1
|
Ayub A, Hasan MK, Mahmud Z, Hossain MS, Kabir Y. Dissecting the multifaceted roles of autophagy in cancer initiation, growth, and metastasis: from molecular mechanisms to therapeutic applications. Med Oncol 2024; 41:183. [PMID: 38902544 DOI: 10.1007/s12032-024-02417-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a cytoplasmic defense mechanism that cells use to break and reprocess their intracellular components. This utilization of autophagy is regarded as a savior in nutrient-deficient and other stressful conditions. Hence, autophagy keeps contact with and responds to miscellaneous cellular tensions and diverse pathways of signal transductions, such as growth signaling and cellular death. Importantly, autophagy is regarded as an effective tumor suppressor because regular autophagic breakdown is essential for cellular maintenance and minimizing cellular damage. However, paradoxically, autophagy has also been observed to promote the events of malignancies. This review discussed the dual role of autophagy in cancer, emphasizing its influence on tumor survival and progression. Possessing such a dual contribution to the malignant establishment, the prevention of autophagy can potentially advocate for the advancement of malignant transformation. In contrast, for the context of the instituted tumor, the agents of preventing autophagy potently inhibit the advancement of the tumor. Key regulators, including calpain 1, mTORC1, and AMPK, modulate autophagy in response to nutritional conditions and stress. Oncogenic mutations like RAS and B-RAF underscore autophagy's pivotal role in cancer development. The review also delves into autophagy's context-dependent roles in tumorigenesis, metastasis, and the tumor microenvironment (TME). It also discusses the therapeutic effectiveness of autophagy for several cancers. The recent implication of autophagy in the control of both innate and antibody-mediated immune systems made it a center of attention to evaluating its role concerning tumor antigens and treatments of cancer.
Collapse
Affiliation(s)
- Afia Ayub
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Md Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St. W., Hamilton, L8S 4K1, Canada.
- Department of Public Health, North South University, Dhaka, Bangladesh.
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Sabbir Hossain
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
2
|
Nirwane A, Yao Y. Cell-specific expression and function of laminin at the neurovascular unit. J Cereb Blood Flow Metab 2022; 42:1979-1999. [PMID: 35796497 PMCID: PMC9580165 DOI: 10.1177/0271678x221113027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022]
Abstract
Laminin, a major component of the basal lamina (BL), is a heterotrimeric protein with many isoforms. In the CNS, laminin is expressed by almost all cell types, yet different cells synthesize distinct laminin isoforms. By binding to its receptors, laminin exerts a wide variety of important functions. However, due to the reciprocal and cell-specific expression of laminin in different cells at the neurovascular unit, its functions in blood-brain barrier (BBB) maintenance and BBB repair after injury are not fully understood. In this review, we focus on the expression and functions of laminin and its receptors in the neurovascular unit under both physiological and pathological conditions. We first briefly introduce the structures of laminin and its receptors. Next, the expression and functions of laminin and its receptors in the CNS are summarized in a cell-specific manner. Finally, we identify the knowledge gap in the field and discuss key questions that need to be answered in the future. Our goal is to provide a comprehensive overview on cell-specific expression of laminin and its receptors in the CNS and their functions on BBB integrity.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
3
|
Kang M, Yao Y. Laminin regulates oligodendrocyte development and myelination. Glia 2021; 70:414-429. [PMID: 34773273 DOI: 10.1002/glia.24117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Oligodendrocytes are the cells that myelinate axons and provide trophic support to neurons in the CNS. Their dysfunction has been associated with a group of disorders known as demyelinating diseases, such as multiple sclerosis. Oligodendrocytes are derived from oligodendrocyte precursor cells, which differentiate into premyelinating oligodendrocytes and eventually mature oligodendrocytes. The development and function of oligodendrocytes are tightly regulated by a variety of molecules, including laminin, a major protein of the extracellular matrix. Accumulating evidence suggests that laminin actively regulates every aspect of oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination. How can laminin exert such diverse functions in oligodendrocytes? It is speculated that the distinct laminin isoforms, laminin receptors, and/or key signaling molecules expressed in oligodendrocytes at different developmental stages are the reasons. Understanding molecular targets and signaling pathways unique to each aspect of oligodendrocyte biology will enable more accurate manipulation of oligodendrocyte development and function, which may have implications in the therapies of demyelinating diseases. Here in this review, we first introduce oligodendrocyte biology, followed by the expression of laminin and laminin receptors in oligodendrocytes and other CNS cells. Next, the functions of laminin in oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination, are discussed in detail. Last, key questions and challenges in the field are discussed. By providing a comprehensive review on laminin's roles in OL lineage cells, we hope to stimulate novel hypotheses and encourage new research in the field.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Clathrin: the molecular shape shifter. Biochem J 2021; 478:3099-3123. [PMID: 34436540 DOI: 10.1042/bcj20200740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Clathrin is best known for its contribution to clathrin-mediated endocytosis yet it also participates to a diverse range of cellular functions. Key to this is clathrin's ability to assemble into polyhedral lattices that include curved football or basket shapes, flat lattices or even tubular structures. In this review, we discuss clathrin structure and coated vesicle formation, how clathrin is utilised within different cellular processes including synaptic vesicle recycling, hormone desensitisation, spermiogenesis, cell migration and mitosis, and how clathrin's remarkable 'shapeshifting' ability to form diverse lattice structures might contribute to its multiple cellular functions.
Collapse
|
5
|
Nirwane A, Yao Y. Laminins and their receptors in the CNS. Biol Rev Camb Philos Soc 2019; 94:283-306. [PMID: 30073746 DOI: 10.1111/brv.12454] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023]
Abstract
Laminin, an extracellular matrix protein, is widely expressed in the central nervous system (CNS). By interacting with integrin and non-integrin receptors, laminin exerts a large variety of important functions in the CNS in both physiological and pathological conditions. Due to the existence of many laminin isoforms and their differential expression in various cell types in the CNS, the exact functions of each individual laminin molecule in CNS development and homeostasis remain largely unclear. In this review, we first briefly introduce the structure and biochemistry of laminins and their receptors. Next, the dynamic expression of laminins and their receptors in the CNS during both development and in adulthood is summarized in a cell-type-specific manner, which allows appreciation of their functional redundancy/compensation. Furthermore, we discuss the biological functions of laminins and their receptors in CNS development, blood-brain barrier (BBB) maintenance, neurodegeneration, stroke, and neuroinflammation. Last, key challenges and potential future research directions are summarized and discussed. Our goals are to provide a synthetic review to stimulate future studies and promote the formation of new ideas/hypotheses and new lines of research in this field.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| |
Collapse
|
6
|
Baschieri F, Dayot S, Elkhatib N, Ly N, Capmany A, Schauer K, Betz T, Vignjevic DM, Poincloux R, Montagnac G. Frustrated endocytosis controls contractility-independent mechanotransduction at clathrin-coated structures. Nat Commun 2018; 9:3825. [PMID: 30237420 PMCID: PMC6148028 DOI: 10.1038/s41467-018-06367-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/27/2018] [Indexed: 12/03/2022] Open
Abstract
It is generally assumed that cells interrogate the mechanical properties of their environment by pushing and pulling on the extracellular matrix (ECM). For instance, acto-myosin-dependent contraction forces exerted at focal adhesions (FAs) allow the cell to actively probe substrate elasticity. Here, we report that a subset of long-lived and flat clathrin-coated structures (CCSs), also termed plaques, are contractility-independent mechanosensitive signaling platforms. We observed that plaques assemble in response to increasing substrate rigidity and that this is independent of FAs, actin and myosin-II activity. We show that plaque assembly depends on αvβ5 integrin, and is a consequence of frustrated endocytosis whereby αvβ5 tightly engaged with the stiff substrate locally stalls CCS dynamics. We also report that plaques serve as platforms for receptor-dependent signaling and are required for increased Erk activation and cell proliferation on stiff environments. We conclude that CCSs are mechanotransduction structures that sense substrate rigidity independently of cell contractility. Cells sense mechanical properties of their environment using various cellular structures including focal adhesions. Here, the authors identify flat clathrin-coated structures (CCSs) as mechanosensitive signaling platforms that form independently of contractility and in response to substrate rigidity.
Collapse
Affiliation(s)
- Francesco Baschieri
- Inserm U1170, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France.
| | - Stéphane Dayot
- Inserm U1170, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France.,Institut Curie, Inserm U830, PSL Research University, Centre Universitaire, Paris, France
| | - Nadia Elkhatib
- Inserm U1170, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Nathalie Ly
- Inserm U1170, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Anahi Capmany
- Institut Curie, CNRS UMR144, PSL Research University, Centre Universitaire, Paris, France
| | - Kristine Schauer
- Institut Curie, CNRS UMR144, PSL Research University, Centre Universitaire, Paris, France
| | - Timo Betz
- Institute of Cell Biology, Center of Molecular Biology of Inflammation, Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | | | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Guillaume Montagnac
- Inserm U1170, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
7
|
Vallejo-Giraldo C, Krukiewicz K, Calaresu I, Zhu J, Palma M, Fernandez-Yague M, McDowell B, Peixoto N, Farid N, O'Connor G, Ballerini L, Pandit A, Biggs MJP. Attenuated Glial Reactivity on Topographically Functionalized Poly(3,4-Ethylenedioxythiophene):P-Toluene Sulfonate (PEDOT:PTS) Neuroelectrodes Fabricated by Microimprint Lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800863. [PMID: 29862640 DOI: 10.1002/smll.201800863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar-induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue-electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long-term stability. Herein, a low-temperature microimprint-lithography technique for the development of micro-topographically functionalized neuroelectrode interfaces in electrodeposited poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (PEDOT:PTS) is described and assessed in vitro. Platinum (Pt) microelectrodes are subjected to electrodeposition of a PEDOT:PTS microcoating, which is subsequently topographically functionalized with an ordered array of micropits, inducing a significant reduction in electrode electrical impedance and an increase in charge storage capacity. Furthermore, topographically functionalized electrodes reduce the adhesion of reactive astrocytes in vitro, evident from morphological changes in cell area, focal adhesion formation, and the synthesis of proinflammatory cytokines and chemokine factors. This study contributes to the understanding of gliosis in complex primary mixed cell cultures, and describes the role of micro-topographically modified neural interfaces in the development of stable microelectrode interfaces.
Collapse
Affiliation(s)
- Catalina Vallejo-Giraldo
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - Katarzyna Krukiewicz
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, 44-100, Poland
| | - Ivo Calaresu
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Jingyuan Zhu
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Matteo Palma
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Marc Fernandez-Yague
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - BenjaminW McDowell
- Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, MS-1G5 Fairfax, VA, 22030, USA
| | - Nathalia Peixoto
- Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, MS-1G5 Fairfax, VA, 22030, USA
| | - Nazar Farid
- School of Physics, National University of Ireland, Galway, University Road, Galway, H91 CF50, Ireland
| | - Gerard O'Connor
- School of Physics, National University of Ireland, Galway, University Road, Galway, H91 CF50, Ireland
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Abhay Pandit
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - Manus Jonathan Paul Biggs
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| |
Collapse
|
8
|
Elkhatib N, Bresteau E, Baschieri F, Rioja AL, van Niel G, Vassilopoulos S, Montagnac G. Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 2017; 356:356/6343/eaal4713. [DOI: 10.1126/science.aal4713] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/10/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
|
9
|
Chapman CAR, Wang L, Chen H, Garrison J, Lein PJ, Seker E. Nanoporous Gold Biointerfaces: Modifying Nanostructure to Control Neural Cell Coverage and Enhance Electrophysiological Recording Performance. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1604631. [PMID: 28626362 PMCID: PMC5471629 DOI: 10.1002/adfm.201604631] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanostructured neural interface coatings have significantly enhanced recording fidelity in both implantable and in vitro devices. As such, nano-porous gold (np-Au) has shown promise as a multifunctional neural interface coating due, in part, to its ability to promote nanostructure-mediated reduction in astrocytic surface coverage while not affecting neuronal coverage. The goal of this study is to provide insight into the mechanisms by which the np-Au nanostructure drives the differential response of neurons versus astrocytes in an in vitro model. Utilizing microfabricated libraries that display varying feature sizes of np-Au, it is demonstrated that np-Au influ-ences neural cell coverage through modulating focal adhesion formation in a feature size-dependent manner. The results here show that surfaces with small (≈30 nm) features control astrocyte spreading through inhibition of focal adhesion formation, while surfaces with large (≈170 nm and greater) features control astrocyte spreading through other mechanotransduction mechanisms. This cellular response combined with lower electrical impedance of np-Au electrodes significantly enhances the fidelity and stability of electrophysiological recordings from cortical neuronglia co-cultures relative to smooth gold electrodes. Finally, by leveraging the effect of nanostructure on neuronal versus glial cell attachment, the use of laser-based nanostructure modulation is demonstrated for selectively patterning neurons with micrometer spatial resolution.
Collapse
Affiliation(s)
| | - Ling Wang
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Hao Chen
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Joshua Garrison
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Erkin Seker
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Vezina-Audette R, Tremblay M, Carbonetto S. Laminin is instructive and calmodulin dependent kinase II is non-permissive for the formation of complex aggregates of acetylcholine receptors on myotubes in culture. Matrix Biol 2016; 57-58:106-123. [PMID: 27964993 DOI: 10.1016/j.matbio.2016.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Previous work has shown that myotubes cultured on laminin-coated substrates form complex aggregates of synaptic proteins that are similar in shape and composition to neuromuscular junctions (NMJs). Here we show that laminin instructs the location of complex aggregates which form only on the lower surface when laminin is coated onto culture dishes but over the entire cell when laminin is added in solution. Silencing of myotubes by agents that block electrical activity (tetrodotoxin, verapamil) or by inhibitors of calmodulin dependent kinase (CaMKII) render the myotube permissive for the formation of complex aggregates. Treatment with laminin alone will facilitate the formation of complex aggregates hours later when myotubes are made permissive by inhibiting CaMKII. The AChR agonist carbachol disperses pre formed aggregates suggesting that non-permissiveness may involve active dispersal of AChRs. The permissive period requires ongoing protein synthesis. The latter may reflect a requirement for rapsyn, which turns over rapidly, and is necessary for aggregation. Consistent with this geldanamycin, an agent that increases rapsyn turnover disrupts complex aggregates. Agrin is well known to induce small clusters of AChRs but does not induce complex aggregates even though aggregate formation requires MuSK, a receptor tyrosine kinase activated by agrin. Dystroglycan (DG) is the major laminin receptor mediating complex aggregate formation with some contribution from β1 integrins. In addition, there is a pool of CaMKII associated with DG. We discuss how these permissive and instructive mechanisms bear on NMJ formation in vivo.
Collapse
Affiliation(s)
- Raphael Vezina-Audette
- Centre for Research in Neuroscience, and Dept. of Neurology, McGill University Health Centre, 1650, Cedar Ave., Montreal, Quebec, H3G 1A4, Canada
| | - Mathieu Tremblay
- Centre for Research in Neuroscience, and Dept. of Neurology, McGill University Health Centre, 1650, Cedar Ave., Montreal, Quebec, H3G 1A4, Canada
| | - Salvatore Carbonetto
- Centre for Research in Neuroscience, and Dept. of Neurology, McGill University Health Centre, 1650, Cedar Ave., Montreal, Quebec, H3G 1A4, Canada.
| |
Collapse
|
11
|
Yamaba H, Haba M, Kunita M, Sakaida T, Tanaka H, Yashiro Y, Nakata S. Morphological change of skin fibroblasts induced by UV Irradiation is involved in photoaging. Exp Dermatol 2016; 25 Suppl 3:45-51. [DOI: 10.1111/exd.13084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Hiroyuki Yamaba
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Manami Haba
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Mayumi Kunita
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Tsutomu Sakaida
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Hiroshi Tanaka
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Youichi Yashiro
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Satoru Nakata
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| |
Collapse
|
12
|
Fleissner F, Morawitz M, Dixon SJ, Langbein U, Mittler S. Dye distance mapping using waveguide evanescent field fluorescence microscopy and its application to cell biology. JOURNAL OF BIOPHOTONICS 2015; 8:826-837. [PMID: 25401699 DOI: 10.1002/jbio.201400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Previous studies have measured the distance between cells and the substratum at sites of adhesion via the emission of a fluorescent dye and waveguide methods. Here, we demonstrate a novel approach to measure the position of fluorescent dyes above a waveguide surface in the 10-200 nm distance range throughout an entire area, yielding a 2D dye distance map or a 3D contour plot. The dye is located in a multilayered Langmuir Blodgett (LB) film or in the plasma membrane of a cell. Waveguide evanescent field fluorescence (WEFF) images obtained using two different waveguide modes are employed allowing, with a simple mathematical approach, the calculation of dye distance maps. Ultra-thin steps made using LB technology, adhesion distances and the bending of the plasma membrane between focal adhesions of osteoblastic cells are shown as examples. The errors are discussed. False color representation of a dye distance map with four osteoblasts. The inset represents an overexposed WEFF image of the same field of view.
Collapse
Affiliation(s)
- Frederik Fleissner
- Department of Physics and Astronomy, The University of Western Ontario (Western University), London, Ontario, N6A 3K7, Canada
- RheinMain University of Applied Sciences, Department of Engineering Sciences/Institute of Microtechnologies, Am Brückweg 26, 65428, Rüsselsheim, Germany
| | - Michael Morawitz
- Department of Physics and Astronomy, The University of Western Ontario (Western University), London, Ontario, N6A 3K7, Canada
- RheinMain University of Applied Sciences, Department of Engineering Sciences/Institute of Microtechnologies, Am Brückweg 26, 65428, Rüsselsheim, Germany
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario (Western University), London, Ontario, N6A 5C1, Canada
| | - Uwe Langbein
- RheinMain University of Applied Sciences, Department of Engineering Sciences/Institute of Microtechnologies, Am Brückweg 26, 65428, Rüsselsheim, Germany
| | - Silvia Mittler
- Department of Physics and Astronomy, The University of Western Ontario (Western University), London, Ontario, N6A 3K7, Canada.
| |
Collapse
|
13
|
Levy AD, Omar MH, Koleske AJ. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood. Front Neuroanat 2014; 8:116. [PMID: 25368556 PMCID: PMC4202714 DOI: 10.3389/fnana.2014.00116] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022] Open
Abstract
Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer's disease. The extracellular matrix (ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults.
Collapse
Affiliation(s)
- Aaron D Levy
- Interdepartmental Neuroscience Program, Yale University New Haven, CT, USA ; Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT, USA
| | - Mitchell H Omar
- Interdepartmental Neuroscience Program, Yale University New Haven, CT, USA ; Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT, USA
| | - Anthony J Koleske
- Interdepartmental Neuroscience Program, Yale University New Haven, CT, USA ; Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT, USA ; Department of Neurobiology, Yale University New Haven, CT, USA
| |
Collapse
|
14
|
Ttyh1 protein is expressed in glia in vitro and shows elevated expression in activated astrocytes following status epilepticus. Neurochem Res 2014; 39:2516-26. [PMID: 25316497 PMCID: PMC4246129 DOI: 10.1007/s11064-014-1455-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/26/2014] [Accepted: 10/08/2014] [Indexed: 11/29/2022]
Abstract
In a previous study, we showed that Ttyh1 protein is expressed in neurons in vitro and in vivo in the form of punctuate structures, which are localized to neuropil and neuronal somata. Herein, we provide the first description of Ttyh1 protein expression in astrocytes, oligodendrocytes and microglia in vitro. Moreover, using double immunofluorescence, we show Ttyh1 protein expression in activated astrocytes in the hippocampus following amygdala stimulation-induced status epilepticus. We demonstrate that in migrating astrocytes in in vitro wound model Ttyh1 concentrates at the edges of extending processes. These data suggest that Ttyh1 not only participates in shaping neuronal morphology, as previously described, but may also play a role in the function of activated glia in brain pathology. To localize Ttyh1 expression in the cellular compartments of neurons and astrocytes, we performed in vitro double immunofluorescent staining using markers for the following subcellular structures: endoplasmic reticulum (GRP78), Golgi apparatus (GM130), clathrin-coated vehicles (clathrin), early endosomes (Rab5 and APPL2), recycling endosomes (Rab11), trans-Golgi network (TGN46), endoplasmic reticulum membrane (calnexin), late endosomes and lysosomes (LAMP1) and synaptic vesicles (synaptoporin and synaptotagmin 1). We found that Ttyh1 is present in the endoplasmic reticulum, Golgi apparatus and clathrin-coated vesicles (clathrin) in both neurons and astrocytes and also in late endosomes or lysosomes in astrocytes. The presence of Ttyh1 was negligible in early endosomes, recycling endosomes, trans-Golgi network, endoplasmic reticulum membrane and synaptic vesicles.
Collapse
|
15
|
Peng H, Ong YM, Shah WA, Holland PC, Carbonetto S. Integrins regulate centrosome integrity and astrocyte polarization following a wound. Dev Neurobiol 2013; 73:333-53. [PMID: 22949126 DOI: 10.1002/dneu.22055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/14/2012] [Accepted: 08/27/2012] [Indexed: 12/31/2022]
Abstract
In response to a wound, astrocytes in culture extend microtubule-rich processes and polarize, orienting their centrosomes and Golgi apparatus woundside. β1 Integrin null astrocytes fail to extend processes toward the wound, and are disoriented, and often migrate away orthogonal, to the wound. The centrosome is unusually fragmented in β1 integrin null astrocytes. Expression of a β1 integrin cDNA in the null background yields cells with intact centrosomes that polarize and extend processes normally. Fragmented centrosomes rapidly assemble following integrin ligation and cell attachment. However, several experiments indicated that cell adhesion is not necessary. For example, astrocytes in suspension expressing a chimeric β1 subunit that can be activated by an antibody assemble centrosomes suggesting that β1 activation is sufficient to cause centrosome assembly in the absence of cell adhesion. siRNA knockdown of PCM1, a major centrosomal protein, inhibits cell polarization, consistent with the notion that centrosomes are necessary for polarity and that integrins regulate polarity via centrosome integrity. Screening inhibitors of molecules downstream of integrins indicate that neither FAK nor ILK is involved in regulation of centrosome integrity. In contrast, blebbistatin, a specific inhibitor of non-muscle myosin II (NMII), mimics the response of β1 integrin null astrocytes by disrupting centrosome integrity and cell polarization. Blebbistatin also inhibits integrin-mediated centrosome assembly in astrocytes attaching to fibronectin, consistent with the hypothesis that NMII functions downstream of integrins in regulating centrosome integrity.
Collapse
Affiliation(s)
- Huashan Peng
- Centre for Research in Neuroscience, McGill University Health Centre, Montreal, Quebec, H3G 1A4, Canada
| | | | | | | | | |
Collapse
|
16
|
Knight DK, Stutchbury R, Imruck D, Halfpap C, Lin S, Langbein U, Gillies ER, Mittler S, Mequanint K. Focal contact formation of vascular smooth muscle cells on Langmuir-Blodgett and solvent-cast films of biodegradable poly(ester amide)s. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1303-1312. [PMID: 22324781 DOI: 10.1021/am201582q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ability of biomaterials to support the adhesion of cells is a necessary condition for their use in scaffold-guided tissue engineering. Waveguide evanescent field fluorescence (WEFF) microscopy is a relatively new microscopic technique that allows the number of cell adhesions to a waveguide surface be measured by imaging the interfacial contact region between the cells and their substratum. In this work, the adhesion of human coronary artery smooth muscle cells (HCASMCs) to ultrathin films (20 nm) of poly(ester amide)s (PEAs) prepared by Langmuir-Blodgett (LB) technology on waveguides was investigated and compared with conventional vinculin immunostaining on solvent cast PEA films. Cell culture was conducted both in the presence and absence of serum to evaluate the effect of nonspecific protein adsorption that mediates cell adhesion. WEFF microscopy analyses revealed that the cationic PEA enhanced the number of attachment sites compared with the control waveguides regardless of the culture medium. Although differences in cell adhesions between different PEAs were suggested by the results, no statistically significant differences were found. Similar results were observed with presently and previously reported vinculin immunostaining studies, further validating the use of WEFF microscopy to quantify cell adhesions. Moreover, the focal adhesions of the HCASMCs to the PEA surfaces indicate these PEAs can promote integrin signaling, which is vital in cell survival, migration, and proliferation, and ultimately in scaffold-guided vascular tissue engineering.
Collapse
Affiliation(s)
- Darryl K Knight
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Féréol S, Fodil R, Barnat M, Georget V, Milbreta U, Nothias F. Micropatterned ECM substrates reveal complementary contribution of low and high affinity ligands to neurite outgrowth. Cytoskeleton (Hoboken) 2011; 68:373-88. [DOI: 10.1002/cm.20518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 04/28/2011] [Accepted: 05/24/2011] [Indexed: 12/12/2022]
|
18
|
Yonezawa T, Hattori S, Inagaki J, Kurosaki M, Takigawa T, Hirohata S, Miyoshi T, Ninomiya Y. Type IV collagen induces expression of thrombospondin-1 that is mediated by integrin alpha1beta1 in astrocytes. Glia 2010; 58:755-67. [PMID: 20091789 DOI: 10.1002/glia.20959] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Following brain injury, thrombospondin-1 (TSP-1) is involved in angiogenesis and synaptic recovery. In this study, we used a cold injury-model and found that TSP-1 mRNA was markedly upregulated after brain injury. Immunohistochemistry showed that TSP-1 was upregulated in both the core of the lesion and in the perilesional area of injured brain tissue. Numerous astrocytes immunopositive for glial fibrillary acidic protein (GFAP) were found in the perilesional area, and TSP-1 was also expressed in almost all astrocytes surrounding blood vessels at 4 days after injury. Next, we examined the influence of vascular basement membrane components on TSP-1 expression. When astrocytes were cultured on type IV collagen, TSP-1 was significantly upregulated compared with the expression when cells were grown on laminin, fibronectin, or poly-L-lysine. This increase occurred exclusively when astrocytes were grown on the native form of type IV collagen but not on the heat-denatured form or the non-collagenous 1 domain. Further, integrin alpha1 and beta1 mRNAs were upregulated concomitantly with GFAP mRNA, and integrin alpha1 protein was localized to the endfeet of astrocytes that surrounded blood vessels in the injured brain. Using function-blocking antibodies, we found that the effect of type IV collagen was attributed to integrin alpha1beta1 in primary astrocytes. Collectively, our results suggest that vascular basement membrane components substantially impact gene expression in astrocytes during brain tissue repair.
Collapse
Affiliation(s)
- Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nagra G, Koh L, Aubert I, Kim M, Johnston M. Intraventricular injection of antibodies to β1-integrins generates pressure gradients in the brain favoring hydrocephalus development in rats. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1312-21. [DOI: 10.1152/ajpregu.00307.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In some tissues, the injection of antibodies to the β1-integrins leads to a reduction in interstitial fluid pressure, indicating an active role for the extracellular matrix in tissue pressure regulation. If perturbations of the matrix occur in the periventricular area of the brain, a comparable lowering of interstitial pressures may induce transparenchymal pressure gradients favoring ventricular expansion. To examine this concept, we measured periventricular (parenchymal) and ventricular pressures with a servo-null micropipette system (2-μm tip) in adult Wistar rats before and after anti-integrin antibodies or IgG/IgM isotype controls were injected into a lateral ventricle. In a second group, the animals were kept for 2 wk after similar injections and after euthanization, the brains were removed and assessed for hydrocephalus. In experiments in which antibodies to β1-integrins ( n = 10) but not isotype control IgG/IgM ( n = 7) were injected, we observed a decline in periventricular pressures relative to the preinjection values. Under similar circumstances, ventricular pressures were elevated ( n = 10) and were significantly greater than those in the periventricular interstitium. We estimated ventricular to periventricular pressure gradients of up to 4.3 cmH2O. In the chronic preparations, we observed enlarged ventricles in many of the animals that received injections of anti-integrin antibodies (21 of 29 animals; 72%) but not in any animal receiving the isotype controls. We conclude that modulation/disruption of β1-integrin-matrix interactions in the brain generates pressure gradients favoring ventricular expansion, suggesting a novel mechanism for hydrocephalus development.
Collapse
Affiliation(s)
- Gurjit Nagra
- Brain Sciences Program and Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lena Koh
- Brain Sciences Program and Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Brain Sciences Program and Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Minhui Kim
- Brain Sciences Program and Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Miles Johnston
- Brain Sciences Program and Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Abstract
The recruitment of clathrin to the membrane and its assembly into coated pits results from its interaction with endocytic adaptors and other regulatory proteins in the context of a specific lipid microenvironment. Dab2 (disabled 2) is a mitotic phosphoprotein and a monomeric adaptor for clathrin-mediated endocytosis. In the present study, we employed GFP (green fluorescent protein) fusion constructs of different isoforms and mutants of rat Dab2 and characterized their effect on the size, distribution and dynamics of clathrin assemblies. Enhanced levels of expression of the p82 isoform of Dab2 in COS7 cells induced enlarged clathrin assemblies at the plasma membrane. p82-clathrin assemblies, which concentrate additional endocytic proteins, such as AP2 (adaptor protein 2) and epsin, are dynamic structures in which both p82 and clathrin exchange actively between the membrane-bound and cytosolic sub-populations. The ability of p82 to induce enlarged clathrin assemblies is dependent on the presence of a functional PTB domain (phosphotyrosine-binding domain), on binding to clathrin and phospholipids, and on a newly identified and evolutionarily conserved poly-lysine stretch which precedes the PTB domain. These same molecular features are required for Dab2 to enhance the spreading of COS7 cells on fibronectin. The ability of the p82 isoform of Dab2 to enhance cell spreading was confirmed in both HeLa cells and HBL cells (human breast epithelial cells). COS7 cells expressing GFP-p82 and plated on to fibronectin concentrate the beta1 integrin into clathrin-p82 assemblies. Furthermore, during cell spreading, p82-clathrin assemblies concentrate at the site of the initial cell-matrix contact and are absent from regions of intense membrane ruffling. We propose a role for Dab2 and clathrin in integrin-mediated cell spreading.
Collapse
|
21
|
Dekeyser CM, Zuyderhoff E, Giuliano RE, Federoff HJ, Dupont-Gillain CC, Rouxhet PG. A rough morphology of the adsorbed fibronectin layer favors adhesion of neuronal cells. J Biomed Mater Res A 2008; 87:116-28. [DOI: 10.1002/jbm.a.31739] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Peng H, Shah W, Holland P, Carbonetto S. Integrins and dystroglycan regulate astrocyte wound healing: the integrin beta1 subunit is necessary for process extension and orienting the microtubular network. Dev Neurobiol 2008; 68:559-74. [PMID: 18188865 DOI: 10.1002/dneu.20593] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monolayers of astrocytes in culture respond to a scrape wound by orienting towards the wound and extending processes that will repair it. We show here that they also upregulate the expression of extracellular matrix (ECM) proteins, laminin, and chondroitin sulfated proteoglycan, that are deposited in astrocytic scars in vivo. We have previously shown that the major functional ECM receptors on astrocytes are dystroglycan (DG) plus integrins alpha1beta1, alpha5beta1, alpha6beta1, and alphavbeta3. Consistent with this, laminin fragments that activate alpha1beta1 integrin, alpha6beta1 integrin, and DG all contribute to attachment. During astrocyte attachment, or process extension, integrins and DG are found at the leading edge of the lammelipodium, though they change in distribution with the extent of attachment and the alpha and beta subunits of DG can be spatially uncoupled. Functionally, inhibitory antibodies to DG and integrin alpha1beta1 or the RGD peptide all inhibit process extension, showing that ligand engagement of integrins and DG contribute to process extension. Astrocytes differentiated from DG or beta1 null ES cells respond very differently to wounding. The former fail to extend process and cell polarization is disrupted partially. However, beta1 null astrocytes not only fail to extend processes perpendicular to the wound, but cell polarization is completely disrupted and cells migrate randomly into the wound. We conclude that integrins are essential for astrocyte polarity.
Collapse
Affiliation(s)
- Huashan Peng
- Centre for Research in Neuroscience, McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4
| | | | | | | |
Collapse
|
23
|
Brown RA, McFarland CD. Overview: Therapeutic Uses of Cell-Matrix Adhesive Proteins. ACTA ACUST UNITED AC 2008. [DOI: 10.1517/13543776.3.8.1117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Boudou T, Ohayon J, Picart C, Tracqui P. Influences of adhesion area and biological sample size on the estimation of Young's modulus and Poisson's ratio assessed by micropipette aspiration technique. ACTA ACUST UNITED AC 2007; 2007:5391-4. [PMID: 18003227 DOI: 10.1109/iembs.2007.4353561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The micropipette aspiration experiment remains a widely used micromanipulation technique for quantifying the mechanical properties of biological samples. Our study extends previous results by investigating the influence of sample size and adhesion area on the mechanical response of compressible thin biological samples. We thus defined a nonlinear relationship between aspirated length, Young's modulus, Poisson's ratio and sample thickness which allowed us to develop an original experimental protocol for simultaneous quantification of the Poisson's ratio and Young's modulus of adherent samples. We first validated our method by characterizing mechanical properties of polyacrylamide gels with tunable stiffness. We then considered application of these results to the quantification of cell elasticity, focusing on the influence of cell adhesion area onto the measured apparent cell stiffness.
Collapse
Affiliation(s)
- T Boudou
- Laboratoire TIMC-IMAG, Dynacell, Centre National de la Recherche Scientifique, UMR 5525, IN3S, 38706 La Tronche Cedex, France.
| | | | | | | |
Collapse
|
25
|
Kong D, Ji B, Dai L. Nonlinear mechanical modeling of cell adhesion. J Theor Biol 2007; 250:75-84. [PMID: 17977558 DOI: 10.1016/j.jtbi.2007.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 09/20/2007] [Accepted: 09/20/2007] [Indexed: 11/17/2022]
Abstract
Cell adhesion, which is mediated by the receptor-ligand bonds, plays an essential role in various biological processes. Previous studies often described the force-extension relationship of receptor-ligand bond with linear assumption. However, the force-extension relationship of the bond is intrinsically nonlinear, which should have significant influence on the mechanical behavior of cell adhesion. In this work, a nonlinear mechanical model for cell adhesion is developed, and the adhesive strength was studied at various bond distributions. We find that the nonlinear mechanical behavior of the receptor-ligand bonds is crucial to the adhesive strength and stability. This nonlinear behavior allows more bonds to achieve large bond force simultaneously, and therefore the adhesive strength becomes less sensitive to the change of bond density at the outmost periphery of the adhesive area. In this way, the strength and stability of cell adhesion are soundly enhanced. The nonlinear model describes the cell detachment behavior better than the linear model.
Collapse
Affiliation(s)
- Dong Kong
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | |
Collapse
|
26
|
del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI, Koziol JA. Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 2007; 38:646-51. [PMID: 17261708 DOI: 10.1161/01.str.0000254477.34231.cb] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Local environmental conditions contribute to the activation state of cells. Extracellular matrix glycoproteins participate in cell-cell boundaries within the microvascular and extravascular tissues of the central nervous system and provide a scaffold for the local environment. These conditions are altered during focal cerebral ischemia (and other central nervous system disorders) when extracellular matrix boundaries are degraded or when matrix proteins in the vascular circulation enter the neuropil as the microvascular permeability barrier is degraded. Microglia in the resting state become activated after the onset of ischemia. During activation these cells can express a number of factors and proteases, including latent matrix metalloproteinase-9 (pro-MMP-9). Whereas MMP-9 and MMP-2 are generated early during focal ischemia in select models, their cellular sources in vivo are still under study. In vitro microglia cells activate and respond to exposure to specific matrix proteins (eg, vitronectin, fibronectin) that circulate. Certain MMP inhibitors, specifically tetracycline derivatives, can modulate microglial activation and reduce injury volume in limited studies. But, the injury reduction relies on preinjury exposure to the tetracycline. Other studies underway suggest the hypothesis that microglial cell activation and pro-MMP-9 generation during focal cerebral ischemia is promoted in part by matrix proteins in the circulation that extravasate into the neuropil when the blood-brain barrier is compromised. These matrix proteins are known to activate microglia through their specific cell surface matrix receptors.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Cui FZ, Tian WM, Hou SP, Xu QY, Lee IS. Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2006; 17:1393-401. [PMID: 17143772 DOI: 10.1007/s10856-006-0615-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 10/21/2005] [Indexed: 05/12/2023]
Abstract
In this paper, hyaluronic acid hydrogels with open porous structure have been developed for scaffold of brain tissue engineering. A short peptide sequence of arginine-glycine-aspartic acid (RGD) was immobilized on the backbone of the hydrogels. Both unmodified hydrogels and those modified with RGD were implanted into the defects of cortex in rats and evaluated for their ability to improve tissue reconstruction. After 6 and 12 weeks, sections of brains were processed for DAB and Glees staining. They were also labeled with GFAP and ED1 antibodies, and observed under the SEM for ultrastructral examination. After implanting into the lesion of cortex, the porous hydrogels functioned as a scaffold to support cells infiltration and angiogenesis, simultaneously inhibiting the formation of glial scar. In addition, HA hydrogels modified with RGD were able to promote neurites extension. Our experiments showed that the hyaluronic acid-RGD hydrogel provided a structural, three-dimensional continuity across the defect and favoured reorganization of local wound-repair cells, angiogenesis and axonal growth into the hydrogel scaffold, while there was little evidence of axons regeneration in unmodified hydrogel.
Collapse
Affiliation(s)
- F Z Cui
- Biomaterials Laboratory, Department of Materials Science & Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | | | |
Collapse
|
28
|
Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V. Vesicular transmitter release from astrocytes. Glia 2006; 54:700-715. [PMID: 17006898 DOI: 10.1002/glia.20367] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Astrocytes can release a variety of transmitters, including glutamate and ATP, in response to stimuli that induce increases in intracellular Ca(2+) levels. This release occurs via a regulated, exocytotic pathway. As evidence of this, astrocytes express protein components of the vesicular secretory apparatus, including synaptobrevin 2, syntaxin, and SNAP-23. Additionally, astrocytes possess vesicular organelles, the essential morphological elements required for regulated Ca(2+)-dependent transmitter release. The location of specific exocytotic sites on these cells, however, remains to be unequivocally determined.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| | - Erik B Malarkey
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| | - Claudia Verderio
- Department of Medical Pharmacology, Consiglio Nazionalle delle Ricerche Institute of Neuroscience, University of Milano, Milano, Italy
| | - Michela Matteoli
- Department of Medical Pharmacology, Consiglio Nazionalle delle Ricerche Institute of Neuroscience, University of Milano, Milano, Italy
| | - Vladimir Parpura
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| |
Collapse
|
29
|
Ding YH, Li J, Yao WX, Rafols JA, Clark JC, Ding Y. Exercise preconditioning upregulates cerebral integrins and enhances cerebrovascular integrity in ischemic rats. Acta Neuropathol 2006; 112:74-84. [PMID: 16703337 DOI: 10.1007/s00401-006-0076-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/17/2006] [Accepted: 04/21/2006] [Indexed: 01/01/2023]
Abstract
We hypothesized that exercise preconditioning strengthens brain microvascular integrity against ischemia/reperfusion injury through the tumor necrosis factor (TNF)-integrin signaling pathway. Adult male Sprague Dawley rats (n = 24) were studied in: (1) exercise (the animals run on a treadmill 30 min each day) for 3 weeks, (2) non-exercise. Six animals from each group (n = 12) were subjected to stroke, the remaining animals served as controls (n = 6 x 2). Brain infarction and edema were determined by Nissl staining. Cerebral integrin expression was detected by immunochemistry and stereological methods. In addition, we used flow cytometry to address the causal role of TNF-alpha in inducing the expression of integrins in the human umbilical vein endothelial cells under TNF-alpha or vascular endothelial growth factor (VEGF) pretreatment. Exercise reduces brain infarction and brain edema in stroke. Expressions of integrin subunit alpha(1), alpha(6), beta(1), and beta(4) were increased after exercise. Exercise preconditioning reversed stroke-reduced integrin expression. An in vitro study revealed a causal link between the gradual upregulation of TNF-alpha (rather than VEGF) and cellular expression of integrins. These results demonstrated an increase in cerebral expression of integrins and a decrease in brain injury from stroke after exercise preconditioning. The study suggests that upregulation of integrins during exercise enhances neurovascular integrity after stroke. The changes in integrins might be altered by TNF-alpha.
Collapse
Affiliation(s)
- Y H Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Ahrens IG, Moran N, Aylward K, Meade G, Moser M, Assefa D, Fitzgerald DJ, Bode C, Peter K. Evidence for a differential functional regulation of the two beta(3)-integrins alpha(V)beta(3) and alpha(IIb)beta(3). Exp Cell Res 2006; 312:925-37. [PMID: 16434034 DOI: 10.1016/j.yexcr.2005.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2004] [Revised: 11/28/2005] [Accepted: 11/30/2005] [Indexed: 11/22/2022]
Abstract
The functional regulation of integrins is a major determinant of cell adhesion, migration and tissue maintenance. The binding of cytoskeletal proteins to various sites of integrin cytoplasmic domains is a key mechanism of this functional regulation. Expression of recombinant integrin alpha(IIb)beta(3) and alpha(M)beta(2) lacking the GFFKR-region in CHO cells results in constitutively activated integrins. In contrast, CHO cells stably expressing either a GFFKR-deleted alpha(V(del))beta(3) or a FF to AA-substituted alpha(V(AA))beta(3) do not reveal a constitutively activated integrin. Adhesion to immobilized fibrinogen is strongly impaired in alpha(V(del))beta(3) or alpha(V(AA))beta(3)-expressing cells, whereas it is not impaired in alpha(IIb)beta(3) and alpha(M)beta(2), both lacking the GFFKR-region. In a parallel plate flow chamber assay, alpha(V)beta(3)-expressing cells adhere firmly to fibrinogen and spread even at shear rates of 15 to 20 dyn/cm(2), whereas alpha(V(del))beta(3) or alpha(V(AA))beta(3) cells are detached at 15 dyn/cm(2). Actin stress fiber formation and focal adhesion plaques containing alpha(V)beta(3) are observed in alpha(V)beta(3) cells but not in alpha(V(del))beta(3) or alpha(V(AA))beta(3)-expressing cells. As an additional manifestation of impaired outside-in signaling, phosphorylation of pp125(FAK) was reduced in these cells. In summary, we report that the GFFKR-region of the alpha(V)-cytoplasmic domain and in particular two phenylalanines are essential for integrin alpha(V)beta(3) function, especially for outside-in signaling. Our results suggest that the two beta(3)-integrins alpha(IIb)beta(3) and alpha(V)beta(3) are differentially regulated via their GFFKR-region.
Collapse
Affiliation(s)
- I G Ahrens
- Department of Cardiology and Angiology, Internal Medicine III, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zlatanov I, Groth T, Lendlein A, Altankov G. Dynamics of beta1-integrins in living fibroblasts--effect of substratum wettability. Biophys J 2005; 89:3555-62. [PMID: 16126832 PMCID: PMC1366849 DOI: 10.1529/biophysj.105.061119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The dynamics of integrin receptors mobility was studied in living human fibroblasts using fluorescence-labeled beta(1)-integrin monoclonal antibodies. Time-lapse image series were obtained by confocal laser scanning microscopy when cells were adhering on model hydrophilic (clean glass) and hydrophobic (octadecyl-silanized; i.e., ODS) surfaces coated with fibronectin. Direct measurements showed approximately twice-higher velocity of integrins on glass compared to ODS, and these velocities varied in different zones of the cells. A kinetic model and algorithm for quantification of images was developed, and the analysis identified three receptor populations on glass: immobilized (82.76% of all), slow (4.16%), and fast (13.08%), while, on ODS, only two were identified: immobilized (83.36%) and fast (16.64%). Fast integrins in the peripheral zone of cells have maximal velocities of 0.353 +/- 0.02 mum/min (n = 48, four cells) on hydrophilic and 0.218 +/- 0.02 mum/min (n = 30, three cells) on hydrophobic substrata. The slow population has a velocity of 0.114 mum/min (n = 48, four cells). Further analyses show that these velocities also differ significantly in the peripheral and middle zones of cells in a substrate-dependent fashion. A well-defined circular motion of receptors around the cell center expressed mainly on hydrophobic substrata was monitored and quantified as well.
Collapse
Affiliation(s)
- I Zlatanov
- Institute of Biophysics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | |
Collapse
|
33
|
Baron W, Colognato H, ffrench-Constant C, Ffrench-Constant C. Integrin-growth factor interactions as regulators of oligodendroglial development and function. Glia 2005; 49:467-79. [PMID: 15578662 DOI: 10.1002/glia.20132] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Central nervous system (CNS) development requires mechanisms for the regulation of cell number. Although growth factors are essential determinants of the proliferation and apoptosis that determine final numbers, the long-range nature of signals from diffusible growth factors makes them insufficient for the provision of the precise and localized signals required. Integration of integrin and growth factor receptor signaling in controlling cell behavior has been an important theme of research over the past several years. The focus of this review is on the mechanisms by which integrin-growth factor interactions regulate the development of oligodendrocytes and provide a mechanism for controlling, both in space and in time, oligodendrocyte numbers in the developing CNS.
Collapse
Affiliation(s)
- Wia Baron
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Pixley FJ, Xiong Y, Yu RYL, Sahai EA, Stanley ER, Ye BH. BCL6 suppresses RhoA activity to alter macrophage morphology and motility. J Cell Sci 2005; 118:1873-83. [PMID: 15860730 DOI: 10.1242/jcs.02314] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BCL6 is a potent transcriptional repressor that plays important roles in germinal center formation, T helper cell differentiation and lymphomagenesis and regulates expression of several chemokine genes in macrophages. In a further investigation of its role in macrophages, we show that BCL6 inactivation in primary bone marrow-derived macrophages leads to decreased polarization, motility and cell spreading accompanied by an increase in peripheral focal complexes, anchored F-actin bundles and cortical F-actin density. These changes were associated with excess RhoA activation. C3 transferase inhibition of RhoA activity reverted the adhesion structure phenotype, which was not affected by Rho kinase inhibitors, suggesting that other downstream effectors of Rho maintain this Bcl6–/– phenotype. Excess RhoA activation in BCL6-deficient macrophages is associated with a decrease in the p120RasGAP (RASA1)-mediated translocation of p190RhoGAP (GRLF1) to active RhoA at the plasma membrane and a reduction in cell surface expression of the CSF1R that has been reported to recruit RasGAP to the plasma membrane. Reconstitution of BCL6 expression in Bcl6–/– macrophages results in complete reversion of the morphological phenotype and a significant increase in cell surface CSF1R expression whereas overexpression of the CSF1R corrects the polarization and adhesion structure defects. These results demonstrate that BCL6 suppresses RhoA activity, largely through upregulation of surface CSF1R expression, to modulate cytoskeletal and adhesion structures and increase the motility of macrophages.
Collapse
Affiliation(s)
- Fiona J Pixley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Tom VJ, Doller CM, Malouf AT, Silver J. Astrocyte-associated fibronectin is critical for axonal regeneration in adult white matter. J Neurosci 2005; 24:9282-90. [PMID: 15496664 PMCID: PMC6730112 DOI: 10.1523/jneurosci.2120-04.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although it has been suggested that astroglia guide pioneering axons during development, the cellular and molecular substrates that direct axon regeneration in adult white matter have not been elucidated. We show that although adult cortical neurons were only able to elaborate very short, highly branched, dendritic-like processes when seeded onto organotypic slice cultures of postnatal day 35 (P35) rat brain containing the corpus callosum, adult dorsal root ganglion (DRG) neurons were able to regenerate lengthy axons within the reactive glial environment of this degenerating white matter tract. The callosum in both P35 slices and adult rat brain was rich in fibronectin, but not laminin. Furthermore, the fibronectin was intimately associated with the intratract astrocytes. Blockade of fibronectin function in situ with an anti-fibronectin antibody dramatically decreased outgrowth of DRG neurites, suggesting that fibronectin plays an important role in axon regeneration in mature white matter. The critical interaction between regrowing axons and astroglial-associated fibronectin in white matter may be an additional factor to consider when trying to understand regeneration failure and devising strategies to promote regeneration.
Collapse
Affiliation(s)
- Veronica J Tom
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
36
|
Gottfried C, Cechin SR, Gonzalez MA, Vaccaro TS, Rodnight R. The influence of the extracellular matrix on the morphology and intracellular pH of cultured astrocytes exposed to media lacking bicarbonate. Neuroscience 2004; 121:553-62. [PMID: 14568017 DOI: 10.1016/s0306-4522(03)00557-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In previous work we showed that the polygonal shape of hippocampal astrocytes cultured on poly-L-lysine changes to a stellate morphology with loss of actinomyosin stress fibers on exchanging the culture medium for saline buffered with HEPES [Brain Res 946 (2002)12]. By contrast, in bicarbonate-buffered saline containing Ca(2+) astrocytes remained polygonal and continued to express stress fibers. Evidence suggests that stellation induced by saline buffered with HEPES is related to intracellular acidification due to the absence of bicarbonate. Here we studied the influence of the matrix used in preparing astrocyte cultures. Stellation in HEPES-saline occurred on a matrix of fibronectin, but not on matrices of collagen I or IV provided Ca(2+) was present. Laminin partially prevented stellation in HEPES-saline. Further, the intracellular acidification induced by HEPES-saline observed in astrocytes cultured on polylysine was abolished in cells cultured on collagens and was attentuated on a matrix of laminin. Two observations suggested the involvement of integrins and focal adhesions. (1) Treatment of cultures on collagens with a blocking antibody to the beta1 integrin subunit abolished protection against HEPES-induced stellation. (2) Compared with polylysine, astrocytes cultured on collagens expressed increased contents of phosphotyrosine proteins, focal adhesion proteins vinculin and paxillin, the beta1 integrin subunit and increased numbers of focal adhesions labelled with anti-vinculin. The observation that astrocytes cultured on collagen I or IV, in contrast to polylysine, express stress fibers and a constant intracellular pH in the absence of buffering by bicarbonate may be related to the fact that in the intact brain astrocytic processes (or end-feet) encounter and bind to collagen IV and laminin in the basement membrane of the endothelial cells which surround the cerebral capillaries. It is also possible that astrocytes retain this capacity from early development when fibrous matrix proteins are present.
Collapse
Affiliation(s)
- C Gottfried
- Centro de Ciências da Saúde, Unisinos, Sao Leopoldo, Brazil
| | | | | | | | | |
Collapse
|
37
|
Nikonenko I, Toni N, Moosmayer M, Shigeri Y, Muller D, Sargent Jones L. Integrins are involved in synaptogenesis, cell spreading, and adhesion in the postnatal brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 140:185-94. [PMID: 12586424 DOI: 10.1016/s0165-3806(02)00590-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Integrins are a major family of heterodimeric surface glycoproteins that act as adhesion molecules, have a spectrum of extracellular matrix (ECM) molecules as their ligands, and regulate a variety of cellular functions. Integrins are known to be critical to embryonic brain development, and recent studies have indicated their essential role in adult brain function, although their role in postnatal brain development and function has not been examined. Here, we used the organotypic slice culture system to investigate the role of integrins in postnatal hippocampal development by exposing the tissue to either an integrin competitive antagonist, the peptide GRGDSP containing Arg-Gly-Asp (RGD) attachment site, or to function-blocking beta(1)-integrin antibodies to disrupt integrin interactions. These experiments revealed that beta(1)-integrin antibodies interfered with spreading of the culture, resulting in a rapid and marked diminution of slice area. beta(1)-integrin antibodies and RGD peptide disrupted cell adhesion, causing cell detachment and migration of glial cells from the explant. The majority of the detached cells were of macroglial origin and switched to expression of the intermediate filament proteins vimentin and nestin, suggesting a developmental regression. The organotypic organization of slice cultures was not affected, although exposure to either integrin antagonist or antibody resulted in a statistically significant reduction in the number of synapses measured in the apical dendrites of CA1 pyramidal neurons. The results demonstrate that integrins markedly affect postnatal CNS development, in both ultrastructural construction and organizational processes.
Collapse
Affiliation(s)
- Irina Nikonenko
- Department of Pharmacology, Centre Médical Universitaire, 1211 4, Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
38
|
Fournier HN, Dupé-Manet S, Bouvard D, Lacombe ML, Marie C, Block MR, Albiges-Rizo C. Integrin cytoplasmic domain-associated protein 1alpha (ICAP-1alpha ) interacts directly with the metastasis suppressor nm23-H2, and both proteins are targeted to newly formed cell adhesion sites upon integrin engagement. J Biol Chem 2002; 277:20895-902. [PMID: 11919189 DOI: 10.1074/jbc.m200200200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell adhesion-dependent signaling implicates cytoplasmic proteins interacting with the intracellular tails of integrins. Among those, the integrin cytoplasmic domain-associated protein 1alpha (ICAP-1alpha) has been shown to interact specifically with the beta(1) integrin cytoplasmic domain. Although it is likely that this protein plays an important role in controlling cell adhesion and migration, little is known about its actual function. To search for potential ICAP-1alpha-binding proteins, we used a yeast two-hybrid screen and identified the human metastatic suppressor protein nm23-H2 as a new partner of ICAP-1alpha. This direct interaction was confirmed in vitro, using purified recombinant ICAP-1alpha and nm23-H2, and by co-immunoprecipitation from CHO cell lysates over-expressing ICAP-1alpha. The physiological relevance of this interaction is provided by confocal fluorescence microscopy, which shows that ICAP-1alpha and nm23-H2 are co-localized in lamellipodia during the early stages of cell spreading. These adhesion sites are enriched in occupied beta(1) integrins and precede the formation of focal adhesions devoid of ICAP-1alpha and nm23-H2, indicating the dynamic segregation of components of matrix adhesions. This peripheral staining of ICAP-1alpha and nm23-H2 is only observed in cells spreading on fibronectin and collagen and is absent in cells spreading on poly-l-lysine, vitronectin, or laminin. This is consistent with the fact that targeting of both ICAP-1alpha and nm23-H2 to the cell periphery is dependent on beta(1) integrin engagement rather than being a consequence of cell adhesion. This finding represents the first evidence that the tumor suppressor nm23-H2 could act on beta(1) integrin-mediated cell adhesion by interacting with one of the integrin partners, ICAP-1alpha.
Collapse
Affiliation(s)
- Henri-Noël Fournier
- Laboratoire d'Etude de la Différenciation et de l'Adhérence Cellulaires, UMR UJF/CNRS 5538, Institut Albert Bonniot, Faculté de Médecine de Grenoble, Domaine de la Merci, 38706 La Tronche Cedex, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Cytokines regulate microglial adhesion to laminin and astrocyte extracellular matrix via protein kinase C-dependent activation of the alpha6beta1 integrin. J Neurosci 2002. [PMID: 11880486 DOI: 10.1523/jneurosci.22-05-01562.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Microglia are highly plastic cells that participate in inflammatory and injury responses within the CNS and that can migrate extensively after activation. Because astrocytes and their extracellular matrix (ECM) form a large part of the CNS parenchyma, we undertook to study the adhesive interactions between microglia and these substrates in vitro. In contrast to oligodendrocyte precursor cells, microglia formed only weak interactions with astrocytes and their ECM. On specific ECM substrates the microglia adhered strongly to fibronectin, vitronectin, and plastic but only weakly to laminin. Microglial adhesion to laminin was increased significantly by the proinflammatory cytokines TNF, IFN-alpha, and IFN-gamma but was decreased by TGF-beta1, with the TGF-beta1 effect being dominant over the other cytokines. Fluorescence-activated cell sorting (FACS) analysis and immunoprecipitation showed that microglia constitutively express the alpha6beta1 integrin, a well characterized laminin receptor, and that alpha6beta1 expression levels did not change after cytokine treatment. Function-blocking studies showed that microglial adhesion to laminin is mediated entirely by the alpha6beta1 integrin, strongly suggesting that the cytokine regulation of adhesion to laminin is mediated by changes in the activation state of alpha6beta1. Analysis of signaling pathways revealed that activation of alpha6beta1 is mediated by a PKC-dependent mechanism. In light of the evidence that laminin expression is upregulated after CNS injury, the findings suggest that cytokine regulation of microglial adhesion to laminin may play a fundamental role in determining the extent of microglial infiltration into and retention at the site of injury.
Collapse
|
40
|
Milner R, Campbell IL. Cytokines regulate microglial adhesion to laminin and astrocyte extracellular matrix via protein kinase C-dependent activation of the alpha6beta1 integrin. J Neurosci 2002; 22:1562-72. [PMID: 11880486 PMCID: PMC6758899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Revised: 12/05/2001] [Accepted: 12/07/2001] [Indexed: 02/24/2023] Open
Abstract
Microglia are highly plastic cells that participate in inflammatory and injury responses within the CNS and that can migrate extensively after activation. Because astrocytes and their extracellular matrix (ECM) form a large part of the CNS parenchyma, we undertook to study the adhesive interactions between microglia and these substrates in vitro. In contrast to oligodendrocyte precursor cells, microglia formed only weak interactions with astrocytes and their ECM. On specific ECM substrates the microglia adhered strongly to fibronectin, vitronectin, and plastic but only weakly to laminin. Microglial adhesion to laminin was increased significantly by the proinflammatory cytokines TNF, IFN-alpha, and IFN-gamma but was decreased by TGF-beta1, with the TGF-beta1 effect being dominant over the other cytokines. Fluorescence-activated cell sorting (FACS) analysis and immunoprecipitation showed that microglia constitutively express the alpha6beta1 integrin, a well characterized laminin receptor, and that alpha6beta1 expression levels did not change after cytokine treatment. Function-blocking studies showed that microglial adhesion to laminin is mediated entirely by the alpha6beta1 integrin, strongly suggesting that the cytokine regulation of adhesion to laminin is mediated by changes in the activation state of alpha6beta1. Analysis of signaling pathways revealed that activation of alpha6beta1 is mediated by a PKC-dependent mechanism. In light of the evidence that laminin expression is upregulated after CNS injury, the findings suggest that cytokine regulation of microglial adhesion to laminin may play a fundamental role in determining the extent of microglial infiltration into and retention at the site of injury.
Collapse
Affiliation(s)
- Richard Milner
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
41
|
Colombatti M, Moretto G, Tommasi M, Fiorini E, Poffe O, Colombara M, Tanel R, Tridente G, Ramarli D. Human MBP-specific T cells regulate IL-6 gene expression in astrocytes through cell-cell contacts and soluble factors. Glia 2001; 35:224-33. [PMID: 11494413 DOI: 10.1002/glia.1087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the distinctive features of multiple sclerosis (MS) attacks is homing to the CNS of activated T cells able to orchestrate humoral and cell-based events, resulting in immune-mediated injury to myelin and oligodendrocytes. Of the complex interplay occurring between T cells and CNS constituents, we have examined some aspects of T-cell interactions with astrocytes, the major components of the glial cells. Specifically, we focused on the ability of T cells to regulate the gene expression of interleukin-6 (IL-6) in astrocytes, based on previous evidence showing the involvement of this cytokine in CNS disorders. We found that T-cell adhesion and T-cell soluble factors induce IL-6 gene expression in U251 astrocytes through distinct signaling pathways, respectively, resulting in the activation of NF-kappaB and IRF-1 transcription factors. In a search for effector molecules at the astrocyte surface, we found that alpha3beta1 integrins play a role in NF-kappaB activation induced by T-cell contact, whereas interferon-gamma (IFN-gamma) receptors dominate in IRF-1 induction brought about by T-cell-derived soluble factors. Similar phenomena were observed also in normal fetal astrocyte cultures. We therefore propose that through astrocyte induction, T cells may indirectly regulate the availability of a cytokine which is crucial in modulating fate and behavior of cell populations involved in the pathogenesis of MS inflammatory lesions.
Collapse
Affiliation(s)
- M Colombatti
- Section of Immunology, Department of Pathology, University of Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kawakami K, Tatsumi H, Sokabe M. Dynamics of integrin clustering at focal contacts of endothelial cells studied by multimode imaging microscopy. J Cell Sci 2001; 114:3125-35. [PMID: 11590239 DOI: 10.1242/jcs.114.17.3125] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human umbilical vein endothelial cells were stained with FITC-labeled anti-β1 integrin antibody and plated on a glass cover slip to elucidate the mechanism of integrin clustering during focal contact formation. The process of integrin clustering was observed by time-lapse total-internal-reflection fluorescence microscopy, which can selectively visualize the labeled integrins at the basal surface of living cells. The clustering of integrins at focal contacts started at 1 hour after plating and individual clusters kept growing for ∼6 hours. Most integrin clusters (∼80%) elongated towards the cell center or along the cell margin at a rate of 0.29±0.24 μm minute−1. Photobleaching and recovery experiments with evanescent illumination revealed that the integrins at the extending tip of the clusters were supplied from the intracellular space. Simultaneous time-lapse imaging of exocytosis of integrin-containing vesicles and elongating focal contacts showed that most exocytosis occurred at or near the focal contacts followed by their elongation. Double staining of F-actins and integrins demonstrated that stress fibers were located near the integrin clusters and that intracellular punctate integrins were associated with these stress fibers. These results suggest that the clustering of integrins is mediated by actin-fiber-dependent translocation of integrins to the extending tip of focal contacts.
Collapse
Affiliation(s)
- K Kawakami
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai Showa-ku, Nagoya Aichi 4668550, Japan
| | | | | |
Collapse
|
43
|
Mulrooney JP, Hong T, Grabel LB. Serine 785 phosphorylation of the β1 cytoplasmic domain modulates β1A-integrin-dependent functions. J Cell Sci 2001; 114:2525-33. [PMID: 11559760 DOI: 10.1242/jcs.114.13.2525] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrin β1 cytoplasmic domain plays a key role in a variety of integrin-mediated events including adhesion, migration and signaling. A number of studies suggest that phosphorylation may modify the functional state of the cytoplasmic domain, but these studies frequently only examine the effect of substituting amino acid mimics that cannot be phosphorylated. We now demonstrate, using site directed mutagenesis, that substituting either an unphosphorylated (S to M) or a phosphorylated (S to D) mimic in place of serine can modify integrin function. Specifically, we show that expressing a residue that mimics a dephosphorylated form of the protein promotes cell spreading and directed cell migration, whereas a residue mimicking a phosphorylated form of the protein promotes attachment but inhibits cell spreading or migration. The significance of these observations is strengthened by the fact that the β1 mutations display the same properties in both a fibroblast cell line (GD25) and a teratocarcinoma cell line (F9). The results indicate that changes in the phosphorylation state of S785 modulates β1 integrin function.
Collapse
Affiliation(s)
- J P Mulrooney
- Department of Biology, Wesleyan University, Hall-Atwater Labs, Room 257, Lawn Ave, Middletown, CT 06459, USA
| | | | | |
Collapse
|
44
|
Hodgson L, Dong C. [Ca2+]i as a potential downregulator of alpha2beta1-integrin-mediated A2058 tumor cell migration to type IV collagen. Am J Physiol Cell Physiol 2001; 281:C106-13. [PMID: 11401832 PMCID: PMC2796124 DOI: 10.1152/ajpcell.2001.281.1.c106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated cellular Ca2+ regulation during A2058 human melanoma cell chemotaxis to type IV collagen (CIV). We have identified alpha2beta1-integrin as the primary mediator of A2058 cell response to CIV in vitro. Integrin ligation initiated a characteristic intracellular Ca2+ concentration ([Ca2+]i) response consisting of an internal release and a receptor-mediated Ca2+ entry. Thapsigargin (TG) pretreatment drained overlapping and CIV-inducible internal Ca2+ stores while initiating a store-operated Ca2+ release (SOCR). CIV-mediated Ca2+ entry was additive to TG-SOCR, suggesting an independent signaling mechanism. Similarly, ionophore application in a basal medium containing Ca2+ initiated a sustained influx. Elevated [Ca2+]i from TG-SOCR or ionophore significantly attenuated cell migration to CIV by recruiting the Ca2+/calcineurin-mediated signaling pathway. Furthermore, low [Ca2+]i induced by EGTA application in the presence of ionophore fully restored cell motility to CIV. Together, these results suggest that [Ca2+]i signaling accompanying A2058 cell response to alpha2beta1-integrin ligation is neither necessary nor sufficient and that elevated [Ca2+]i downregulates cell motility via a calcineurin-mediated mechanism in A2058 cell chemotaxis to CIV.
Collapse
Affiliation(s)
- L Hodgson
- Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
45
|
Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 2001; 153:1175-86. [PMID: 11402062 PMCID: PMC2192034 DOI: 10.1083/jcb.153.6.1175] [Citation(s) in RCA: 1046] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The transition of cell-matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II-driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein-tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136-143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.
Collapse
Affiliation(s)
- Daniel Riveline
- Laboratory of Physical Spectrometry (CNRS), UMR 5588, Joseph Fourier University, French National Center for Scientific Research, BP87, 38402 Saint-Martin d'Hères Cedex, France
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eli Zamir
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nathalie Q. Balaban
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ulrich S. Schwarz
- Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Toshimasa Ishizaki
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | - Zvi Kam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander D. Bershadsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
46
|
Guignot J, Bernet-Camard MF, Poüs C, Plançon L, Le Bouguenec C, Servin AL. Polarized entry of uropathogenic Afa/Dr diffusely adhering Escherichia coli strain IH11128 into human epithelial cells: evidence for alpha5beta1 integrin recognition and subsequent internalization through a pathway involving caveolae and dynamic unstable microtubules. Infect Immun 2001; 69:1856-68. [PMID: 11179364 PMCID: PMC98093 DOI: 10.1128/iai.69.3.1856-1868.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2000] [Accepted: 12/12/2000] [Indexed: 01/09/2023] Open
Abstract
Afa/Dr diffusely adhering Escherichia coli strain IH11128 bacteria basolaterally entered polarized epithelial cells by a CD55- and CD66e-independent mechanism through interaction with the alpha5beta1 integrin and a pathway involving caveolae and dynamic microtubules (MTs). IH11128 invasion within HeLa cells was dramatically decreased after the cells were treated with the cholesterol-extracting drug methyl-beta-cyclodextrin or the caveola-disrupting drug filipin. Disassembly of the dynamically unstable MT network by the compound 201-F resulted in a total abolition of IH11128 entry. In apically infected polarized fully differentiated Caco-2/TC7 cells, no IH11128 entry was observed. The entry of bacteria into apically IH11128-infected fully differentiated Caco-2/TC7 cells was greatly enhanced by treating cells with Ca2+-free medium supplemented with EGTA, a procedure that disrupts intercellular junctions and thus exposes the basolateral surface to bacteria. Basally infected fully differentiated polarized Caco-2/TC7 cells grown on inverted inserts mounted in chamber culture showed a highly significant level of intracellular IH11128 bacteria compared with cells subjected to the apical route of infection. No expression of CD55 and CD66e, the receptors for the Afa/Dr adhesins, was found at the basolateral domains of these cells. Consistent with the hypothesis that a cell-to-cell adhesion molecule acts as a receptor for polarized IH11128 entry, an antibody blockade using anti-alpha5beta1 integrin polyclonal antibody completely abolished bacterial entry. Experiments conducted with the laboratory strain E. coli K-12 EC901 carrying the recombinant plasmid pBJN406, which expresses Dr hemagglutinin, demonstrated that the dra operon is involved in polarized entry of IH11128 bacteria. Examined as a function of cell differentiation, the number of internalized bacteria decreased dramatically beyond cell confluency. Surviving intracellular IH11128 bacteria residing intracellularly had no effect on the functional differentiation of Caco-2/TC7 cells.
Collapse
Affiliation(s)
- J Guignot
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, France
| | | | | | | | | | | |
Collapse
|
47
|
Ho W, Uniyal S, Meakin SO, Morris VL, Chan BM. A differential role of extracellular signal-regulated kinase in stimulated PC12 pheochromocytoma cell movement. Exp Cell Res 2001; 263:254-64. [PMID: 11161724 DOI: 10.1006/excr.2000.5112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rat pheochromocytoma PC12 cells have been widely used as a cell system for study of growth factor-stimulated cell functions. We report here that nerve growth factor (NGF) stimulated both chemotaxis (directional migration) and chemokinesis (random migration) of PC12 cells. Treatment with a MEK1/2-specific inhibitor (PD98059) or expression of a dominant negative variant of Ras differentially inhibited NGF-stimulated chemotaxis but not chemokinesis of PC12 cells. Priming of PC12 cells with NGF resulted in reduced extracellular signal-regulated kinase (ERK) activation and loss of chemotactic, but not chemokinetic, response. In addition, NGF stimulation of ERK is known to involve an early transient phase of activation followed by a late sustained phase of activation; in contrast, epidermal growth factor (EGF) elicits only early transient ERK activation. We observed that like NGF, EGF also stimulated both chemotaxis and chemokinesis, and treatment with PD98059 abolished the EGF-stimulated chemotaxis. Therefore, the early transient phase of ERK activation functioned in signaling chemotaxis; the late sustained phase of ERK activation did not seem to have an essential role. In addition, our results suggested that chemotactic signaling required a threshold level of ERK activation; at below threshold level of ERK activation, chemotaxis would not occur.
Collapse
Affiliation(s)
- W Ho
- Transplantation and Immunobiology Group, University of Western Ontario, London, Ontario, N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
48
|
Sorribas H, Braun D, Leder L, Sonderegger P, Tiefenauer L. Adhesion proteins for a tight neuron-electrode contact. J Neurosci Methods 2001; 104:133-41. [PMID: 11164239 DOI: 10.1016/s0165-0270(00)00333-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural cell adhesion molecules axonin-1 and NgCAM have been genetically engineered and covalently immobilized on glass and silicon oxide surfaces in their correct orientation. Surfaces treated with these adhesion molecules were used as substrates for culturing dorsal root ganglion neurons. The cleft between the neuron cell membrane and the surface was determined using fluorescence interference contrast (FLIC) microscopy. For comparison, cell--material distances on laminin, RGDC, polylysine and amino-terminated surfaces were measured. When the neurons grow on axonin-1 the cell--surface distance is at a minimum (37 nm) probably because the glycocalyx hinders a closer contact. A selective treatment of extracellular electrodes with axonin-1 could be used to improve the cell-material contact and thus increase extracellularly recorded signals.
Collapse
Affiliation(s)
- H Sorribas
- Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Hodgson L, Qiu W, Dong C, Henderson AJ. Use of green fluorescent protein-conjugated beta-actin as a novel molecular marker for in vitro tumor cell chemotaxis assay. Biotechnol Prog 2000; 16:1106-14. [PMID: 11101341 PMCID: PMC2852904 DOI: 10.1021/bp000093o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To study the dynamics of actin cytoskeleton rearrangement in living cells, an eukaryotic expression vector expressing a beta-actin-GFP fusion protein was generated. The expression construct when transfected into NIH3T3 fibroblast, A2058 human melanoma and 293T human embryonic kidney carcinoma cell lines expressed beta-actin-GFP fusion protein, which colocalized with endogenous cellular actin as determined by histoimmunofluorescence staining. The beta-actin-GFP was also observed to be reorganized in response to treatments with the chemoattractant type IV collagen. Cells extended pseudopodial protrusions and altered the morphology of their cortical structure in response to type IV collagen stimulation. More importantly, beta-actin-GFP accumulated in areas undergoing these dynamic cytoskeleton changes, indicating that beta-actin-GFP could participate in actin polymerization. Although ectopic expression of beta-actin-GFP lead to minor side effects on cell proliferation, these studies suggest that this strategy provides an alternative to the invasive techniques currently used to study actin dynamics and permits real-time visualization of actin rearrangements in response to environmental cues.
Collapse
Affiliation(s)
- Louis Hodgson
- Department of Bioengineering, 229 Hallowell Building, 115 Henning Building, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Wei Qiu
- Department of Bioengineering, 229 Hallowell Building, 115 Henning Building, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Cheng Dong
- Department of Bioengineering, 229 Hallowell Building, 115 Henning Building, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Andrew J. Henderson
- Department of Veterinary Science, 115 Henning Building, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
50
|
Hering H, Koulen P, Kröger S. Distribution of the integrin beta 1 subunit on radial cells in the embryonic and adult avian retina. J Comp Neurol 2000; 424:153-64. [PMID: 10888745 DOI: 10.1002/1096-9861(20000814)424:1<153::aid-cne11>3.0.co;2-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The distribution of the beta1 integrin subunit was investigated in the developing and adult chick retina at the light and electron microscopic levels, using two different monoclonal antibodies. Western blotting revealed a single band with a molecular weight of approximately 130 kDa in the retina and in a number of other tissues, indicating the specificity of the antibodies. In the retina, immunoreactivity was detected on radial cells spanning the entire width between the pigment epithelium and the vitreal border. These cells were undifferentiated neuroepithelial cells at early stages and radial Müller glial cells at later stages of development. At all stages, the beta1 subunit was concentrated at the vitreal border of the retina around the inner limiting membrane. Mechanical isolation of the inner limiting membrane, as well as immunoelectron microscopy, demonstrated that this immunoreactivity was due to a concentration of the beta1 subunit in the endfeet of neuroepithelial and Müller glial cells. Injection of collagenase into the vitreous of live embryos, a procedure that selectively removes the inner limiting membrane, but does not proteolytically degrade the integrin protein, resulted in a redistribution of the integrin immunoreactivity, demonstrating that the integrity of the basal lamina is required for the maintenance of the concentration of the beta1 subunit in the endfeet. These results suggest a role for the beta1 subunit-containing integrin heterodimers in the adhesion of neuroepithelial and Müller glial cells to extracellular matrix components of the inner limiting membrane, possibly stabilizing the radial morphology of these cells.
Collapse
Affiliation(s)
- H Hering
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, D-60528 Frankfurt, Germany
| | | | | |
Collapse
|