blood-2003-08-2956] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) released from endothelium is ultralarge (UL) and hyperreactive. If released directly into plasma, it can spontaneously aggregate platelets, resulting in systemic thrombosis. This disastrous consequence is prevented by the ADAMTS13 (ADisintegrin and Metalloprotease with ThromboSpondin motif) cleavage of ULVWF into smaller, less active forms. We previously showed that ULVWF, on release, forms extremely long stringlike structures. ADAMTS13 cleaves these strings under flow significantly faster than it does under static conditions. As ULVWF tethering to endothelium is important for its rapid proteolysis, we investigated 2 molecules for their potential to anchor the ULVWF strings: P-selectin and integrin alpha v beta 3. We demonstrated that P-selectin anchors ULVWF to endothelium by several means. First, Chinese hamster ovary (CHO) cells expressing P-selectin specifically adhered to immobilized ULVWF and ULVWF-coated beads to immobilized P-selectin. Second, an anti-VWF antibody coimmunoprecipitates P-selectin from the histamine-activated endothelial cells. Third, P-selectin antibody or soluble P-selectin, but not a alpha v beta 3 antibody, RGDS peptide, or heparin, blocked the formation of ULVWF strings. Fourth, P-selectin expression was in clusters predominantly along the ULVWF strings. Finally, the strength of the minimal ULVWF-P-selectin bond was measured to be 7.2 pN. We, therefore, conclude that P-selectin may anchor ULVWF strings to endothelial cells and facilitate their cleavage by ADAMTS13.
Collapse
Affiliation(s)
- Arnoldo Padilla
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cai S, Davis AE. Complement Regulatory Protein C1 Inhibitor Binds to Selectins and Interferes with Endothelial-Leukocyte Adhesion. THE JOURNAL OF IMMUNOLOGY 2003; 171:4786-91. [PMID: 14568956 DOI: 10.4049/jimmunol.171.9.4786] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
C1 inhibitor (C1INH), a member of the serine proteinase inhibitor (serpin) family, is an inhibitor of proteases in the complement system, the contact system of kinin generation, and the intrinsic coagulation pathway. It is the most heavily glycosylated plasma protein, containing 13 definitively identified glycosylation sites as well as an additional 7 potential glycosylation sites. C1INH consists of two distinct domains: a serpin domain and an amino-terminal domain. The serpin domain retains all the protease-inhibitory function, while the amino-terminal domain bears most of the glycosylation sites. The present studies test the hypothesis that plasma C1INH bears sialyl Lewis(x)-related moieties and therefore binds to selectin adhesion molecules. We demonstrated that plasma C1INH does express sialyl Lewis(x)-related moieties on its N-glycan as detected using mAb HECA-452 and CSLEX1. The data also show that plasma C1INH can bind to P- and E-selectins by FACS and immunoprecipitation experiments. In a tissue culture model of endothelial-leukocyte adhesion, C1INH showed inhibition in a dose-dependent manner. Significant inhibition (>50%) was achieved at a concentration of 250 micro g/ml or higher. This discovery may suggest that C1INH plays a role in the endothelial-leukocyte interaction during inflammation. It may also provide another example of the multifaceted anti-inflammatory effects of C1INH in various animal models and human diseases.
Collapse
Affiliation(s)
- Shenghe Cai
- Center for Blood Research, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Plantier JL, Enjolras N, Rodriguez MHE, Massé JM, Cramer EM, Négrier C. The P-selectin cytoplasmic domain directs the cellular storage of a recombinant chimeric factor IX. J Thromb Haemost 2003; 1:292-9. [PMID: 12871503 DOI: 10.1046/j.1538-7836.2003.00071.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hemophilia B was recognized as a good candidate for gene therapy. Several strategies have been attempted and gave promising results in hemophilic animals but failed to achieve corrective levels in humans. To overcome this inconvenience we aimed to generate intracellular pools of factor (F)IX in cells that are implicated in the hemostatic response, e.g. endothelial cells and platelets. Upon stimulation, these cells release their granule content, which in this case would result in an increase in local FIX concentration, and could locally produce an effective hemostasis. In an attempt to produce an intracellular pool of releasable coagulation FIX, the cytoplasmic domain of the P-selectin (pselCT) molecule was fused to the carboxy-terminal extremity of the human FIX protein. The properties of this chimeric molecule (FIX-pselCT) were studied in AtT20, a cell line which possesses storage granules. As previously shown for transmembrane molecules but not for a soluble protein such as FIX, the pselCT fragment induces the storage of FIX-pselCT. The coagulant activity of FIX-pselCT was not affected by the addition of the pselCT tail. The treatment of AtT20 cells with different inhibitors revealed that FIX-pselCT was not submitted to intracellular degradation and that the half-life of the chimeric molecule was at least two times longer than that of FIX-WT. An immunoelectron microscopic analysis demonstrated a specific localization of FIX-pselCT within the ACTH-containing granules. Cell stimulation using Phorbol Myristrate Acetate (PMA), ionophore A-23187 or 8-Br-cAMP induced efficient release of an active FIX-pselCT. These data demonstrate that the addition of the cytoplasmic domain of P-selectin to FIX modifies the cellular fate of the FIX molecule by directing the recombinant protein toward regulated-secretory granules without altering its coagulant activity.
Collapse
Affiliation(s)
- J-L Plantier
- INSERM U331, Laboratoire d'Hémobiologie-Faculté de Médecine RTH, Laennec, Lyon, France
| | | | | | | | | | | |
Collapse
|
38
|
Blagoveshchenskaya AD, Hannah MJ, Allen S, Cutler DF. Selective and signal-dependent recruitment of membrane proteins to secretory granules formed by heterologously expressed von Willebrand factor. Mol Biol Cell 2002; 13:1582-93. [PMID: 12006654 PMCID: PMC111128 DOI: 10.1091/mbc.01-09-0462] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
von Willebrand factor (vWF) is a large, multimeric protein secreted by endothelial cells and involved in hemostasis. When expressed in AtT-20 cells, vWF leads to the de novo formation of cigar-shaped organelles similar in appearance to the Weibel-Palade bodies of endothelial cells in which vWF is normally stored before regulated secretion. The membranes of this vWF-induced organelle, termed the pseudogranule, are uncharacterized. We have examined the ability of these pseudogranules, which we show are secretagogue responsive, to recruit membrane proteins. Coexpression experiments show that the Weibel-Palade body proteins P-selectin and CD63, as well as the secretory organelle membrane proteins vesicle-associated membrane protein-2 and synaptotagmin I are diverted away from the endogenous adrenocorticotropic hormone-containing secretory granules to the vWF-containing pseudogranules. However, transferrin receptor, lysosomal-associated membrane protein 1, and sialyl transferase are not recruited. The recruitment of P-selectin is dependent on a tyrosine-based motif within its cytoplasmic domain. Our data show that vWF pseudogranules specifically recruit a subset of membrane proteins, and that in a process explicitly driven by the pseudogranule content (i.e., vWF), the active recruitment of at least one component of the pseudogranule membrane (i.e., P-selectin) is dependent on residues of P-selectin that are cytosolic and therefore unable to directly interact with vWF.
Collapse
|
39
|
Farzati A, Esposito K, Colacurci N, Fornaro F, Chiantera V, Farzati B. Effects of transdermal hormone replacement therapy on levels of soluble P- and E-selectin in postmenopausal healthy women. Fertil Steril 2002; 77:476-80. [PMID: 11872198 DOI: 10.1016/s0015-0282(01)03225-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To study the adhesion molecule pattern in postmenopausal women who were not receiving hormone replacement therapy (HRT), HRT users, and fertile women. DESIGN Case-control study. SETTING Second University of Naples, Naples, Italy. PATIENT(S) Fifty healthy naturally postmenopausal women and 20 fertile women. INTERVENTION(S) Twenty-six women received no HRT and 24 received continuous transdermal 17 beta-estradiol, 0.05 mg/d, plus oral acetate nomegestrol, 5 mg/d. MAIN OUTCOME MEASURE(S) Levels of the soluble forms of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and P-selectin. RESULT(S) Women who did not received HRT showed a trend toward higher levels of soluble E-selectin and had significantly higher levels of soluble P-selectin than did fertile women. Levels of soluble E-selectin and soluble P-selectin were significantly lower in HRT users than in nonusers. Levels of VCAM-1 levels were significantly higher in HRT users than in fertile women, but no significant differences in CAM concentrations were found between the other groups. CONCLUSION(S) Menopause may lead to increased levels of soluble E- and soluble P-selectin, whereas long-term HRT is associated with lower selectin concentrations. This suggests that HRT may have a beneficial effect on endothelial function.
Collapse
Affiliation(s)
- Angelo Farzati
- Department of Obstetrics and Gynecology, Second University of Naples, Naples, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Chuang JL, Schleef RR. Recombinant Semliki Forest virus enhanced plasminogen activator inhibitor 1 expression and storage in the megakaryocytic cell line MEG-01. J Cell Biochem 2002; 82:277-89. [PMID: 11527153 DOI: 10.1002/jcb.1113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Platelet plasminogen activator inhibitor I (PAI-1), a trace alpha-granule protein, is a key physiological regulator of fibrinolysis. Because information on the packaging of PAI-1 into alpha-granules during megakaryocytopoiesis may reveal novel approaches for controlling hemostasis, this study investigated basal, plasmid-mediated, and alphavirus-mediated PAI-1 packaging into alpha-granules-like structures in the megakaryocytic cell line MEG-01. Differentiation of MEG-01 cells with phorbol myristate acetate (PMA) was observed to result in a four-fold increase in both secreted and cell-associated PAI-1 antigen over a four day period. Subcellular fractionation of PMA-treated MEG-01 cells on 45% self-forming Percoll gradients was employed to separate low density membrane and Golgi-rich fractions from a high density granule-containing region. A subsequent 30-60% pre-formed Percoll gradient was employed to remove contaminating lysosomes from the PAI-1/glycoprotein IIbIIIa-containing granules. Electron microscopy showed that these MEG-01 granules share a similar size distribution (350-600 nm) and morphology to platelet alpha-granules. PAI-1 (40 ng/mg protein) in isolated MEG-01 storage granules was approximately 10% of the levels present in isolated platelet alpha-granules. To elevate PAI-1 production/storage, two expression systems were investigated. Experiments with plasmids encoding PAI-1 and beta-galactosidase resulted in low transfection efficiency (0.001%). In contrast, Semliki Forest virus (SFV)-mediated gene transfer increased cellular PAI-1 by 31-fold (1,200 ng/10(6) cells at 10 MOI) in comparison to mock-infected cells. Pulse-chase experiments demonstrated that SFV/PAI-1 mediated gene expression could enhance PAI-1 storage 6-9-fold, reaching levels present within platelets. To document the ability of PAI-1 to be stored in a rapidly releasable form in MEG-01 cells, we isolated platelet-like particles from the media conditioned by the cells and examined secretagogue-induced release of PAI-1. Particles from SFV/PAI-1 infected cells display a 5-fold enhanced secretion of PAI-1 following treatment with ADP in comparison to particles incubated in the absence of secretagogue. These results suggest that SFV mediated gene expression in MEG-01 cells provides a useful framework for analyzing the production and storage of alpha-granule proteins.
Collapse
|
41
|
Abstract
von Willebrand factor (VWF) is a plasma protein that performs 2 main functions in hemostasis: it mediates platelet adhesion to the injured vessel wall, and it carries and protects coagulation factor VIII. VWF is synthesized through a multistep process in endothelial cells and megakaryocytes as a very large polymer composed of identical disulfide-linked 250-kd subunits. In endothelial cells, VWF not only directs the formation of its own storage granules, the Weibel-Palade bodies, but it also acts as a chaperone molecule to direct other proteins, such as P-selectin, into these granules. Upon stimulation of the endothelium, the Weibel-Palade bodies will be translocated to the plasma membrane, and their contents will be secreted into the plasma milieu. The expression of VWF can be regulated at different levels by a number of genetic and environmental factors, resulting in control of its activity. New roles for VWF, especially in inflammatory processes, have recently been suggested, indicating that some aspects of this well-studied protein remain to be investigated.
Collapse
|
42
|
Steveson TC, Zhao GC, Keutmann HT, Mains RE, Eipper BA. Access of a membrane protein to secretory granules is facilitated by phosphorylation. J Biol Chem 2001; 276:40326-37. [PMID: 11524414 DOI: 10.1074/jbc.m011460200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM), an integral membrane protein essential for the biosynthesis of amidated peptides, was used to assess the role of cytosolic acidic clusters in trafficking to regulated secretory granules. Casein kinase II phosphorylates Ser(949) and Thr(946) of PAM, generating a short, cytosolic acidic cluster. P-CIP2, a protein kinase identified by its ability to interact with several juxtamembrane determinants in the PAM cytosolic domain, also phosphorylates Ser(949). Antibody specific for phospho-Ser(949)-PAM-CD demonstrates that a small fraction of the PAM-1 localized to the perinuclear region bears this modification. Pituitary cell lines expressing PAM-1 mutants that mimic (TS/DD) or prevent (TS/AA) phosphorylation at these sites were studied. PAM-1 TS/AA yields a lumenal monooxygenase domain that enters secretory granules inefficiently and is rapidly degraded. In contrast, PAM-1 TS/DD is routed to regulated secretory granules more efficiently than wild-type PAM-1 and monooxygenase release is more responsive to secretagogue. Furthermore, this acidic cluster affects exit of internalized PAM-antibody complexes from late endosomes; internalized PAM-1 TS/DD accumulates in a late endocytic compartment instead of the trans-Golgi network. The increased ability of solubilized PAM-1 TS/DD to aggregate at neutral pH may play an important role in its altered trafficking.
Collapse
Affiliation(s)
- T C Steveson
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
43
|
Denis CV, André P, Saffaripour S, Wagner DD. Defect in regulated secretion of P-selectin affects leukocyte recruitment in von Willebrand factor-deficient mice. Proc Natl Acad Sci U S A 2001; 98:4072-7. [PMID: 11274431 PMCID: PMC31181 DOI: 10.1073/pnas.061307098] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stimulation of endothelial cells by various inflammatory mediators leads to release of Weibel--Palade bodies and therefore to exocytosis of both P-selectin (adhesion receptor for leukocytes) and von Willebrand factor (vWf) (platelet ligand). The potential role of vWf in leukocyte recruitment was investigated with the use of vWf-deficient mice. We report a strong reduction of leukocyte rolling in venules of vWf-deficient mice. Similarly, vWf deficiency led to a decrease in neutrophil recruitment in a cytokine-induced meningitis model as well as in early skin wounds. In all instances with an antibody that preferentially recognizes plasma membrane P-selectin, we observed a dramatic reduction in P-selectin expression at the cell surface of vWf-deficient endothelium. With confocal microscopy, we found that the typical rodlike shape of the Weibel--Palade body is missing in vWf -/- endothelial cells and that part of the P-selectin content in the vWf -/- cells colocalized with LAMP-1, a lysosomal marker. However, intracellular P-selectin levels were similar in tumor necrosis factor alpha- and lipopolysaccharide-activated cells of both genotypes. We conclude that the absence of vWf, as found in severe von Willebrand disease, leads to a defect in Weibel--Palade body formation. This defect results in decreased P-selectin translocation to the cell surface and reduced leukocyte recruitment in early phases of inflammation.
Collapse
Affiliation(s)
- C V Denis
- Center for Blood Research, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
44
|
Blagoveshchenskaya AD, Cutler DF. Biochemical analyses of trafficking with horseradish peroxidase-tagged chimeras. Methods Enzymol 2001; 327:45-60. [PMID: 11044973 DOI: 10.1016/s0076-6879(00)27266-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- A D Blagoveshchenskaya
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, England, United Kingdom
| | | |
Collapse
|
45
|
Owen DJ, Setiadi H, Evans PR, McEver RP, Green SA. A third specificity-determining site in mu 2 adaptin for sequences upstream of Yxx phi sorting motifs. Traffic 2001; 2:105-10. [PMID: 11247301 DOI: 10.1034/j.1600-0854.2001.020205.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Internalization signals of the Yxx phi type (phi = bulky hydrophobic side chain) interact with the mu 2 chain of AP-2 adaptors. Internalization activity is intolerant of non-conservative substitution of either the tyrosine or the phi side chains, which bind to hydrophobic pockets in mu 2 adaptin in a conformation described as 'a two pinned plug into a socket'. P-selectin, a type I transmembrane protein, contains the Yxx phi-like sequence YGVF in its cytoplasmic domain, but substitution of either the tyrosine or phenylalanine with alanine in the full-length protein causes only small changes in the rate of endocytosis. It is shown here that the sequence YGVF contained within a peptide corresponding to the 17 COOH-terminal amino acids of P-selectin binds to mu 2 adaptin in the same fashion previously seen for other Yxx phi motifs. In addition, the P-selectin peptide binds to a third hydrophobic pocket in mu 2 adaptin through a leucine at position Y-3 in the peptide. This structure suggests that some sequences can function as a 'three pinned plug', in which internalization activity is not critically dependent on any one of the three interacting side chains.
Collapse
Affiliation(s)
- D J Owen
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | |
Collapse
|
46
|
Hop C, Guilliatt A, Daly M, de Leeuw HP, Brinkman HJ, Peake IR, van Mourik JA, Pannekoek H. Assembly of multimeric von Willebrand factor directs sorting of P-selectin. Arterioscler Thromb Vasc Biol 2000; 20:1763-8. [PMID: 10894814 DOI: 10.1161/01.atv.20.7.1763] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We designed a model system to study the role of von Willebrand factor (vWF) in the sorting of P-selectin and the biogenesis of Weibel-Palade body (WPB)-like organelles. For that purpose, a human epithelial cell line (T24) that synthesizes P-selectin mRNA, but which is devoid of vWF mRNA synthesis and storage organelles, was transfected with full-length vWF cDNA or a deletion mutant thereof. Stable transfectants of T24 with full-length vWF cDNA revealed the generation of WPB-like organelles as demonstrated by colocalization of vWF and P-selectin with double-labeling immunofluorescence. In contrast, T24 cells transfected with vWF delD'D3 cDNA, encoding a mutant that is unable to form vWF multimers, displayed only perinuclear vWF staining, whereas no indication was found for the presence of WPB-like organelles. The contents of the organelles in full-length vWF cDNA-transfected T24 cells were released on activation of the protein kinase C pathway, similar to the situation with genuine endothelial cells. The expression of vWF did not affect the biosynthesis of P-selectin, as deduced from the observation that untransfected and vWF cDNA-transfected T24 cells contained the same amount of P-selectin mRNA. We propose that the biosynthesis of multimeric vWF directs the generation of WPB-like organelles, as evidenced by the sequestering and anchoring of P-selectin into these storage granules.
Collapse
Affiliation(s)
- C Hop
- Department of Biochemistry, Academic Medical Center, University of Amsterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kobayashi T, Vischer UM, Rosnoblet C, Lebrand C, Lindsay M, Parton RG, Kruithof EK, Gruenberg J. The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells. Mol Biol Cell 2000; 11:1829-43. [PMID: 10793155 PMCID: PMC14887 DOI: 10.1091/mbc.11.5.1829] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the present study, we show that in human endothelial cells the tetraspanin CD63/lamp3 distributes predominantly to the internal membranes of multivesicular-multilamellar late endosomes, which contain the unique lipid lysobisphosphatidic acid. Some CD63/lamp3 is also present in Weibel-Palade bodies, the characteristic secretory organelle of these cells. We find that CD63/lamp3 molecules can be transported from late endosomes to Weibel-Palade bodies and thus that CD63/lamp3 cycles between endocytic and biosynthetic compartments; however, movement of CD63/lamp3 is much slower than that of P-selectin, which is known to cycle between plasma membrane and Weibel-Palade bodies. When cells are treated with U18666A, a drug that mimics the Niemann-Pick type C syndrome, both proteins accumulate in late endosomes and fail to reach Weibel-Palade bodies efficiently, suggesting that P-selectin, like CD63/lamp3, cycles via late endosomes. Our data suggest that CD63/lamp3 partitions preferentially within late endosome internal membranes, thus causing its accumulation, and that this mechanism contributes to CD63/lamp3 retention in late endosomes; however, our data also indicate that the protein can eventually escape from these internal membranes and recycle toward Weibel-Palade bodies to be reused. Our observations thus uncover the existence of a selective trafficking route from late endosomes to Weibel-Palade bodies.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Biochemistry, Sciences II, University of Geneva, 1211-Geneva-4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Stocker CJ, Sugars KL, Harari OA, Landis RC, Morley BJ, Haskard DO. TNF-alpha, IL-4, and IFN-gamma regulate differential expression of P- and E-selectin expression by porcine aortic endothelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3309-15. [PMID: 10706724 DOI: 10.4049/jimmunol.164.6.3309] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
P- and E-selectin are surface glycoproteins that mediate leukocyte rolling on the surface of endothelium in inflammation. We have cloned porcine P-selectin cDNA and generated a mAb, 12C5, with which to examine P-selectin expression by porcine aortic endothelial cells (PAEC) in comparison with that of E-selectin. Basal expression by PAEC of P-selectin was greater than that of E-selectin, whereas E-selectin expression was more prominently enhanced than that of P-selectin by stimulation with TNF-alpha or IL-1alpha. Both human or porcine IL-4 led to an increase in P-selectin expression, with kinetics that were delayed compared with those seen following stimulation with TNF-alpha or IL-1alpha, but IL-4 did not stimulate expression of E-selectin. When cells were stimulated with TNF-alpha in the presence of IL-4, we observed enhanced P-selectin expression with a parallel reduction in E-selectin expression. Finally, the increase in P-selectin expression due to human IL-4 was reduced in the presence of porcine but not human IFN-gamma. These observations show that E-selectin and P-selectin expression are differentially regulated in PAEC, and that IL-4 leads to a shift in the relative surface density of the two molecules toward P-selectin. The ability of porcine IFN-gamma to inhibit IL-4-induced P-selectin expression suggests that the balance between Th1 and Th2 cytokine production may determine the relative densities of the two selectins in chronic immune-mediated inflammation. Because the increased expression of P-selectin induced by human IL-4 was not inhibited by human IFN-gamma, this balance may be shifted toward P-selectin expression in porcine xenografts infiltrated by human lymphocytes.
Collapse
Affiliation(s)
- C J Stocker
- British Heart Foundation Cardiovascular Medicine Unit, and Department of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The stimulation of regulated exocytosis in vascular endothelial cells (EC) by a variety of naturally occurring agonists contributes to the interrelated processes of inflammation, thrombosis, and fibrinolysis. The Weibel-Palade body (WPB) is a well-described secretory granule in EC that contains both von Willebrand factor (vWF) and P-selectin, but the mechanisms responsible for the targeting of these proteins into this organelle remain poorly understood. Through adenoviral transduction, we have expressed human growth hormone (GH) as a model of regulated secretory protein sorting in EC. Immunofluorescence microscopy of EC infected with GH-containing recombinant adenovirus (GHrAd) demonstrated a granular distribution of GH that colocalized with vWF. In contrast, EC infected with an rAd expressing the IgG1 heavy chain (IG), a constitutively secreted protein, did not demonstrate colocalization of IG and vWF. In response to phorbol ester, GH as well as endogenously synthesized vWF were rapidly released from GHrAd-infected EC. By immunofluorescence microscopy, granular colocalization of GH with endogenous tissue-type plasminogen activator (tPA) was also demonstrated, and most of the tPA colocalized with vWF. These data indicate that EC are capable of selectively targeting heterologous proteins, such as GH, to the regulated secretory pathway, which suggests that EC and neuroendocrine cells share common protein targeting recognition signals or receptors.
Collapse
|
50
|
Papadopoulos EJ, Sassetti C, Saeki H, Yamada N, Kawamura T, Fitzhugh DJ, Saraf MA, Schall T, Blauvelt A, Rosen SD, Hwang ST. Fractalkine, a CX3C chemokine, is expressed by dendritic cells and is up-regulated upon dendritic cell maturation. Eur J Immunol 1999; 29:2551-9. [PMID: 10458770 DOI: 10.1002/(sici)1521-4141(199908)29:08<2551::aid-immu2551>3.0.co;2-t] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lone CX3C chemokine, fractalkine (FK), is expressed in a membrane-bound form on activated endothelial cells and mediates attachment and firm adhesion of T cells, monocytes and NK cells. We now show that FK is associated with dendritic cells (DC) in epidermis and lymphoid organs. In normal human skin, dual-color fluorescence microscopy co-localized FK expression with Langerhans cells expressing CD1a. In tonsil, FK-positive DC expressed CD83, a marker for mature DC. Human and murine cultured DC up-regulated FK mRNA expression with maturation. Furthermore, CD40 ligation, but not TNF-alpha or lipopolysaccharide treatment, of activated, migratory DC that had migrated from skin explants resulted in a 2.5-fold increase of surface expression of FK without significant alterations of expression of CD80, CD86, CD54 or MHC class II. Since FK mediates adhesion of T cells to activated endothelial cells, the increased expression of FK during DC maturation (and particularly by CD40 ligation) may play a role in the ability of T cells and mature DC to form conjugates and engage in cell-cell communication.
Collapse
|