1
|
Yuan K, Farrell JA, O'Farrell PH. Different cyclin types collaborate to reverse the S-phase checkpoint and permit prompt mitosis. ACTA ACUST UNITED AC 2012; 198:973-80. [PMID: 22965907 PMCID: PMC3444785 DOI: 10.1083/jcb.201205007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different cyclin types have distinct abilities to reverse the S-phase checkpoint, and timely entry into mitosis after embryonic S phase requires collaborative action of multiple cyclin types. Precise timing coordinates cell proliferation with embryonic morphogenesis. As Drosophila melanogaster embryos approach cell cycle 14 and the midblastula transition, rapid embryonic cell cycles slow because S phase lengthens, which delays mitosis via the S-phase checkpoint. We probed the contributions of each of the three mitotic cyclins to this timing of interphase duration. Each pairwise RNA interference knockdown of two cyclins lengthened interphase 13 by introducing a G2 phase of a distinct duration. In contrast, pairwise cyclin knockdowns failed to introduce a G2 in embryos that lacked an S-phase checkpoint. Thus, the single remaining cyclin is sufficient to induce early mitotic entry, but reversal of the S-phase checkpoint is compromised by pairwise cyclin knockdown. Manipulating cyclin levels revealed that the diversity of cyclin types rather than cyclin level influenced checkpoint reversal. We conclude that different cyclin types have distinct abilities to reverse the checkpoint but that they collaborate to do so rapidly.
Collapse
Affiliation(s)
- Kai Yuan
- Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
2
|
Abstract
The cyclins and their cyclin-dependent kinase partners, the Cdks, are the basic components of the machinery that regulates the passage of cells through the cell cycle. Among the cyclins, those known as the A-type cyclins are unique in that in somatic cells, they appear to function at two stages of the cell cycle, at the G1-S transition and again as the cells prepare to enter M-phase. Higher vertebrate organisms have two A-type cyclins, cyclin A1 and cyclin A2, both of which are expressed in the germ line and/or early embryo, following highly specialized patterns that suggest functions in both mitosis and meiosis. Insight into their in vivo functions has been obtained from gene targeting experiments in the mouse model. Loss of cyclin A1 results in disruption of spermatogenesis and male sterility due to cell arrest in the late diplotene stage of the meiotic cell cycle. In contrast, cyclin A2-deficiency is marked by early embryonic lethality; thus, understanding the function of cyclin A2 in the adult germ line awaits conditional mutagenesis or other approaches to knock down its expression.
Collapse
|
3
|
Papoulas O, Monzo KF, Cantin GT, Ruse C, Yates JR, Ryu YH, Sisson JC. dFMRP and Caprin, translational regulators of synaptic plasticity, control the cell cycle at the Drosophila mid-blastula transition. Development 2010; 137:4201-9. [PMID: 21068064 DOI: 10.1242/dev.055046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The molecular mechanisms driving the conserved metazoan developmental shift referred to as the mid-blastula transition (MBT) remain mysterious. Typically, cleavage divisions give way to longer asynchronous cell cycles with the acquisition of a gap phase. In Drosophila, rapid synchronous nuclear divisions must pause at the MBT to allow the formation of a cellular blastoderm through a special form of cytokinesis termed cellularization. Drosophila Fragile X mental retardation protein (dFMRP; FMR1), a transcript-specific translational regulator, is required for cellularization. The role of FMRP has been most extensively studied in the nervous system because the loss of FMRP activity in neurons causes the misexpression of specific mRNAs required for synaptic plasticity, resulting in mental retardation and autism in humans. Here, we show that in the early embryo dFMRP associates specifically with Caprin, another transcript-specific translational regulator implicated in synaptic plasticity, and with eIF4G, a key regulator of translational initiation. dFMRP and Caprin collaborate to control the cell cycle at the MBT by directly mediating the normal repression of maternal Cyclin B mRNA and the activation of zygotic frühstart mRNA. These findings identify two new targets of dFMRP regulation and implicate conserved translational regulatory mechanisms in processes as diverse as learning, memory and early embryonic development.
Collapse
Affiliation(s)
- Ophelia Papoulas
- The Section of MCD Biology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Scaria GS, Ramsay G, Katzen AL. Two components of the Myb complex, DMyb and Mip130, are specifically associated with euchromatin and degraded during prometaphase throughout development. Mech Dev 2008; 125:646-61. [PMID: 18424081 DOI: 10.1016/j.mod.2008.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 01/21/2023]
Abstract
The Drosophila Myb protein, DMyb, is a transcription factor important for cell proliferation and development. Unlike the mRNAs produced by mammalian myb genes, Drosophila myb transcripts do not fluctuate substantially during the cell cycle. A comprehensive analysis of the localization and degradation of the DMyb protein has now revealed that DMyb is present in nuclei during S phase of all mitotically active tissues throughout embryogenesis and larval development. However, DMyb and Mip130, another member of the Myb complex, are not uniformly distributed throughout the nucleus. Instead, both proteins, which colocalize, appear to be specifically excluded from heterochromatic regions of chromosomes. Furthermore, DMyb and Mip130 are unstable proteins that are degraded during prometaphase of mitosis. The timing of their degradation is reminiscent of Cyclin A, but at least for DMyb, the mechanism differs; although DMyb degradation is dependent on core APC/C components, it does not depend on the Fizzy or Fizzy-related adaptor proteins. DMyb levels are also high in actively endoreplicating polyploid cells, but there is no indication of cyclical degradation. We conclude that cell cycle specific degradation of DMyb and Mip130 is likely to be utilized as a key regulatory mechanism in down-regulating their levels and the activity of the Myb complex.
Collapse
Affiliation(s)
- George S Scaria
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland Avenue, 2370 MBRB, Chicago IL 60607-7170, USA
| | | | | |
Collapse
|
5
|
Nakuci E, Xu M, Pujana MA, Valls J, Elshamy WM. Geminin is bound to chromatin in G2/M phase to promote proper cytokinesis. Int J Biochem Cell Biol 2006; 38:1207-20. [PMID: 16487741 DOI: 10.1016/j.biocel.2005.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/15/2005] [Accepted: 12/21/2005] [Indexed: 11/18/2022]
Abstract
Previous studies suggested that geminin plays a vital role in both origin assembly and DNA re-replication during S-phase; however, no data to support a role for geminin in G2/M cells have been described. Here it is shown that in G2/M-phase, geminin participates in the promotion of proper cytokinesis. This claim can be supported through a series of observations. First, geminin in G2/M is loaded onto chromatin after it is tyrosine phosphorylated. It is unlike S-phase geminin that resides in the nuclear soluble fraction, where it is exclusively S/T phosphorylated. Secondly, on chromatin, geminin gets S/T phosphorylated in late G1; this modification causes the release of geminin from the chromatin. Cyclins bind and phosphorylate geminin in a sequential, cell cycle-dependent manner. These modifications correlated well with geminin departure from the chromatin. This suggests that cyclin functions to either release geminin from chromatin or at least keep it at bay until late S-phase. Thirdly, depletion of geminin from a diploid mammary epithelial cell line (HME) causes cells to arrest in late G2/M-phase. Massive serine-10 phosphorylated histone H3 staining and survivin localization to mid-body were observed; this suggests that they could be arrested in either mitosis or at cytokinesis. Finally, while in the absence of geminin, cyclin B1, chk1 and cdc7 are all over expressed. This paper will demonstrate that only cdc7 is important in maintaining the cytokinesis arrest in the absence of geminin. Only double depletion of geminin and cdc7 induce apoptosis. Our results taken together show, for the first time, that phosphorylation-induction activates oscillation of geminin between both nuclear soluble and chromatin compartments. Chromatin-bound geminin species functions to initiate or maintain proper cytokineses. In the absence of geminin, cells arrest in cytokinesis; this defines a novel checkpoint, monitored by cdc7, rather than cyclin B1 or chk1.
Collapse
Affiliation(s)
- Enkeleda Nakuci
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
6
|
Máthé E, Kraft C, Giet R, Deák P, Peters JM, Glover DM. The E2-C vihar is required for the correct spatiotemporal proteolysis of cyclin B and itself undergoes cyclical degradation. Curr Biol 2005; 14:1723-33. [PMID: 15458643 DOI: 10.1016/j.cub.2004.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/08/2004] [Accepted: 08/02/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Proteolytic degradation of mitotic regulatory proteins first requires these targets to be ubiquitinated. This is regulated at the level of conjugation of ubiquitin to substrates by the anaphase-promoting complex/cyclosome (APC/C) ubiquitin-protein ligase. Substrate specificity and temporal activity of the APC/C has been thought to lie primarily with its two activators, Cdc20/Fizzy and Cdh1/Fizzy-related. RESULTS Here, we show that reduction in the E2 ubiquitin-conjugating enzyme (UBC) of the E2-C family that is encoded by the Drosophila gene vihar (vih), by either mutation or RNAi, leads to an accumulation of cells in a metaphase-like state. Cyclin B accumulates to high levels in all mitotic vih cells, particularly at the spindle poles. Vihar E2-C is present in the cytoplasm of mitotic cells but also associates with centrosomes, and its own degradation is initiated at the metaphase-anaphase transition. Expression of destruction D box mutants of vihar in the syncytial embryo results in mitotic arrest at late anaphase. In contrast to hypomorphic mutants, Cyclin B is degraded at the spindle poles and accumulates in the equatorial region of the spindle. CONCLUSIONS In Drosophila, the Vihar E2 UBC contributes to the spatiotemporal control of Cyclin B degradation that first occurs at the spindle poles. APC/C-mediated proteolysis of Vihar E2-C autoinactivates the APC/C at the centrosome before a second wave of proteolysis to degrade Cyclin B on the rest of the spindle and elsewhere in the cell.
Collapse
Affiliation(s)
- Endre Máthé
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | | | | | | | |
Collapse
|
7
|
Zhang XH, Axton JM, Drinjákovic J, Lorenz L, White-Cooper H, Renault AD. Spatial and temporal control of mitotic cyclins by the Gnu regulator of embryonic mitosis in Drosophila. J Cell Sci 2004; 117:3571-8. [PMID: 15226379 DOI: 10.1242/jcs.01240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutation of the Drosophila maternal cell cycle regulator, Gnu, results in loss of embryonic mitosis and the onset of excessive nuclear DNA replication. The Gnu phosphoprotein is normally synthesized in nurse cells and transported to the developing oocyte. We created a gnuGFP-bcd3'UTR transgene using the gnu promoter and bicoid 3'UTR, that translates GnuGFP only on egg activation from a localized anterior source. This transgene was able to rescue the sterility of gnu mutant females. Gnu is therefore first required after egg activation for polar body condensation and zygotic mitoses. Embryos containing pronounced anterior-posterior gradients of Gnu activity demonstrate that Gnu regulates mitotic activity by promoting cyclin B stability. Our gnuGFP-bcd3'UTR vector provides a novel experimental strategy to analyse the temporal requirement and role of cell cycle regulators including potential sperm-supplied factors in eggs and embryos.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The centrosome organizes microtubules during both interphase and mitosis and therefore governs fundamental processes in the life of a eukaryotic cell. The past few years have seen a substantial increase in the identification of potential components localized at the centrosome. Although we are still far from achieving a coherent picture of the workings of the centrosome, these recent discoveries are promising first steps towards an understanding of centrosomal functions at the molecular level.
Collapse
Affiliation(s)
- A Kalt
- Institute for Cell Biology, Ludwig-Maximillians-University Munich, Schillerstrasse 42, W-8000 Munich 2, FRG
| | | |
Collapse
|
9
|
Abstract
The development of the early Drosophila embryo is marked by the separation of two nuclear lineages, yolk and somatic nuclei, each having its own division program despite residing in a common cytoplasm. We show that the failure of nuclear division of the yolk nuclei is a consequence of dysfunction in bipolar spindle organization during mitosis 10 and 11. Yolk spindle organization defects are directly correlated to centrosome behaviour, which is abnormal in at least three sequential aspects. First, the yolk centrosomes do not migrate properly along the nuclear envelope during nuclear cycles 10 and 11 and give rise to non-functional monopolar spindles. Second, the centrosomes detached from the poles spindle at the end of nuclear cycle 11, leaving the spindles anastral. Third, the free centrosomes duplicate in the absence of nuclear division during last mitoses and early gastrulation, but do not separate properly. In spite of their reduced nucleating properties, beyond the nuclear cycle 12, the yolk centrosomes contain typical centrosomal antigens, suggesting that their structural organization has not been changed after they disperse in the cytoplasm. Our findings also demonstrate that the centrosome dynamics are spatially and temporally regulated in the yolk region. This observation is consistent with the presence of rate-limiting levels of maternally provided key molecular components, needed for centrosome duplication and positioning. The presence of normal and abnormal centrosomes in the same cytoplasm provides an useful model for investigating the common regulators of the nucleus and centrosome cycle which ensure precise spindle pole duplication.
Collapse
|
10
|
Barbier M, Leighfield TA, Soyer-Gobillard MO, Van Dolah FM. Permanent expression of a cyclin B homologue in the cell cycle of the dinoflagellate Karenia brevis. J Eukaryot Microbiol 2003; 50:123-31. [PMID: 12744525 DOI: 10.1111/j.1550-7408.2003.tb00246.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The eukaryotic cell cycle is driven by a set of cyclin-dependent kinases associated with their regulatory partners, the cyclins, which confer activity, substrate specificities and proper localization of the kinase activity. We describe the cell cycle of Karenia brevis and provide evidence for the presence of a cyclin B homologue in this dinoflagellate using two antibodies with different specificities. This cyclin B homologue has an unusual behavior, since its expression is permanent and it has a cytoplasmic location throughout the cell cycle. There is no evidence for translocation to the nucleus during mitosis. However, it appears also to be specifically bound to the nucleolus throughout the cell cycle. The permanent expression and the cytoplasmic localization during mitosis of this cyclin B homologue is similar to p56, a cyclin B homologue previously described in a different species of dinoflagellate, Crypthecodinium cohnii. Here we discuss this unusual behavior of the cyclin B homologue in dinoflagellates, its relationship to the unusual characteristics of dinomitosis, and its potential implications regarding the evolution of cell cycle regulation among eukaryotes.
Collapse
Affiliation(s)
- Michele Barbier
- Marine Biotoxins Program, Center for Coastal Environmental Health and Biomolecular Research, NOAA, National Ocean Service, Charleston, South Carolina 29412, USA.
| | | | | | | |
Collapse
|
11
|
Iwao Y, Murakawa T, Yamaguchi J, Yamashita M. Localization of gamma-tubulin and cyclin B during early cleavage in physiologically polyspermic newt eggs. Dev Growth Differ 2002; 44:489-99. [PMID: 12492507 DOI: 10.1046/j.1440-169x.2002.00661.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To understand the mechanism of the very slow block to polyspermy in physiologically polyspermic eggs of the newt Cynops pyrrhogaster, we used confocal laser microscopy to determine the distribution of gamma-tubulin and cyclin B1 in fertilized eggs. More gamma-tubulin was localized in the animal hemisphere than in the vegetal. The centrosomes of the principal sperm nucleus and the zygote nucleus had much accumulated gamma-tubulin, but little gamma-tubulin was associated with the centrosomes of the accessory sperm nuclei. These results are consistent with observations that the largest sperm aster is associated with the principal sperm nucleus. More cyclin B1 appeared in the animal hemisphere than in the vegetal at the end of interphase. The zygote nucleus had much accumulated cyclin B1, but little cyclin B1 was associated with the accessory sperm nuclei. Cyclin B1 disappeared earlier around the zygote nucleus at metaphase than around the accessory sperm nuclei. These findings correspond well with the earlier entry and exit into metaphase in the zygote nucleus than in the accessory sperm nuclei in newt eggs, supporting our maturation-promoting factor (MPF) model that accounts for the mechanism of nuclear degeneration in physiologically polyspermic eggs. Cyclin B1 began to accumulate in the nucleus during interphase in synchronous cleavage, and its greatest expression was in the centrosomes and the nucleus at prometaphase.
Collapse
Affiliation(s)
- Yasuhiro Iwao
- Department of Biological Science, Faculty of Science, Yamaguchi University, 753-8512 Yamaguchi, Japan.
| | | | | | | |
Collapse
|
12
|
Ji JY, Haghnia M, Trusty C, Goldstein LSB, Schubiger G. A genetic screen for suppressors and enhancers of the Drosophila cdk1-cyclin B identifies maternal factors that regulate microtubule and microfilament stability. Genetics 2002; 162:1179-95. [PMID: 12454065 PMCID: PMC1462342 DOI: 10.1093/genetics/162.3.1179] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Coordination between cell-cycle progression and cytoskeletal dynamics is important for faithful transmission of genetic information. In early Drosophila embryos, increasing maternal cyclin B leads to higher Cdk1-CycB activity, shorter microtubules, and slower nuclear movement during cycles 5-7 and delays in nuclear migration to the cortex at cycle 10. Later during cycle 14 interphase of six cycB embryos, we observed patches of mitotic nuclei, chromosome bridges, abnormal nuclear distribution, and small and large nuclei. These phenotypes indicate disrupted coordination between the cell-cycle machinery and cytoskeletal function. Using these sensitized phenotypes, we performed a dosage-sensitive genetic screen to identify maternal proteins involved in this process. We identified 10 suppressors classified into three groups: (1) gene products regulating Cdk1 activities, cdk1 and cyclin A; (2) gene products interacting with both microtubules and microfilaments, Actin-related protein 87C; and (3) gene products interacting with microfilaments, chickadee, diaphanous, Cdc42, quail, spaghetti-squash, zipper, and scrambled. Interestingly, most of the suppressors that rescue the astral microtubule phenotype also reduce Cdk1-CycB activities and are microfilament-related genes. This suggests that the major mechanism of suppression relies on the interactions among Cdk1-CycB, microtubule, and microfilament networks. Our results indicate that the balance among these different components is vital for normal early cell cycles and for embryonic development. Our observations also indicate that microtubules and cortical microfilaments antagonize each other during the preblastoderm stage.
Collapse
Affiliation(s)
- Jun-Yuan Ji
- Department of Zoology, University of Washington, Seattle 98195-1800, USA
| | | | | | | | | |
Collapse
|
13
|
Parry DH, O'Farrell PH. The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Curr Biol 2001; 11:671-83. [PMID: 11369230 PMCID: PMC2875931 DOI: 10.1016/s0960-9822(01)00204-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Degradation of the mitotic cyclins is a hallmark of the exit from mitosis. Induction of stable versions of each of the three mitotic cyclins of Drosophila, cyclins A, B, and B3, arrests mitosis with different phenotypes. We tested a recent proposal that the destruction of the different cyclins guides progress through mitosis. RESULTS Real-time imaging revealed that arrest phenotypes differ because each stable cyclin affects specific mitotic events differently. Stable cyclin A prolonged or blocked chromosome disjunction, leading to metaphase arrest. Stable cyclin B allowed the transition to anaphase, but anaphase A chromosome movements were slowed, anaphase B spindle elongation did not occur, and the monooriented disjoined chromosomes began to oscillate between the spindle poles. Stable cyclin B3 prevented normal spindle maturation and blocked major mitotic exit events such as chromosome decondensation but nonetheless allowed chromosome disjunction, anaphase B, and formation of a cytokinetic furrow, which split the spindle. CONCLUSIONS We conclude that degradation of distinct mitotic cyclins is required to transit specific steps of mitosis: cyclin A degradation facilitates chromosome disjunction, cyclin B destruction is required for anaphase B and cytokinesis and for directional stability of univalent chromosome movements, and cyclin B3 degradation is required for proper spindle reorganization and restoration of the interphase nucleus. We suggest that the schedule of degradation of cyclin A, cyclin B, and then cyclin B3 contributes to the temporal coordination of mitotic events.
Collapse
Affiliation(s)
- D H Parry
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
14
|
Douglas RM, Xu T, Haddad GG. Cell cycle progression and cell division are sensitive to hypoxia in Drosophila melanogaster embryos. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1555-63. [PMID: 11294781 DOI: 10.1152/ajpregu.2001.280.5.r1555] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We and others recently demonstrated that Drosophila melanogaster embryos arrest development and embryonic cells cease dividing when they are deprived of O2. To further characterize the behavior of these embryos in response to O2 deprivation and to define the O2-sensitive checkpoints in the cell cycle, embryos undergoing nuclear cycles 3-13 were subjected to O2 deprivation and examined by confocal microscopy under control, hypoxic, and reoxygenation conditions. In vivo, real-time analysis of embryos carrying green fluorescent protein-kinesin demonstrated that cells arrest at two major points of the cell cycle, either at the interphase (before DNA duplication) or at metaphase, depending on the cell cycle phase at which O2 deprivation was induced. Immunoblot analysis of embryos whose cell divisions are synchronized by inducible String (cdc25 homolog) demonstrated that cyclin B was degraded during low O2 conditions in interphase-arrested embryos but not in those arrested in metaphase. Embryos resumed cell cycle activity within ~20 min of reoxygenation, with very little apparent change in cell cycle kinetics. We conclude that there are specific points during the embryonic cell cycle that are sensitive to the O2 level in D. melanogaster. Given the fact that O2 deprivation also influences the growth and development of other species, we suggest that similar hypoxia-sensitive cell cycle checkpoints may also exist in mammalian cells.
Collapse
Affiliation(s)
- R M Douglas
- Department of Pediatrics, Section of Respiratory Medicine, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
15
|
Affiliation(s)
- W F Rothwell
- Sinsheimer Laboratories, Department of Biology, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
16
|
Takada S, Shibata T, Hiraoka Y, Masuda H. Identification of ribonucleotide reductase protein R1 as an activator of microtubule nucleation in Xenopus egg mitotic extracts. Mol Biol Cell 2000; 11:4173-87. [PMID: 11102516 PMCID: PMC15065 DOI: 10.1091/mbc.11.12.4173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule nucleation on the centrosome and the fungal equivalent, the spindle pole body (SPB), is activated at the onset of mitosis. We previously reported that mitotic extracts prepared from Xenopus unfertilized eggs convert the interphase SPB of fission yeast into a competent state for microtubule nucleation. In this study, we have purified an 85-kDa SPB activator from the extracts and identified it as the ribonucleotide reductase large subunit R1. We further confirmed that recombinant mouse R1 protein was also effective for SPB activation. On the other hand, another essential subunit of ribonucleotide reductase, R2 protein, was not required for SPB activation. SPB activation by R1 protein was suppressed in the presence of anti-R1 antibodies or a partial oligopeptide of R1; the oligopeptide also inhibited aster formation on Xenopus sperm centrosomes. In accordance, R1 was detected in animal centrosomes by immunofluorescence and immunoblotting with anti-R1 antibodies. In addition, recombinant mouse R1 protein bound to gamma- and alpha/beta-tubulin in vitro. These results suggest that R1 is a bifunctional protein that acts on both ribonucleotide reduction and centrosome/SPB activation.
Collapse
Affiliation(s)
- S Takada
- Cellular and Molecular Biology Laboratory, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
17
|
Liu D, Liao C, Wolgemuth DJ. A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice. Dev Biol 2000; 224:388-400. [PMID: 10926775 DOI: 10.1006/dbio.2000.9776] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-cycle transition at G2-M is controlled by MPF (M-phase-promoting factor), a complex consisting of the Cdc2 kinase and a B-type cyclin. We have shown that in mice, targeted disruption of an A-type cyclin gene, cyclin A1, results in a block of spermatogenesis prior to the entry into metaphase I. The meiotic arrest is accompanied by a defect in Cdc2 kinase activation at the G2--M transition, raising the possibility that a cyclin A1-dependent process dictates the activation of MPF. Here we show that like Cdc2, the expression of B-type cyclins is retained in cyclin A1-deficient spermatocytes, while their associated kinases are kept at inactive states. Treatment of arrested germ cells with the protein phosphatase type-1 and -2A inhibitor okadaic acid restores the MPF activity and induces entry into M phase and the formation of normally condensed chromosome bivalents, concomitant with hyperphosphorylation of Cdc25 proteins. Conversely, inhibition of tyrosine phosphatases, including Cdc25s, by vanadate suppresses the okadaic acid-induced metaphase induction. The highest levels of Cdc25A and Cdc25C expression and their subcellular localization during meiotic prophase coincide with that of cyclin A1, and when overexpressed in HeLa cells, cyclin A1 coimmunoprecipitates with Cdc25A. Furthermore, the protein kinase complexes consisting of cyclin A1 and either Cdc2 or Cdk2 phosphorylate both Cdc25A and Cdc25C in vitro. These results suggest that in normal meiotic male germ cells, cyclin A1 participates in the regulation of other protein kinases or phosphatases critical for the G2-M transition. In particular, it may be directly involved in the initial amplification of MPF through the activating phosphorylation on Cdc25 phosphatases.
Collapse
Affiliation(s)
- D Liu
- The Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
18
|
Máthé E, Bates H, Huikeshoven H, Deák P, Glover DM, Cotterill S. Importin-alpha3 is required at multiple stages of Drosophila development and has a role in the completion of oogenesis. Dev Biol 2000; 223:307-22. [PMID: 10882518 DOI: 10.1006/dbio.2000.9743] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila importin-alpha3 gene was isolated through its interaction with the large subunit of the DNA polymerase alpha in a two-hybrid screen. The predicted protein sequence of Importin-alpha3 is 65-66% identical to those of the human and mouse importin-alpha3 and alpha4 and 42.7% identical to that of Importin-alpha2 (Oho31/Pendulin), the previously reported Drosophila homologue. Both Importin-alpha3 and Importin-alpha2 interact with similar subsets of proteins in vitro, one of which is Ketel, the importin-beta homologue of Drosophila. importin-alpha3 is an essential gene, whose encoded protein is expressed throughout development. During early embryogenesis, Importin-alpha3 accumulates at the nuclear membrane of cleavage nuclei, whereas after blastoderm formation it is characteristically found within the interphase nuclei. Nuclear localisation is seen in several tissues throughout subsequent development. During oogenesis its concentration within the nurse cell nuclei increases during stages 7-10, concomitant with a decline in levels in the oocyte nucleus. Mutation of importin-alpha3 results in lethality throughout pupal development. Surviving females are sterile and show arrest of oogenesis at stages 7-10. Thus, Importin-alpha3-mediated nuclear transport is essential for completion of oogenesis and becomes limiting during pupal development. Since they have different expression patterns and subcellular localisation profiles, we suggest that the two importin-alpha homologues are not redundant in the context of normal Drosophila development.
Collapse
Affiliation(s)
- E Máthé
- Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Charrasse S, Lorca T, Dorée M, Larroque C. The Xenopus XMAP215 and its human homologue TOG proteins interact with cyclin B1 to target p34cdc2 to microtubules during mitosis. Exp Cell Res 2000; 254:249-56. [PMID: 10640423 DOI: 10.1006/excr.1999.4740] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoskeleton reorganization, leading to mitotic spindle formation, is an M-phase-specific event and is controlled by maturation promoting factor (MPF: p34cdc2-cyclinB1 complex). It has previously been demonstrated that the p34cdc2-cyclin B complex associates with mitotic spindle microtubules and that microtubule-associated proteins (MAPs), in particular MAP4, might be responsible for this interaction. In this study, we report that another ubiquitous MAP, TOG in human and its homologue in Xenopus XMAP215, associates also with p34cdc2 kinase and directs it to the microtubule cytoskeleton. Costaining of Xenopus cells with anti-TOGp and anti-cyclin B1 antibodies demonstrated colocalization in interphase cells and also with microtubules throughout the cell cycle. Cyclin B1, TOG/XMAP215, and p34cdc2 proteins were recovered in microtubule pellets isolated from Xenopus egg extracts and were eluted with the same ionic strength. Cosedimentation of cyclin B1 with in vitro polymerized microtubules was detected only in the presence of purified TOG protein. Using a recombinant C-terminal TOG fragment containing a Pro-rich region, we showed that this domain is sufficient to mediate cosedimentation of cyclin B1 with microtubules. Finally, we demonstrated interaction between TOG/XMAP215 and cyclin B1 by co-immunoprecipitation assays. As XMAP215 was shown to be the only identified assembly promoting MAP which increases the rapid turnover of microtubules, the TOG/XMAP215-cyclin B1 interaction may be important for regulation of microtubule dynamics at mitosis.
Collapse
Affiliation(s)
- S Charrasse
- Centre de Recherche Biochimique Macromoleculaire, Montpellier, France
| | | | | | | |
Collapse
|
20
|
Stiffler LA, Ji JY, Trautmann S, Trusty C, Schubiger G. Cyclin A and B functions in the early Drosophila embryo. Development 1999; 126:5505-13. [PMID: 10556074 DOI: 10.1242/dev.126.23.5505] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotes, mitotic cyclins localize differently in the cell and regulate different aspects of the cell cycle. We investigated the relationship between subcellular localization of cyclins A and B and their functions in syncytial preblastoderm Drosophila embryos. During early embryonic cycles, cyclin A was always concentrated in the nucleus and present at a low level in the cytoplasm. Cyclin B was predominantly cytoplasmic, and localized within nuclei only during late prophase. Also, cyclin B colocalized with metaphase but not anaphase spindle microtubules. We changed maternal gene doses of cyclins A and B to test their functions in preblastoderm embryos. We observed that increasing doses of cyclin B increased cyclin B-Cdk1 activity, which correlated with shorter microtubules and slower microtubule-dependent nuclear movements. This provides in vivo evidence that cyclin B-Cdk1 regulates microtubule dynamics. In addition, the overall duration of the early nuclear cycles was affected by cyclin A but not cyclin B levels. Taken together, our observations support the hypothesis that cyclin B regulates cytoskeletal changes while cyclin A regulates the nuclear cycles. Varying the relative levels of cyclins A and B uncoupled the cytoskeletal and nuclear events, so we speculate that a balance of cyclins is necessary for proper coordination during these embryonic cycles.
Collapse
Affiliation(s)
- L A Stiffler
- Department of Zoology, Box 351800, University of Washington, Seattle, WA 98195-1800, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
As an organizer of the microtubule cytoskeleton in animals, the centrosome has an important function. From the early light microscopic observation of the centrosome to examination by electron microscopy, the centrosome field is now in an era of molecular identification and precise functional analyses. Tables compiling centrosomal proteins and reviews on the centrosome are presented here and demonstrate how active the field is. However, despite this intense research activity, many classical questions are still unanswered. These include those regarding the precise function of centrioles, the mechanism of centrosome duplication and assembly, the origin of the centrosome, and the regulation and mechanism of the centrosomal microtubule nucleation activity. Fortunately, these questions are becoming elucidated based on experimental data discussed here. Given the fact that the centrosome is primarily a site of microtubule nucleation, special focus is placed on the process of microtubule nucleation and on the regulation of centrosomal microtubule nucleation capacity during the cell cycle and in some tissues.
Collapse
Affiliation(s)
- S S Andersen
- Department of Molecular Biology, Princeton University, New Jersey 08540-1014, USA
| |
Collapse
|
22
|
Huang J, Raff JW. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J 1999; 18:2184-95. [PMID: 10205172 PMCID: PMC1171302 DOI: 10.1093/emboj/18.8.2184] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have followed the behaviour of a cyclin B-green fluorescent protein (GFP) fusion protein in living Drosophila embryos in order to study how the localization and destruction of cyclin B is regulated in space and time. We show that the fusion protein accumulates at centrosomes in interphase, in the nucleus in prophase, on the mitotic spindle in prometaphase and on the microtubules that overlap in the middle of the spindle in metaphase. In cellularized embryos, toward the end of metaphase, the spindle-associated cyclin B-GFP disappears from the spindle in a wave that starts at the spindle poles and spreads to the spindle equator; when the cyclin B-GFP on the spindle is almost undetectable, the chromosomes enter anaphase, and any remaining cytoplasmic cyclin B-GFP then disappears over the next few minutes. The endogenous cyclin B protein appears to behave in a similar manner. These findings suggest that the inactivation of cyclin B is regulated spatially in Drosophila cells. We show that the anaphase-promoting complex/cyclosome (APC/C) specifically interacts with microtubules in embryo extracts, but it is not confined to the spindle in mitosis, suggesting that the spatially regulated disappearance of cyclin B may reflect the spatially regulated activation of the APC/C.
Collapse
Affiliation(s)
- J Huang
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
23
|
Abstract
Biological scientists are eagerly confronting the challenge of understanding the regulatory mechanisms that control the cell division cycle in eukaryotes. New information will have major implications for the treatment of growth-related diseases and cancer in animals. In plants, cell division has a key role in root and shoot growth as well as in the development of vegetative storage organs and reproductive tissues such as flowers and seeds. Many of the strategies for crop improvement, especially those aimed at increasing yield, involve the manipulation of cell division. This review describes, in some detail, the current status of our understanding of the regulation of cell division in eukaryotes and especially in plants. It also features an outline of some preliminary attempts to exploit transgenesis for manipulation of plant cell division.
Collapse
Affiliation(s)
- M R Fowler
- Norman Borlaug Institute for Plant Science Research, De Montfort University, Scraptoft, Leicester, England
| | | | | | | | | |
Collapse
|
24
|
Su TT, Sprenger F, DiGregorio PJ, Campbell SD, O'Farrell PH. Exit from mitosis in Drosophila syncytial embryos requires proteolysis and cyclin degradation, and is associated with localized dephosphorylation. Genes Dev 1998; 12:1495-503. [PMID: 9585509 PMCID: PMC316833 DOI: 10.1101/gad.12.10.1495] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cyclin proteolysis that accompanies the exit from mitosis in diverse systems appears to be essential for restoration of interphase. The early syncytial divisions of Drosophila embryos, however, occur without detectable oscillations in the total cyclin level or Cdk1 activity. Nonetheless, we found that injection of an established inhibitor of cyclin proteolysis, a cyclin B amino-terminal peptide, prevents exit from mitosis in syncytial embryos. Similarly, injection of a version of Drosophila cyclin B that is refractory to proteolysis results in mitotic arrest. We infer that proteolysis of cyclins is required for exit from syncytial mitoses. This inference can be reconciled with the failure to observe oscillations in total cyclin levels if only a small pool of cyclins is destroyed in each cycle. We find that antibody detection of histone H3 phosphorylation (PH3) acts as a reporter for Cdk1 activity. A gradient of PH3 along anaphase chromosomes suggests local Cdk1 inactivation near the spindle poles in syncytial embryos. This pattern of Cdk1 inactivation would be consistent with local cyclin destruction at centrosomes or kinetochores. The local loss of PH3 during anaphase is specific to the syncytial divisions and is not observed after cellularization. We suggest that exit from mitosis in syncytial cycles is modified to allow nuclear autonomy within a common cytoplasm.
Collapse
Affiliation(s)
- T T Su
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143-0448, USA.
| | | | | | | | | |
Collapse
|
25
|
Brandeis M, Rosewell I, Carrington M, Crompton T, Jacobs MA, Kirk J, Gannon J, Hunt T. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci U S A 1998; 95:4344-9. [PMID: 9539739 PMCID: PMC22491 DOI: 10.1073/pnas.95.8.4344] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Two B-type cyclins, B1 and B2, have been identified in mammals. Proliferating cells express both cyclins, which bind to and activate p34(cdc2). To test whether the two B-type cyclins have distinct roles, we generated lines of transgenic mice, one lacking cyclin B1 and the other lacking cyclin B2. Cyclin B1 proved to be an essential gene; no homozygous B1-null pups were born. In contrast, nullizygous B2 mice developed normally and did not display any obvious abnormalities. Both male and female cyclin B2-null mice were fertile, which was unexpected in view of the high levels and distinct patterns of expression of cyclin B2 during spermatogenesis. We show that the expression of cyclin B1 overlaps the expression of cyclin B2 in the mature testis, but not vice versa. Cyclin B1 can be found both on intracellular membranes and free in the cytoplasm, in contrast to cyclin B2, which is membrane-associated. These observations suggest that cyclin B1 may compensate for the loss of cyclin B2 in the mutant mice, and implies that cyclin B1 is capable of targeting the p34(cdc2) kinase to the essential substrates of cyclin B2.
Collapse
Affiliation(s)
- M Brandeis
- Department of Genetics, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mathe E, Boros I, Josvay K, Li K, Puro J, Kaufman TC, Szabad J. The Tomaj mutant alleles of alpha Tubulin67C reveal a requirement for the encoded maternal specific tubulin isoform in the sperm aster, the cleavage spindle apparatus and neurogenesis during embryonic development in Drosophila. J Cell Sci 1998; 111 ( Pt 7):887-96. [PMID: 9490633 DOI: 10.1242/jcs.111.7.887] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The three dominant TomajD and their eleven revertant (TomajR) alleles have been localized to the alpha Tubulin67C gene of Drosophila melanogaster. Although the meiotic divisions are normally completed in eggs laid by TomajD/+, TomajD/-, TomajR/- females, embryogenesis arrests prior to the gonomeric division. The arrest is caused by: (1) the failure of prominent sperm aster formation; and (2) a consequent lack of female pronuclear migration towards the male pronucleus. Concomitant with the sperm aster defect, the four female meiotic products fuse (tetra-fusion), similar to what is seen in eggs of wild-type virgin females. In eggs of females heterozygous for weaker TomajR alleles, embryogenesis comes to a cessation before or shortly after cortical migration of cleavage nuclei. The apparent source of embryonic defect is the cleavage spindle apparatus. One of the three TomajD alleles is cold-sensitive and its cold-sensitive period coincides with the completion of female meiosis and pronuclear migration. Disorganized central and peripheral nervous systems are also characteristic of embryos derived from the temperature-sensitive TomajD/+ females. The Tomaj mutant phenotypes indicate an involvement of the normal alpha Tubulin67C gene product in: (1) the formation of the sperm aster; (2) cleavage spindle apparatus formation/function; and (3) the differentiation of the embryonic nervous system. The TomajD alleles encode a normal-sized alpha Tubulin67C isotype. Sequence analyses of the TomajD alleles revealed the replacement in different positions of a single negatively charged or neutral amino acid with a positively charged one. These residues presumably identify important functional sites.
Collapse
Affiliation(s)
- E Mathe
- Department of Biology, Albert Szent-Györgyi Medical University, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
27
|
Bridge AJ, Morphew M, Bartlett R, Hagan IM. The fission yeast SPB component Cut12 links bipolar spindle formation to mitotic control. Genes Dev 1998; 12:927-42. [PMID: 9531532 PMCID: PMC316675 DOI: 10.1101/gad.12.7.927] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/1997] [Accepted: 02/04/1998] [Indexed: 02/07/2023]
Abstract
During fission yeast mitosis, the duplicated spindle pole bodies (SPBs) nucleate microtubule arrays that interdigitate to form the mitotic spindle. cut12.1 mutants form a monopolar mitotic spindle, chromosome segregation fails, and the mutant undergoes a lethal cytokinesis. The cut12(+) gene encodes a novel 62-kD protein with two predicted coiled coil regions, and one consensus phosphorylation site for p34(cdc2) and two for MAP kinase. Cut12 is localized to the SPB throughout the cell cycle, predominantly around the inner face of the interphase SPB, adjacent to the nucleus. cut12(+) is allelic to stf1(+); stf1.1 is a gain-of-function mutation bypassing the requirement for the Cdc25 tyrosine phosphatase, which normally dephosphorylates and activates the p34(cdc2)/cyclin B kinase to promote the onset of mitosis. Expressing a cut12(+) cDNA carrying the stf1.1 mutation also suppressed cdc25.22. The spindle defect in cut12.1 is exacerbated by the cdc25.22 mutation, and stf1.1 cells formed defective spindles in a cdc25.22 background at high temperatures. We propose that Cut12 may be a regulator or substrate of the p34(cdc2) mitotic kinase.
Collapse
Affiliation(s)
- A J Bridge
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT UK
| | | | | | | |
Collapse
|
28
|
Roghi C, Giet R, Uzbekov R, Morin N, Chartrain I, Le Guellec R, Couturier A, Dorée M, Philippe M, Prigent C. The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J Cell Sci 1998; 111 ( Pt 5):557-72. [PMID: 9454730 DOI: 10.1242/jcs.111.5.557] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By differential screening of a Xenopus laevis egg cDNA library, we have isolated a 2,111 bp cDNA which corresponds to a maternal mRNA specifically deadenylated after fertilisation. This cDNA, called Eg2, encodes a 407 amino acid protein kinase. The pEg2 sequence shows significant identity with members of a new protein kinase sub-family which includes Aurora from Drosophila and Ipl1 (increase in ploidy-1) from budding yeast, enzymes involved in centrosome migration and chromosome segregation, respectively. A single 46 kDa polypeptide, which corresponds to the deduced molecular mass of pEg2, is immunodetected in Xenopus oocyte and egg extracts, as well as in lysates of Xenopus XL2 cultured cells. In XL2 cells, pEg2 is immunodetected only in S, G2 and M phases of the cell cycle, where it always localises to the centrosomal region of the cell. In addition, pEg2 ‘invades’ the microtubules at the poles of the mitotic spindle in metaphase and anaphase. Immunoelectron microscopy experiments show that pEg2 is located precisely around the pericentriolar material in prophase and on the spindle microtubules in anaphase. We also demonstrate that pEg2 binds directly to taxol stabilised microtubules in vitro. In addition, we show that the presence of microtubules during mitosis is not necessary for an association between pEg2 and the centrosome. Finally we show that a catalytically inactive pEg2 kinase stops the assembly of bipolar mitotic spindles in Xenopus egg extracts.
Collapse
Affiliation(s)
- C Roghi
- Département de Biologie et Génétique du Développement, Université de Rennes I, Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kidd D, Raff JW. LK6, a short lived protein kinase in Drosophila that can associate with microtubules and centrosomes. J Cell Sci 1997; 110 ( Pt 2):209-19. [PMID: 9044051 DOI: 10.1242/jcs.110.2.209] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A number of polyclonal mouse sera were raised against Drosophila proteins that bound to microtubules in vitro (Kellogg et al. (1989) J. Cell Biol. 109, 2977–2991). Some of these sera recognised centrosomes in vivo, and we have been using these to screen expression libraries to isolate cDNAs encoding these putative centrosomal microtubule-associated proteins. Here we report the cloning of one such cDNA that encodes a novel serine/threonine protein kinase called LK6. The protein appears to exist in two forms: an abundant 185 kDa form and a rarer approximately 220 kDa form that interacts with microtubules. At least some of the LK6 protein is located in centrosomes at all stages of the cell cycle in fly embryos. Interestingly, the protein contains a PEST-like sequence and is rapidly turned over in vivo. Constitutive overexpression of LK6 is deleterious to flies and causes defects in microtubule organisation in both eggs and early embryos, whereas constitutive overexpression of a mutant form containing a point mutation that severely impairs the kinase activity is without effect. These findings suggest that LK6 may play a role in regulating microtubule function.
Collapse
Affiliation(s)
- D Kidd
- Wellcome/CRC Institute, Department of Genetics, Cambridge, UK
| | | |
Collapse
|
30
|
Baluska F, Volkmann D, Barlow PW. Nuclear components with microtubule-organizing properties in multicellular eukaryotes: functional and evolutionary considerations. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 175:91-135. [PMID: 9203357 DOI: 10.1016/s0074-7696(08)62126-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleus and the microtubular cytoskeleton of eukaryotic cells appear to be structurally and functionally interrelated. Together they constitute a "cell body". One of the most important components of this body is a primary microtubule-organizing center (MTOC-I) located on or near the nuclear surface and composed of material that, in addition to constitutive centrosomal material, also comprises some nuclear matrix components. The MTOC-I shares a continuity with the mitotic spindle and, in animal cells, with the centrosome also. Secondary microtubule-organizing centers (MTOC-IIs) are a special feature of walled plant cells and are found at the plasma membrane where they organize arrays of cortical MTs that are essential for ordered cell wall synthesis and hence for cellular morphogenesis. MTOC-IIs are held to be similar in origin to the MTOC-I, but their material has been translocated to the cell periphery, perhaps by MTs organized and radiating from the MTOC-I. Many intranuclear, matrix-related components have been identified to participate in MT organization during mitosis and cytokinesis; some of them also seem to be related to the condensation and decondensation of chromatin during the mitotic chromosome cycle.
Collapse
Affiliation(s)
- F Baluska
- Botanisches Institut, Universität Bonn, Germany
| | | | | |
Collapse
|
31
|
Brisch E, Daggett MA, Suprenant KA. Cell cycle-dependent phosphorylation of the 77 kDa echinoderm microtubule-associated protein (EMAP) in vivo and association with the p34cdc2 kinase. J Cell Sci 1996; 109 ( Pt 12):2885-93. [PMID: 9013336 DOI: 10.1242/jcs.109.12.2885] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The most abundant microtubule-associated protein in sea urchin eggs and embryos is the 77 kDa echinoderm microtubule-associated protein (EMAP). EMAP localizes to the mitotic spindle as well as the interphase microtubule array and is a likely target for a cell cycle-activated kinase. To determine if EMAP is phosphorylated in vivo, sea urchin eggs and embryos were metabolically labeled with 32PO4 and a monospecific antiserum was used to immunoprecipitate EMAP from 32P-labeled eggs and embryos. In this study, we demonstrate that the 77 kDa EMAP is phosphorylated in vivo by two distinct mechanisms. In the unfertilized egg, EMAP is constitutively phosphorylated on at least five serine residues. During the first cleavage division following fertilization, EMAP is phosphorylated with a cell cycle-dependent time course. As the embryo enters mitosis, EMAP phosphorylation increases, and as the embryo exits mitosis, phosphorylation decreases. During mitosis, EMAP is phosphorylated on 10 serine residues and two-dimensional phosphopeptide mapping reveals a mitosis-specific site of phosphorylation. At all stages of the cell cycle, a 33 kDa polypeptide copurifies with the 77 kDa EMAP, regardless of phosphorylation state. Antibodies against the cdc2 kinase were used to demonstrate that the 33 kDa polypeptide is the p34cdc2 kinase. The p34cdc2 kinase copurifies with the mitotic apparatus and immunostaining indicates that the p34cdc2 kinase is concentrated at the spindle poles. Models for the interaction of the p34cdc2 kinase and the 77 kDa EMAP are presented.
Collapse
Affiliation(s)
- E Brisch
- Department of Physiology and Cell Biology, University of Kansas, Lawrence 66045, USA
| | | | | |
Collapse
|
32
|
Frenz LM, Glover DM. A maternal requirement for glutamine synthetase I for the mitotic cycles of syncytial Drosophila embryos. J Cell Sci 1996; 109 ( Pt 11):2649-60. [PMID: 8937983 DOI: 10.1242/jcs.109.11.2649] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the maternal effect phenotype of a hypomorphic mutation in the Drosophila gene for glutamine synthetase I (GSI). The extent of development of embryos derived from homozygous mutant females is variable, although most mutant embryos fail to survive past germband elongation and none develop into larvae. These embryos are characterised by an increase in the number of yolk-like nuclei following nuclear migration to the cortex. These nuclei appear to fall into the interior of the embryo from the cortex at blastoderm. As they do so, the majority continue to show association with PCNA in synchrony with nuclei at the cortex, suggesting some continuity of the synchrony of DNA replication. However, the occurrence of nuclei that have lost cell cycle synchrony with their neighbours is not uncommon. Immunostaining of mutant embryos revealed a range of mitotic defects, ultimately resulting in nuclear fusion events, division failure or other mitotic abnormalities. A high proportion of these mitotic figures show chromatin bridging at anaphase and telophase consistent with progression through mitosis in the presence of incompletely replicated DNA. GSI is responsible for the ATP-dependent amination of glutamate to produce glutamine, which is required in the formation of amino acids, purines and pyrimidines. We discuss how the loss of glutamine could depress both protein and DNA synthesis and lead to a variety of mitotic defects in this embryonic system that lacks certain checkpoint controls.
Collapse
Affiliation(s)
- L M Frenz
- Department of Anatomy and Physiology, University of Dundee, Scotland, UK
| | | |
Collapse
|
33
|
Debec A, Kalpin RF, Daily DR, McCallum PD, Rothwell WF, Sullivan W. Live analysis of free centrosomes in normal and aphidicolin-treated Drosophila embryos. J Cell Biol 1996; 134:103-15. [PMID: 8698807 PMCID: PMC2120918 DOI: 10.1083/jcb.134.1.103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In a number of embryonic systems, centrosomes that have lost their association with the nuclear envelope and spindle maintain their ability to duplicate and induce astral microtubules. To identify additional activities of free centrosomes, we monitored astral microtubule dynamics by injecting living syncytial Drosophila embryos with fluorescently labeled tubulin. Our recordings follow multiple rounds of free centrosome duplication and separation during the cortical division. The rate and distance of free sister centrosome separation corresponds well with the initial phase of associated centrosome separation. However, the later phase of separation observed for centrosomes associated with a spindle (anaphase B) does not occur. Free centrosome separation regularly occurs on a plane parallel to the plasma membrane. While previous work demonstrated that centrosomes influence cytoskeletal dynamics, this observation suggests that the cortical cytoskeleton regulates the orientation of centrosome separation. Although free centrosomes do not form spindles, they display relatively normal cell cycle-dependent modulations of their astral microtubules. In addition, free centrosome duplication, separation, and modulation of microtubule dynamics often occur in synchrony with neighboring associated centrosomes. These observations suggest that free centrosomes respond normally to local nuclear division signals. Disruption of the cortical nuclear divisions with aphidicolin supports this conclusion; large numbers of abnormal nuclei recede into the interior while their centrosomes remain on the cortex. Following individual free centrosomes through multiple focal planes for 45 min after the injection of aphidicolin reveals that they do not undergo normal modulation of their astral dynamics nor do they undergo multiple rounds of duplication and separation. We conclude that in the absence of normally dividing cortical nuclei many centrosome activities are disrupted and centrosome duplication is extensively delayed. This indicates the presence of a feedback mechanism that creates a dependency relationship between the cortical nuclear cycles and the centrosome cycles.
Collapse
Affiliation(s)
- A Debec
- Université Pierre et Marie Curie, UA Centre National de la Recherche Scientifique 1135, Paris, France
| | | | | | | | | | | |
Collapse
|
34
|
Goodger NM, Gannon J, Hunt T, Morgan PR. The localization of p34cdc2 in the cells of normal, hyperplastic, and malignant epithelial and lymphoid tissues of the oral cavity. J Pathol 1996; 178:422-8. [PMID: 8691321 DOI: 10.1002/(sici)1096-9896(199604)178:4<422::aid-path497>3.0.co;2-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The expression of p34cdc2 has been examined in normal, hyperplastic, and malignant oral epithelia and lymphoid tissues. Four monoclonal antibodies were prepared against Xenopus p34cdc2, three of which react specifically with human p34cdc2 and not with p33cdk2. These produced similar patterns of staining in both fixed and frozen sections of human material. Staining occurred mainly in the proliferative compartments of normal and hyperplastic tissues. In normal oral epithelia, parabasal and basal cells were the most strongly stained, with lighter cytoplasmic staining in lower prickle cells. In tonsillar germinal centres, a high proportion of cells was stained, with fewer positive cells in interfollicular zones, a distribution in keeping with the known pattern of cell proliferation. In normal cells, the intracellular location of p34cdc2 was cytoplasmic until early prophase, but in oral squamous cell carcinomas and lymphomas, it was located in both cytoplasm and nucleus during interphase and a larger fraction of cells was positive than in the equivalent normal tissues. Higher-grade neoplasms showed both a higher intensity of staining and a higher proportion of p34cdc2-positive cells.
Collapse
Affiliation(s)
- N M Goodger
- Department of Oral Medicine and Pathology, UMDS (Guy's Campus), London Bridge, U.K
| | | | | | | |
Collapse
|
35
|
Masuda H, Shibata T. Role of gamma-tubulin in mitosis-specific microtubule nucleation from the Schizosaccharomyces pombe spindle pole body. J Cell Sci 1996; 109 ( Pt 1):165-77. [PMID: 8834801 DOI: 10.1242/jcs.109.1.165] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of the Schizosacchromyces pombe spindle pole body to nucleate microtubules is activated at the onset of mitosis for forming a mitotic spindle, but it is inactivated during interphase. We have previously developed an in vitro assay for studying the molecular mechanism of spindle pole body activation using permeabilized interphase S. pombe cells and Xenopus mitotic extracts. We have shown that the interphase spindle pole body is activated indirectly by p34cdc2 protein kinase in Xenopus mitotic extracts. In this study we examined the role of gamma-tubulin, a component of both interphase and mitotic spindle pole body, in formation of the microtubule nucleating complex at the mitotic spindle pole body. A polyclonal antibody specific to S. pombe gamma-tubulin inhibited both activation of the interphase spindle pole body and microtubule nucleation from the mitotic spindle pole body. Addition of bacterially expressed S. pombe gamma-tubulin or its amino-terminal fragments to Xenopus mitotic extracts inhibited spindle pole body activation. Affinity chromatography of partially fractionated Xenopus mitotic extracts with the amino-terminal fragment of S. pombe gamma-tubulin showed that fractions bound to the fragment supported the activation. The fractions did not contain Xenopus gamma-tubulin, showing that activation of the spindle pole body is not due to recruitment of Xenopus gamma-tubulin to the spindle pole body. The spindle pole body activation occurred in extracts depleted of p34cdc2 protein kinase or MAP kinase. The activity of the fractions bound to the fragment was inhibited by a protein kinase inhibitor, staurosporine. These results suggest that S. pombe gamma-tubulin is a component of the microtubule nucleating complex, and that the function of proteins that interact with gamma-tubulin is required for activation of the spindle pole body. We present possible models for the activation that convert the immature microtubule nucleating complex at interphase into the mature microtubule nucleating complex at mitosis.
Collapse
Affiliation(s)
- H Masuda
- Precursory Research for Embryonic Science and Technology (PRESTO), Research Development Corporation of Japan (JRDC)
| | | |
Collapse
|
36
|
Girard F, Fernandez A, Lamb N. Delayed cyclin A and B1 degradation in non-transformed mammalian cells. J Cell Sci 1995; 108 ( Pt 7):2599-608. [PMID: 7593301 DOI: 10.1242/jcs.108.7.2599] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclins A and B are known to exhibit significant differences in their function, cellular distribution and timing of degradation at mitosis. On the basis of observations in marine invertebrates and Xenopus, it was proposed that cyclin destruction triggers cdc2 kinase inactivation and anaphase onset. However, this model has recently been questioned, both in Xenopus and in budding yeast. In this report, we present evidence for delayed degradation of both cyclins A and B1 in non-transformed mammalian cells. Indeed, by means of indirect immunofluorescence and confocal microscopy, we show that cyclins A and B1 are present up to anaphase in REF52, Hs68, human primary fibroblasts and NRK epithelial cells. In marked contrast, cyclin A is shown to be degraded within metaphase and cyclin B just at the transition to anaphase in HeLa and two transformed cell lines, derivatives of normal NRK and REF52. These results further support the notion that cyclin destruction might be not correlated with anaphase onset in normal cells and highlight a significant difference in the fate of mitotic cyclins between transformed and non-transformed cells.
Collapse
Affiliation(s)
- F Girard
- Cell Biology Unit, Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Montpellier, France
| | | | | |
Collapse
|
37
|
Dawson IA, Roth S, Artavanis-Tsakonas S. The Drosophila cell cycle gene fizzy is required for normal degradation of cyclins A and B during mitosis and has homology to the CDC20 gene of Saccharomyces cerevisiae. J Cell Biol 1995; 129:725-37. [PMID: 7730407 PMCID: PMC2120434 DOI: 10.1083/jcb.129.3.725] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Drosophila cell cycle gene fizzy (fzy) is required for normal execution of the metaphase-anaphase transition. We have cloned fzy, and confirmed this by P-element mediated germline transformation rescue. Sequence analysis predicts that fzy encodes a protein of 526 amino acids, the carboxy half of which has significant homology to the Saccharomyces cerevisiae cell cycle gene CDC20. A monoclonal antibody against fzy detects a single protein of the expected size, 59 kD, in embryonic extracts. In early embryos fzy is expressed in all proliferating tissues; in late embryos fzy expression declines in a tissue-specific manner correlated with cessation of cell division. During interphase fzy protein is present in the cytoplasm; while in mitosis fzy becomes ubiquitously distributed throughout the cell except for the area occupied by the chromosomes. The metaphase arrest phenotype caused by fzy mutations is associated with failure to degrade both mitotic cyclins A and B, and an enrichment of spindle microtubules at the expense of astral microtubules. Our data suggest that fzy function is required for normal cell cycle-regulated proteolysis that is necessary for successful progress through mitosis.
Collapse
Affiliation(s)
- I A Dawson
- Department of Cell Biology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA
| | | | | |
Collapse
|
38
|
King RW, Peters JM, Tugendreich S, Rolfe M, Hieter P, Kirschner MW. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 1995; 81:279-88. [PMID: 7736580 DOI: 10.1016/0092-8674(95)90338-0] [Citation(s) in RCA: 758] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyclin B is degraded at the onset of anaphase by a ubiquitin-dependent proteolytic system. We have fractionated mitotic Xenopus egg extracts to identify components required for this process. We find that UBC4 and at least one other ubiquitin-conjugating enzyme can support cyclin B ubiquitination. The mitotic specificity of cyclin ubiquitination is determined by a 20S complex that contains homologs of budding yeast CDC16 and CDC27. Because these proteins are required for anaphase in yeast and mammalian cells, we refer to this complex as the anaphase-promoting complex (APC). CDC27 antibodies deplete APC activity, while immunopurified CDC27 complexes are sufficient to complement either interphase extracts or a mixture of recombinant UBC4 and the ubiquitin-activating enzyme E1. These results suggest that APC functions as a regulated ubiquitin-protein ligase that targets cyclin B for destruction in mitosis.
Collapse
Affiliation(s)
- R W King
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
39
|
Sontag E, Nunbhakdi-Craig V, Bloom GS, Mumby MC. A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J Biophys Biochem Cytol 1995; 128:1131-44. [PMID: 7896877 PMCID: PMC2120410 DOI: 10.1083/jcb.128.6.1131] [Citation(s) in RCA: 252] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Immunofluorescence microscopy revealed the presence of protein phosphatase 2A (PP2A) on microtubules in neuronal and nonneuronal cells. Interphase and mitotic spindle microtubules, as well as centrosomes, were all labeled with antibodies against individual PP2A subunits, showing that the AB alpha C holoenzyme is associated with microtubules. Biochemical analysis showed that PP2A could be reversibly bound to microtubules in vitro and that approximately 75% of the PP2A in cytosolic extracts could interact with microtubules. The activity of microtubule-associated PP2A was differentially regulated during the cell cycle. Enzymatic activity was high during S phase and intermediate during G1, while the activity in G2 and M was 20-fold lower than during S phase. The amount of microtubule-bound PP2A remained constant throughout the cell cycle, implying that cell cycle regulation of its enzymatic activity involves factors other than microtubules. These results raise the possibility that PP2A regulates cell cycle-dependent microtubule functions, such as karyokinesis and membrane transport.
Collapse
Affiliation(s)
- E Sontag
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235-9041
| | | | | | | |
Collapse
|
40
|
Ookata K, Hisanaga S, Bulinski JC, Murofushi H, Aizawa H, Itoh TJ, Hotani H, Okumura E, Tachibana K, Kishimoto T. Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J Cell Biol 1995; 128:849-62. [PMID: 7876309 PMCID: PMC2120387 DOI: 10.1083/jcb.128.5.849] [Citation(s) in RCA: 225] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously demonstrated (Ookata et al., 1992, 1993) that the p34cdc2/cyclin B complex associates with microtubules in the mitotic spindle and premeiotic aster in starfish oocytes, and that microtubule-associated proteins (MAPs) might be responsible for this interaction. In this study, we have investigated the mechanism by which p34cdc2 kinase associates with the microtubule cytoskeleton in primate tissue culture cells whose major MAP is known to be MAP4. Double staining of primate cells with anti-cyclin B and anti-MAP4 antibodies demonstrated these two antigens were colocalized on microtubules and copartitioned following two treatments that altered MAP4 distribution. Detergent extraction before fixation removed cyclin B as well as MAP4 from the microtubules. Depolymerization of some of the cellular microtubules with nocodazole preferentially retained the microtubule localization of both cyclin B and MAP4. The association of p34cdc2/cyclin B kinase with microtubules was also shown biochemically to be mediated by MAP4. Cosedimentation of purified p34cdc2/cyclin B with purified microtubule proteins containing MAP4, but not with MAP-free microtubules, as well as binding of MAP4 to GST-cyclin B fusion proteins, demonstrated an interaction between cyclin B and MAP4. Using recombinant MAP4 fragments, we demonstrated that the Pro-rich C-terminal region of MAP4 is sufficient to mediate the cyclin B-MAP4 interaction. Since p34cdc2/cyclin B physically associated with MAP4, we examined the ability of the kinase complex to phosphorylate MAP4. Incubation of a ternary complex of p34cdc2, cyclin B, and the COOH-terminal domain of MAP4, PA4, with ATP resulted in intracomplex phosphorylation of PA4. Finally, we tested the effects of MAP4 phosphorylation on microtubule dynamics. Phosphorylation of MAP4 by p34cdc2 kinase did not prevent its binding to microtubules, but abolished its microtubule stabilizing activity. Thus, the cyclin B/MAP4 interaction we have described may be important in targeting the mitotic kinase to appropriate cytoskeletal substrates, for the regulation of spindle assembly and dynamics.
Collapse
Affiliation(s)
- K Ookata
- Laboratory of Cell and Developmental Biology, Faculty of Biosciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rimmington G, Dalby B, Glover DM. Expression of N-terminally truncated cyclin B in the Drosophila larval brain leads to mitotic delay at late anaphase. J Cell Sci 1994; 107 ( Pt 10):2729-38. [PMID: 7876341 DOI: 10.1242/jcs.107.10.2729] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have introduced an N-terminally truncated form of cyclin B into the Drosophila germ-line downstream of the yeast upstream activator that responds to GAL4. When such lines of flies are crossed to lines in which GAL4 is expressed in imaginal discs and larval brain, the majority of the resulting progeny die at the late pupal stage of development. Very rarely (< 0.1% of progeny) adults emerge that have a mutant phenotype typical of flies with mutations in genes required for the cell cycle; they have rough eyes, deformed wings, abnormal bristles, and die within hours of emergence. The brains of third instar larval progeny show an abnormally high proportion of mitotic cells containing overcondensed chromatids that have undergone anaphase separation, together with cells that cannot be assigned to a particular mitotic stage. Immunostaining indicates that these anaphase cells contain moderate levels of cyclin B, suggesting that persistent p34cdc2 kinase activity can prevent progression from anaphase into telophase.
Collapse
Affiliation(s)
- G Rimmington
- Department of Anatomy & Physiology, University of Dundee, Scotland, UK
| | | | | |
Collapse
|
42
|
Edgar BA, Sprenger F, Duronio RJ, Leopold P, O'Farrell PH. Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev 1994; 8:440-52. [PMID: 7510257 PMCID: PMC6520052 DOI: 10.1101/gad.8.4.440] [Citation(s) in RCA: 253] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The conserved regulators of cell cycle progression--Cyclins, Cdc2 kinase, and String phosphatase (Cdc25)--accommodate multiple modes of regulation during Drosophila embryogenesis. During cell cycles 2-7, Cdc2/Cyclin complexes are continuously present and show little fluctuation in abundance, phosphomodification, or activity. This suggests that cycling of the mitotic apparatus does not require cytoplasmic oscillations of known regulatory activities. During cycles 8-13 a progressive increase in the degradation of Cyclins at mitosis leads to increasing oscillations of Cdc2 kinase activity. Mutants deficient in cyclin mRNAs suffer cell cycle delays during this period, suggesting that Cyclin accumulation times these cycles. During interphase 14, programmed degradation of maternal String protein leads to inhibitory phosphorylation of Cdc2 and cell cycle arrest. Subsequently, mitoses 14-16 are triggered by pulses of zygotic string transcription.
Collapse
Affiliation(s)
- B A Edgar
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- C Gonzalez
- Department of Anatomy and Physiology, University of Dundee, Scotland
| | | | | |
Collapse
|
44
|
White-Cooper H, Alphey L, Glover DM. The cdc25 homologue twine is required for only some aspects of the entry into meiosis in Drosophila. J Cell Sci 1993; 106 ( Pt 4):1035-44. [PMID: 8126091 DOI: 10.1242/jcs.106.4.1035] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twineHB5 mutation prevents spindle formation during the entry into meiosis in Drosophila males, but chromosome condensation and nuclear envelope breakdown both still occur. This suggests the possibility that this particular cdc25 homologue is required to activate a p34cdc2 kinase required for only some of the events of this G2-M transition. In contrast, meiotic spindles do form in twineHB5 females, although these appear abnormal. However, the female meiotic divisions do not arrest at metaphase I as in wild type, but continue repeatedly, leading to gross non-disjunction. Small chromatin masses, corresponding in size to the fourth chromosomes, often segregate properly to the spindle poles. These can persist into the embryos derived from twineHB5 females, where they appear to participate in mitotic divisions on thin spindles. In addition, these embryos contain a small number of large chromatin masses that are not associated with spindles.
Collapse
Affiliation(s)
- H White-Cooper
- Department of Anatomy and Physiology, Medical Sciences Institute, University of Dundee, Scotland, UK
| | | | | |
Collapse
|
45
|
Maridor G, Gallant P, Golsteyn R, Nigg EA. Nuclear localization of vertebrate cyclin A correlates with its ability to form complexes with cdk catalytic subunits. J Cell Sci 1993; 106 ( Pt 2):535-44. [PMID: 8282760 DOI: 10.1242/jcs.106.2.535] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclins control the activities of cyclin-dependent protein kinases (cdks) and hence play a key role in cell cycle regulation. While B-type cyclins associate with p34cdc2 to trigger entry into mitosis, progression through S phase requires cyclin A, presumably in association with p33cdk2. Vertebrate A- and B-type cyclins display strikingly distinct subcellular localizations, but the mechanisms underlying these differential distributions are unknown. Here, we have begun to study the requirements for nuclear localization of cyclin A. We have isolated a cDNA coding for chicken cyclin A and constructed a series of deletion mutants. These were then transfected into HeLa cells, and the subcellular distribution of the mutant cyclin A proteins was determined by indirect immunofluorescence microscopy. In parallel, the cyclin A mutants were assayed for their ability to form complexes with cdk subunits. We found that deletion of more than 100 residues from the N terminus of cyclin A did not impair nuclear localization or cdk subunit binding and kinase activation. In contrast, removal of as few as 15 residues from the C terminus, or deletion of part of the internal cyclin box domain, abolished nuclear localization of cyclin A as well as its ability to bind to and activate cdk subunits. These results suggest that nuclear transport of cyclin A may depend on the formation of multiprotein complexes comprising cdk catalytic subunits.
Collapse
Affiliation(s)
- G Maridor
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| | | | | | | |
Collapse
|
46
|
Philp AV, Axton JM, Saunders RD, Glover DM. Mutations in the Drosophila melanogaster gene three rows permit aspects of mitosis to continue in the absence of chromatid segregation. J Cell Sci 1993; 106 ( Pt 1):87-98. [PMID: 8270646 DOI: 10.1242/jcs.106.1.87] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned the three rows (thr) gene, by a combination of chromosome microdissection and P element tagging. We describe phenotypes of embryos homozygous for mutations at the thr locus. Maternal mRNA and protein appear to be sufficient to allow 14 rounds of mitosis in embryos homozygous for thr mutations. However, a small percentage of cells in syncytial blastoderm stage thr embryos sink into the interior of the embryo as if they have failed to divide properly. Following cellularisation all cells complete mitosis 14 normally. All cells become delayed at mitosis 15 with their chromosomes remaining aligned on the spindle in a metaphase-like configuration, even though both cyclins A and B have both been degraded. As cyclin B degradation occurs at the metaphase-anaphase transition, subsequent to the microtubule integrity checkpoint, the delay induced by mutations at the thr locus defines a later point in mitotic progression. Chromosomes in the cells of thr embryos do not undertake anaphase separation, but remain at the metaphase plate. Subsequently they decondense. A subset of nuclei go on to replicate their DNA but there is no further mitotic division.
Collapse
Affiliation(s)
- A V Philp
- Department of Anatomy & Physiology, University of Dundee, Scotland, UK
| | | | | | | |
Collapse
|
47
|
Ding D, Lipshitz HD. A molecular screen for polar-localised maternal RNAs in the early embryo of Drosophila. ZYGOTE 1993; 1:257-71. [PMID: 7521745 DOI: 10.1017/s0967199400001544] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Localised, maternally synthesised RNAs and proteins play an important role in an early animal embryogenesis. In Drosophila, genetic screens have recovered a number of maternal effect loci that encode localised products in the embryo. However, only a third of Drosophila's genes have been genetically mutated. Consequently, we conducted a molecular screen for polar-localised RNAs in the early Drosophila embryo in order to identify additional maternal molecules that carry out spatially restricted functions during early embryogenesis. Total RNA was purified from anterior or posterior poles cut off early Drosophila embryos. These RNAs were used to construct directionally cloned anterior and posterior cDNA libraries which were used in a differential screen for cDNAs representing maternal RNAs localised to one or other pole of the embryo. Five such clones were identified, representing cyclin B RNA, Hsp83 RNA, 28S ribosomal RNA, mitochondrial cytochrome c oxidase subunit one RNA and mitochondrial 16S large ribosomal RNA. Mutations in the loci encoding these RNAs have not been recovered in genetic screens, confirming that our molecular approach complements genetic strategies for identifying maternal molecules that carry out spatially restricted functions in the early embryo. We consider the possible biological significance of localisation of each of these species of transcripts as well as the mechanism of their localisation, and discuss the potential use of our cDNA libraries in screens for rarer localised RNAs.
Collapse
Affiliation(s)
- D Ding
- California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
48
|
Ookata K, Hisanaga S, Okumura E, Kishimoto T. Association of p34cdc2/cyclin B complex with microtubules in starfish oocytes. J Cell Sci 1993; 105 ( Pt 4):873-81. [PMID: 8227209 DOI: 10.1242/jcs.105.4.873] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microtubular cytoskeleton exhibits a dramatic reorganization, progressing from interphase radial arrays to a mitotic spindle at the G2/M transition. Although this reorganization has been suspected to be caused by maturation promoting factor (MPF: p34cdc2/cyclin B complex), little is known about how p34cdc2 kinase controls microtubule networks. We provide evidence of the direct association of the p34cdc2/cyclin B complex with microtubules in starfish oocytes. Anti-cyclin B staining of detergent-treated oocytes, isolated asters and meiotic spindles revealed fluorescence associated with microtubule fibers, chromosomes and centrosomes. Microtubules prepared from starfish oocytes were associated with cyclin B and p34cdc2 proteins. Microtubule-bound p34cdc2 and cyclin B were released from microtubules by a high-salt solution and possessed a complex form as shown by the adsorption to suc1-beads and by immunoprecipitation with the anti-cyclin B antibody. The p34cdc2/cyclin B complex associated to microtubules had high histone H1 kinase activity at meiotic metaphase. However, it was not necessary for the p34cdc2/cyclin B complex to be active for microtubule binding, as an inactive form in immature oocytes was also observed to bind to microtubules. The coprecipitation of suc1-column purified p34cdc2/cyclin B with purified porcine brain microtubules in the presence of starfish oocyte microtubule-associated proteins (MAPs) indicates that the association of p34cdc2/cyclin B with microtubules in vitro is mediated by MAPs.
Collapse
Affiliation(s)
- K Ookata
- Laboratory of Cell and Developmental Biology, Faculty of Biosciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
49
|
Maldonado-Codina G, Llamazares S, Glover DM. Heat shock results in cell cycle delay and synchronisation of mitotic domains in cellularised Drosophila melanogaster embryos. J Cell Sci 1993; 105 ( Pt 3):711-20. [PMID: 8408298 DOI: 10.1242/jcs.105.3.711] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Cells of Drosophila embryos that are subjected to a 37 degrees C temperature shock whilst undergoing the S-phase of cell cycle 14 arrest with their microtubules in an interphase-like state, and with nuclei showing unusual chromatin condensation. They do not recover from this state within a 30 minute period even though extensive gastrulation movements can occur. Cells of embryos heat shocked in G2-phase are delayed in interphase with high levels of cyclins A and B. Within ten minutes recovery from heat shock, cells enter mitosis throughout the embryo. The degradation of the mitotic cyclins A and B in these synchronised mitotic domains does not follow the normal timing, but is delayed. These findings point to a need for caution when interpreting experiments that use the heat shock promoter to study the expression of cell cycle control genes in Drosophila.
Collapse
|
50
|
Fenton B, Glover DM. A conserved mitotic kinase active at late anaphase-telophase in syncytial Drosophila embryos. Nature 1993; 363:637-40. [PMID: 8510757 DOI: 10.1038/363637a0] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mutations in the Drosophila gene polo cause abnormal mitotic and meiotic divisions. This gene encodes a 577-amino-acid protein that has an N-terminal putative kinase domain and a 300-residue C-terminal domain. In budding yeast, a homologous kinase is encoded by CDC5 (ref. 3), a gene required for nuclear division late in the mitotic cycle and during meiosis. Murine homologues have also been described. Here we show that the polo gene product immunoprecipitated from extracts of single Drosophila embryos can phosphorylate casein in vitro, and that the kinase activity peaks cyclically at late anaphase/telophase. This contrasts with the cyclical activity of cyclin B-associated p34cdc2 kinase, which is maximal upon entry into mitosis during the rapid cycles of mitosis in the syncytium.
Collapse
Affiliation(s)
- B Fenton
- Department of Anatomy and Physiology, University of Dundee, UK
| | | |
Collapse
|