1
|
Nyström A. Dystrophic epidermolysis bullosa - From biochemistry to interventions. Matrix Biol 2025; 136:111-126. [PMID: 39922469 DOI: 10.1016/j.matbio.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
The skin, as a barrier organ meeting constant mechanical challenges, is equipped with multiple adhesive structures that collectively support resilient, yet flexible attachment of its epithelium -the epidermis to its mesenchyme - the dermis. One such structure is the collagen VII-composed anchoring fibril, which provides firm anchorage of the epidermal basement membrane to the underlying interstitial extracellular matrix. Blistering and wider tissue fragility in the genetic disease dystrophic epidermolysis bullosa (DEB) caused by collagen VII deficiency illustrate the essential function of collagen VII in supporting skin integrity. DEB is also a progressive inflammatory fibrotic disease with multi-organ involvement, indicating that collagen VII has broader functions than simply providing epithelial anchorage. This review explores the reciprocal relationship between collagen VII biology and DEB pathophysiology. A deeper understanding of collagen VII biology - spanning its synthesis, assembly into suprastructures, and regulatory roles - enhances our understanding of DEB. Conversely, detailed insights into DEB through analysis of disease progression or therapeutic interventions offer valuable information on the broader tissue and organismal roles of collagen VII in maintaining homeostasis. This review focuses on such knowledge exchange in advancing our understanding of collagen VII, the extracellular matrix in general, and inspiring potential strategies for treatment of DEB. Importantly, in a broader sense, the discussed themes are applicable to other conditions driven by compromised extracellular matrix instruction and integrity, leading to progressive damage and inflammation.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstrasse 7, 79140 Freiburg, Germany.
| |
Collapse
|
2
|
Jover I, Ramos MC, Escámez MJ, Lozoya E, Tormo JR, de Prado-Verdún D, Mencía Á, Pont M, Puig C, Larraufie MH, Gutiérrez-Caballero C, Reyes F, Trincado JL, García-González V, Cerrato R, Andrés M, Crespo M, Vicente F, Godessart N, Genilloud O, Larcher F, Nueda A. Identification of novel small molecule-based strategies of COL7A1 upregulation and readthrough activity for the treatment of recessive dystrophic epidermolysis bullosa. Sci Rep 2024; 14:18969. [PMID: 39152155 PMCID: PMC11329504 DOI: 10.1038/s41598-024-67398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/10/2024] [Indexed: 08/19/2024] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease caused by loss of function mutations in the gene coding for collagen VII (C7) due to deficient or absent C7 expression. This disrupts structural and functional skin architecture, leading to blistering, chronic wounds, inflammation, important systemic symptoms affecting the mouth, gastrointestinal tract, cornea, and kidney function, and an increased skin cancer risk. RDEB patients have an extremely poor quality of life and often die at an early age. A frequent class of mutations in RDEB is premature termination codons (PTC), which appear in homozygosity or compound heterozygosity with other mutations. RDEB has no cure and current therapies are mostly palliative. Using patient-derived keratinocytes and a library of 8273 small molecules and 20,160 microbial extracts evaluated in a phenotypic screening interrogating C7 levels, we identified three active chemical series. Two of these series had PTC readthrough activity, and one upregulated C7 mRNA, showing synergistic activity when combined with the reference readthrough molecule gentamicin. These compounds represent novel potential small molecule-based systemic strategies that could complement topical-based treatments for RDEB.
Collapse
Affiliation(s)
- Irene Jover
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Maria C Ramos
- Fundación MEDINA, Parque Tecnológico de La Salud, Av. Conocimiento 34, 18016, Granada, Spain
| | - María José Escámez
- Departamento de Bioingeniería E Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Unidad de Innovación Biomédica. Centro de Investigaciones Energéticas, U714-CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IISFJD), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Estrella Lozoya
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - José R Tormo
- Fundación MEDINA, Parque Tecnológico de La Salud, Av. Conocimiento 34, 18016, Granada, Spain
| | - Diana de Prado-Verdún
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Ángeles Mencía
- Departamento de Bioingeniería E Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Unidad de Innovación Biomédica. Centro de Investigaciones Energéticas, U714-CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IISFJD), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Mercè Pont
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Carles Puig
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Marie-Helene Larraufie
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de La Salud, Av. Conocimiento 34, 18016, Granada, Spain
| | - Juan Luis Trincado
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Vicente García-González
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Rosario Cerrato
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Miriam Andrés
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Maribel Crespo
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico de La Salud, Av. Conocimiento 34, 18016, Granada, Spain
| | - Nuria Godessart
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de La Salud, Av. Conocimiento 34, 18016, Granada, Spain
| | - Fernando Larcher
- Departamento de Bioingeniería E Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Carlos III de Madrid (UC3M), Madrid, Spain.
- Unidad de Innovación Biomédica. Centro de Investigaciones Energéticas, U714-CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IISFJD), Madrid, Spain.
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
| | - Arsenio Nueda
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain.
| |
Collapse
|
3
|
Epidermolysis bullosa acquisita: A comprehensive review. Autoimmun Rev 2019; 18:786-795. [DOI: 10.1016/j.autrev.2019.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
|
4
|
Magne B, Lataillade JJ, Trouillas M. Mesenchymal Stromal Cell Preconditioning: The Next Step Toward a Customized Treatment For Severe Burn. Stem Cells Dev 2018; 27:1385-1405. [PMID: 30039742 DOI: 10.1089/scd.2018.0094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last century, the clinical management of severe skin burns significantly progressed with the development of burn care units, topical antimicrobials, resuscitation methods, early eschar excision surgeries, and skin grafts. Despite these considerable advances, the present treatment of severe burns remains burdensome, and patients are highly susceptible to skin engraftment failure, infections, organ dysfunction, and hypertrophic scarring. Recent researches have focused on mesenchymal stromal cell (MSC) therapy and hold great promises for tissue repair, as reported in several animal studies and clinical cases. In the present review, we will provide an up-to-date outlook of the pathophysiology of severe skin burns, clinical treatment modalities and current limitations. We will then focus on MSCs and their potential in the burn wound healing both in in vitro and in vivo studies. A specific attention will be paid to the cell preconditioning approach, as a means of improving the MSC efficacy in the treatment of major skin burns. In particular, we will debate how several preconditioning cues would modulate the MSC properties to better match up with the burn pathophysiology in the course of the cell therapy. Finally, we will discuss the clinical interest and feasibility of a MSC-based therapy in comparison to their paracrine derivatives, including microvesicles and conditioned media for the treatment of major skin burn injuries.
Collapse
Affiliation(s)
- Brice Magne
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Jean-Jacques Lataillade
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Marina Trouillas
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| |
Collapse
|
5
|
Stunova A, Vistejnova L. Dermal fibroblasts—A heterogeneous population with regulatory function in wound healing. Cytokine Growth Factor Rev 2018; 39:137-150. [DOI: 10.1016/j.cytogfr.2018.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
|
6
|
Watanabe M, Natsuga K, Shinkuma S, Shimizu H. Epidermal aspects of type VII collagen: Implications for dystrophic epidermolysis bullosa and epidermolysis bullosa acquisita. J Dermatol 2018; 45:515-521. [PMID: 29352483 DOI: 10.1111/1346-8138.14222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 02/02/2023]
Abstract
Type VII collagen (COL7), a major component of anchoring fibrils in the epidermal basement membrane zone, has been characterized as a defective protein in dystrophic epidermolysis bullosa and as an autoantigen in epidermolysis bullosa acquisita. Although COL7 is produced and secreted by both epidermal keratinocytes and dermal fibroblasts, the role of COL7 with regard to the epidermis is rarely discussed. This review focuses on COL7 physiology and pathology as it pertains to epidermal keratinocytes. We summarize the current knowledge of COL7 production and trafficking, its involvement in keratinocyte dynamics, and epidermal carcinogenesis in COL7 deficiency and propose possible solutions to unsolved issues in this field.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Shinkuma
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol 2015; 94:483-512. [PMID: 26344860 DOI: 10.1016/j.ejcb.2015.08.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in cell culture methods, multidisciplinary research, clinical need to replace lost skin tissues and regulatory need to replace animal models with alternative test methods has led to development of three dimensional models of human skin. In general, these in vitro models of skin consist of keratinocytes cultured over fibroblast-populated dermal matrices. Accumulating evidences indicate that mesenchyme-derived signals are essential for epidermal morphogenesis, homeostasis and differentiation. Various studies show that fibroblasts isolated from different tissues in the body are dynamic in nature and are morphologically and functionally heterogeneous subpopulations. Further, these differences seem to be dictated by the local biological and physical microenvironment the fibroblasts reside resulting in "positional identity or memory". Furthermore, the heterogeneity among the fibroblasts play a critical role in scarless wound healing and complete restoration of native tissue architecture in fetus and oral mucosa; and excessive scar formation in diseased states like keloids and hypertrophic scars. In this review, we summarize current concepts about the heterogeneity among fibroblasts and their role in various wound healing environments. Further, we contemplate how the insights on fibroblast heterogeneity could be applied for the development of next generation organotypic skin models.
Collapse
|
8
|
Albanova VI, Karamova AE, Chikin VV, Mineyeva AA. Medical cell technologies for treatment of patients suffering from recessive dystrophic epidermolysis bullosa. Method of intracutaneous administration of fibroblasts. VESTNIK DERMATOLOGII I VENEROLOGII 2015. [DOI: 10.25208/0042-4609-2015-91-3-46-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe inherited disease developing due to genetic abnormalities in the synthesis of Type VII collagen by fibroblasts. A low production rate of Type VII collagen and abnormalities related to the formation of anchoring fibrils weaken the epidermis and derma adhesion strength, which results in the formation of blisters or erosions in case of any mechanical injury. Fibroblasts and keratinocytes belong to the key sources of Type VII collagen in the skin. Application of allogeneic fibroblasts is a promising cell technique for treating RDEB patients. The therapeutic effect of fibroblasts intradermal administration is stipulated by high stability of newly synthesized Type VII collagen and its ability to form anchoring fibrils in the area of the dermoepidermal junction. According to experimental and clinical studies, it is possible to boost the content of Type VII collagen in the dermoepidermal junction area and heal long-term skin defects in RDEB patients by means of intradermal administration of allogeneic fibroblasts.
Collapse
|
9
|
Alexaline MM, Trouillas M, Nivet M, Bourreau E, Leclerc T, Duhamel P, Martin MT, Doucet C, Fortunel NO, Lataillade JJ. Bioengineering a human plasma-based epidermal substitute with efficient grafting capacity and high content in clonogenic cells. Stem Cells Transl Med 2015; 4:643-54. [PMID: 25848122 DOI: 10.5966/sctm.2014-0155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 02/23/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Cultured epithelial autografts (CEAs) produced from a small, healthy skin biopsy represent a lifesaving surgical technique in cases of full-thickness skin burn covering >50% of total body surface area. CEAs also present numerous drawbacks, among them the use of animal proteins and cells, the high fragility of keratinocyte sheets, and the immaturity of the dermal-epidermal junction, leading to heavy cosmetic and functional sequelae. To overcome these weaknesses, we developed a human plasma-based epidermal substitute (hPBES) for epidermal coverage in cases of massive burn, as an alternative to traditional CEA, and set up critical quality controls for preclinical and clinical studies. In this study, phenotypical analyses in conjunction with functional assays (clonal analysis, long-term culture, or in vivo graft) showed that our new substitute fulfills the biological requirements for epidermal regeneration. hPBES keratinocytes showed high potential for cell proliferation and subsequent differentiation similar to healthy skin compared with a well-known reference material, as ascertained by a combination of quality controls. This work highlights the importance of integrating relevant multiparameter quality controls into the bioengineering of new skin substitutes before they reach clinical development. SIGNIFICANCE This work involves the development of a new bioengineered epidermal substitute with pertinent functional quality controls. The novelty of this work is based on this quality approach.
Collapse
Affiliation(s)
- Maia M Alexaline
- Biomedical Research Institute of French Armies, INSERM U1197, Clamart, France; Celogos, Paris, France; Alternative Energies and Atomic Energy Commission, Institute of Cellular and Molecular Radiobiology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, INSERM UMR 967, Evry, France; Burn Treatment Unit, Percy Hospital, Clamart, France; Plastic Surgery Department, Percy Hospital, Clamart, France
| | - Marina Trouillas
- Biomedical Research Institute of French Armies, INSERM U1197, Clamart, France; Celogos, Paris, France; Alternative Energies and Atomic Energy Commission, Institute of Cellular and Molecular Radiobiology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, INSERM UMR 967, Evry, France; Burn Treatment Unit, Percy Hospital, Clamart, France; Plastic Surgery Department, Percy Hospital, Clamart, France
| | - Muriel Nivet
- Biomedical Research Institute of French Armies, INSERM U1197, Clamart, France; Celogos, Paris, France; Alternative Energies and Atomic Energy Commission, Institute of Cellular and Molecular Radiobiology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, INSERM UMR 967, Evry, France; Burn Treatment Unit, Percy Hospital, Clamart, France; Plastic Surgery Department, Percy Hospital, Clamart, France
| | - Emilie Bourreau
- Biomedical Research Institute of French Armies, INSERM U1197, Clamart, France; Celogos, Paris, France; Alternative Energies and Atomic Energy Commission, Institute of Cellular and Molecular Radiobiology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, INSERM UMR 967, Evry, France; Burn Treatment Unit, Percy Hospital, Clamart, France; Plastic Surgery Department, Percy Hospital, Clamart, France
| | - Thomas Leclerc
- Biomedical Research Institute of French Armies, INSERM U1197, Clamart, France; Celogos, Paris, France; Alternative Energies and Atomic Energy Commission, Institute of Cellular and Molecular Radiobiology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, INSERM UMR 967, Evry, France; Burn Treatment Unit, Percy Hospital, Clamart, France; Plastic Surgery Department, Percy Hospital, Clamart, France
| | - Patrick Duhamel
- Biomedical Research Institute of French Armies, INSERM U1197, Clamart, France; Celogos, Paris, France; Alternative Energies and Atomic Energy Commission, Institute of Cellular and Molecular Radiobiology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, INSERM UMR 967, Evry, France; Burn Treatment Unit, Percy Hospital, Clamart, France; Plastic Surgery Department, Percy Hospital, Clamart, France
| | - Michele T Martin
- Biomedical Research Institute of French Armies, INSERM U1197, Clamart, France; Celogos, Paris, France; Alternative Energies and Atomic Energy Commission, Institute of Cellular and Molecular Radiobiology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, INSERM UMR 967, Evry, France; Burn Treatment Unit, Percy Hospital, Clamart, France; Plastic Surgery Department, Percy Hospital, Clamart, France
| | - Christelle Doucet
- Biomedical Research Institute of French Armies, INSERM U1197, Clamart, France; Celogos, Paris, France; Alternative Energies and Atomic Energy Commission, Institute of Cellular and Molecular Radiobiology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, INSERM UMR 967, Evry, France; Burn Treatment Unit, Percy Hospital, Clamart, France; Plastic Surgery Department, Percy Hospital, Clamart, France
| | - Nicolas O Fortunel
- Biomedical Research Institute of French Armies, INSERM U1197, Clamart, France; Celogos, Paris, France; Alternative Energies and Atomic Energy Commission, Institute of Cellular and Molecular Radiobiology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, INSERM UMR 967, Evry, France; Burn Treatment Unit, Percy Hospital, Clamart, France; Plastic Surgery Department, Percy Hospital, Clamart, France
| | - Jean-Jacques Lataillade
- Biomedical Research Institute of French Armies, INSERM U1197, Clamart, France; Celogos, Paris, France; Alternative Energies and Atomic Energy Commission, Institute of Cellular and Molecular Radiobiology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, INSERM UMR 967, Evry, France; Burn Treatment Unit, Percy Hospital, Clamart, France; Plastic Surgery Department, Percy Hospital, Clamart, France
| |
Collapse
|
10
|
Wenzel D, Bayerl J, Nystrom A, Bruckner-Tuderman L, Meixner A, Penninger JM. Genetically corrected iPSCs as cell therapy for recessive dystrophic epidermolysis bullosa. Sci Transl Med 2014; 6:264ra165. [DOI: 10.1126/scitranslmed.3010083] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Schumann H, Kiritsi D, Pigors M, Hausser I, Kohlhase J, Peters J, Ott H, Hyla-Klekot L, Gacka E, Sieron AL, Valari M, Bruckner-Tuderman L, Has C. Phenotypic spectrum of epidermolysis bullosa associated with α6β4 integrin mutations. Br J Dermatol 2014; 169:115-24. [PMID: 23496044 DOI: 10.1111/bjd.12317] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Integrin α6β4 is a transmembrane receptor and a key component of the hemidesmosome anchoring complex. It is involved in cell-matrix adhesion and signalling in various tissues. Mutations in the ITGA6 and ITGB4 genes coding for α6β4 integrin compromise dermal-epidermal adhesion and are associated with skin blistering and pyloric atresia (PA), a disorder known as epidermolysis bullosa with PA (EB-PA). OBJECTIVES To elucidate the molecular pathology of skin fragility in eight cases, disclose the underlying ITGA6 and ITGB4 mutations and study genotype-phenotype correlations. METHODS DNA was isolated from ethylenediaminetetraacetic acid-blood samples, and the coding exons and exon-intron boundaries of ITGA6 and ITGB4 were amplified by polymerase chain reaction (PCR), and directly sequenced. Skin samples were submitted to immunofluorescence mapping with antibodies to adhesion proteins of the dermal-epidermal junction. Primary keratinocytes were isolated, and used for RNA and protein extraction, reverse transcription PCR and immunoblotting. Ultrastructural analysis of the skin was performed in one patient. RESULTS We disclose 10 novel mutations, one in ITGA6 and nine in ITGB4. Skin cleavage was either intraepidermal or junctional. Lethal outcome and PA correlated with loss-of-function mutations in two cases. Solely mild skin involvement was associated with deletion of the C-terminus of β4 integrin. Combinations of missense, nonsense or frameshift mutations caused severe urinary tract involvement in addition to skin fragility in five cases. CONCLUSIONS The present study reveals novel ITGA6 and ITGB4 gene mutations and supports previous reports showing that the phenotype may lack PA and be limited to skin and nail involvement. In four out of six cases of EB-PA, life expectancy was not impaired. A high frequency of urinary tract involvement was found in this study, and represented the main cause of morbidity. Low levels of β4 integrin expression were compatible with hemidesmosomal integrity and a mild skin phenotype.
Collapse
Affiliation(s)
- H Schumann
- Department of Dermatology, University Medical Center Freiburg, Hauptstr 7, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kiritsi D, Chmel N, Arnold AW, Jakob T, Bruckner-Tuderman L, Has C. Novel and Recurrent AAGAB Mutations: Clinical Variability and Molecular Consequences. J Invest Dermatol 2013; 133:2483-2486. [DOI: 10.1038/jid.2013.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Nayak S, Dey S, Kundu SC. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons. PLoS One 2013; 8:e74779. [PMID: 24058626 PMCID: PMC3772899 DOI: 10.1371/journal.pone.0074779] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/07/2013] [Indexed: 01/06/2023] Open
Abstract
The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide) production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.
Collapse
Affiliation(s)
- Sunita Nayak
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Sancharika Dey
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Subhas C. Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
- * E-mail:
| |
Collapse
|
14
|
Lavoie A, Fugère C, Beauparlant A, Goyer B, Larouche D, Paquet C, Desgagné M, Sauvé S, Robitaille H, Dunnwald M, Kim DH, Pouliot R, Fradette J, Germain L. Human epithelial stem cells persist within tissue-engineered skin produced by the self-assembly approach. Tissue Eng Part A 2013; 19:1023-38. [PMID: 23173810 DOI: 10.1089/ten.tea.2012.0117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To adequately and permanently restore organ function after grafting, human tissue-engineered skin substitutes (TESs) must ultimately contain and preserve functional epithelial stem cells (SCs). It is therefore essential that a maximum of SCs be preserved during each in vitro step leading to the production of TESs such as the culture process and the elaboration of a skin cell bank by cryopreservation. To investigate the presence and functionality of epithelial SCs within the human TESs made by the self-assembly approach, slow-cycling cells were identified using 5'-bromo-2'-deoxyuridine (BrdU) in the three-dimensional construct. A subset of basal epithelial cells retained the BrdU label and was positive for the SC-associated marker keratin 19 within TESs after a chase of 21 days in culture post-BrdU labeling. Moreover, keratinocytes harvested from TESs gave rise to SC-like colonies in secondary monolayer subcultures, indicating that SCs were preserved within TESs. To evaluate the effect of cryopreservation with dimethyl sulfoxide and storage in liquid nitrogen on SCs, human epithelial cells were extracted from skin samples, amplified in culture, and used to produce TESs, before cryopreservation as well as after thawing. We found that the proportion and the growth potential of epithelial SCs in monolayer culture and in TESs remained constant before and after cryopreservation. Further, the functionality of these substitutes was demonstrated by successfully grafting human TESs on athymic mice for 6 months. We conclude that human epithelial skin SCs are adequately preserved upon human tissue reconstruction. Thus, these TESs produced by the self-assembly approach are suitable for clinical applications.
Collapse
Affiliation(s)
- Amélie Lavoie
- LOEX Centre of Université Laval, Tissue Engineering and Regenerative Medicine: LOEX-FRQS Research Center of CHU de Québec and Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Arnold AW, Itin PH, Pigors M, Kohlhase J, Bruckner-Tuderman L, Has C. Poikiloderma with neutropenia: a novel C16orf57 mutation and clinical diagnostic criteria. Br J Dermatol 2010; 163:866-9. [PMID: 20618321 DOI: 10.1111/j.1365-2133.2010.09929.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new syndrome with poikiloderma was described by Clericuzio et al. in 1991.(1) They reported 14 Navajo native Americans, including eight siblings, developing in the first year of life an erythematous rash, which started on the limbs and spread over the trunk and the face. This rash evolved into poikiloderma. All patients had recurrent bacterial infections. First published as Navajo poikiloderma this syndrome is now known as poikiloderma with neutropenia (PN, OMIM 604173). The inheritance is autosomal recessive, and mutations in a new gene, C16orf57, were recently described in two kindreds.(2) Because of the phenotypic overlap between Rothmund-Thomson syndrome (RTS) and PN, a few patients have been reclassified as mutations in the RECQL4 gene for RTS were absent.(2-5) Until now 27 patients have been described with clinical PN.(1-3,5-8) Here, we report the sixth family with PN outside the Navajo population. We found the previously unreported mutation c.243G>A, p.W81X in the C16orf57 gene, thus confirming the relation of this gene to the disease.(2,6) Because the molecular genetic diagnosis is not always available, we propose clinical and laboratory diagnostic criteria for PN.
Collapse
Affiliation(s)
- A W Arnold
- Department of Dermatology, University Hospital Basel, 4031 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
16
|
Kern JS, Loeckermann S, Fritsch A, Hausser I, Roth W, Magin TM, Mack C, Müller ML, Paul O, Ruther P, Bruckner-Tuderman L. Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity. Mol Ther 2009; 17:1605-15. [PMID: 19568221 PMCID: PMC2835252 DOI: 10.1038/mt.2009.144] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 06/05/2009] [Indexed: 02/02/2023] Open
Abstract
Here, we report on the first systematic long-term study of fibroblast therapy in a mouse model for recessive dystrophic epidermolysis bullosa (RDEB), a severe skin-blistering disorder caused by loss-of-function of collagen VII. Intradermal injection of wild-type (WT) fibroblasts in >50 mice increased the collagen VII content at the dermal-epidermal junction 3.5- to 4.7-fold. Although the active biosynthesis lasted <28 days, collagen VII remained stable and dramatically improved skin integrity and resistance to mechanical forces for at least 100 days, as measured with a digital 3D-skin sensor for shear forces. Experiments using species-specific antibodies, collagen VII-deficient fibroblasts, gene expression analyses, and cytokine arrays demonstrated that the injected fibroblasts are the major source of newly deposited collagen VII. Apart from transitory mild inflammation, no adverse effects were observed. The cells remained within an area
Collapse
Affiliation(s)
- Johannes S Kern
- Deparment of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Larouche D, Lavoie A, Proulx S, Paquet C, Carrier P, Beauparlant A, Auger F, Germain L. La médecine régénératrice : les cellules souches, les interactions cellulaires et matricielles dans la reconstruction cutanée et cornéenne par génie tissulaire. ACTA ACUST UNITED AC 2009; 57:299-308. [DOI: 10.1016/j.patbio.2008.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 04/16/2008] [Indexed: 12/22/2022]
|
18
|
CRAVEN N, WATSON R, JONES C, SHUTTLEWORTH C, KIELTY C, GRIFFITHS C. Clinical features of photodamaged human skin are associated with a reduction in collagen VII. Br J Dermatol 2008. [DOI: 10.1046/j.1365-2133.1997.18471955.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Abstract
Fibroblasts are mesenchymal cells that can be readily cultured in the laboratory and play a significant role in epithelial-mesenchymal interactions, secreting various growth factors and cytokines that have a direct effect on epidermal proliferation, differentiation and formation of extracellular matrix. They have been incorporated into various tissue-engineered products such as Dermagraft (Advanced BioHealing, La Jolla, CA, U.S.A.) and Apligraf (Novartis, Basel, Switzerland) and used for a variety of clinical applications, including the treatment of burns, chronic venous ulcers and several other clinical applications in dermatology and plastic surgery. In this article we review the cell biology of dermal fibroblasts and discuss past and current experience of the clinical use of cultured fibroblasts.
Collapse
Affiliation(s)
- T Wong
- Division of Genetics and Molecular Medicine, St John's Institute of Dermatology, The Guy's, King's and St Thomas' School of Medicine, London, UK
| | | | | |
Collapse
|
20
|
Amano S, Ogura Y, Akutsu N, Nishiyama T. Quantitative analysis of the synthesis and secretion of type VII collagen in cultured human dermal fibroblasts with a sensitive sandwich enzyme-linked immunoassay. Exp Dermatol 2007; 16:151-5. [PMID: 17222230 DOI: 10.1111/j.1600-0625.2006.00514.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Type VII collagen is the major component of anchoring fibrils in the epidermal basement membrane. Its expression has been analyzed by immunostaining or Northern blotting, but rarely at the protein level. In this study, we have quantitatively examined the effects of ascorbic acid and various cytokines/growth factors on the protein synthesis and secretion of type VII collagen by human dermal fibroblasts in culture, using a developed, highly sensitive sandwich enzyme-linked immunoassay with two kinds of specific monoclonal antibodies against the non-collagenous domain-1. Ascorbic acid and its derivative induced a twofold increase in type VII collagen synthesis, and markedly increased the secretion of type VII collagen into the medium when compared with the control culture. This effect was not influenced by the presence of transforming growth factor-beta1 (TGF-beta1). The synthesis of type VII collagen was elevated by TGF-beta1, platelet-derived growth factor, tumor necrosis factor-alpha, and interleukin-1beta, but not by TGF-alpha. Thus, our data indicate that the synthesis and secretion of type VII collagen in human dermal fibroblasts are regulated by ascorbate and the enhancement of type VII collagen gene expression by cytokines/growth factors is accompanied with elevated production of type VII collagen at the protein level.
Collapse
Affiliation(s)
- Satoshi Amano
- Shiseido Life Science Research Center, Yokohama, Japan.
| | | | | | | |
Collapse
|
21
|
Franzke CW, Has C, Schulte C, Huilaja L, Tasanen K, Aumailley M, Bruckner-Tuderman L. C-terminal truncation impairs glycosylation of transmembrane collagen XVII and leads to intracellular accumulation. J Biol Chem 2006; 281:30260-8. [PMID: 16899459 DOI: 10.1074/jbc.m604464200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen XVII, a type II transmembrane protein in hemidesmosomes, is involved in the anchorage of stratified epithelia to the underlying mesenchyme. Its functions are regulated by ectodomain shedding, and its genetic defects lead to epidermal detachment in junctional epidermolysis bullosa (JEB), a heritable skin fragility syndrome, but the molecular disease mechanisms remain elusive. Here we used a spontaneously occurring homozygous COL17A1 deletion mutant in JEB to discern glycosylation of collagen XVII. The mutation truncated the distal ectodomain and positioned the only N-glycosylation site 34 amino acids from the newly formed C terminus, which impaired efficient N-glycosylation. Immunofluorescence staining of authentic JEB keratinocytes and of COS-7 cells transfected with the mutant indicated intracellular accumulation of collagen XVII precursor molecules. Cell surface biotinylation and quantification of ectodomain shedding demonstrated that only about 15% of the truncated collagen XVII reached the cell surface. The cell surface-associated molecules were N-glycosylated in a normal manner, in contrast to the molecules retained within the cells, indicating that N-glycosylation of the ectodomain is required for targeting of collagen XVII to the plasma membrane and that reduced accessibility of the N-glycosylation site negatively regulates this process. Functional consequences of the strong reduction of collagen XVII on the cell surface included scattered deposition of cell adhesion molecule laminin 5 into the extracellular environment and, as a consequence of faulty collagen XVII-laminin ligand interactions, aberrant motility of the mutant cells.
Collapse
Affiliation(s)
- Claus-Werner Franzke
- Department of Dermatology, University Medical Center Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Marionnet C, Pierrard C, Vioux-Chagnoleau C, Sok J, Asselineau D, Bernerd F. Interactions between fibroblasts and keratinocytes in morphogenesis of dermal epidermal junction in a model of reconstructed skin. J Invest Dermatol 2006; 126:971-9. [PMID: 16528360 DOI: 10.1038/sj.jid.5700230] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
De novo dermal epidermal junction morphogenesis was studied in a skin model including dermal fibroblasts and epidermal keratinocytes. Sequential gene expression, protein deposition, and localization of basement membrane zone components were studied during 15 days. The morphogenesis of dermal epidermal junction is characterized by an implementation of the different components and then a subsequent plateau phase occurring at day 11. Three groups of genes were identified depending on cellular origin and expression profile: 1/genes of fibroblastic origin (col I alpha1, col III alpha1, nidogen, and fibrillin 1); 2/genes expressed in fibroblasts and keratinocytes with symmetrical expression pattern between both cell types (col IV alpha1, col VII alpha1, and tenascin C); 3/laminin beta3 only expressed in keratinocytes. Use of modified organotypic models excluding one cell type revealed a tight interplay between fibroblasts and keratinocytes for synthesis and localization of the components of dermal epidermal junction. Keratinocytes downregulated mRNA and proteins of fibroblastic origin, upregulated col VII in fibroblasts and were absolutely required for dermal-epidermal junction localization of fibroblastic proteins. Fibroblasts downregulated mRNA of keratinocytes and were needed for extracellular secretion and correct localization of type VII collagen and laminin 5.
Collapse
Affiliation(s)
- Claire Marionnet
- L'Oréal Recherche, Centre de Recherche C. Zviak, 90 rue du général Roguet, 92583 Clichy Cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Elkhal A, Tunggal L, Aumailley M. Fibroblasts contribute to the deposition of laminin 5 in the extracellular matrix. Exp Cell Res 2004; 296:223-30. [PMID: 15149852 DOI: 10.1016/j.yexcr.2004.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/19/2004] [Indexed: 11/28/2022]
Abstract
Laminin 5 (alpha3beta3gamma2) is specifically present in the basal lamina underneath epithelia with secretory or protective functions, where it is essential for anchoring basal epithelial cells to the underlying extracellular matrix. Laminin 5 is produced by epithelial cells as a 480-kDa precursor that is converted into forms of 440 and 400 kDa. To analyse the processing of laminin 5, we have used monolayer and co-cultures of epithelial cells and fibroblasts. The processing of the 180-kDa laminin alpha3 chain to 165 kDa in the cell culture medium, and to both 165 and 145 kDa polypeptides in the cell layer, are not modified by the presence of fibroblasts. In contrast, cleavage of the laminin gamma2 chain, occurring in the cell culture medium and in the cell layer, is enhanced by the presence of fibroblasts. Further analysis by immunofluorescence staining and laser-scanning microscopy reveals that deposited laminin 5 is present in a fibroblast-associated filamentous meshwork. Only laminin 5 containing a fully processed gamma2 chain is present in this fibroblast-associated fraction. These studies show that, although laminin 5 is a product of epithelial cells, fibroblasts contribute to its integration into the extracellular matrix architecture.
Collapse
Affiliation(s)
- Abdallah Elkhal
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
24
|
Abstract
Laminins are a family of multi-functional basement membrane proteins. Their C-terminal domain binds to cell surface receptors and is thereby responsible for cell anchorage and the initiation of specific outside-in and inside-out signals. With their N-terminal parts, laminins interact with proteins of the extracellular matrix scaffold to secure the basement membrane to the underlying mesenchymal tissue. Laminins 5A (alpha3Abeta3gamma2), 5B (alpha3Bbeta3gamma2) and 6 (alpha3Abeta1gamma1) are isoforms specific of the basement membrane underneath the epidermis and they undergo a sequential series of extracellular proteolytic changes, which might successively turn on and off one or several of their biological and mechanical functions. Under physiological conditions, such as in adult human skin, epithelial laminins have lost part of the C- and N-terminal domains of the alpha3 and gamma2 chains, respectively. In contrast, in cylindromatosis, a rare inherited disease characterised by major ultrastructural alterations of the basement membrane and altered expression/distribution of integrin receptors, laminin processing has not been completed. Together, these results suggest that laminin processing may regulate signalling pathways and the architecture of the basement membrane by restricting the repertoire of interactions with cell surface receptors and extracellular matrix components.
Collapse
Affiliation(s)
- Monique Aumailley
- Institute for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, Germany.
| | | | | | | |
Collapse
|
25
|
Cheng J, Grande JP. Transforming growth factor-beta signal transduction and progressive renal disease. Exp Biol Med (Maywood) 2002; 227:943-56. [PMID: 12486204 DOI: 10.1177/153537020222701102] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) superfamily members are multifunctional growth factors that play pivotal roles in development and tissue homeostasis. Recent studies have underscored the importance of TGF-beta in regulation of cell proliferation and extracellular matrix synthesis and deposition. TGF-beta signaling is initiated by ligand binding to a membrane-associated receptor complex that has serine/threonine kinase activity. This receptor complex phosphorylates specific Smad proteins, which then transduce the ligand-activated signal to the nucleus. Smad complexes regulate target gene transcription either by directly binding DNA sequences, or by complexing with other transcription factors or co-activators. There is extensive crosstalk between the TGF-beta signaling pathway and other signaling systems, including the mitogen-activated protein kinase pathways. The importance of TGF-beta in regulation of cell growth has been emphasized by recent observations that mutations of critical elements of the TGF-beta signaling system are associated with tumor progression in patients with many different types of epithelial neoplasms. TGF-beta has emerged as a predominant mediator of extracellular matrix production and deposition in progressive renal disease and in other forms of chronic tissue injury. In this overview, recent advances in our understanding of TGF-beta signaling, cell cycle regulation by TGF-beta, and the role of TGF-beta in progressive renal injury are highlighted.
Collapse
Affiliation(s)
- Jingfei Cheng
- Renal Pathophysiology Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
26
|
Rattenholl A, Pappano WN, Koch M, Keene DR, Kadler KE, Sasaki T, Timpl R, Burgeson RE, Greenspan DS, Bruckner-Tuderman L. Proteinases of the bone morphogenetic protein-1 family convert procollagen VII to mature anchoring fibril collagen. J Biol Chem 2002; 277:26372-8. [PMID: 11986329 DOI: 10.1074/jbc.m203247200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen VII is the major structural component of the anchoring fibrils at the dermal-epidermal junction in the skin. It is secreted by keratinocytes as a precursor, procollagen VII, and processed into mature collagen during polymerization of the anchoring fibrils. We show that bone morphogenetic protein-1 (BMP-1), which exhibits procollagen C-proteinase activity, cleaves the C-terminal propeptide from human procollagen VII. The cleavage occurs at the BMP-1 consensus cleavage site SYAA/DTAG within the NC-2 domain. Mammalian tolloid-like (mTLL)-1 and -2, two other proteases of the astacin enzyme family, were able to process procollagen VII at the same site in vitro. Immunohistochemical and genetic evidence supported the involvement of these enzymes in cleaving type VII procollagen in vivo. Both BMP-1 and mTLL-1 are expressed in the skin and in cultured cutaneous cells. A naturally occurring deletion in the human COL7A1 gene, 8523del14, which is associated with dystrophic epidermolysis bullosa and eliminates the BMP-1 consensus sequence, abolished processing of procollagen VII, and in mutant skin procollagen VII accumulated at the dermal-epidermal junction. On the other hand, deficiency of BMP-1 in the skin of knockout mouse embryos did not prevent processing of procollagen VII to mature collagen, suggesting that mTLL-1 and/or mTLL-2 can substitute for BMP-1 in the processing of procollagen VII in situ.
Collapse
Affiliation(s)
- Anke Rattenholl
- Department of Dermatology, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
In wound healing and many pathologic conditions, keratinocytes become activated: they turn into migratory, hyperproliferative cells that produce and secrete extracellular matrix components and signaling polypeptides. At the same time, their cytoskeleton is also altered by the production of specific keratin proteins. These changes are orchestrated by growth factors, chemokines, and cytokines produced by keratinocytes and other cutaneous cell types. The responding intracellular signaling pathways activate transcription factors that regulate expression of keratin genes. Analysis of these processes led us to propose the existence of a keratinocyte activation cycle, in which the cells first become activated by the release of IL-1. Subsequently, they maintain the activated state by autocrine production of proinflammatory and proliferative signals. Keratins K6 and K16 are markers of the active state. Signals from the lymphocytes, in the form of Interferon-gamma, induce the expression of K17 and make keratinocytes contractile. This enables the keratinocytes to shrink the provisional fibronectin-rich basement membrane. Signals from the fibroblasts, in the form of TGF-beta, induce the expression of K5 and K14, revert the keratinocytes to the healthy basal phenotype, and thus complete the activation cycle.
Collapse
Affiliation(s)
- I M Freedberg
- The Ronald O. Perelman Department of Dermatology, New York University Medical Center, New York, USA
| | | | | | | |
Collapse
|
28
|
Unsöld C, Hyytiäinen M, Bruckner-Tuderman L, Keski-Oja J. Latent TGF-beta binding protein LTBP-1 contains three potential extracellular matrix interacting domains. J Cell Sci 2001; 114:187-197. [PMID: 11112702 DOI: 10.1242/jcs.114.1.187] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latent TGF-beta binding proteins (LTBPs) are components of the extracellular matrix (ECM). They belong to the fibrillin/LTBP-superfamily, and are high molecular weight glycoproteins characterized by EGF-like repeats and 8-Cys repeats. Most LTBPs associate with the small latent forms of TGF-beta. Their roles include to facilitate the secretion of latent TGF-beta and to target it to the ECM. In order to identify new matrix-binding domains of LTBP-1 and to characterize their association with the extracellular matrix, we have produced (in a mammalian expression system) partly overlapping recombinant fragments of its shorter form, LTBP-1S, and analyzed the binding of the purified fusion proteins to extracellular matrices of cultured human dermal and lung fibroblasts. Recombinant fragments from three different regions of the N- and C-termini showed affinity to the matrix. These interacting regions contain either the first (hybrid), second or fourth 8-Cys domains of the LTBP-1S molecule. They bound independently to the matrix. Each of them had an ability to inhibit the association of native exogenous LTBP-1 with fibroblast extracellular matrix. The interactions of the LTBP-1 fragments with the extracellular matrix resisted treatment with sodium deoxycholate, suggesting strong, possibly covalent binding. The binding occurred in a time- and dose-dependent fashion. The N-terminal fragments bound more readily to the matrices. With all fragments the binding took place both with intact fibroblast matrices and with matrices isolated by sodium deoxycholate. When using CHO cell layers, which form sparse matrices, only the N-terminal fragment of LTBP-1 was efficiently incorporated. The association of the binding fragments with isolated matrices was enhanced by soluble, cell-derived factors. The current data suggest that LTBP-1 contains three different domains with an ability to associate with the extracellular matrix.
Collapse
Affiliation(s)
- C Unsöld
- Departments of Pathology and Virology, The Haartman Institute and Helsinki University Hospital, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
29
|
Karelina TV, Bannikov GA, Eisen AZ. Basement membrane zone remodeling during appendageal development in human fetal skin. The absence of type VII collagen is associated with gelatinase-A (MMP2) activity. J Invest Dermatol 2000; 114:371-5. [PMID: 10652000 DOI: 10.1046/j.1523-1747.2000.00886.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epithelial cell adhesion, migration, and differentiation are controlled by interactions at the basement membrane zone (BMZ). Type VII collagen is the major collagenous component of anchoring fibrils that are essential for the attachment of the epidermis to the dermis. Gelatinase A (MMP-2) is believed to be necessary for the degradation of type VII collagen. In this study we have examined the in vivo distribution of type VII collagen and gelatinase A (Gel A) in the developing human epidermis and its appendages. At 13-15 wk of gestation a marked decrease in type VII collagen immunoreactivity was seen in the BMZ surrounding invading appendageal buds; however, type VII collagen mRNA was strongly expressed in the budding epidermal keratinocytes adjacent to the BMZ. At these stages, Gel A-positive mesenchymal-like cells were found scattered throughout the stroma with numerous Gel A-containing cells in direct contact with the developing appendageal buds. In situ zymography was used to show Gel A-activity in vivo. Gel A-mediated lysis was present at the interface between the appendageal buds and the underlying BMZ. By 20-25 wk of gestational age, immunostaining for type VII collagen protein was absent from the BMZ surrounding the distal portion of invading appendageal epithelial cords of both hair follicles and sweat glands. In contrast, type VII collagen mRNA was present in the basal keratinocytes adjacent to the BMZ surrounding the distal portion of these invading appendageal epithelial cords. At these stages Gel A-positive cells were present in the stroma directly adjacent to the distal portion of developing appendageal cords that lacked type VII collagen. In situ zymography showed zones of Gel A-mediated stromal lysis at the distal portion of developing appendageal cords. Interestingly, no differences were seen in the distribution of type IV collagen in the BMZ of both budding and resting fetal epidermis. These observations suggest that the absence of type VII collagen protein correlates directly with the presence of Gel A-activity at the BMZ. Gel A appears to play a major role in appendageal development and contributes to remodeling of the BMZ during fetal skin morphogenesis.
Collapse
Affiliation(s)
- T V Karelina
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
30
|
Kivirikko S, Mauviel A, Pihlajaniemi T, Uitto J. Cytokine modulation of type XV collagen gene expression in human dermal fibroblast cultures. Exp Dermatol 1999; 8:407-12. [PMID: 10536968 DOI: 10.1111/j.1600-0625.1999.tb00390.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The expression of type XV collagen was studied in cultured human dermal fibroblasts exposed to transforming growth factor-beta (TGF-beta), tumor necrosis factor-alpha (TNF-alpha) or interleukin-1beta (IL-1beta), cytokines which have been shown previously to alter the expression of several extracellular matrix genes. TGF-beta enhanced the expression of the type XV collagen gene (COL15A1) in a time-dependent manner, up to 4.3-fold after 24 h of incubation, whereas TNF-alpha and IL-1beta reduced the mRNA steady-state levels by 32 and 80%, respectively. When TGF-beta and TNF-alpha were added together to the cultures, the stimulatory effect of TGF-beta on type XV collagen gene expression was abrogated, indicating antagonistic modulation by these 2 cytokines. These data suggest that the cytokines tested in this study may contribute to the regulation of type XV collagen synthesis in a variety of tissues which have recently been shown to express this particular collagen gene.
Collapse
Affiliation(s)
- S Kivirikko
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-5541, USA
| | | | | | | |
Collapse
|
31
|
Grässel S, Unsöld C, Schäcke H, Bruckner-Tuderman L, Bruckner P. Collagen XVI is expressed by human dermal fibroblasts and keratinocytes and is associated with the microfibrillar apparatus in the upper papillary dermis. Matrix Biol 1999; 18:309-17. [PMID: 10429949 DOI: 10.1016/s0945-053x(99)00019-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Indirect immunofluorescence staining of normal skin with affinity-purified antibodies revealed a conspicuous presence of collagen XVI at the dermo-epidermal interface where it occurs in close vicinity to collagen VII. In addition, the protein co-localizes with fibrillin 1 at the cutaneous basement membrane zone and the adjacent papillary dermis, but not in deeper layers of the dermis. Both fibronectin and collagen XVI are distributed throughout smooth muscles of hair follicles but do not co-localize. These data suggest, therefore, that collagen XVI contributes to the structural integrity of the dermo-epidermal junction zone by interacting with components of the anchoring complexes and the microfibrillar apparatus. A strong immunofluorescence signal associated with the extracellular matrix of individual cells was observed for keratinocytes or fibroblasts in monolayer cultures. Therefore, both cell types are likely sources of the protein also in situ. The rate of expression of collagen XVI mRNA in keratinocytes is about half of that in normal human skin fibroblasts. In both cell types, TGF-beta2 treatment results in an up-regulation of the collagen XVI-mRNA by approximately 50%. In keratinocytes, synthesis of collagen XVI protein and deposition to the cell layer and the extracellular matrix is stimulated fivefold and twofold, respectively. Since TGF-beta2 also upregulates the biosynthesis of other matrix macromolecules in the subepidermal zone the factor is likely to contribute to the stabilization of matrix zones near basement membranes in healing wounds.
Collapse
Affiliation(s)
- S Grässel
- Westfälische Wilhelms-Universität, Institut für Physiologische Chemie und Pathobiochemie, Münster, Germany.
| | | | | | | | | |
Collapse
|
32
|
Bruckner-Tuderman L, Höpfner B, Hammami-Hauasli N. Biology of anchoring fibrils: lessons from dystrophic epidermolysis bullosa. Matrix Biol 1999; 18:43-54. [PMID: 10367730 DOI: 10.1016/s0945-053x(98)00007-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anchoring fibrils are adhesive suprastructures that ensure the connection of the epidermal basement membrane with the dermal extracellular matrix. The fibrils represent polymers of collagen VII, the major structural fibril component, but may also contain other proteins. Remarkable progress has been made in the last few years in understanding the functions of skin basement membrane components including the anchoring fibrils. Novel insights into the biology of the anchoring fibrils have been gained from experimental studies on dystrophic epidermolysis bullosa (DEB), a group of inherited blistering disorders caused by mutations in the gene for collagen VII, COL7A1. Mutation analyses of DEB families have disclosed more than 100 COL7A1 gene defects so far, but the unusual complexity of the mutation constellations and their biological consequences are only beginning to emerge. In analogy to heritable disorders of other collagen genes, predictable phenotypes of COL7A1 mutations causing premature termination codons or dominant negative interference have been observed. However, collagen VII seems to represent a remarkable exception among collagens in that many mutations, including heterozygous glycine substitutions and deletions, lead to minimal phenotypes, or to no phenotype at all. In contrast to fibrillar collagens, structural abnormalities of collagen VII molecules in anchoring fibrils appear to be tolerated to a certain extent. However, the mild DEB phenotypes can be severely modulated by a second aberration in individuals compound heterozygous for two different COL7A1 mutations. Therefore, not only definition of mutation(s) but also cell biological, protein chemical and suprastructural studies of the mutated molecules yield novel insight into the molecular pathomechanisms underlying disease.
Collapse
|
33
|
Hammami-Hauasli N, Raghunath M, Küster W, Bruckner-Tuderman L. Transient bullous dermolysis of the newborn associated with compound heterozygosity for recessive and dominant COL7A1 mutations. J Invest Dermatol 1998; 111:1214-9. [PMID: 9856844 DOI: 10.1046/j.1523-1747.1998.00394.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neonatal skin blistering disorder transient bullous dermolysis of the newborn (TBDN) heals spontaneously or improves dramatically within the first months and years of life. TBDN is characterized by subepidermal blisters, reduced or abnormal anchoring fibrils at the dermo-epidermal junction, and electron-dense inclusions in keratinocytes. These features are partly similar to those in dystrophic epidermolysis bullosa, which is caused by defects in COL7A1 gene encoding collagen VII, the main anchoring fibril protein. TBDN has been grouped separately from dystrophic epidermolysis bullosa based on the pronounced morphologic features and the self-limiting course of the disorder; however, it remains unclear whether it represents a distinct clinical entity with a single etiology. We now report a TBDN patient who is compound heterozygous for a recessive and a dominant glycine substitution mutation in COL7A1. Two point mutations caused amino acid substitutions G1519D and G2251E in the triple helical domain of collagen VII. In the heterozygous state G1519D was silent, and G2251E led to nail dystrophy, but not to skin blistering. In the proband, compound heterozygosity for the mutations caused massive, transitory retention of collagen VII in the epidermis, its reduced deposition at the basement membrane zone, and extensive dermo-epidermal separation at birth. Accordingly, TBDN keratinocytes in vitro accumulated collagen VII intracellularly in the rough endoplasmic reticulum.
Collapse
|
34
|
Eisenberg M, Llewelyn D. Surgical management of hands in children with recessive dystrophic epidermolysis bullosa: use of allogeneic composite cultured skin grafts. BRITISH JOURNAL OF PLASTIC SURGERY 1998; 51:608-13. [PMID: 10209464 DOI: 10.1054/bjps.1998.9997] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is characterised by progressive childhood hand syndactyly and flexion contractures, which can be managed surgically but require split thickness autografts to facilitate satisfactory postoperative healing. We report on the partial substitution, for autografts, of improved composite cultured skin (CCS) allografts. The structure and preparation of these CCSs is outlined and their application in the course of 16 operations performed on 7 RDEB children with syndactyly and flexor contractures of fingers is described. Hand contractures were released and web spaces were covered with local flaps and split thickness autografts, while adjacent sides of the digits and other areas, as well as donor sites were generally grafted with CCS. Morphologic and functional results with CCS were judged to be good to excellent, the average time to recurrence was increased approximately 2-fold and smaller autografts needed to be used. In addition, healed CCS-treated donor sites could provide superior donor sites for further surgery.
Collapse
Affiliation(s)
- M Eisenberg
- Sydney Children's Hospital, Randwick, NSW, Australia
| | | |
Collapse
|
35
|
Schäcke H, Schumann H, Hammami-Hauasli N, Raghunath M, Bruckner-Tuderman L. Two forms of collagen XVII in keratinocytes. A full-length transmembrane protein and a soluble ectodomain. J Biol Chem 1998; 273:25937-43. [PMID: 9748270 DOI: 10.1074/jbc.273.40.25937] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cDNA sequence of human collagen XVII predicts an unusual type II transmembrane protein, but a biochemical characterization of this structure has not been accomplished yet. Using domain-specific antibodies against recombinant collagen XVII fragments, we identified two molecular forms of the collagen in human skin and epithelial cells. Full-length collagen XVII appeared as a homotrimeric transmembrane molecule of three 180-kDa alpha1(XVII) chains. The globular intracellular domain was disulfide-linked, and the N-glycosylated extracellular domain of three 120-kDa polypeptides was triple-helical at physiological temperatures. A second, soluble form of collagen XVII in keratinocyte culture media was recognized with antibodies to the ectodomain, but not the endodomain. The soluble form exhibited molecular properties of the collagen XVII ectodomain: a triple-helical, N-glycosylated molecule of three 120-kDa polypeptides. Northern blot analysis with probes spanning either the distal 5'or the distal 3' end of the collagen XVII cDNA revealed an identical 6-kb mRNA, suggesting that both the 180- and 120-kDa polypeptides were translated from the same mRNA, and that the 120-kDa polypeptide was generated post-translationally. In concert, keratinocytes harboring a homozygous nonsense mutation in the COL17A1 gene synthesized neither the 180-kDa alpha1(XVII) chain nor the 120-kDa polypeptide. Finally, treatment of normal keratinocytes with a synthetic inhibitor of furin proprotein convertases, decanoyl-RVKR-chloromethyl ketone, prevented the generation of the 120-kDa polypeptide. These data strongly suggest that the soluble 120-kDa polypeptide represents a specifically cleaved ectodomain of collagen XVII, generated through furin-mediated proteolytic processing. Thus, collagen XVII is not only an unusual type II transmembrane collagen, but the first collagen with a specifically processed, soluble triple-helical ectodomain.
Collapse
Affiliation(s)
- H Schäcke
- Department of Dermatology, University of Muenster, D-48149 Muenster, Germany
| | | | | | | | | |
Collapse
|
36
|
Sakuntabhai A, Hammami-Hauasli N, Bodemer C, Rochat A, Prost C, Barrandon Y, de Prost Y, Lathrop M, Wojnarowska F, Bruckner-Tuderman L, Hovnanian A. Deletions within COL7A1 exons distant from consensus splice sites alter splicing and produce shortened polypeptides in dominant dystrophic epidermolysis bullosa. Am J Hum Genet 1998; 63:737-48. [PMID: 9718359 PMCID: PMC1377417 DOI: 10.1086/302029] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We describe two familial cases of dominant dystrophic epidermolysis bullosa (DDEB) that are heterozygous for deletions in COL7A1 that alter splicing, despite intact consensus splice-site sequences. One patient shows a 28-bp genomic deletion (6081del28) in exon 73 associated with the activation of a cryptic donor splice site within this exon; the combination of both defects restores the phase and replaces the last 11 Gly-X-Y repeats of exon 73 by a noncollagenous sequence, Glu-Ser-Leu. The second patient demonstrates a 27-bp deletion in exon 87 (6847del27), causing in-frame skipping of this exon; consensus splice sites, putative branch sites, and introns flanking exons 73 and 87 showed a normal sequence. Keratinocytes from the probands synthesized normal and shortened type VII collagen polypeptides and showed intracellular accumulation of type VII procollagen molecules. This first report of genomic deletions in COL7A1 in DDEB suggests a role for exonic sequences in the control of splicing of COL7A1 pre-mRNA and provides evidence that shortened type VII collagen polypeptides can alter, in a dominant manner, anchoring-fibril formation and can cause DDEB of differing severity.
Collapse
Affiliation(s)
- A Sakuntabhai
- Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hammami-Hauasli N, Schumann H, Raghunath M, Kilgus O, Lüthi U, Luger T, Bruckner-Tuderman L. Some, but not all, glycine substitution mutations in COL7A1 result in intracellular accumulation of collagen VII, loss of anchoring fibrils, and skin blistering. J Biol Chem 1998; 273:19228-34. [PMID: 9668111 DOI: 10.1074/jbc.273.30.19228] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
COL7A1 gene mutations cause dystrophic epidermolysis bullosa, a skin blistering disorder. The phenotypes result from defects of collagen VII, the major component of the anchoring fibrils at the dermo-epidermal junction; however, the molecular mechanisms underlying the phenotypes remain elusive. We investigated naturally occurring COL7A1 mutations and showed that some, but not all, glycine substitutions in collagen VII interfered with biosynthesis of the protein in a dominant-negative manner. Three point mutations in exon 73 caused glycine substitutions G2006D, G2034R, and G2015E in the triple helical domain of collagen VII and interfered with its folding and secretion. Confocal laser scanning studies and semiquantitative immunoblotting determined that dystrophic epidermolysis bullosa keratinocytes retained up to 2.5-fold more procollagen VII within the rough endoplasmic reticulum than controls. Limited proteolytic digestions of mutant procollagen VII produced aberrant fragments and revealed reduced stability of the triple helix. In contrast, the glycine substitution G1519D in another segment of the triple helix affected neither procollagen VII secretion nor anchoring fibril function and remained phenotypically silent. These data demonstrate that collagen VII presents a remarkable exception among collagens in that not all glycine substitutions within the triple helix exert dominant-negative interference and that the biological consequences of the substitutions probably depend on their position within the triple helix.
Collapse
Affiliation(s)
- N Hammami-Hauasli
- Department of Dermatology, University of Münster, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Vindevoghel L, Kon A, Lechleider RJ, Uitto J, Roberts AB, Mauviel A. Smad-dependent transcriptional activation of human type VII collagen gene (COL7A1) promoter by transforming growth factor-beta. J Biol Chem 1998; 273:13053-7. [PMID: 9582342 DOI: 10.1074/jbc.273.21.13053] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that transforming growth factor-beta (TGF-beta) increases type VII collagen gene (COL7A1) expression in human dermal fibroblasts in culture (Mauviel, A., Lapière, J.-C., Halcin, C., Evans, C. H., and Uitto, J. (1994) J. Biol. Chem. 269, 25-28). To gain insight into the molecular mechanisms underlying the up-regulation of COL7A1 by this growth factor, we performed transient cell transfections with a series of 5'-deletion promoter/chloramphenicol acetyltransferase reporter gene constructs. We identified a 68-base pair region between nucleotides -524 and -456, relative to the transcription start site, as critical for TGF-beta response. Using electrophoresis mobility shift assays (EMSAs) with an oligonucleotide spanning the region from -524 to -444, we discovered that a TGF-beta-specific protein-DNA complex was formed as early as 11 min after TGF-beta stimulation and persisted for 1 h after addition of the growth factor. Deletion analysis of the TGF-betaresponsive region of the COL7A1 promoter by EMSA identified segment -496/-444 as the minimal fragment capable of binding the TGF-beta-induced complex. Furthermore, two distinct segments, -496/-490 and -453/-444, appeared to be necessary for TGF-beta-induced DNA binding activity, suggesting a bipartite element. Supershift experiments with a pan-Smad antibody unambiguously identified the TGF-beta-induced complex as containing a Smad member. This is the first direct identification of binding of endogenous Smad proteins to regulatory sequences of a human gene.
Collapse
Affiliation(s)
- L Vindevoghel
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
39
|
Smola H, Stark HJ, Thiekötter G, Mirancea N, Krieg T, Fusenig NE. Dynamics of basement membrane formation by keratinocyte-fibroblast interactions in organotypic skin culture. Exp Cell Res 1998; 239:399-410. [PMID: 9521858 DOI: 10.1006/excr.1997.3910] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cutaneous basement membrane zone, composed of numerous macromolecules, plays a multifunctional role in tissue regeneration and maintenance. To elucidate the cellular origin and dynamics of basement membrane formation, de novo synthesis, deposition, and ultrastructural assembly of its components were analyzed in organotypic cultures of adult skin keratinocytes on collagen gels with or without collagen-embedded dermal cells. Collagen IV and laminin-1 deposition occurred only in the presence of mesenchymal cells: patchy at day 4 and continuous after 1 week. Chain-specific mRNA expression started at day 2 in both keratinocytes and fibroblasts. It steadily increased up to day 10, however, with a reciprocal induction pattern, mRNA abundance shifting from keratinocytes to fibroblasts. On the other hand, laminin-5 staining was first observed at day 4, but in keratinocyte both mono- and cocultures. This was followed by nidogen, which was detected in cocultures but also in dermal monocultures. Laminin-5 protein persisted throughout day 21, whereas nidogen steadily increased in intensity. Expression kinetics revealed high levels of laminin-5 transcripts early and in keratinocytes only, whereas nidogen was expressed later and predominantly in fibroblasts. Although basement membrane protein deposition was continuous at day 14, the ultrastructural organization was still fragmentary, eventually normalizing at 3 weeks. These data demonstrate a dynamic interaction and cooperation of epithelial and mesenchymal skin cells in basement membrane formation. This interaction is supposedly mediated via diffusible factors. Our findings further extend the scope of epithelial-mesenchymal interactions stressing that both cell compartments are essential to constitute a tissue-specific extracellular matrix structure.
Collapse
Affiliation(s)
- H Smola
- Division of Differentiation and Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Hammami-Hauasli N, Kalinke DU, Schumann H, Kalinke U, Pontz BF, Anton-Lamprecht I, Pulkkinen L, Zimmermann M, Uitto J, Bruckner-Tuderman L. A combination of a common splice site mutation and a frameshift mutation in the COL7A1 gene: absence of functional collagen VII in keratinocytes and skin. J Invest Dermatol 1997; 109:384-9. [PMID: 9284109 DOI: 10.1111/1523-1747.ep12336264] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe a patient with severe generalized dystrophic epidermolysis bullosa (EBD) and a novel combination of compound heterozygous mutations in the COL7A1 gene. The maternal mutation was an A-to-G transition (425-A --> G) at position -2 of the donor splice site within exon 3 that causes aberrant splicing of two abnormal transcripts. One includes intron 3, and one excludes both exon 3 and intron 3. Both splice variants contained a premature termination of the translation. The paternal mutation is a 25-bp deletion in exon 20 (2638de125) that leads to a frameshift and a premature termination codon 133 bp downstream from the site of deletion. This combination of mutations allowed expression of collagen VII mRNA. Immunofluorescence staining of the patient's skin and cultured keratinocytes with domain-specific collagen VII antibodies, however, demonstrated markedly reduced levels of alpha1(VII) polypeptides, and no stable collagen VII protein could be extracted from the patient's cells. Electron microscopy showed severely hypoplastic fibrils below the lamina densa, without evidence of normal anchoring fibrils. The clinically unaffected parents were heterozygous for the mutations, suggesting that both COL7A1 gene defects were recessively inherited disease-causing mutations that are "silent" in heterozygous carriers but in combination can severely interfere with the dermal-epidermal adhesion and lead to severe EBD.
Collapse
|
41
|
Abstract
Cultured epithelial autografts offer an exciting approach to cover extensive skin wounds. The main problem of this method is mechanical instability during the first weeks after grafting. There is evidence that the shortcomings of autografting cultured keratinocytes result from the lack of a mature and functional dermo-epidermal junction. This article summarizes the current knowledge regarding the de novo formation of the dermo-epidermal junction and the dynamics of "take" and stabilization of cultured epithelial autografts. Future strategies are discussed of how to improve and accelerate the process conferring definitive stabilization of cultured epithelial autografts including the potential therapeutic use of transglutaminase as well as cocultivation of a dermo-epidermal equivalent in order to facilitate a permanent skin replacement.
Collapse
Affiliation(s)
- M Raghunath
- Department of Dermatology, University of Münster, Von-Esmarch-Strasse 56, D-48149 Münster, Germany
| | | |
Collapse
|
42
|
CRAVEN N, WATSON R, JONES C, SHUTTLEWORTH C, KIELTY C, GRIFFITHS C. Clinical features of photodamaged human skin are associated with a reduction in collagen VII. Br J Dermatol 1997. [DOI: 10.1111/j.1365-2133.1997.tb03736.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Schumann H, Hammami-Hauasli N, Pulkkinen L, Mauviel A, Küster W, Lüthi U, Owaribe K, Uitto J, Bruckner-Tuderman L. Three novel homozygous point mutations and a new polymorphism in the COL17A1 gene: relation to biological and clinical phenotypes of junctional epidermolysis bullosa. Am J Hum Genet 1997; 60:1344-53. [PMID: 9199555 PMCID: PMC1716115 DOI: 10.1086/515463] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Junctional epidermolysis bullosa (JEB) is a clinically and biologically heterogeneous genodermatosis, characterized by trauma-induced blistering and healing without scarring but sometimes with skin atrophy. We investigated three unrelated patients with different JEB phenotypes. Patients 1 and 2 had generalized atrophic benign epidermolysis bullosa (GABEB), with features including skin atrophy and alopecia. Patient 3 had the localisata variant of JEB, with predominantly acral blistering and normal hair. All patients carried novel homozygous point mutations (Q1016X, R1226X, and R1303Q) in the COL17A1 gene encoding collagen XVII, a hemidesmosomal transmembrane component; and, therefore, not only GABEB but also the localisata JEB can be a collagen XVII disorder. The nonsense mutations led to drastically reduced collagen XVII mRNA and protein levels. In contrast, the missense mutation allowed expression of abnormal collagen XVII, and epidermal extracts from that patient contained polypeptides of normal size, as well as larger aggregates. The homozygous nonsense mutations in the COL17A1 gene were consistent with the absence of the collagen from the skin and with the GABEB phenotype, whereas homozygosity for the missense mutation resulted in expression of aberrant collagen XVII and, clinically, in localisata JEB.
Collapse
Affiliation(s)
- H Schumann
- Department of Dermatology, University of Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gayraud B, Höpfner B, Jassim A, Aumailley M, Bruckner-Tuderman L. Characterization of a 50-kDa component of epithelial basement membranes using GDA-J/F3 monoclonal antibody. J Biol Chem 1997; 272:9531-8. [PMID: 9083095 DOI: 10.1074/jbc.272.14.9531] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Using the monoclonal antibody GDA-J/F3, a 50-kDa noncollagenous component of human skin basement membrane zone was identified. Immunofluorescence stainings of normal human skin with the GDA-J/F3 antibody showed a linear fluorescence decorating the basement membrane zone. With immunoelectron microscopy, the epitope was localized to the insertion points of the anchoring fibrils into the lamina densa. The antigen is distinct from collagen VII, from the main structural protein of the anchoring fibrils, and from several other structural molecules of the basement membrane zone, because the GDA-J/F3 antibody did not react with purified basement membrane components in vitro. In serum-free cultures, the antigen was synthesized and secreted by normal and transformed human keratinocytes and to a lesser extent by normal human skin fibroblasts. Immunoprecipitation of radiolabeled epithelial cell-conditioned medium with the GDA-J/F3 antibody yielded two polypeptides that migrated on SDS-polyacrylamide gel electrophoresis with apparent molecular masses of 46 and 50 kDa under nonreducing conditions. Using reducing gels, only the 50-kDa polypeptide was observed. The antigen was resistant to digestion with bacterial collagenase but sensitive to trypsin and pepsin. It also bound to heparin and DEAE cellulose at low ionic strength and alkaline pH. These findings indicate that the GDA-J/F3 antigen is a small globular disulphide-bonded protein with a potential to interact with basement membrane proteoglycans. Integration of the GDA-J/F3 antigen into the histoarchitecture of the dermo-epidermal junction is dependent on the presence of collagen VII, because the GDA-J/F3 epitope was missing in several patients with a genetic blistering disorder of the skin, epidermolysis bullosa dystrophica, who lacked collagen VII and anchoring fibrils.
Collapse
Affiliation(s)
- B Gayraud
- Institut de Biologie et Chimie des Protéines, CNRS, 69367 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
45
|
Larjava H, Haapasalmi K, Salo T, Wiebe C, Uitto VJ. Keratinocyte integrins in wound healing and chronic inflammation of the human periodontium. Oral Dis 1996; 2:77-86. [PMID: 8957941 DOI: 10.1111/j.1601-0825.1996.tb00207.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Periodontal epithelium plays a critical role in protection, destruction and repair of human periodontium. During optimal repair, epithelium migrates and covers the wound surface to prevent infection and damage of the vulnerable underlying connective tissue. During periodontal destruction, junctional epithelium undergoes transformation to pocket epithelium that has quite different characteristics from junctional epithelium. In the course of periodontal disease the epithelial attachment to the tooth surface is lost and the epithelium proliferates and extends pseudo-rete ridges deep into the inflamed connective tissue. Both scenarios, repair and destruction, involve active epithelial migration either in the wound provisional matrix or in the inflamed connective tissue matrix, respectively. This review covers recent research data on cellular receptors, integrins, that mediate epithelial cell migration during wound healing and destruction of human periodontium.
Collapse
Affiliation(s)
- H Larjava
- Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
46
|
Bruckner-Tuderman L, Nilssen O, Zimmermann DR, Dours-Zimmermann MT, Kalinke DU, Gedde-Dahl T, Winberg JO. Immunohistochemical and mutation analyses demonstrate that procollagen VII is processed to collagen VII through removal of the NC-2 domain. J Biophys Biochem Cytol 1995; 131:551-9. [PMID: 7593178 PMCID: PMC2199977 DOI: 10.1083/jcb.131.2.551] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Collagen VII is the major structural constituent of anchoring fibrils in the skin. It is synthesized as a procollagen that is larger than the collagen deposited in the tissue. In this study, we investigated the conversion of procollagen VII to collagen VII in human skin and in cutaneous cells in vitro and identified the propeptide using domain-specific antibodies. For this purpose, two bacterial fusion proteins containing unique sequences of the carboxy-terminal globular NC-2 domain of procollagen VII were prepared, and polyclonal antibodies raised against them. Immunoblotting showed that the anti-NC2 antibodies reacted with procollagen VII isolated from cultured keratinocytes, but not with collagen VII extracted from the skin. Immunohistochemical experiments with the NC-2 antibodies revealed a strong reaction in cultured keratinocytes, but the basement membrane zone of normal skin remained negative. The staining could not be rendered positive by chemical or enzymatic unmasking of potential hidden epitopes in the skin, indicating that most of the NC-2 domain is absent from normal skin. In contrast, a positive staining with NC-2 antibodies was observed in the skin of a patient with NC-2 antibodies was observed in the skin of a patient with dystrophic epidermolysis bullosa, who carried a 14-bp deletion at one of the intro-exon junctions of the collagen VII gene. This aberration led to an in-frame skipping of exon 115 from the mRNA and eliminated 29 amino acids from the NC-2 domain which include the putative cleavage site for the physiological processing enzyme, procollagen C-proteinase. The results indicate that in normal human skin, the removal of the NC-2 domain from procollagen VII precedes its deposition at the dermal-epidermal junction. Furthermore, they suggest that an aberration in the procollagen VII cleavage interferes with the normal fibrillogenesis of the anchoring fibrils.
Collapse
|
47
|
Haapasalmi K, Mäkelä M, Oksala O, Heino J, Yamada KM, Uitto VJ, Larjava H. Expression of epithelial adhesion proteins and integrins in chronic inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 1995; 147:193-206. [PMID: 7541610 PMCID: PMC1869888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epithelial cell behavior in chronic inflammation is poorly characterized. During inflammation of tooth-supporting structures (periodontal disease), increased proliferation of epithelial cells into the inflamed connective tissue stroma is commonly seen. In some areas ulceration and degeneration take place. We studied alterations in the expression of adhesion molecules and integrins during chronic periodontal inflammation. In inflamed tissue, laminin-1 and type IV collagen were still present in the basement membrane and surrounding blood vessels, but they were also found extravascularly in inflamed connective tissue stroma. Type VII collagen and laminin-5 (also known as kalinin, epiligrin, or nicein) were poorly preserved in the basement membrane zone, but both were found in unusual streak-like distributions in the subepithelial connective tissue stroma in inflamed tissue. Both fibronectin and tenascin were substantially decreased in chronically inflamed connective tissue, showing only punctate staining at the basement membrane zone. Integrins of the beta 1 family showed two distinct staining patterns in epithelial cells during chronic inflammation; focal losses of beta 1 integrins (alpha 2 beta 1 and alpha 3 beta 1) were found in most areas, while in other areas the entire pocket epithelium was found to be strongly positive for beta 1 integrins. No members of the alpha v integrin family were found in any epithelia studied. Expression of the alpha 6 beta 4 integrin was high in basal cells of healthy tissue, but weak in epithelium associated with chronic inflammation. Chronic inflammation therefore involves alterations in both adhesion proteins and integrins expressed by epithelial cells. Basement membrane components found at abnormal sites in stroma in chronic inflammation might serve as new adhesive ligands for various cell types in inflamed stroma.
Collapse
Affiliation(s)
- K Haapasalmi
- Department of Oral Biology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Herndon DN, Hawkins HK, Nguyen TT, Pierre E, Cox R, Barrow RE. Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns. Ann Surg 1995; 221:649-56; discussion 656-9. [PMID: 7794069 PMCID: PMC1234688 DOI: 10.1097/00000658-199506000-00004] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Human growth hormone is an anabolic agent that attenuates injury-induced catabolism and stimulates protein synthesis. Recombinant human growth hormone (rhGH) administered therapeutically to patients with massive burns has been shown to increase the rate of skin graft donor site healing. It has been postulated that growth hormone affects wound healing and tissue repair by stimulating the production of insulin-like growth factor-1 (IGF-1) by the liver to increase circulating IGF-1 concentrations. The mechanism by which it improves wound healing, however, remains in question. The authors hypothesize that rhGH up-regulates IGF-1 receptors and IGF-1 levels both systemically and locally in the wound site to stimulate cell mitosis and increase synthesis of laminin, collagen types IV and VII, and cytokeratin. This hypothesis was tested in nine patients with burns covering > 40% of total body surface area. OBJECTIVE The authors assessed the efficacy of rhGH in promoting several major building materials in the donor site of patients with massive burns. METHODS Ten massively burned patients with full-thickness burns covering more than 40% of total body surface area were participants in a placebo-controlled prospective study to determine the efficacy of 0.2 mg/kg/day rhGH on donor site wound healing and to identify some of the major components involved in wound healing and its integrity. RESULTS Donor sites in burn patients receiving rhGH showed an increased coverage by the basal lamina of 26% for placebo to 68% coverage of the dermal-epidermal junction. Insulin-like growth factor-1 receptors and laminin, types IV and VII collagen, and cytokeratin-14 all increased significantly. Healing times of the donor sites were significantly decreased compared with patients receiving placebo. CONCLUSION Results indicate that growth hormone or its secondary mediators may directly stimulate the cells of the epidermis and dermis during wound healing to produce the structural proteins and other components needed to rebuild the junctional structures.
Collapse
Affiliation(s)
- D N Herndon
- Department of Surgery, University of Texas Medical Branch, Glaveston, USA
| | | | | | | | | | | |
Collapse
|
49
|
Zambruno G, Marchisio PC, Marconi A, Vaschieri C, Melchiori A, Giannetti A, De Luca M. Transforming growth factor-beta 1 modulates beta 1 and beta 5 integrin receptors and induces the de novo expression of the alpha v beta 6 heterodimer in normal human keratinocytes: implications for wound healing. J Biophys Biochem Cytol 1995; 129:853-65. [PMID: 7537276 PMCID: PMC2120435 DOI: 10.1083/jcb.129.3.853] [Citation(s) in RCA: 262] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The molecular mechanism underlying the promotion of wound healing by TGF-beta 1 is incompletely understood. We report that TGF-beta 1 regulates the regenerative/migratory phenotype of normal human keratinocytes by modulating their integrin receptor repertoire. In growing keratinocyte colonies but not in fully stratified cultured epidermis, TGF-beta 1: (a) strongly upregulates the expression of the fibronectin receptor alpha 5 beta 1, the vitronectin receptor alpha v beta 5, and the collagen receptor alpha 2 beta 1 by differentially modulating the synthesis of their alpha and beta subunits; (b) downregulates the multifunctional alpha 3 beta 1 heterodimer; (c) induces the de novo expression and surface exposure of the alpha v beta 6 fibronectin receptor; (d) stimulates keratinocyte migration toward fibronectin and vitronectin; (e) induces a marked perturbation of the general mechanism of polarized domain sorting of both beta 1 and beta 4 dimers; and (f) causes a pericellular redistribution of alpha v beta 5. These data suggest that alpha 5 beta 1, alpha v beta 6, and alpha v beta 5, not routinely used by keratinocytes resting on an intact basement membrane, act as "emergency" receptors, and uncover at least one of the molecular mechanisms responsible for the peculiar integrin expression in healing human wounds. Indeed, TGF-beta 1 reproduces the integrin expression pattern of keratinocytes located at the injury site, particularly of cells in the migrating epithelial tongue at the leading edge of the wound. Since these keratinocytes are inhibited in their proliferative capacity, these data might account for the apparent paradox of a TGF-beta 1-dependent stimulation of epidermal wound healing associated with a growth inhibitory effect on epithelial cells.
Collapse
Affiliation(s)
- G Zambruno
- Department of Dermatology, University of Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Paulus W, Baur I, Liszka U, Drlicek M, Leigh I, Bruckner-Tuderman L. Expression of type VII collagen, the major anchoring fibril component, in normal and neoplastic human nervous system. Virchows Arch 1995; 426:199-202. [PMID: 7757291 DOI: 10.1007/bf00192642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution of type VII collagen was examined in the normal human nervous system, in brain tumour biopsies and in glioma cell lines by immunohistochemistry and western blotting. In normal tissue, positivity was observed beneath choroid plexus epithelial cells and around pineal gland and pituitary gland cell nests, while other brain regions and peripheral nerves were negative. Expression was preserved in most related tumours (choroid plexus papilloma, pineoblastoma, pituitary adenoma). Scattered abnormal vessels showed neo-expression of type VII collagen in about half of the astrocytic and ependymal tumours. Glioma cells in situ were consistently negative for type VII collagen, whereas the glioblastoma cell lines were positive. Our results suggest that anchoring fibrils or at least epitopes of their major structural component are present in normal and pathological cerebral structures, indicating a unique distribution of type VII collagen in the nervous system.
Collapse
Affiliation(s)
- W Paulus
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|