1
|
Reza MH, Aggarwal R, Verma J, Podh NK, Chowdhury R, Mehta G, Manjithaya R, Sanyal K. Autophagy-related protein Atg11 is essential for microtubule-mediated chromosome segregation. PLoS Biol 2025; 23:e3003069. [PMID: 40173187 PMCID: PMC11984983 DOI: 10.1371/journal.pbio.3003069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 04/10/2025] [Accepted: 02/13/2025] [Indexed: 04/04/2025] Open
Abstract
Emerging studies hint at the roles of autophagy-related proteins in various cellular processes. To understand if autophagy-related proteins influence genome stability, we sought to examine a cohort of 35 autophagy mutants in Saccharomyces cerevisiae. We observe cells lacking Atg11 show poor mitotic stability of minichromosomes. Single-molecule tracking assays and live cell microscopy reveal that Atg11 molecules dynamically localize to the spindle pole bodies (SPBs) in a microtubule (MT)-dependent manner. Loss of Atg11 leads to a delayed cell cycle progression. Such cells accumulate at metaphase at an elevated temperature that is relieved when the spindle assembly checkpoint (SAC) is inactivated. Indeed, atg11∆ cells have stabilized securin levels, that prevent anaphase onset. Ipl1-mediated activation of SAC also confirms that atg11∆ mutants are defective in chromosome biorientation. Atg11 functions in the Kar9-dependent spindle positioning pathway. Stabilized Clb4 levels in atg11∆ cells suggest that Atg11 maintains Kar9 asymmetry by facilitating proper dynamic instability of astral microtubules (aMTs). Loss of Spc72 asymmetry contributes to non-random SPB inheritance in atg11∆ cells. Overall, this study uncovers an essential non-canonical role of Atg11 in the MT-mediated process of chromosome segregation.
Collapse
Affiliation(s)
- Md. Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Rashi Aggarwal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Jigyasa Verma
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Nitesh Kumar Podh
- Laboratory of Chromosome Dynamics and Gene Regulation, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Gunjan Mehta
- Laboratory of Chromosome Dynamics and Gene Regulation, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Reza MH, Dutta S, Goyal R, Shah H, Dey G, Sanyal K. Expansion microscopy reveals characteristic ultrastructural features of pathogenic budding yeast species. J Cell Sci 2024; 137:jcs262046. [PMID: 39051746 PMCID: PMC11423813 DOI: 10.1242/jcs.262046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Candida albicans is the most prevalent fungal pathogen associated with candidemia. Similar to other fungi, the complex life cycle of C. albicans has been challenging to study with high-resolution microscopy due to its small size. Here, we employed ultrastructure expansion microscopy (U-ExM) to directly visualise subcellular structures at high resolution in the yeast and during its transition to hyphal growth. N-hydroxysuccinimide (NHS)-ester pan-labelling in combination with immunofluorescence via snapshots of various mitotic stages provided a comprehensive map of nucleolar and mitochondrial segregation dynamics and enabled the resolution of the inner and outer plaque of spindle pole bodies (SPBs). Analyses of microtubules (MTs) and SPBs suggest that C. albicans displays a side-by-side SPB arrangement with a short mitotic spindle and longer astral MTs (aMTs) at the pre-anaphase stage. Modifications to the established U-ExM protocol enabled the expansion of six other human fungal pathogens, revealing that the side-by-side SPB configuration is a plausibly conserved feature shared by many fungal species. We highlight the power of U-ExM to investigate subcellular organisation at high resolution and low cost in poorly studied and medically relevant microbial pathogens.
Collapse
Affiliation(s)
- Md Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Srijana Dutta
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Rohit Goyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Hiral Shah
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN-80, Sector V, Bidhan Nagar, Kolkata 700091, India
| |
Collapse
|
3
|
Bairwa NK, Shoket H, Pandita M, Sharma M. A Simple Assay for the Detection of Late-Stage Apoptosis Features in Saccharomyces cerevisiae. Curr Protoc 2022; 2:e525. [PMID: 36069669 DOI: 10.1002/cpz1.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unicellular eukaryotic organisms such as yeast and protozoa serve as useful models for studying the impact of chemicals on cell physiology, cellular growth, and genome duplication. The yeast Saccharomyces cerevisiae has been widely used to assess apoptosis induced by chemicals due to its genetic tractability, ease of evaluation, and readily available impact assessment tools. Apoptosis in S. cerevisiae is characterized by many features, including increased cell death, loss of membrane integrity, release of caspases, chromatin condensation, and nuclear fragmentation, which are similar to the ones observed in mammalian cells. Current methods of apoptosis assessment typically require specialized equipment and reagents, which limits wide adoption. Here, we describe a rapid, inexpensive, and easy-to-perform assay in yeast for the analysis of late-stage apoptotic features in cells treated with a chemical. We describe a protocol for assessing loss of cell survival and changes in the nucleus. We demonstrate the approach by using acetic acid and hydrogen peroxide as test chemicals. This assay for the study of late-stage apoptotic features in S. cerevisiae can be performed reliably and rapidly by any laboratory with basic equipment and may be extended for studying apoptosis in similar single-cell organisms after treatment with toxicological agents. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Culture of Saccharomyces cerevisiae, treatment with acetic acid or hydrogen peroxide, and semi-quantitative growth assay Basic Protocol 2: DAPI staining and fluorescence microscopy for the assessment of change in nucleus-to-cytoplasm ratio and nuclear integrity.
Collapse
Affiliation(s)
- Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Meenu Sharma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
4
|
Pavani M, Bonaiuti P, Chiroli E, Gross F, Natali F, Macaluso F, Póti Á, Pasqualato S, Farkas Z, Pompei S, Cosentino Lagomarsino M, Rancati G, Szüts D, Ciliberto A. Epistasis, aneuploidy, and functional mutations underlie evolution of resistance to induced microtubule depolymerization. EMBO J 2021; 40:e108225. [PMID: 34605051 DOI: 10.15252/embj.2021108225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/09/2022] Open
Abstract
Cells with blocked microtubule polymerization are delayed in mitosis, but eventually manage to proliferate despite substantial chromosome missegregation. While several studies have analyzed the first cell division after microtubule depolymerization, we have asked how cells cope long-term with microtubule impairment. We allowed 24 clonal populations of yeast cells with beta-tubulin mutations preventing proper microtubule polymerization, to evolve for ˜150 generations. At the end of the laboratory evolution experiment, cells had regained the ability to form microtubules and were less sensitive to microtubule-depolymerizing drugs. Whole-genome sequencing identified recurrently mutated genes, in particular for tubulins and kinesins, as well as pervasive duplication of chromosome VIII. Recreating these mutations and chromosome VIII disomy prior to evolution confirmed that they allow cells to compensate for the original mutation in beta-tubulin. Most of the identified mutations did not abolish function, but rather restored microtubule functionality. Analysis of the temporal order of resistance development in independent populations repeatedly revealed the same series of events: disomy of chromosome VIII followed by a single additional adaptive mutation in either tubulins or kinesins. Since tubulins are highly conserved among eukaryotes, our results have implications for understanding resistance to microtubule-targeting drugs widely used in cancer therapy.
Collapse
Affiliation(s)
- Mattia Pavani
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Paolo Bonaiuti
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Elena Chiroli
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Fridolin Gross
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Federica Natali
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sebastiano Pasqualato
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Human Technopole, Milano, Italy
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Simone Pompei
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | | | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andrea Ciliberto
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| |
Collapse
|
5
|
Varshney N, Som S, Chatterjee S, Sridhar S, Bhattacharyya D, Paul R, Sanyal K. Spatio-temporal regulation of nuclear division by Aurora B kinase Ipl1 in Cryptococcus neoformans. PLoS Genet 2019; 15:e1007959. [PMID: 30763303 PMCID: PMC6392335 DOI: 10.1371/journal.pgen.1007959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/27/2019] [Accepted: 01/11/2019] [Indexed: 11/29/2022] Open
Abstract
The nuclear division takes place in the daughter cell in the basidiomycetous budding yeast Cryptococcus neoformans. Unclustered kinetochores gradually cluster and the nucleus moves to the daughter bud as cells enter mitosis. Here, we show that the evolutionarily conserved Aurora B kinase Ipl1 localizes to the nucleus upon the breakdown of the nuclear envelope during mitosis in C. neoformans. Ipl1 is shown to be required for timely breakdown of the nuclear envelope as well. Ipl1 is essential for viability and regulates structural integrity of microtubules. The compromised stability of cytoplasmic microtubules upon Ipl1 depletion results in a significant delay in kinetochore clustering and nuclear migration. By generating an in silico model of mitosis, we previously proposed that cytoplasmic microtubules and cortical dyneins promote atypical nuclear division in C. neoformans. Improving the previous in silico model by introducing additional parameters, here we predict that an effective cortical bias generated by cytosolic Bim1 and dynein regulates dynamics of kinetochore clustering and nuclear migration. Indeed, in vivo alterations of Bim1 or dynein cellular levels delay nuclear migration. Results from in silico model and localization dynamics by live cell imaging suggests that Ipl1 spatio-temporally influences Bim1 or/and dynein activity along with microtubule stability to ensure timely onset of nuclear division. Together, we propose that the timely breakdown of the nuclear envelope by Ipl1 allows its own nuclear entry that helps in spatio-temporal regulation of nuclear division during semi-open mitosis in C. neoformans. Unlike the model ascomycetous budding yeast Saccharomyces cerevisiae, microtubule organizing centers (MTOCs) coalesce to form the spindle pole body (SPB) in C. neoformans. This process also ensures unclustered kinetochores to gradually cluster in this organism. As C. neoformans cells enter mitosis, the nuclear envelope ruptures and the nucleus eventually moves to the daughter bud before division. Here, we combine cell and systems biology techniques to understand the key determinants of nuclear division in C. neoformans. We show that the evolutionarily conserved Aurora B kinase Ipl1 enters the nucleus during the mitotic phase as cells undergo semi-open mitosis. Ipl1 regulates dynamics of cytoplasmic microtubules, cytosolic proteins such as Bim1 and dynein-mediated cortical forces and integrity of the nuclear envelope to ensure timely kinetochore clustering and nuclear division in this medically relevant human pathogenic budding yeast.
Collapse
Affiliation(s)
- Neha Varshney
- Molecular Mycology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Subhendu Som
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
| | - Saptarshi Chatterjee
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
| | - Shreyas Sridhar
- Molecular Mycology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Dibyendu Bhattacharyya
- Tata Memorial Centre, Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai, India
| | - Raja Paul
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata, India
- * E-mail: (RP); (KS)
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
- * E-mail: (RP); (KS)
| |
Collapse
|
6
|
McLaughlin DJ, Frieders EM, Berres ME, Doublés JC, Wick SM. Immunofluorescence analysis of the microtubule cytoskeleton in the yeast phase of the basidiomycetes Kriegeria eriophori and Septobasidium carestianum. Mycologia 2018. [DOI: 10.1080/00275514.1996.12026660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- David J. McLaughlin
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Elizabeth M. Frieders
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Mark E. Berres
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - James C. Doublés
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Susan M. Wick
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108-1095
| |
Collapse
|
7
|
Melloy PG, Rose MD. Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae. Exp Cell Res 2017; 358:390-396. [PMID: 28711459 DOI: 10.1016/j.yexcr.2017.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 11/30/2022]
Abstract
Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there.
Collapse
Affiliation(s)
- Patricia G Melloy
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Department of Biological and Allied Health Sciences, Fairleigh Dickinson University, Madison, NJ, United States.
| | - Mark D Rose
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
8
|
Scholey JM, Civelekoglu-Scholey G, Brust-Mascher I. Anaphase B. BIOLOGY 2016; 5:biology5040051. [PMID: 27941648 PMCID: PMC5192431 DOI: 10.3390/biology5040051] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022]
Abstract
Anaphase B spindle elongation is characterized by the sliding apart of overlapping antiparallel interpolar (ip) microtubules (MTs) as the two opposite spindle poles separate, pulling along disjoined sister chromatids, thereby contributing to chromosome segregation and the propagation of all cellular life. The major biochemical “modules” that cooperate to mediate pole–pole separation include: (i) midzone pushing or (ii) braking by MT crosslinkers, such as kinesin-5 motors, which facilitate or restrict the outward sliding of antiparallel interpolar MTs (ipMTs); (iii) cortical pulling by disassembling astral MTs (aMTs) and/or dynein motors that pull aMTs outwards; (iv) ipMT plus end dynamics, notably net polymerization; and (v) ipMT minus end depolymerization manifest as poleward flux. The differential combination of these modules in different cell types produces diversity in the anaphase B mechanism. Combinations of antagonist modules can create a force balance that maintains the dynamic pre-anaphase B spindle at constant length. Tipping such a force balance at anaphase B onset can initiate and control the rate of spindle elongation. The activities of the basic motor filament components of the anaphase B machinery are controlled by a network of non-motor MT-associated proteins (MAPs), for example the key MT cross-linker, Ase1p/PRC1, and various cell-cycle kinases, phosphatases, and proteases. This review focuses on the molecular mechanisms of anaphase B spindle elongation in eukaryotic cells and briefly mentions bacterial DNA segregation systems that operate by spindle elongation.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616, USA.
| | | | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Gryaznova Y, Caydasi AK, Malengo G, Sourjik V, Pereira G. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes. eLife 2016; 5:e14029. [PMID: 27159239 PMCID: PMC4878874 DOI: 10.7554/elife.14029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/08/2016] [Indexed: 12/19/2022] Open
Abstract
The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control.
Collapse
Affiliation(s)
- Yuliya Gryaznova
- DKFZ-ZMBH Alliance, German Cancer Research Centre, Heidelberg, Germany
| | - Ayse Koca Caydasi
- DKFZ-ZMBH Alliance, German Cancer Research Centre, Heidelberg, Germany
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Gabriele Malengo
- DKFZ-ZMBH Alliance, Centre for Molecular Biology, Heidelberg, Germany
| | - Victor Sourjik
- DKFZ-ZMBH Alliance, Centre for Molecular Biology, Heidelberg, Germany
| | - Gislene Pereira
- DKFZ-ZMBH Alliance, German Cancer Research Centre, Heidelberg, Germany
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
11
|
Abstract
The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.
Collapse
|
12
|
Tang X, Germain BS, Lee WL. A novel patch assembly domain in Num1 mediates dynein anchoring at the cortex during spindle positioning. ACTA ACUST UNITED AC 2012; 196:743-56. [PMID: 22431751 PMCID: PMC3308694 DOI: 10.1083/jcb.201112017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During mitosis in budding yeast, cortically anchored dynein generates pulling forces on astral microtubules to position the mitotic spindle across the mother-bud neck. The attachment molecule Num1 is required for dynein anchoring at the cell membrane, but how Num1 assembles into stationary cortical patches and interacts with dynein is unknown. We show that an N-terminal Bin/Amphiphysin/Rvs (BAR)-like domain in Num1 mediates the assembly of morphologically distinct patches and its interaction with dynein for spindle translocation into the bud. We name this domain patch assembly domain (PA; residues 1-303), as it was both necessary and sufficient for the formation of functional dynein-anchoring patches when it was attached to a pleckstrin homology domain or a CAAX motif. Distinct point mutations targeting the predicted BAR-like PA domain differentially disrupted patch assembly, dynein anchoring, and mitochondrial attachment functions of Num1. We also show that the PA domain is an elongated dimer and discuss the mechanism by which it drives patch assembly.
Collapse
Affiliation(s)
- Xianying Tang
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
13
|
Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics 2012; 191:347-87. [PMID: 22701052 PMCID: PMC3374305 DOI: 10.1534/genetics.111.132886] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
Collapse
Affiliation(s)
- Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
14
|
Kopecká M, Yamaguchi M. Ultrastructural disorder of actin mutant suggests uncoupling of actin-dependent pathway from microtubule-dependent pathway in budding yeast. JOURNAL OF ELECTRON MICROSCOPY 2011; 60:379-391. [PMID: 22003229 DOI: 10.1093/jmicro/dfr073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Temperature-sensitive actin mutant of Saccharomyces cerevisiae act1-1 was studied at a permissive temperature of 23°C by light, fluorescent and electron microscopy to elucidate the roles of actin cytoskeleton in the cycling eukaryotic cells. Mutant cells that grew slowly at the permissive temperature showed aberrations in the cytoskeleton and cell cycle. Mutant cells contained aberrant 'faint actin cables,' that failed in directing of mitochondria, vacuoles and secretory vesicles to the bud and the stray vesicles delivered their content to the mother wall instead of the bud. Bud growth was delayed. Spindle pole bodies and cytoplasmic microtubules did not direct to the bud, and nucleus failed to migrate to the bud. Repeated nuclear divisions produced multinucleated cells, indicating continued cycling of actin mutant cells that failed in the morphogenetic checkpoint, the spindle position checkpoint and cytokinesis. Thus, a single actin mutation appears to indicate uncoupling in space and time of the 'actin cytoskeleton-dependent cytoplasmic pathway of bud development and organelle positioning and inheritance' from the 'microtubule-dependent nuclear division pathway' in a budding yeast cell cycle.
Collapse
Affiliation(s)
- Marie Kopecká
- Department of Biology, Masaryk University, Kamenice 5, A6, 62500 Brno, Czech Republic.
| | | |
Collapse
|
15
|
Smith SB, Kiss DL, Turk E, Tartakoff AM, Andrulis ED. Pronounced and extensive microtubule defects in a Saccharomyces cerevisiae DIS3 mutant. Yeast 2011; 28:755-69. [PMID: 21919057 DOI: 10.1002/yea.1899] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/21/2011] [Accepted: 07/10/2011] [Indexed: 11/05/2022] Open
Abstract
Subunits of the RNA processing exosome assemble into structurally distinct protein complexes that function in disparate cellular compartments and RNA metabolic pathways. Here, in a genetic, cell biological and transcriptomic analysis, we examined the role of Dis3, an essential polypeptide with endo- and 3'→5' exo-ribonuclease activity, in cell cycle progression. We present several lines of evidence that perturbation of DIS3 affects microtubule (MT) localization and structure in Saccharomyces cerevisiae. Cells with a DIS3 mutant: (a) accumulate anaphase and pre-anaphase mitotic spindles; (b) exhibit spindles that are misorientated and displaced from the bud neck; (c) harbour elongated spindle-associated astral MTs; (d) have an increased G1 astral MT length and number; and (e) are hypersensitive to MT poisons. Mutations in the core exosome genes RRP4 and MTR3 and the exosome cofactor gene MTR4, but not other exosome subunit gene mutants, also elicit MT phenotypes. RNA deep sequencing analysis (RNA-seq) shows broad changes in the levels of cell cycle- and MT-related transcripts in mutant strains. Collectively, the data presented in this study suggest an evolutionarily conserved role for Dis3 in linking RNA metabolism, MTs and cell cycle progression.
Collapse
Affiliation(s)
- Sarah B Smith
- Department of Molecular Biology and Microbiology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
16
|
Indirect immunofluorescence for monitoring spindle assembly and disassembly in yeast. Methods Mol Biol 2011; 782:231-44. [PMID: 21870296 DOI: 10.1007/978-1-61779-273-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In yeast like all eukaryotes, microtubules are a crucial element of the mitotic spindle that separates the genetic material during cell division. The assembly status and position of the mitotic spindle, as well as cytoplasmic microtubules, can be monitored easily using indirect immunofluorescence with antibodies against tubulin. A detailed protocol is described for Saccharomyces cerevisiae that involves the fixation of actively growing cells, removal of the cell wall by enzymatic digestion, post-fixation, and the application of tubulin antibodies. The use of secondary antibodies conjugated to a fluorescent moiety permit visualization of the mitotic spindle by fluorescence microscopy. Methods for the reduction of background and pre-absorption of antibodies are discussed.
Collapse
|
17
|
Abstract
Using synchronized cells, one can directly measure delay in mitosis brought about by the G2 DNA damage checkpoint in response to exposure to exogenous DNA damaging agents. Scoring mitosis in the fission yeast Schizosaccharomyces pombe is relatively simple. Many techniques exist for synchronizing cells for such assays. We present a detailed explanation of the setup and use of centrifugal elutriation to synchronize cells in G2, exposure of cells to DNA damage, and measurement of mitotic progression and delay.
Collapse
|
18
|
Maiato H, Lince-Faria M. The perpetual movements of anaphase. Cell Mol Life Sci 2010; 67:2251-69. [PMID: 20306325 PMCID: PMC11115923 DOI: 10.1007/s00018-010-0327-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 12/29/2022]
Abstract
One of the most extraordinary events in the lifetime of a cell is the coordinated separation of sister chromatids during cell division. This is truly the essence of the entire mitotic process and the reason for the most profound morphological changes in cytoskeleton and nuclear organization that a cell may ever experience. It all occurs within a very short time window known as "anaphase", as if the cell had spent the rest of its existence getting ready for this moment in an ultimate act of survival. And there is a good reason for this: no space for mistakes. Problems in the distribution of chromosomes during cell division have been correlated with aneuploidy, a common feature observed in cancers and several birth defects, and the main cause of spontaneous abortion in humans. In this paper, we critically review the mechanisms of anaphase chromosome motion that resisted the scrutiny of more than 100 years of research, as part of a tribute to the pioneering work of Miguel Mota.
Collapse
Affiliation(s)
- Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal.
| | | |
Collapse
|
19
|
Caydasi AK, Pereira G. Spindle alignment regulates the dynamic association of checkpoint proteins with yeast spindle pole bodies. Dev Cell 2009; 16:146-56. [PMID: 19154725 DOI: 10.1016/j.devcel.2008.10.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/26/2008] [Accepted: 10/27/2008] [Indexed: 02/06/2023]
Abstract
In many polarized cells, the accuracy of chromosome segregation depends on the correct positioning of the mitotic spindle. In budding yeast, the spindle positioning checkpoint (SPOC) delays mitotic exit when the anaphase spindle fails to extend toward the mother-daughter axis. However it remains to be established how spindle orientation is translated to SPOC components at the yeast spindle pole bodies (SPB). Here, we used photobleaching techniques to show that the dynamics with which Bub2-Bfa1 turned over at SPBs significantly increased upon SPOC activation. A version of Bfa1 that was stably associated with SPBs rendered the cells SPOC deficient without affecting other Bub2-Bfa1 functions, demonstrating the functional importance of regulating the dynamics of Bfa1 SPB association. In addition, we established that the SPOC kinase Kin4 is the major regulator of Bfa1 residence time at SPBs. We suggest that upon SPOC activation Bfa1-Bub2 spreads throughout the cytoplasm, thereby inhibiting mitotic exit.
Collapse
Affiliation(s)
- Ayse Koca Caydasi
- DKFZ-ZMBH Alliance, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
20
|
The spindle positioning protein Kar9p interacts with the sumoylation machinery in Saccharomyces cerevisiae. Genetics 2008; 180:2033-55. [PMID: 18832349 DOI: 10.1534/genetics.108.095042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accurate positioning of the mitotic spindle is important for the genetic material to be distributed evenly in dividing cells, but little is known about the mechanisms that regulate this process. Here we report that two microtubule-associated proteins important for spindle positioning interact with several proteins in the sumoylation pathway. By two-hybrid analysis, Kar9p and Bim1p interact with the yeast SUMO Smt3p, the E2 enzyme Ubc9p, an E3 Nfi1p, as well as Wss1p, a weak suppressor of a temperature-sensitive smt3 allele. The physical interaction between Kar9p and Ubc9p was confirmed by in vitro binding assays. A single-amino-acid substitution in Kar9p, L304P disrupted its two-hybrid interaction with proteins in the sumoylation pathway, but retained its interactions with the spindle positioning proteins Bim1p, Stu2p, Bik1p, and Myo2p. The kar9-L304P mutant showed defects in positioning the mitotic spindle, with the spindle located more distally than normal. Whereas wild-type Kar9p-3GFP normally localizes to only the bud-directed spindle pole body (SPB), Kar9p-L304P-3GFP was mislocalized to both SPBs. Using a reconstitution assay, Kar9p was sumoylated in vitro. We propose a model in which sumoylation regulates spindle positioning by restricting Kar9p to one SPB. These findings raise the possibility that sumoylation could regulate other microtubule-dependent processes.
Collapse
|
21
|
Romao M, Tanaka K, Sibarita JB, Ly-Hartig NTB, Tanaka TU, Antony C. Three-dimensional electron microscopy analysis of ndc10-1 mutant reveals an aberrant organization of the mitotic spindle and spindle pole body defects in Saccharomyces cerevisiae. J Struct Biol 2008; 163:18-28. [PMID: 18515145 DOI: 10.1016/j.jsb.2008.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/21/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
Kinetochore components play a major role in regulating the transmission of genetic information during cell division. Ndc10p, a kinetochore component of the essential CBF3 complex in budding yeast is required for chromosome attachment to the mitotic spindle. ndc10-1 mutant was shown to display chromosome mis-segregation as well as an aberrant mitotic spindle (Goh and Kilmartin, 1993). In addition, Ndc10p localizes along the spindle microtubules (Muller-Reichert et al., 2003). To further understand the role of Ndc10p in the mitotic apparatus, we performed a three-dimensional electron microscopy (EM) reconstruction of mitotic spindles from serial sections of cryo-immobilized ndc10-1 mutant cells. This analysis reveals a dramatic reduction in the number of microtubules present in the half-spindle, which is connected to the newly formed spindle pole body (SPB) in ndc10-1 cells. Moreover, in contrast to wild-type (WT) cells, ndc10-1 cells showed a significantly lower signal intensity of the SPB components Spc42p and Spc110p fused with GFP, in mother cell bodies compared with buds. A subsequent EM analysis also showed clear defects in the newly formed SPB, which remains in the mother cell during anaphase. These results suggest that Ndc10p is required for maturation of the newly formed SPB. Intriguingly, mutations in other kinetochore components, ndc80-1 and spc24-1, showed kinetochore detachment from the spindle, similar to ndc10-1, but did not display defects in SPBs. This suggests that unattached kinetochores are not sufficient to cause SPB defects in ndc10-1 cells. We propose that Ndc10p, alongside its role in kinetochore-microtubule interaction, is also essential for SPB maturation and mitotic spindle integrity.
Collapse
Affiliation(s)
- Maryse Romao
- Institut Curie UMR144 CNRS, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
22
|
Haarer BK, Helfant AH, Nelson SA, Cooper JA, Amberg DC. Stable preanaphase spindle positioning requires Bud6p and an apparent interaction between the spindle pole bodies and the neck. EUKARYOTIC CELL 2007; 6:797-807. [PMID: 17416900 PMCID: PMC1899834 DOI: 10.1128/ec.00332-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Faithful partitioning of genetic material during cell division requires accurate spatial and temporal positioning of nuclei within dividing cells. In Saccharomyces cerevisiae, nuclear positioning is regulated by an elegant interplay between components of the actin and microtubule cytoskeletons. Regulators of this process include Bud6p (also referred to as the actin-interacting protein Aip3p) and Kar9p, which function to promote contacts between cytoplasmic microtubule ends and actin-delimited cortical attachment points. Here, we present the previously undetected association of Bud6p with the cytoplasmic face of yeast spindle pole bodies, the functional equivalent of metazoan centrosomes. Cells lacking Bud6p show exaggerated movements of the nucleus between mother and daughter cells and display reduced amounts of time a given spindle pole body spends in close association with the neck region of budding cells. Furthermore, overexpression of BUD6 greatly enhances interactions between the spindle pole body and mother-bud neck in a spindle alignment-defective dynactin mutant. These results suggest that association of either spindle pole body with neck components, rather than simply entry of a spindle pole body into the daughter cell, provides a positive signal for the progression of mitosis. We propose that Bud6p, through its localization at both spindle pole bodies and at the mother-bud neck, supports this positive signal and provides a regulatory mechanism to prevent excessive oscillations of preanaphase nuclei, thus reducing the likelihood of mitotic delays and nuclear missegregation.
Collapse
Affiliation(s)
- Brian K Haarer
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
23
|
Strahl T, Thorner J. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:353-404. [PMID: 17382260 PMCID: PMC1868553 DOI: 10.1016/j.bbalip.2007.01.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 02/02/2023]
Abstract
It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast.
Collapse
Affiliation(s)
- Thomas Strahl
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jeremy Thorner
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
24
|
Abstract
Accurate control of spindle length is a conserved feature of eukaryotic cell division. Lengthening of mitotic spindles contributes to chromosome segregation and cytokinesis during mitosis in animals and fungi. In contrast, spindle shortening may contribute to conservation of egg cytoplasm during female meiosis. Katanin is a microtubule-severing enzyme that is concentrated at mitotic and meiotic spindle poles in animals. We show that inhibition of katanin slows the rate of spindle shortening in nocodazole-treated mammalian fibroblasts and in untreated Caenorhabditis elegans meiotic embryos. Wild-type C. elegans meiotic spindle shortening proceeds through an early katanin-independent phase marked by increasing microtubule density and a second, katanin-dependent phase that occurs after microtubule density stops increasing. In addition, double-mutant analysis indicated that gamma-tubulin-dependent nucleation and microtubule severing may provide redundant mechanisms for increasing microtubule number during the early stages of meiotic spindle assembly.
Collapse
Affiliation(s)
- Karen McNally
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
25
|
Moore JK, Miller RK. The cyclin-dependent kinase Cdc28p regulates multiple aspects of Kar9p function in yeast. Mol Biol Cell 2007; 18:1187-202. [PMID: 17251549 PMCID: PMC1838993 DOI: 10.1091/mbc.e06-04-0360] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During mitosis in the yeast Saccharomyces cerevisiae, Kar9p directs one spindle pole body (SPB) toward the incipient daughter cell by linking the associated set of cytoplasmic microtubules (cMTs) to the polarized actin network on the bud cortex. The asymmetric localization of Kar9p to one SPB and attached cMTs is dependent on its interactions with microtubule-associated proteins and is regulated by the yeast Cdk1 Cdc28p. Two phosphorylation sites in Kar9p were previously identified. Here, we propose that the two sites are likely to govern Kar9p function through separate mechanisms, each involving a distinct cyclin. In the first mechanism, phosphorylation at serine 496 recruits Kar9p to one SPB. A phosphomimetic mutation at serine 496 bypasses the requirement of BIK1 and CLB5 in generating Kar9p asymmetry. In the second mechanism, Clb4p may target serine 197 of Kar9p for phosphorylation. This modification is required for Kar9p to direct cMTs to the bud. Two-hybrid analysis suggests that this phosphorylation may attenuate the interaction between Kar9p and the XMAP215-homologue Stu2p. We propose that phosphorylation at serine 197 regulates the release of Kar9p from Stu2p at the SPB, either to clear it from the mother-SPB or to allow it to travel to the plus end.
Collapse
Affiliation(s)
- Jeffrey K. Moore
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Rita K. Miller
- Department of Biology, University of Rochester, Rochester, NY 14627
| |
Collapse
|
26
|
Abstract
This introductory chapter reviews the history of microbeams starting with the original UV microbeam work of Tchakhotine in 1912 and covers the progress and application of microbeams through 2006. The main focus of the chapter is on laser "scissors" starting with Marcel Bessis' and colleagues work with the ruby laser microbeam in Paris in 1962. Following this introduction, a section is devoted to describing the different laser microbeam systems and then the rest of the chapter is devoted to applications in cell and developmental biology. The approach is to focus on the organelle/structure and describe how the laser microbeam has been applied to studying its structure and/or function. Since considerable work has been done on chromosomes and the mitotic spindle (Section V.A and C), these topics have been divided in distinct subsections. Other topics discussed are injection of foreign DNA through the cell membrane (optoporation/optoinjection), cell migration, the nucleolus, mitochondria, cytoplasmic filaments, and embryos fate-mapping. A final technology section is devoted to discussing the pros and cons of building/buying your own laser microbeam system and the option of using the Internet-based RoboLase system. Throughout the chapter, reference is made to other chapters in the book that go into more detail on the subjects briefly mentioned.
Collapse
Affiliation(s)
- Michael W Berns
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, California 92612, USA
| |
Collapse
|
27
|
Piatti S, Venturetti M, Chiroli E, Fraschini R. The spindle position checkpoint in budding yeast: the motherly care of MEN. Cell Div 2006; 1:2. [PMID: 16759408 PMCID: PMC1459270 DOI: 10.1186/1747-1028-1-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/03/2006] [Indexed: 11/10/2022] Open
Abstract
Mitotic exit and cytokinesis must be tightly coupled to nuclear division both in time and space in order to preserve genome stability and to ensure that daughter cells inherit the right set of chromosomes after cell division. This is achieved in budding yeast through control over a signal transduction cascade, the mitotic exit network (MEN), which is required for mitotic CDK inactivation in telophase and for cytokinesis. Current models of MEN activation emphasize on the bud as the place where most control is exerted. This review focuses on recent data that instead point to the mother cell as being the residence of key regulators of late mitotic events.
Collapse
Affiliation(s)
- Simonetta Piatti
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marianna Venturetti
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Elena Chiroli
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
28
|
Moore JK, D'Silva S, Miller RK. The CLIP-170 homologue Bik1p promotes the phosphorylation and asymmetric localization of Kar9p. Mol Biol Cell 2005; 17:178-91. [PMID: 16236795 PMCID: PMC1345657 DOI: 10.1091/mbc.e05-06-0565] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Accurate positioning of the mitotic spindle in Saccharomyces cerevisiae is coordinated with the asymmetry of the two poles and requires the microtubule-to-actin linker Kar9p. The asymmetric localization of Kar9p to one spindle pole body (SPB) and microtubule (MT) plus ends requires Cdc28p. Here, we show that the CLIP-170 homologue Bik1p binds directly to Kar9p. In the absence of Bik1p, Kar9p localization is not restricted to the daughter-bound SPB, but it is instead found on both SPBs. Kar9p is hypophosphorylated in bik1delta mutants, and Bik1p binds to both phosphorylated and unphosphorylated isoforms of Kar9p. Furthermore, the two-hybrid interaction between full-length KAR9 and the cyclin CLB5 requires BIK1. The binding site of Clb5p on Kar9p maps to a short region within the basic domain of Kar9p that contains a conserved phosphorylation site, serine 496. Consistent with this, Kar9p is found on both SPBs in clb5delta mutants at a frequency comparable with that seen in kar9-S496A strains. Together, these data suggest that Bik1p promotes the phosphorylation of Kar9p on serine 496, which affects its asymmetric localization to one SPB and associated cytoplasmic MTs. These findings provide further insight into a mechanism for directing centrosomal inheritance.
Collapse
Affiliation(s)
- Jeffrey K Moore
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
29
|
Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A. Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 2005; 20:559-91. [PMID: 15473852 DOI: 10.1146/annurev.cellbio.20.010403.103108] [Citation(s) in RCA: 289] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell polarity, as reflected by polarized growth and organelle segregation during cell division in yeast, appears to follow a simple hierarchy. On the basis of physical cues from previous cell cycles or stochastic processes, yeast cells select a site for bud emergence that also defines the axis of cell division. Once polarity is established, rho protein-based signal pathways set up a polarized cytoskeleton by activating localized formins to nucleate and assemble polarized actin cables. These serve as tracks for the transport of secretory vesicles, the segregation of the trans Golgi network, the vacuole, peroxisomes, endoplasmic reticulum, mRNAs for cell fate determination, and microtubules that orient the nucleus in preparation for mitosis, all by myosin-Vs encoded by the MYO2 and MYO4 genes. Most of the proteins participating in these processes in yeast are conserved throughout the kingdoms of life, so the emerging models are likely to be generally applicable. Indeed, several parallels to cellular organization in animals are evident.
Collapse
Affiliation(s)
- David Pruyne
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Cytoplasmic dynein is a microtubule motor that mediates various biological processes, including nuclear migration and organelle transport, by moving on microtubules while associated with various cellular structures. The association of dynein with cellular structures and the activation of its motility are crucial steps in dynein-dependent processes. However, the mechanisms involved remain largely unknown. In fungi, dynein is required for nuclear migration. In budding yeast, nuclear migration is driven by the interaction of astral microtubules with the cell cortex; the interaction is mediated by dynein that is probably associated with the cortex. Recent studies suggest that budding yeast dynein is first recruited to microtubules, then delivered to the cortex by microtubules and finally activated by association with the cortex. Nuclear migration in many other fungi is probably driven by a similar mechanism. Recruitment of dynein to microtubules and its subsequent activation upon association with cellular structures are perhaps common to many dynein-dependent eukaryotic processes, including organelle transport.
Collapse
Affiliation(s)
- Ayumu Yamamoto
- CREST Research Project, Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan.
| | | |
Collapse
|
31
|
Fraschini R, Bilotta D, Lucchini G, Piatti S. Functional characterization of Dma1 and Dma2, the budding yeast homologues of Schizosaccharomyces pombe Dma1 and human Chfr. Mol Biol Cell 2004; 15:3796-810. [PMID: 15146058 PMCID: PMC491838 DOI: 10.1091/mbc.e04-02-0094] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Proper transmission of genetic information requires correct assembly and positioning of the mitotic spindle, responsible for driving each set of sister chromatids to the two daughter cells, followed by cytokinesis. In case of altered spindle orientation, the spindle position checkpoint inhibits Tem1-dependent activation of the mitotic exit network (MEN), thus delaying mitotic exit and cytokinesis until errors are corrected. We report a functional analysis of two previously uncharacterized budding yeast proteins, Dma1 and Dma2, 58% identical to each other and homologous to human Chfr and Schizosaccharomyces pombe Dma1, both of which have been previously implicated in mitotic checkpoints. We show that Dma1 and Dma2 are involved in proper spindle positioning, likely regulating septin ring deposition at the bud neck. DMA2 overexpression causes defects in septin ring disassembly at the end of mitosis and in cytokinesis. The latter defects can be rescued by either eliminating the spindle position checkpoint protein Bub2 or overproducing its target, Tem1, both leading to MEN hyperactivation. In addition, dma1Delta dma2Delta cells fail to activate the spindle position checkpoint in response to the lack of dynein, whereas ectopic expression of DMA2 prevents unscheduled mitotic exit of spindle checkpoint mutants treated with microtubule-depolymerizing drugs. Although their primary functions remain to be defined, our data suggest that Dma1 and Dma2 might be required to ensure timely MEN activation in telophase.
Collapse
Affiliation(s)
- Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | |
Collapse
|
32
|
Badin-Larçon AC, Boscheron C, Soleilhac JM, Piel M, Mann C, Denarier E, Fourest-Lieuvin A, Lafanechère L, Bornens M, Job D. Suppression of nuclear oscillations in Saccharomyces cerevisiae expressing Glu tubulin. Proc Natl Acad Sci U S A 2004; 101:5577-82. [PMID: 15031428 PMCID: PMC397425 DOI: 10.1073/pnas.0307917101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In most eukaryotic cells, the C-terminal amino acid of alpha-tubulin is aromatic (Tyr in mammals and Phe in Saccharomyces cerevisiae) and is preceded by two glutamate residues. In mammals, the C-terminal Tyr of alpha-tubulin is subject to cyclic removal from the peptide chain by a carboxypeptidase and readdition to the chain by a tubulin-Tyr ligase. There is evidence that tubulin-Tyr ligase suppression and the resulting accumulation of detyrosinated (Glu) tubulin favor tumor growth, both in animal models and in human cancers. However, the molecular basis for this apparent stimulatory effect of Glu tubulin accumulation on tumor progression is unknown. Here we have developed S. cerevisiae strains expressing only Glu tubulin and used them as a model to assess the consequences of Glu tubulin accumulation in cells. We find that Glu tubulin strains show defects in nuclear oscillations. These defects are linked to a markedly decreased association of the yeast ortholog of CLIP170, Bik1p, with microtubule plus-ends. These results indicate that the accumulation of Glu tubulin in cells affects microtubule tip complexes that are important for microtubule interactions with the cell cortex.
Collapse
Affiliation(s)
- A C Badin-Larçon
- Laboratoire du Cytosquelette, Commissariat à l'Energie Atomique Grenoble, Département de Réponse et Dynamique Cellulaire, Institut National de la Santé et de la Recherche Médicale U366, 38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Matsui Y. Polarized distribution of intracellular components by class V myosins in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 229:1-42. [PMID: 14669953 DOI: 10.1016/s0074-7696(03)29001-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has three classes of myosins corresponding to three actin structures: class I myosin for endocytic actin structure, actin patches; class II myosin for contraction of the actomyosin contractile ring around the bud neck; and class V myosin for transport along a cable-like actin structure (actin cables), extending toward the growing cortex. Myo2p and Myo4p constitute respective class V myosins as the heavy chain and, like class V myosins in other organisms, function as actin-based motors for polarized distribution of organelles and intracellular molecules. Proper distribution of organelles is essential for autonomously replicating organelles that cannot be reproduced de novo, and is also quite important for other organelles to ensure their efficient segregation and proper positioning, even though they can be newly synthesized, such as those derived from endoplasmic reticulum. In the budding yeast, microtubule-based motors play limited roles in the distribution. Instead, the actin-based motor myosins, especially Myo2p, play a major role. Studies on Myo2p have revealed a wide variety of Myo2p cargo and Myo2p-interacting proteins and have established that Myo2p interacts with cargo and transfers it along actin cables. Moreover, recent findings suggest that Myo2p has another way to distribute cargo in that Myo2p conveys the attaching cargo along the actin track. Thus, the myosin have "dual paths" for distribution of a cargo. This dual path mechanism is proposed in the last section of this review.
Collapse
Affiliation(s)
- Yasushi Matsui
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
34
|
Hwang E, Kusch J, Barral Y, Huffaker TC. Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. J Cell Biol 2003; 161:483-8. [PMID: 12743102 PMCID: PMC2172944 DOI: 10.1083/jcb.200302030] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microtubules and actin filaments interact and cooperate in many processes in eukaryotic cells, but the functional implications of such interactions are not well understood. In the yeast Saccharomyces cerevisiae, both cytoplasmic microtubules and actin filaments are needed for spindle orientation. In addition, this process requires the type V myosin protein Myo2, the microtubule end-binding protein Bim1, and Kar9. Here, we show that fusing Bim1 to the tail of the Myo2 is sufficient to orient spindles in the absence of Kar9, suggesting that the role of Kar9 is to link Myo2 to Bim1. In addition, we show that Myo2 localizes to the plus ends of cytoplasmic microtubules, and that the rate of movement of these cytoplasmic microtubules to the bud neck depends on the intrinsic velocity of Myo2 along actin filaments. These results support a model for spindle orientation in which a Myo2-Kar9-Bim1 complex transports microtubule ends along polarized actin cables. We also present data suggesting that a similar process plays a role in orienting cytoplasmic microtubules in mating yeast cells.
Collapse
Affiliation(s)
- Eric Hwang
- Dept. of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | |
Collapse
|
35
|
Schuyler SC, Liu JY, Pellman D. The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J Cell Biol 2003; 160:517-28. [PMID: 12591913 PMCID: PMC2173742 DOI: 10.1083/jcb.200210021] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The midzone is the domain of the mitotic spindle that maintains spindle bipolarity during anaphase and generates forces required for spindle elongation (anaphase B). Although there is a clear role for microtubule (MT) motor proteins at the spindle midzone, less is known about how microtubule-associated proteins (MAPs) contribute to midzone organization and function. Here, we report that budding yeast Ase1p is a member of a conserved family of midzone-specific MAPs. By size exclusion chromatography and velocity sedimentation, both Ase1p in extracts and purified Ase1p behaved as a homodimer. Ase1p bound and bundled MTs in vitro. By live cell microscopy, loss of Ase1p resulted in a specific defect: premature spindle disassembly in mid-anaphase. Furthermore, when overexpressed, Ase1p was sufficient to trigger spindle elongation in S phase-arrested cells. FRAP revealed that Ase1p has both a very slow rate of turnover within the midzone and limited lateral diffusion along spindle MTs. We propose that Ase1p functions as an MT cross-bridge that imparts matrix-like characteristics to the midzone. MT-dependent networks of spindle midzone MAPs may be one molecular basis for the postulated spindle matrix.
Collapse
Affiliation(s)
- Scott C Schuyler
- Department of Pediatric Oncology, The Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
36
|
Kusch J, Meyer A, Snyder MP, Barral Y. Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. Genes Dev 2002; 16:1627-39. [PMID: 12101122 PMCID: PMC186372 DOI: 10.1101/gad.222602] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell division is the result of two major cytoskeletal events: partition of the chromatids by the mitotic spindle and cleavage of the cell by the cytokinetic apparatus. Spatial coordination of these events ensures that each daughter cell inherits a nucleus. Here we show that, in budding yeast, capture and shrinkage of astral microtubules at the bud neck is required to position the spindle relative to the cleavage apparatus. Capture required the septins and the microtubule-associated protein Kar9. Like Kar9-defective cells, cells lacking the septin ring failed to position their spindle correctly and showed an increased frequency of nuclear missegregation. Microtubule attachment at the bud neck was followed by shrinkage and a pulling action on the spindle. Enhancement of microtubule shrinkage at the bud neck required the Par-1-related, septin-dependent kinases (SDK) Hsl1 and Gin4. Neither the formin Bnr1 nor the actomyosin contractile ring was required for either microtubule capture or microtubule shrinkage. Together, our results indicate that septins and septin-dependent kinases may coordinate microtubule and actin functions in cell division.
Collapse
Affiliation(s)
- Justine Kusch
- Institute of Biochemistry, Federal Institute of Technology, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
37
|
Hoepfner D, Schaerer F, Brachat A, Wach A, Philippsen P. Reorientation of mispositioned spindles in short astral microtubule mutant spc72Delta is dependent on spindle pole body outer plaque and Kar3 motor protein. Mol Biol Cell 2002; 13:1366-80. [PMID: 11950945 PMCID: PMC102275 DOI: 10.1091/mbc.01-07-0338] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Revised: 12/10/2001] [Accepted: 01/14/2002] [Indexed: 11/11/2022] Open
Abstract
Nuclear migration and positioning in Saccharomyces cerevisiae depend on long astral microtubules emanating from the spindle pole bodies (SPBs). Herein, we show by in vivo fluorescence microscopy that cells lacking Spc72, the SPB receptor of the cytoplasmic gamma-tubulin complex, can only generate very short (<1 microm) and unstable astral microtubules. Consequently, nuclear migration to the bud neck and orientation of the anaphase spindle along the mother-bud axis are absent in these cells. However, SPC72 deletion is not lethal because elongated but misaligned spindles can frequently reorient in mother cells, permitting delayed but otherwise correct nuclear segregation. High-resolution time-lapse sequences revealed that this spindle reorientation was most likely accomplished by cortex interactions of the very short astral microtubules. In addition, a set of double mutants suggested that reorientation was dependent on the SPB outer plaque and the astral microtubule motor function of Kar3 but not Kip2/Kip3/Dhc1, or the cortex components Kar9/Num1. Our observations suggest that Spc72 is required for astral microtubule formation at the SPB half-bridge and for stabilization of astral microtubules at the SPB outer plaque. In addition, our data exclude involvement of Spc72 in spindle formation and elongation functions.
Collapse
Affiliation(s)
- Dominic Hoepfner
- Lehrstuhl für Angewandte Mikrobiologie, Biozentrum, Universität Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Fehrenbacher KL, Davis D, Wu M, Boldogh I, Pon LA. Endoplasmic reticulum dynamics, inheritance, and cytoskeletal interactions in budding yeast. Mol Biol Cell 2002; 13:854-65. [PMID: 11907267 PMCID: PMC99604 DOI: 10.1091/mbc.01-04-0184] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The endoplasmic reticulum (ER) in Saccharomyces cerevisiae consists of a reticulum underlying the plasma membrane (cortical ER) and ER associated with the nuclear envelope (nuclear ER). We used a Sec63p-green fluorescent protein fusion protein to study motility events associated with inheritance of cortical ER and nuclear ER in living yeast cells. During M phase before nuclear migration, we observed thick, apparently rigid tubular extensions emanating from the nuclear ER that elongate, undergo sweeping motions along the cell cortex, and shorten. Two findings support a role for microtubules in this process. First, extension of tubular structures from the nuclear ER is inhibited by destabilization of microtubules. Second, astral microtubules, structures that undergo similar patterns of extension, cortical surveillance and retraction, colocalize with nuclear ER extensions. During S and G(2) phases of the cell cycle, we observed anchorage of the cortical ER at the site of bud emergence and apical bud growth. Thin tubules of the ER that extend from the anchored cortical ER display undulating, apparently random movement and move into the bud as it grows. Finally, we found that cortical ER morphology is sensitive to a filamentous actin-destabilizing drug, latrunculin-A, and to mutations in the actin-encoding ACT1 gene. Our observations support 1) different mechanisms and cytoskeletal mediators for the inheritance of nuclear and cortical ER elements and 2) a mechanism for cortical ER inheritance that is cytoskeleton dependent but relies on anchorage, not directed movement.
Collapse
Affiliation(s)
- K L Fehrenbacher
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
39
|
Hoepfner D, van den Berg M, Philippsen P, Tabak HF, Hettema EH. A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 2001; 155:979-90. [PMID: 11733545 PMCID: PMC2150915 DOI: 10.1083/jcb.200107028] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Revised: 09/17/2001] [Accepted: 10/16/2001] [Indexed: 01/20/2023] Open
Abstract
In vivo time-lapse microscopy reveals that the number of peroxisomes in Saccharomyces cerevisiae cells is fairly constant and that a subset of the organelles are targeted and segregated to the bud in a highly ordered, vectorial process. The dynamin-like protein Vps1p controls the number of peroxisomes, since in a vps1Delta mutant only one or two giant peroxisomes remain. Analogous to the function of other dynamin-related proteins, Vps1p may be involved in a membrane fission event that is required for the regulation of peroxisome abundance. We found that efficient segregation of peroxisomes from mother to bud is dependent on the actin cytoskeleton, and active movement of peroxisomes along actin filaments is driven by the class V myosin motor protein, Myo2p: (a) peroxisomal dynamics always paralleled the polarity of the actin cytoskeleton, (b) double labeling of peroxisomes and actin cables revealed a close association between both, (c) depolymerization of the actin cytoskeleton abolished all peroxisomal movements, and (d) in cells containing thermosensitive alleles of MYO2, all peroxisome movement immediately stopped at the nonpermissive temperature. In addition, time-lapse videos showing peroxisome movement in wild-type and vps1Delta cells suggest the existence of various levels of control involved in the partitioning of peroxisomes.
Collapse
Affiliation(s)
- D Hoepfner
- Lehrstuhl für Angewandte Mikrobiologie, Biozentrum, Universität Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Hildebrandt ER, Hoyt MA. Cell cycle-dependent degradation of the Saccharomyces cerevisiae spindle motor Cin8p requires APC(Cdh1) and a bipartite destruction sequence. Mol Biol Cell 2001; 12:3402-16. [PMID: 11694576 PMCID: PMC60263 DOI: 10.1091/mbc.12.11.3402] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae Cin8p belongs to the BimC family of kinesin-related motor proteins that are essential for spindle assembly. Cin8p levels were found to oscillate in the cell cycle due in part to a high rate of degradation imposed from the end of mitosis through the G1 phase. Cin8p degradation required the anaphase-promoting complex ubiquitin ligase and its late mitosis regulator Cdh1p but not the early mitosis regulator Cdc20p. Cin8p lacks a functional destruction box sequence that is found in the majority of anaphase-promoting complex substrates. We carried out an extensive mutagenesis study to define the cis-acting sequence required for Cin8p degradation in vivo. The C terminus of Cin8p contains two elements required for its degradation: 1) a bipartite destruction sequence composed of a KEN-box plus essential residues within the downstream 22 amino acids and 2) a nuclear localization signal. The bipartite destruction sequence appears in other BimC kinesins as well. Expression of nondegradable Cin8p showed very mild phenotypic effects, with an increase in the fraction of mitotic cells with broken spindles.
Collapse
Affiliation(s)
- E R Hildebrandt
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
41
|
Caron JM, Vega LR, Fleming J, Bishop R, Solomon F. Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: possible role for palmitoylation of alpha-tubulin. Mol Biol Cell 2001; 12:2672-87. [PMID: 11553707 PMCID: PMC59703 DOI: 10.1091/mbc.12.9.2672] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We generated a strain of Saccharomyces cerevisiae in which the sole source of alpha-tubulin protein has a cys-to-ser mutation at cys-377, and then we examined microtubule morphology and nuclear positioning through the cell cycle. During G1 of the cell cycle, microtubules in the C377S alpha-tubulin (C377S tub1) mutant were indistinguishable from those in the control (TUB1) strain. However, mitotic C377S tub1 cells displayed astral microtubules that often appeared excessive in number, abnormally long, and/or misoriented compared with TUB1 cells. Although mitotic spindles were always correctly aligned along the mother-bud axis, translocation of spindles through the bud neck was affected. In late anaphase, spindles were often not laterally centered but instead appeared to rest along the sides of cells. When the doubling time was increased by growing cells at a lower temperature (15 degrees C), we often found abnormally long mitotic spindles. No increase in the number of anucleate or multinucleate C377S mutant cells was found at any temperature, suggesting that, despite the microtubule abnormalities, mitosis proceeded normally. Because cys-377 is a presumptive site of palmitoylation in alpha-tubulin in S. cerevisiae, we next compared in vivo palmitoylation of wild-type and C377S mutant forms of the protein. We detected palmitoylated alpha-tubulin in TUB1 cells, but the cys-377 mutation resulted in approximately a 60% decrease in the level of palmitoylated alpha-tubulin in C377S tub1 cells. Our results suggest that cys-377 of alpha-tubulin, and possibly palmitoylation of this amino acid, plays a role in a subset of astral microtubule functions during nuclear migration in M phase of the cell cycle.
Collapse
Affiliation(s)
- J M Caron
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | | | |
Collapse
|
42
|
Kosco KA, Pearson CG, Maddox PS, Wang PJ, Adams IR, Salmon ED, Bloom K, Huffaker TC. Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast. Mol Biol Cell 2001; 12:2870-80. [PMID: 11553724 PMCID: PMC59720 DOI: 10.1091/mbc.12.9.2870] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Stu2p is a member of a conserved family of microtubule-binding proteins and an essential protein in yeast. Here, we report the first in vivo analysis of microtubule dynamics in cells lacking a member of this protein family. For these studies, we have used a conditional Stu2p depletion strain expressing alpha-tubulin fused to green fluorescent protein. Depletion of Stu2p leads to fewer and less dynamic cytoplasmic microtubules in both G1 and preanaphase cells. The reduction in cytoplasmic microtubule dynamics is due primarily to decreases in both the catastrophe and rescue frequencies and an increase in the fraction of time microtubules spend pausing. These changes have significant consequences for the cell because they impede the ability of cytoplasmic microtubules to orient the spindle. In addition, recovery of fluorescence after photobleaching indicates that kinetochore microtubules are no longer dynamic in the absence of Stu2p. This deficiency is correlated with a failure to properly align chromosomes at metaphase. Overall, we provide evidence that Stu2p promotes the dynamics of microtubule plus-ends in vivo and that these dynamics are critical for microtubule interactions with kinetochores and cortical sites in the cytoplasm.
Collapse
Affiliation(s)
- K A Kosco
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Schaerer F, Morgan G, Winey M, Philippsen P. Cnm67p is a spacer protein of the Saccharomyces cerevisiae spindle pole body outer plaque. Mol Biol Cell 2001; 12:2519-33. [PMID: 11514632 PMCID: PMC58610 DOI: 10.1091/mbc.12.8.2519] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, the spindle pole body (SPB) is the functional homolog of the mammalian centrosome, responsible for the organization of the tubulin cytoskeleton. Cytoplasmic (astral) microtubules essential for the proper segregation of the nucleus into the daughter cell are attached at the outer plaque on the SPB cytoplasmic face. Previously, it has been shown that Cnm67p is an integral component of this structure; cells deleted for CNM67 are lacking the SPB outer plaque and thus experience severe nuclear migration defects. With the use of partial deletion mutants of CNM67, we show that the N- and C-terminal domains of the protein are important for nuclear migration. The C terminus, not the N terminus, is essential for Cnm67p localization to the SPB. On the other hand, only the N terminus is subject to protein phosphorylation of a yet unknown function. Electron microscopy of SPB serial thin sections reveals that deletion of the N- or C-terminal domains disturbs outer plaque formation, whereas mutations in the central coiled-coil domain of Cnm67p change the distance between the SPB core and the outer plaque. We conclude that Cnm67p is the protein that connects the outer plaque to the central plaque embedded in the nuclear envelope, adjusting the space between them by the length of its coiled-coil.
Collapse
Affiliation(s)
- F Schaerer
- Molecular Microbiology, Biozentrum der Universität, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
44
|
Cid VJ, Shulewitz MJ, McDonald KL, Thorner J. Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle. Mol Biol Cell 2001; 12:1645-69. [PMID: 11408575 PMCID: PMC37331 DOI: 10.1091/mbc.12.6.1645] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In Saccharomyces cerevisiae, entry into mitosis requires activation of the cyclin-dependent kinase Cdc28 in its cyclin B (Clb)-associated form. Clb-bound Cdc28 is susceptible to inhibitory tyrosine phosphorylation by Swe1 protein kinase. Swe1 is itself negatively regulated by Hsl1, a Nim1-related protein kinase, and by Hsl7, a presumptive protein-arginine methyltransferase. In vivo all three proteins localize to the bud neck in a septin-dependent manner, consistent with our previous proposal that formation of Hsl1-Hsl7-Swe1 complexes constitutes a checkpoint that monitors septin assembly. We show here that Hsl7 is phosphorylated by Hsl1 in immune-complex kinase assays and can physically associate in vitro with either Hsl1 or Swe1 in the absence of any other yeast proteins. With the use of both the two-hybrid method and in vitro binding assays, we found that Hsl7 contains distinct binding sites for Hsl1 and Swe1. A differential interaction trap approach was used to isolate four single-site substitution mutations in Hsl7, which cluster within a discrete region of its N-terminal domain, that are specifically defective in binding Hsl1. When expressed in hsl7Delta cells, each of these Hsl7 point mutants is unable to localize at the bud neck and cannot mediate down-regulation of Swe1, but retains other functions of Hsl7, including oligomerization and association with Swe1. GFP-fusions of these Hsl1-binding defective Hsl7 proteins localize as a bright perinuclear dot, but never localize to the bud neck; likewise, in hsl1Delta cells, a GFP-fusion to wild-type Hsl7 or native Hsl7 localizes to this dot. Cell synchronization studies showed that, normally, Hsl7 localizes to the dot, but only in cells in the G1 phase of the cell cycle. Immunofluorescence analysis and immunoelectron microscopy established that the dot corresponds to the outer plaque of the spindle pole body (SPB). These data demonstrate that association between Hsl1 and Hsl7 at the bud neck is required to alleviate Swe1-imposed G2-M delay. Hsl7 localization at the SPB during G1 may play some additional role in fine-tuning the coordination between nuclear and cortical events before mitosis.
Collapse
Affiliation(s)
- V J Cid
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
45
|
Abstract
The spindle position checkpoint in Saccharomyces cerevisiae delays mitotic exit until the spindle has moved into the mother-bud neck, ensuring that each daughter cell inherits a nucleus. The small G protein Tem1p is critical in promoting mitotic exit and is concentrated at the spindle pole destined for the bud. The presumed nucleotide exchange factor for Tem1p, Lte1p, is concentrated in the bud. These findings suggested the hypothesis that movement of the spindle pole through the neck allows Tem1p to interact with Lte1p, promoting GTP loading of Tem1p and mitotic exit. However, we report that deletion of LTE1 had little effect on the timing of mitotic exit. We also examined several mutants in which some cells inappropriately exit mitosis even though the spindle is within the mother. In some of these cells, the spindle pole body did not interact with the bud or the neck before mitotic exit. Thus, some alternative mechanism must exist to coordinate mitotic exit with spindle position. In both wild-type and mutant cells, mitotic exit was preceded by loss of cytoplasmic microtubules from the neck. Thus, the spindle position checkpoint may monitor such interactions.
Collapse
Affiliation(s)
- N R Adames
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
46
|
Affiliation(s)
- J Vogel
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
47
|
Francis SE, Davis TN. The spindle pole body of Saccharomyces cerevisiae: architecture and assembly of the core components. Curr Top Dev Biol 2001; 49:105-32. [PMID: 11005016 DOI: 10.1016/s0070-2153(99)49006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- S E Francis
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
48
|
Jensen S, Segal M, Clarke DJ, Reed SI. A novel role of the budding yeast separin Esp1 in anaphase spindle elongation: evidence that proper spindle association of Esp1 is regulated by Pds1. J Cell Biol 2001; 152:27-40. [PMID: 11149918 PMCID: PMC2193664 DOI: 10.1083/jcb.152.1.27] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2000] [Accepted: 11/14/2000] [Indexed: 11/22/2022] Open
Abstract
In Saccharomyces cerevisiae, the metaphase-anaphase transition is initiated by the anaphase-promoting complex-dependent degradation of Pds1, whereby Esp1 is activated to promote sister chromatid separation. Although this is a fundamental step in the cell cycle, little is known about the regulation of Esp1 and how loss of cohesion is coordinated with movement of the anaphase spindle. Here, we show that Esp1 has a novel role in promoting anaphase spindle elongation. The localization of Esp1 to the spindle apparatus, analyzed by live cell imaging, is regulated in a manner consistent with a function during anaphase B. The protein accumulates in the nucleus in G2 and is mobilized onto the spindle pole bodies and spindle midzone at anaphase onset, where it persists into midanaphase. Association with Pds1 occurs during S phase and is required for efficient nuclear targeting of Esp1. Spindle association is not fully restored in pds1 mutants expressing an Esp1-nuclear localization sequence fusion protein, suggesting that Pds1 is also required to promote Esp1 spindle binding. In agreement, Pds1 interacts with the spindle at the metaphase-anaphase transition and a fraction remains at the spindle pole bodies and the spindle midzone in anaphase cells. Finally, mutational analysis reveals that the conserved COOH-terminal region of Esp1 is important for spindle interaction.
Collapse
Affiliation(s)
- Sanne Jensen
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Marisa Segal
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Duncan J. Clarke
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Steven I. Reed
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
49
|
Heil-Chapdelaine RA, Oberle JR, Cooper JA. The cortical protein Num1p is essential for dynein-dependent interactions of microtubules with the cortex. J Cell Biol 2000; 151:1337-44. [PMID: 11121446 PMCID: PMC2190597 DOI: 10.1083/jcb.151.6.1337] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In budding yeast, the mitotic spindle moves into the neck between the mother and bud via dynein-dependent sliding of cytoplasmic microtubules along the cortex of the bud. How dynein and microtubules interact with the cortex is unknown. We found that cells lacking Num1p failed to exhibit dynein-dependent microtubule sliding in the bud, resulting in defective mitotic spindle movement and nuclear segregation. Num1p localized to the bud cortex, and that localization was independent of microtubules, dynein, or dynactin. These data are consistent with Num1p being an essential element of the cortical attachment mechanism for dynein-dependent sliding of microtubules in the bud.
Collapse
Affiliation(s)
- Richard A. Heil-Chapdelaine
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jessica R. Oberle
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John A. Cooper
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
50
|
Miller RK, Cheng SC, Rose MD. Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol Biol Cell 2000; 11:2949-59. [PMID: 10982392 PMCID: PMC14967 DOI: 10.1091/mbc.11.9.2949] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, positioning of the mitotic spindle depends on the interaction of cytoplasmic microtubules with the cell cortex. In this process, cortical Kar9p in the bud acts as a link between the actin and microtubule cytoskeletons. To identify Kar9p-interacting proteins, a two-hybrid screen was conducted with the use of full-length Kar9p as bait, and three genes were identified: BIM1, STU2, and KAR9 itself. STU2 encodes a component of the spindle pole body. Bim1p is the yeast homologue of the human microtubule-binding protein EB1, which is a binding partner to the adenomatous polyposis coli protein involved in colon cancer. Eighty-nine amino acids within the third quarter of Bim1p was sufficient to confer interaction with Kar9p. The two-hybrid interactions were confirmed with the use of coimmunoprecipitation experiments. Genetic analysis placed Bim1p in the Kar9p pathway for nuclear migration. Bim1p was not required for Kar9p's cortical or spindle pole body localization. However, deletion of BIM1 eliminated Kar9p localization along cytoplasmic microtubules. Furthermore, in the bim1 mutants, the cytoplasmic microtubules no longer intersected the cortical dot of Green Fluorescent Protein-Kar9p. These experiments demonstrate that the interaction of cytoplasmic microtubules with the Kar9p cortical attachment site requires the microtubule-binding protein Bim1p.
Collapse
Affiliation(s)
- R K Miller
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|