1
|
Cui Y, Bai S, Liu Z, Ding H, Li K, Li Z, Hou Y. High-fat stimulation induces atrial structural remodeling via the TPM1/P53/SHISA5 Axis. Lipids Health Dis 2025; 24:138. [PMID: 40221727 PMCID: PMC11992805 DOI: 10.1186/s12944-025-02554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Atrial structural remodeling plays a central role in the development and progression of atrial fibrillation (AF) and significantly influences its course. Hyperlipidemia, a potential contributor to AF, affects cardiac function through multiple pathways. This study aimed to investigate the underlying mechanisms by which high lipid levels promote AF progression. METHODS In vitro cell models were established using palmitic acid (PA) stimulation, and in vivo rat models were generated by feeding a high-fat diet (HFD). Proteomic and transcriptomic sequencing analyses were conducted to identify differentially expressed proteins and genes. Extracellular vesicles (EVs) were isolated and characterized by differential centrifugation. Cell proliferation was assessed using EdU incorporation and flow cytometry, while transmission electron microscopy (TEM) was used to observe autophagy. Protein expression was analyzed by immunoblotting, immunohistochemistry, and immunofluorescence. RESULTS High lipid stimulation significantly increased the expression of tropomyosin 1 (TPM1) in cardiomyocytes, which was transferred to cardiac fibroblasts via EVs, activating the P53/SHISA5 signaling axis and inducing endoplasmic reticulum (ER) stress and autophagy, thereby promoting atrial structural remodeling. Activation of P53 and overexpression of SHISA5 in human cardiac fibroblast (HCF) cells reduced ER stress, autophagy, and fibrosis. Furthermore, ER stress and autophagy markers were significantly elevated in the atrial tissues of HFD-fed rats, while SHISA5 overexpression mitigated these effects. CONCLUSION High-fat stimulation may induce atrial fibrosis through the TPM1/P53/SHISA5 axis by modulating the ER stress-autophagy pathway.
Collapse
Affiliation(s)
- Yansong Cui
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shuting Bai
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, No. 16766, Jingshi Road, Jinan, Shandong Provincial, China
| | - Zhenlin Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, No. 16766, Jingshi Road, Jinan, Shandong Provincial, China
| | - Haifeng Ding
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Kuan Li
- Clinical Medical Institute, Xinjiang Medical University, Urumqi, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, No. 16766, Jingshi Road, Jinan, Shandong Provincial, China.
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, No. 16766, Jingshi Road, Jinan, Shandong Provincial, China.
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Uyeda TQP, Yamazaki Y, Kijima ST, Noguchi TQP, Ngo KX. Multiple Mechanisms to Regulate Actin Functions: "Fundamental" Versus Lineage-Specific Mechanisms and Hierarchical Relationships. Biomolecules 2025; 15:279. [PMID: 40001582 PMCID: PMC11853071 DOI: 10.3390/biom15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Eukaryotic actin filaments play a central role in numerous cellular functions, with each function relying on the interaction of actin filaments with specific actin-binding proteins. Understanding the mechanisms that regulate these interactions is key to uncovering how actin filaments perform diverse roles at different cellular locations. Several distinct classes of actin regulatory mechanisms have been proposed and experimentally supported. However, these mechanisms vary in their nature and hierarchy. For instance, some operate under the control of others, highlighting hierarchical relationships. Additionally, while certain mechanisms are fundamental and ubiquitous across eukaryotes, others are lineage-specific. Here, we emphasize the fundamental importance and functional significance of the following actin regulatory mechanisms: the biochemical regulation of actin nucleators, the ATP hydrolysis-dependent aging of actin filaments, thermal fluctuation- and mechanical strain-dependent conformational changes of actin filaments, and cooperative conformational changes induced by actin-binding proteins.
Collapse
Affiliation(s)
- Taro Q. P. Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Shinjuku, Japan
| | - Yosuke Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Kanagawa, Japan;
| | - Saku T. Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan;
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-0006, Miyazaki, Japan;
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan;
| |
Collapse
|
3
|
Dhar A, Bagyashree VT, Biswas S, Kumari J, Sridhara A, Jeevan SB, Shekhar S, Palani S. Functional redundancy and formin-independent localization of tropomyosin isoforms in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.587703. [PMID: 38617342 PMCID: PMC11014519 DOI: 10.1101/2024.04.04.587703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Tropomyosin is an actin binding protein which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking. In this study, we present and charcaterize mNeonGreen-Tpm fusion proteins that exhibit good functionality in cells as a sole copy, surpassing limitations of existing probes and enabling real-time dynamic tracking of Tpm-actin filaments in vivo. Using these functional Tpm fusion proteins, we find that S. cerevisiae Tpm isoforms, Tpm1 and Tpm2, colocalize on actin cables and indiscriminately bind to actin filaments nucleated by either formin isoform-Bnr1 and Bni1 in vivo, in contrast to the long-held paradigm of Tpm-formin pairing. We show that cellular Tpm levels regulate endocytosis by affecting balance between linear and branched actin networks in yeast cells. Finally, we discover that Tpm2 can protect and organize functional actin cables in absence of Tpm1. Overall, our work supports a concentration-dependent and formin isoform independent model of Tpm isoform binding to F-actin and demonstrates for the first time, the functional redundancy of the paralog Tpm2 in actin cable maintenance in S. cerevisiae.
Collapse
Affiliation(s)
- Anubhav Dhar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- equal contribution
| | - VT Bagyashree
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- equal contribution
| | - Sudipta Biswas
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Jayanti Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Amruta Sridhara
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subodh B Jeevan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Saravanan Palani
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
4
|
Foltman M, Sanchez-Diaz A. Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast. J Fungi (Basel) 2024; 10:662. [PMID: 39330421 PMCID: PMC11433125 DOI: 10.3390/jof10090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and underneath the plasma membrane, then physically divides the cytoplasm and all components into two daughter cells, each ready to start a new cell cycle. This process, known as cytokinesis, is conserved throughout evolution. Defects in cytokinesis can lead to the generation of genetically unstable tetraploid cells, potentially initiating uncontrolled proliferation and cancer. This review focuses on the molecular mechanisms by which budding yeast cells build the actomyosin ring and the preceding steps involved in forming a scaffolding structure that supports the challenging structural changes throughout cytokinesis. Additionally, we describe how cells coordinate actomyosin ring contraction, plasma membrane ingression, and extracellular matrix deposition to successfully complete cytokinesis. Furthermore, the review discusses the regulatory roles of Cyclin-Dependent Kinase (Cdk1) and the Mitotic Exit Network (MEN) in ensuring the precise timing and execution of cytokinesis. Understanding these processes in yeast provides insights into the fundamental aspects of cell division and its implications for human health.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| |
Collapse
|
5
|
Gonzalez Rodriguez S, Wirshing AC, Goodman AL, Goode BL. Cytosolic concentrations of actin binding proteins and the implications for in vivo F-actin turnover. J Cell Biol 2023; 222:e202306036. [PMID: 37801069 PMCID: PMC10558290 DOI: 10.1083/jcb.202306036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Understanding how numerous actin-binding proteins (ABPs) work in concert to control the assembly, organization, and turnover of the actin cytoskeleton requires quantitative information about the levels of each component. Here, we measured the cellular concentrations of actin and the majority of the conserved ABPs in Saccharomyces cerevisiae, as well as the free (cytosolic) fractions of each ABP. The cellular concentration of actin is estimated to be 13.2 µM, with approximately two-thirds in the F-actin form and one-third in the G-actin form. Cellular concentrations of ABPs range from 12.4 to 0.85 µM (Tpm1> Pfy1> Cof1> Abp1> Srv2> Abp140> Tpm2> Aip1> Cap1/2> Crn1> Sac6> Twf1> Arp2/3> Scp1). The cytosolic fractions of all ABPs are unexpectedly high (0.6-0.9) and remain so throughout the cell cycle. Based on these numbers, we speculate that F-actin binding sites are limited in vivo, which leads to high cytosolic levels of ABPs, and in turn helps drive the rapid assembly and turnover of cellular F-actin structures.
Collapse
Affiliation(s)
- Sofia Gonzalez Rodriguez
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Alison C.E. Wirshing
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Anya L. Goodman
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
- Department of Chemistry and Biochemistry, California Polytechnic State University SLO, San Luis Obispo, CA, USA
| | - Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| |
Collapse
|
6
|
Han X, Hu Z, Surya W, Ma Q, Zhou F, Nordenskiöld L, Torres J, Lu L, Miao Y. The intrinsically disordered region of coronins fine-tunes oligomerization and actin polymerization. Cell Rep 2023; 42:112594. [PMID: 37269287 DOI: 10.1016/j.celrep.2023.112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
Coronins play critical roles in actin network formation. The diverse functions of coronins are regulated by the structured N-terminal β propeller and the C-terminal coiled coil (CC). However, less is known about a middle "unique region" (UR), which is an intrinsically disordered region (IDR). The UR/IDR is an evolutionarily conserved signature in the coronin family. By integrating biochemical and cell biology experiments, coarse-grained simulations, and protein engineering, we find that the IDR optimizes the biochemical activities of coronins in vivo and in vitro. The budding yeast coronin IDR plays essential roles in regulating Crn1 activity by fine-tuning CC oligomerization and maintaining Crn1 as a tetramer. The IDR-guided optimization of Crn1 oligomerization is critical for F-actin cross-linking and regulation of Arp2/3-mediated actin polymerization. The final oligomerization status and homogeneity of Crn1 are contributed by three examined factors: helix packing, the energy landscape of the CC, and the length and molecular grammar of the IDR.
Collapse
Affiliation(s)
- Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zixin Hu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Qianqian Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Feng Zhou
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
7
|
Actin dynamics in protein homeostasis. Biosci Rep 2022; 42:231720. [PMID: 36043949 PMCID: PMC9469105 DOI: 10.1042/bsr20210848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cell homeostasis is maintained in all organisms by the constant adjustment of cell constituents and organisation to account for environmental context. Fine-tuning of the optimal balance of proteins for the conditions, or protein homeostasis, is critical to maintaining cell homeostasis. Actin, a major constituent of the cytoskeleton, forms many different structures which are acutely sensitive to the cell environment. Furthermore, actin structures interact with and are critically important for the function and regulation of multiple factors involved with mRNA and protein production and degradation, and protein regulation. Altogether, actin is a key, if often overlooked, regulator of protein homeostasis across eukaryotes. In this review, we highlight these roles and how they are altered following cell stress, from mRNA transcription to protein degradation.
Collapse
|
8
|
Hatano T, Lim TC, Billault-Chaumartin I, Dhar A, Gu Y, Massam-Wu T, Scott W, Adishesha S, Chapa-y-Lazo B, Springall L, Sivashanmugam L, Mishima M, Martin SG, Oliferenko S, Palani S, Balasubramanian MK. mNG-tagged fusion proteins and nanobodies to visualize tropomyosins in yeast and mammalian cells. J Cell Sci 2022; 135:jcs260288. [PMID: 36148799 PMCID: PMC9592052 DOI: 10.1242/jcs.260288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.
Collapse
Affiliation(s)
- Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Tzer Chyn Lim
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Anubhav Dhar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ying Gu
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Teresa Massam-Wu
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - William Scott
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Sushmitha Adishesha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bernardo Chapa-y-Lazo
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Luke Springall
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Lavanya Sivashanmugam
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Saravanan Palani
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mohan K. Balasubramanian
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, Warwick CV4 7AL, UK
| |
Collapse
|
9
|
Trichoderma harzianum metabolites disturb Fusarium culmorum metabolism: Metabolomic and proteomic studies. Microbiol Res 2021; 249:126770. [PMID: 33932742 DOI: 10.1016/j.micres.2021.126770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/28/2022]
Abstract
Trichoderma species are well known for producing various secondary metabolites in response to different fungal pathogens. This paper reports the effects of the metabolites produced during one-day cultivation of Trichoderma harzianum on the growth and development of the popular pathogen Fusarium culmorum. Inhibition of the growth of the pathogen and production of secondary metabolites including zearalenone was observed on Petri dishes. The presence of proteins such as cytochrome c oxidase subunit 4, glutathione-independent glyoxalase HSP31, and putative peroxiredoxin pmp20 in the extract-treated culture indicated oxidative stress, which was confirmed by the presence of a higher amount of catalase and dismutase in the later hours of the culture. A larger amount of enolase and glyceraldehyde 3-phosphate dehydrogenase resulted in faster growth, and the overexpression of stress protein and Woronin body major protein indicated the activation of defense mechanisms. In addition, a cardinal reduction in major mycotoxin production was noted.
Collapse
|
10
|
Abstract
The polarisome comprises a network of proteins that organizes polar growth in yeast and filamentous fungi. The yeast formin Bni1 and the actin nucleation-promoting factor Bud6 are subunits of the polarisome that together catalyze the formation of actin cables below the tip of yeast cells. We identified YFR016c (Aip5) as an interaction partner of Bud6 and the polarisome scaffold Spa2. Yeast cells lacking Aip5 display a reduced number of actin cables. Aip5 binds with its N-terminal region to Spa2 and with its C-terminal region to Bud6. Both interactions collaborate to localize Aip5 at bud tip and neck, and are required to stimulate the formation of actin cables. Our experiments characterize Aip5 as a novel subunit of a complex that regulates the number of actin filaments at sites of polar growth.
Collapse
Affiliation(s)
- Oliver Glomb
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Lara Bareis
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| |
Collapse
|
11
|
Meiring JCM, Bryce NS, Niño JLG, Gabriel A, Tay SS, Hardeman EC, Biro M, Gunning PW. Tropomyosin concentration but not formin nucleators mDia1 and mDia3 determines the level of tropomyosin incorporation into actin filaments. Sci Rep 2019; 9:6504. [PMID: 31019238 PMCID: PMC6482184 DOI: 10.1038/s41598-019-42977-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
The majority of actin filaments in human cells exist as a co-polymer with tropomyosin, which determines the functionality of actin filaments in an isoform dependent manner. Tropomyosin isoforms are sorted to different actin filament populations and in yeast this process is determined by formins, however it remains unclear what process determines tropomyosin isoform sorting in mammalian cells. We have tested the roles of two major formin nucleators, mDia1 and mDia3, in the recruitment of specific tropomyosin isoforms in mammals. Despite observing poorer cell-cell attachments in mDia1 and mDia3 KD cells and an actin bundle organisation defect with mDia1 knock down; depletion of mDia1 and mDia3 individually and concurrently did not result in any significant impact on tropomyosin recruitment to actin filaments, as observed via immunofluorescence and measured via biochemical assays. Conversely, in the presence of excess Tpm3.1, the absolute amount of Tpm3.1-containing actin filaments is not fixed by actin filament nucleators but rather depends on the cell concentration of Tpm3.1. We conclude that mDia1 and mDia3 are not essential for tropomyosin recruitment and that tropomyosin incorporation into actin filaments is concentration dependent.
Collapse
Affiliation(s)
- Joyce C M Meiring
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicole S Bryce
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jorge Luis Galeano Niño
- Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Antje Gabriel
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Pharmaceutical Biology, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Szun S Tay
- Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maté Biro
- Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peter W Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
12
|
Lu ZJ, Zhou CH, Yu HZ, Huang YL, Liu YX, Xie YX, Wang J, Hu W, Huang AJ, Su HN, Yang C. Potential roles of insect Tropomyosin1-X1 isoform in the process of Candidatus Liberibacter asiaticus infection of Diaphorina citri. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:125-135. [PMID: 30817914 DOI: 10.1016/j.jinsphys.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is the transmitting vector of Candidatus Liberibacter asiaticus (CLas), which causes citrus disease Huanglongbing (HLB). In recent years, control of HLB has been achieved by reducing the vector population. In the present study, we identified an isoform of D. citri tropomyosin (herein designated as DcTm1-X1). DcTm1-X1 was down-regulated in CLas-infected ACPs compared with uninfected ACPs. Bioinformatics analysis revealed that the full-length DcTm1-X1 is 2955 bp and encodes a protein of 284 amino acids with a deduced molecular weight of 32.15 kDa. Phylogenetic tree analysis suggested that DcTm1-X1 shares a high amino acid identity with its homolog in Acyrthosiphon pisum. Higher DcTm1-X1 expression levels were found in the leg of the psyllid by reverse transcription quantitative PCR (RT-qPCR). According to Blue Native PAGE analysis and mass spectrometric analysis, DcTm1-X1 interacts with citrate synthase (CS) and V-type proton ATPase subunit B-like (VAT). In addition, knockdown of DcTm1-X1 by RNA interference (RNAi) significantly increased the mortality rate of nymphs and the infection rate of CLas at different time points. Taken together, our results show that DcTm1-X1 might play an important role in response to CLas, but also lay a foundation for further research on the functions of DcTm1-X1.
Collapse
Affiliation(s)
- Zhan-Jun Lu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Cheng-Hua Zhou
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Hai-Zhong Yu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China.
| | - Yu-Ling Huang
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Ying-Xue Liu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China; Dayu Middle School, Ganzhou, China
| | - Yan-Xin Xie
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Jie Wang
- Anhui Agricultural University, Hefei, China
| | - Wei Hu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Ai-Jun Huang
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Hua-Nan Su
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Chao Yang
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| |
Collapse
|
13
|
Melzer ES, Sein CE, Chambers JJ, Siegrist MS. DivIVA concentrates mycobacterial cell envelope assembly for initiation and stabilization of polar growth. Cytoskeleton (Hoboken) 2018; 75:498-507. [PMID: 30160378 PMCID: PMC6644302 DOI: 10.1002/cm.21490] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
In many model organisms, diffuse patterning of cell wall peptidoglycan synthesis by the actin homolog MreB enables the bacteria to maintain their characteristic rod shape. In Caulobacter crescentus and Escherichia coli, MreB is also required to sculpt this morphology de novo. Mycobacteria are rod-shaped but expand their cell wall from discrete polar or subpolar zones. In this genus, the tropomyosin-like protein DivIVA is required for the maintenance of cell morphology. DivIVA has also been proposed to direct peptidoglycan synthesis to the tips of the mycobacterial cell. The precise nature of this regulation is unclear, as is its role in creating rod shape from scratch. We find that DivIVA localizes nascent cell wall and covalently associated mycomembrane but is dispensable for the assembly process itself. Mycobacterium smegmatis rendered spherical by peptidoglycan digestion or by DivIVA depletion are able to regain rod shape at the population level in the presence of DivIVA. At the single cell level, there is a close spatiotemporal correlation between DivIVA foci, rod extrusion and concentrated cell wall synthesis. Thus, although the precise mechanistic details differ from other organisms, M. smegmatis also establish and propagate rod shape by cytoskeleton-controlled patterning of peptidoglycan. Our data further support the emerging notion that morphology is a hardwired trait of bacterial cells.
Collapse
Affiliation(s)
- Emily S Melzer
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - Caralyn E Sein
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - James J Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts.,Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
14
|
Hilton DM, Aguilar RM, Johnston AB, Goode BL. Species-Specific Functions of Twinfilin in Actin Filament Depolymerization. J Mol Biol 2018; 430:3323-3336. [PMID: 29928893 DOI: 10.1016/j.jmb.2018.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
Abstract
Twinfilin is a highly conserved member of the actin depolymerization factor homology (ADF-H) protein superfamily, which also includes ADF/Cofilin, Abp1/Drebrin, GMF, and Coactosin. Twinfilin has a unique molecular architecture consisting of two ADF-H domains joined by a linker and followed by a C-terminal tail. Yeast Twinfilin, in conjunction with yeast cyclase-associated protein (Srv2/CAP), increases the rate of depolymerization at both the barbed and pointed ends of actin filaments. However, it has remained unclear whether these activities extend to Twinfilin homologs in other species. To address this, we purified the three mouse Twinfilin isoforms (mTwf1, mTwf2a, mTwf2b) and mouse CAP1, and used total internal reflection fluorescence microscopy assays to study their effects on filament disassembly. Our results show that all three mouse Twinfilin isoforms accelerate barbed end depolymerization similar to yeast Twinfilin, suggesting that this activity is evolutionarily conserved. In striking contrast, mouse Twinfilin isoforms and CAP1 failed to induce rapid pointed end depolymerization. Using chimeras, we show that the yeast-specific pointed end depolymerization activity is specified by the C-terminal ADF-H domain of yeast Twinfilin. In addition, Tropomyosin decoration of filaments failed to impede depolymerization by yeast and mouse Twinfilin and Srv2/CAP, but inhibited Cofilin severing. Together, our results indicate that Twinfilin has conserved functions in regulating barbed end dynamics, although its ability to drive rapid pointed end depolymerization appears to be species-specific. We discuss the implications of this work, including that pointed end depolymerization may be catalyzed by different ADF-H family members in different species.
Collapse
Affiliation(s)
- Denise M Hilton
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Rey M Aguilar
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Adam B Johnston
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
15
|
Barnes DE, Watabe E, Ono K, Kwak E, Kuroyanagi H, Ono S. Tropomyosin isoforms differentially affect muscle contractility in the head and body regions of the nematode Caenorhabditis elegans. Mol Biol Cell 2018; 29:1075-1088. [PMID: 29496965 PMCID: PMC5921574 DOI: 10.1091/mbc.e17-03-0152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 11/11/2022] Open
Abstract
Tropomyosin, one of the major actin filament-binding proteins, regulates actin-myosin interaction and actin-filament stability. Multicellular organisms express a number of tropomyosin isoforms, but understanding of isoform-specific tropomyosin functions is incomplete. The nematode Caenorhabditis elegans has a single tropomyosin gene, lev-11, which has been reported to express four isoforms by using two separate promoters and alternative splicing. Here, we report a fifth tropomyosin isoform, LEV-11O, which is produced by alternative splicing that includes a newly identified seventh exon, exon 7a. By visualizing specific splicing events in vivo, we find that exon 7a is predominantly selected in a subset of the body wall muscles in the head, while exon 7b, which is the alternative to exon 7a, is utilized in the rest of the body. Point mutations in exon 7a and exon 7b cause resistance to levamisole--induced muscle contraction specifically in the head and the main body, respectively. Overexpression of LEV-11O, but not LEV-11A, in the main body results in weak levamisole resistance. These results demonstrate that specific tropomyosin isoforms are expressed in the head and body regions of the muscles and contribute differentially to the regulation of muscle contractility.
Collapse
Affiliation(s)
- Dawn E. Barnes
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Eichi Watabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kanako Ono
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Euiyoung Kwak
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shoichiro Ono
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|
16
|
Shin M, van Leeuwen J, Boone C, Bretscher A. Yeast Aim21/Tda2 both regulates free actin by reducing barbed end assembly and forms a complex with Cap1/Cap2 to balance actin assembly between patches and cables. Mol Biol Cell 2018; 29:923-936. [PMID: 29467252 PMCID: PMC5896931 DOI: 10.1091/mbc.e17-10-0592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Yeast Aim21 is recruited by the SH3-containing proteins Bbc1 and Abp1 to patches and, with Tda2, reduces barbed end assembly to balance the distribution of actin between patches and cables. Aim21/Tda2 also interacts with Cap1/Cap2, revealing a complex interplay between actin assembly regulators. How cells balance the incorporation of actin into diverse structures is poorly understood. In budding yeast, a single actin monomer pool is used to build both actin cables involved in polarized growth and actin cortical patches involved in endocytosis. Here we report how Aim21/Tda2 is recruited to the cortical region of actin patches, where it negatively regulates actin assembly to elevate the available actin monomer pool. Aim21 has four polyproline regions and is recruited by two SH3-containing patch proteins, Bbc1 and Abp1. The C-terminal region, which is required for its function, binds Tda2. Cell biological and biochemical data reveal that Aim21/Tda2 is a negative regulator of barbed end filamentous actin (F-actin) assembly, and this activity is necessary for efficient endocytosis and plays a pivotal role in balancing the distribution of actin between cables and patches. Aim21/Tda2 also forms a complex with the F-actin barbed end capping protein Cap1/Cap2, revealing an interplay between regulators and showing the complexity of regulation of barbed end assembly.
Collapse
Affiliation(s)
- Myungjoo Shin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | | | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
17
|
Croft T, James Theoga Raj C, Salemi M, Phinney BS, Lin SJ. A functional link between NAD + homeostasis and N-terminal protein acetylation in Saccharomyces cerevisiae. J Biol Chem 2018; 293:2927-2938. [PMID: 29317496 DOI: 10.1074/jbc.m117.807214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite participating in cellular redox chemistry and signaling, and the complex regulation of NAD+ metabolism is not yet fully understood. To investigate this, we established a NAD+-intermediate specific reporter system to identify factors required for salvage of metabolically linked nicotinamide (NAM) and nicotinic acid (NA). Mutants lacking components of the NatB complex, NAT3 and MDM20, appeared as hits in this screen. NatB is an Nα-terminal acetyltransferase responsible for acetylation of the N terminus of specific Met-retained peptides. In NatB mutants, increased NA/NAM levels were concomitant with decreased NAD+ We identified the vacuolar pool of nicotinamide riboside (NR) as the source of this increased NA/NAM. This NR pool is increased by nitrogen starvation, suggesting NAD+ and related metabolites may be trafficked to the vacuole for recycling. Supporting this, increased NA/NAM release in NatB mutants was abolished by deleting the autophagy protein ATG14 We next examined Tpm1 (tropomyosin), whose function is regulated by NatB-mediated acetylation, and Tpm1 overexpression (TPM1-oe) was shown to restore some NatB mutant defects. Interestingly, although TPM1-oe largely suppressed NA/NAM release in NatB mutants, it did not restore NAD+ levels. We showed that decreased nicotinamide mononucleotide adenylyltransferase (Nma1/Nma2) levels probably caused the NAD+ defects, and NMA1-oe was sufficient to restore NAD+ NatB-mediated N-terminal acetylation of Nma1 and Nma2 appears essential for maintaining NAD+ levels. In summary, our results support a connection between NatB-mediated protein acetylation and NAD+ homeostasis. Our findings may contribute to understanding the molecular basis and regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Trevor Croft
- Department of Microbiology and Molecular Genetics, College of Biological Sciences
| | | | - Michelle Salemi
- Proteomic Core Facility, University of California, Davis, California 95616
| | - Brett S Phinney
- Proteomic Core Facility, University of California, Davis, California 95616
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences.
| |
Collapse
|
18
|
Temperature sensitive point mutations in fission yeast tropomyosin have long range effects on the stability and function of the actin-tropomyosin copolymer. Biochem Biophys Res Commun 2017; 506:339-346. [PMID: 29080743 PMCID: PMC6269162 DOI: 10.1016/j.bbrc.2017.10.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/20/2017] [Indexed: 11/25/2022]
Abstract
The actin cytoskeleton is modulated by regulatory actin-binding proteins which fine-tune the dynamic properties of the actin polymer to regulate function. One such actin-binding protein is tropomyosin (Tpm), a highly-conserved alpha-helical dimer which stabilises actin and regulates interactions with other proteins. Temperature sensitive mutants of Tpm are invaluable tools in the study of actin filament dependent processes, critical to the viability of a cell. Here we investigated the molecular basis of the temperature sensitivity of fission yeast Tpm mutants which fail to undergo cytokinesis at the restrictive temperatures. Comparison of Contractile Actomyosin Ring (CAR) constriction as well as cell shape and size revealed the cdc8.110 or cdc8.27 mutant alleles displayed significant differences in their temperature sensitivity and impact upon actin dependent functions during the cell cycle. In vitro analysis revealed the mutant proteins displayed a different reduction in thermostability, and unexpectedly yield two discrete unfolding domains when acetylated on their amino-termini. Our findings demonstrate how subtle changes in structure (point mutations or acetylation) alter the stability not simply of discrete regions of this conserved cytoskeletal protein but of the whole molecule. This differentially impacts the stability and cellular organisation of this essential cytoskeletal protein. Cloning, expression and characterisation of fission yeast temperature sensitive tropomyosin mutants. Detailed in vitro analysis on the impact of temperature upon these mutants. Comparison with in vivo impact of mutations upon actin ring function within the fission yeast. Demonstrates that subtle changes in structure alter the long range stability of Tropomyosin containing polymers.
Collapse
|
19
|
Sui Z, Gokhin DS, Nowak RB, Guo X, An X, Fowler VM. Stabilization of F-actin by tropomyosin isoforms regulates the morphology and mechanical behavior of red blood cells. Mol Biol Cell 2017; 28:2531-2542. [PMID: 28720661 PMCID: PMC5597325 DOI: 10.1091/mbc.e16-10-0699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023] Open
Abstract
The absence of Tpm3.1 in red blood cells (RBCs) induces a compensatory increase in Tpm1.9 and abnormally stable F-actin in the membrane skeleton, with reduced association of Band 3 and glycophorin A, leading to a compensated hemolytic anemia with abnormal RBC shapes and mechanical properties. The short F-actins in the red blood cell (RBC) membrane skeleton are coated along their lengths by an equimolar combination of two tropomyosin isoforms, Tpm1.9 and Tpm3.1. We hypothesized that tropomyosin’s ability to stabilize F-actin regulates RBC morphology and mechanical properties. To test this, we examined mice with a targeted deletion in alternatively spliced exon 9d of Tpm3 (Tpm3/9d–/–), which leads to absence of Tpm3.1 in RBCs along with a compensatory increase in Tpm1.9 of sufficient magnitude to maintain normal total tropomyosin content. The isoform switch from Tpm1.9/Tpm3.1 to exclusively Tpm1.9 does not affect membrane skeleton composition but causes RBC F-actins to become hyperstable, based on decreased vulnerability to latrunculin-A–induced depolymerization. Unexpectedly, this isoform switch also leads to decreased association of Band 3 and glycophorin A with the membrane skeleton, suggesting that tropomyosin isoforms regulate the strength of F-actin-to-membrane linkages. Tpm3/9d–/– mice display a mild compensated anemia, in which RBCs have spherocytic morphology with increased osmotic fragility, reduced membrane deformability, and increased membrane stability. We conclude that RBC tropomyosin isoforms directly influence RBC physiology by regulating 1) the stability of the short F-actins in the membrane skeleton and 2) the strength of linkages between the membrane skeleton and transmembrane glycoproteins.
Collapse
Affiliation(s)
- Zhenhua Sui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - David S Gokhin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065.,School of Life Science, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
20
|
Altamirano S, Chandrasekaran S, Kozubowski L. Mechanisms of Cytokinesis in Basidiomycetous Yeasts. FUNGAL BIOL REV 2017; 31:73-87. [PMID: 28943887 DOI: 10.1016/j.fbr.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
While mechanisms of cytokinesis exhibit considerable plasticity, it is difficult to precisely define the level of conservation of this essential part of cell division in fungi, as majority of our knowledge is based on ascomycetous yeasts. However, in the last decade more details have been uncovered regarding cytokinesis in the second largest fungal phylum, basidiomycetes, specifically in two yeasts, Cryptococcus neoformans and Ustilago maydis. Based on these findings, and current sequenced genomes, we summarize cytokinesis in basidiomycetous yeasts, indicating features that may be unique to this phylum, species-specific characteristics, as well as mechanisms that may be common to all eukaryotes.
Collapse
Affiliation(s)
- Sophie Altamirano
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | | | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
21
|
Abstract
Cytokinesis is essential for the survival of all organisms. It requires concerted functions of cell signaling, force production, exocytosis, and extracellular matrix remodeling. Due to the conservation in core components and mechanisms between fungal and animal cells, the budding yeast Saccharomyces cerevisiae has served as an attractive model for studying this fundamental process. In this review, we discuss the mechanics and regulation of distinct events of cytokinesis in budding yeast, including the assembly, constriction, and disassembly of the actomyosin ring, septum formation, abscission, and their spatiotemporal coordination. We also highlight the key concepts and questions that are common to animal and fungal cytokinesis.
Collapse
Affiliation(s)
- Yogini P Bhavsar-Jog
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Alioto SL, Garabedian MV, Bellavance DR, Goode BL. Tropomyosin and Profilin Cooperate to Promote Formin-Mediated Actin Nucleation and Drive Yeast Actin Cable Assembly. Curr Biol 2016; 26:3230-3237. [PMID: 27866892 DOI: 10.1016/j.cub.2016.09.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/01/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Tropomyosins comprise a large family of actin-binding proteins with critical roles in diverse actin-based processes [1], but our understanding of how they mechanistically contribute to actin filament dynamics has been limited. We addressed this question in S. cerevisiae, where tropomyosins (Tpm1 and Tpm2), profilin (Pfy1), and formins (Bni1 and Bnr1) are required for the assembly of an array of actin cables that facilitate polarized vesicle delivery and daughter cell growth. Formins drive cable formation by promoting actin nucleation and by accelerating actin filament elongation together with profilin [2]. In contrast, how tropomyosins contribute mechanistically to cable formation has been unclear, but genetic studies demonstrate that Tpm1 plays a more important role than Tpm2 [3, 4]. Here, we found that loss of TPM1 in strains lacking BNR1, but not BNI1, leads to severe defects in cable formation, polarized secretion, and cell growth, suggesting that TPM1 function is required for proper Bni1-mediated cable assembly. Furthermore, in vitro total internal reflection fluorescence (TIRF) microscopy demonstrated that Tpm1 strongly enhances Bni1-mediated, but not Bnr1-mediated, actin nucleation without affecting filament elongation rate, whereas Tpm2 has no effects on Bni1 or Bnr1. Tpm1 stimulation of Bni1-mediated nucleation also requires profilin and its interactions with both G-actin and formins. Together, these results demonstrate that yeast Tpm1 works in concert with profilin to promote formin-dependent nucleation of actin cables, thus expanding our understanding of how specific tropomyosin isoforms influence actin dynamics.
Collapse
Affiliation(s)
- Salvatore L Alioto
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Mikael V Garabedian
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Danielle R Bellavance
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
23
|
Schevzov G, Vrhovski B, Bryce NS, Elmir S, Qiu MR, O'neill GM, Yang N, Verrills NM, Kavallaris M, Gunning PW. Tissue-specific Tropomyosin Isoform Composition. J Histochem Cytochem 2016; 53:557-70. [PMID: 15872049 DOI: 10.1369/jhc.4a6505.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Four distinct genes encode tropomyosin (Tm) proteins, integral components of the actin microfilament system. In non-muscle cells, over 40 Tm isoforms are derived using alternative splicing. Distinct populations of actin filaments characterized by the composition of these Tm isoforms are found differentially sorted within cells ( Gunning et al. 1998b ). We hypothesized that these distinct intracellular compartments defined by the association of Tm isoforms may allow for independent regulation of microfilament function. Consequently, to understand the molecular mechanisms that give rise to these different microfilaments and their regulation, a cohort of fully characterized isoform-specific Tm antibodies was required. The characterization protocol initially involved testing the specificity of the antibodies on bacterially produced Tm proteins. We then confirmed that these Tm antibodies can be used to probe the expression and subcellular localization of different Tm isoforms by Western blot analysis, immunofluorescence staining of cells in culture, and immunohistochemistry of paraffin wax-embedded mouse tissues. These Tm antibodies, therefore, have the capacity to monitor specific actin filament populations in a range of experimental systems.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cytokinesis is the final process in the cell cycle that physically divides one cell into two. In budding yeast, cytokinesis is driven by a contractile actomyosin ring (AMR) and the simultaneous formation of a primary septum, which serves as template for cell wall deposition. AMR assembly, constriction, primary septum formation and cell wall deposition are successive processes and tightly coupled to cell cycle progression to ensure the correct distribution of genetic material and cell organelles among the two rising cells prior to cell division. The role of the AMR in cytokinesis and the molecular mechanisms that drive AMR constriction and septation are the focus of current research. This review summarizes the recent progresses in our understanding of how budding yeast cells orchestrate the multitude of molecular mechanisms that control AMR driven cytokinesis in a spatio-temporal manner to achieve an error free cell division.
Collapse
|
25
|
Spichal M, Brion A, Herbert S, Cournac A, Marbouty M, Zimmer C, Koszul R, Fabre E. Evidence for a dual role of actin in regulating chromosome organization and dynamics in yeast. J Cell Sci 2016; 129:681-92. [PMID: 26763908 DOI: 10.1242/jcs.175745] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/05/2016] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic chromosomes undergo movements that are involved in the regulation of functional processes such as DNA repair. To better understand the origin of these movements, we used fluorescence microscopy, image analysis and chromosome conformation capture to quantify the actin contribution to chromosome movements and interactions in budding yeast. We show that both the cytoskeletal and nuclear actin drive local chromosome movements, independently of Csm4, a putative LINC protein. Inhibition of actin polymerization reduces subtelomere dynamics, resulting in more confined territories and enrichment in subtelomeric contacts. Artificial tethering of actin to nuclear pores increased both nuclear pore complex (NPC) and subtelomere motion. Chromosome loci that were positioned away from telomeres exhibited reduced motion in the presence of an actin polymerization inhibitor but were unaffected by the lack of Csm4. We further show that actin was required for locus mobility that was induced by targeting the chromatin-remodeling protein Ino80. Correlated with this, DNA repair by homologous recombination was less efficient. Overall, interphase chromosome dynamics are modulated by the additive effects of cytoskeletal actin through forces mediated by the nuclear envelope and nuclear actin, probably through the function of actin in chromatin-remodeling complexes.
Collapse
Affiliation(s)
- Maya Spichal
- INSERM UMR 944, Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux, Paris 75010, France CNRS, UMR 7212, Paris 75010, France Université Paris Diderot, Sorbonne Paris Cité, Paris 75010, France Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France Sorbonne Universités, UPMC Université Paris 6, Paris 75005, France
| | - Alice Brion
- INSERM UMR 944, Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux, Paris 75010, France CNRS, UMR 7212, Paris 75010, France Université Paris Diderot, Sorbonne Paris Cité, Paris 75010, France
| | - Sébastien Herbert
- Institut Pasteur, Unité Imagerie et Modélisation, Paris 75015, France CNRS, URA 2582, Paris 75015, France
| | - Axel Cournac
- Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| | - Martial Marbouty
- Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| | - Christophe Zimmer
- Institut Pasteur, Unité Imagerie et Modélisation, Paris 75015, France CNRS, URA 2582, Paris 75015, France
| | - Romain Koszul
- Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| | - Emmanuelle Fabre
- INSERM UMR 944, Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux, Paris 75010, France CNRS, UMR 7212, Paris 75010, France Université Paris Diderot, Sorbonne Paris Cité, Paris 75010, France Institut Pasteur, Groupe Régulation Spatiale des Génomes, Paris 75015, France CNRS, UMR 3525, Paris 75015, France
| |
Collapse
|
26
|
Cranz-Mileva S, MacTaggart B, Russell J, Hitchcock-DeGregori SE. Evolutionarily conserved sites in yeast tropomyosin function in cell polarity, transport and contractile ring formation. Biol Open 2015; 4:1040-51. [PMID: 26187949 PMCID: PMC4542287 DOI: 10.1242/bio.012609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tropomyosin is a coiled-coil protein that binds and regulates actin filaments. The tropomyosin gene in Schizosaccharomyces pombe, cdc8, is required for formation of actin cables, contractile rings, and polar localization of actin patches. The roles of conserved residues were investigated in gene replacement mutants. The work validates an evolution-based approach to identify tropomyosin functions in living cells and sites of potential interactions with other proteins. A cdc8 mutant with near-normal actin affinity affects patch polarization and vacuole fusion, possibly by affecting Myo52p, a class V myosin, function. The presence of labile residual cell attachments suggests a delay in completion of cell division and redistribution of cell patches following cytokinesis. Another mutant with a mild phenotype is synthetic negative with GFP-fimbrin, inferring involvement of the mutated tropomyosin sites in interaction between the two proteins. Proteins that assemble in the contractile ring region before actin do so in a mutant cdc8 strain that cannot assemble condensed actin rings, yet some cells can divide. Of general significance, LifeAct-GFP negatively affects the actin cytoskeleton, indicating caution in its use as a biomarker for actin filaments.
Collapse
Affiliation(s)
- Susanne Cranz-Mileva
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Brittany MacTaggart
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jacquelyn Russell
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Sarah E Hitchcock-DeGregori
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
27
|
Andreatta ME, Levine JA, Foy SG, Guzman LD, Kosinski LJ, Cordes MHJ, Masel J. The Recent De Novo Origin of Protein C-Termini. Genome Biol Evol 2015; 7:1686-701. [PMID: 26002864 PMCID: PMC4494051 DOI: 10.1093/gbe/evv098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein-coding sequences can arise either from duplication and divergence of existing sequences, or de novo from noncoding DNA. Unfortunately, recently evolved de novo genes can be hard to distinguish from false positives, making their study difficult. Here, we study a more tractable version of the process of conversion of noncoding sequence into coding: the co-option of short segments of noncoding sequence into the C-termini of existing proteins via the loss of a stop codon. Because we study recent additions to potentially old genes, we are able to apply a variety of stringent quality filters to our annotations of what is a true protein-coding gene, discarding the putative proteins of unknown function that are typical of recent fully de novo genes. We identify 54 examples of C-terminal extensions in Saccharomyces and 28 in Drosophila, all of them recent enough to still be polymorphic. We find one putative gene fusion that turns out, on close inspection, to be the product of replicated assembly errors, further highlighting the issue of false positives in the study of rare events. Four of the Saccharomyces C-terminal extensions (to ADH1, ARP8, TPM2, and PIS1) that survived our quality filters are predicted to lead to significant modification of a protein domain structure.
Collapse
Affiliation(s)
- Matthew E Andreatta
- Department of Ecology & Evolutionary Biology, University of Arizona Present address: Aegis Sciences, Nashville, TN
| | - Joshua A Levine
- Department of Ecology & Evolutionary Biology, University of Arizona
| | - Scott G Foy
- Department of Ecology & Evolutionary Biology, University of Arizona
| | - Lynette D Guzman
- Department of Ecology & Evolutionary Biology, University of Arizona Present address: Program in Mathematics Education, Michigan State University, MI
| | - Luke J Kosinski
- Biochemistry and Molecular & Cellular Biology Graduate Program, University of Arizona
| | | | - Joanna Masel
- Department of Ecology & Evolutionary Biology, University of Arizona
| |
Collapse
|
28
|
Schevzov G, Kee AJ, Wang B, Sequeira VB, Hook J, Coombes JD, Lucas CA, Stehn JR, Musgrove EA, Cretu A, Assoian R, Fath T, Hanoch T, Seger R, Pleines I, Kile BT, Hardeman EC, Gunning PW. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol Biol Cell 2015; 26:2475-90. [PMID: 25971798 PMCID: PMC4571302 DOI: 10.1091/mbc.e14-10-1453] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Tropomyosin Tm5NM1 regulates cell proliferation and organ size. It mediates this effect by regulating the interaction of pERK and Imp7, leading to the regulation of pERK nuclear translocation. This demonstrates a role for a specific population of actin filaments in regulating a critical step in the MAPK/ERK signaling pathway. ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Anthony J Kee
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Bin Wang
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Vanessa B Sequeira
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jeff Hook
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jason D Coombes
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Christine A Lucas
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Justine R Stehn
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Elizabeth A Musgrove
- Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Richard Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Thomas Fath
- Neurodegeneration and Repair Laboratory, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irina Pleines
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Benjamin T Kile
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
Hook J, Lemckert F, Schevzov G, Fath T, Gunning P. Functional identity of the gamma tropomyosin gene: Implications for embryonic development, reproduction and cell viability. BIOARCHITECTURE 2014; 1:49-59. [PMID: 21866263 DOI: 10.4161/bioa.1.1.15172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/15/2011] [Indexed: 01/15/2023]
Abstract
The actin filament system is fundamental to cellular functions including regulation of shape, motility, cytokinesis, intracellular trafficking and tissue organization. Tropomyosins (Tm) are highly conserved components of actin filaments which differentially regulate filament stability and function. The mammalian Tm family consists of four genes; αTm, βTm, γTm and δTm. Multiple Tm isoforms (>40) are generated by alternative splicing and expression of these isoforms is highly regulated during development. In order to further identify the role of Tm isoforms during development, we tested the specificity of function of products from the γTm gene family in mice using a series of gene knockouts. Ablation of all γTm gene cytoskeletal products results in embryonic lethality. Elimination of just two cytoskeletal products from the γTm gene (NM1,2) resulted in a 50% reduction in embryo viability. It was also not possible to generate homozygous knockout ES cells for the targets which eliminated or reduced embryo viability in mice. In contrast, homozygous knockout ES cells were generated for a different set of isoforms (NM3,5,6,8,9,11) which were not required for embryogenesis. We also observed that males hemizygous for the knockout of all cytoskeletal products from the γTm gene preferentially transmitted the minus allele with 80-100% transmission. Since all four Tm genes are expressed in early embryos, ES cells and sperm, we conclude that isoforms of the γTm gene are functionally unique in their role in embryogenesis, ES cell viability and sperm function.
Collapse
Affiliation(s)
- Jeff Hook
- Department of Pharmacology The School of Medical Sciences; The University of New South Wales; Sydney, Australia
| | | | | | | | | |
Collapse
|
30
|
Masedunskas A, Appaduray M, Hardeman EC, Gunning PW. What makes a model system great? INTRAVITAL 2014. [DOI: 10.4161/intv.26287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Kang MS, Yu SL, Kim HY, Gorospe CM, Choi BH, Lee SH, Lee SK. Yeast RAD2, a homolog of human XPG, plays a key role in the regulation of the cell cycle and actin dynamics. Biol Open 2014; 3:29-41. [PMID: 24326185 PMCID: PMC3892158 DOI: 10.1242/bio.20136403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutations in the human XPG gene cause Cockayne syndrome (CS) and xeroderma pigmentosum (XP). Transcription defects have been suggested as the fundamental cause of CS; however, defining CS as a transcription syndrome is inconclusive. In particular, the function of XPG in transcription has not been clearly demonstrated. Here, we provide evidence for the involvement of RAD2, the Saccharomyces cerevisiae counterpart of XPG, in cell cycle regulation and efficient actin assembly following ultraviolet irradiation. RAD2 C-terminal deletion, which resembles the XPG mutation found in XPG/CS cells, caused cell growth arrest, the cell cycle stalling, a defective α-factor response, shortened lifespan, cell polarity defect, and misregulated actin-dynamics after DNA damage. Overexpression of the C-terminal 65 amino acids of Rad2p was sufficient to induce hyper-cell polarization. In addition, RAD2 genetically interacts with TPM1 during cell polarization. These results provide insights into the role of RAD2 in post-UV irradiation cell cycle regulation and actin assembly, which may be an underlying cause of XPG/CS.
Collapse
Affiliation(s)
- Mi-Sun Kang
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Korea 400-712
| | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.
Collapse
|
34
|
Cytoskeletal tropomyosins: choreographers of actin filament functional diversity. J Muscle Res Cell Motil 2013; 34:261-74. [PMID: 23904035 PMCID: PMC3843815 DOI: 10.1007/s10974-013-9355-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/09/2013] [Indexed: 01/12/2023]
Abstract
The actin cytoskeleton plays a central role in many essential cellular processes. Its involvement requires actin filaments to form multiple populations with different structural and therefore functional properties in specific subcellular locations. This diversity is facilitated through the interaction between actin and a number of actin binding proteins. One family of proteins, the tropomyosins, are absolutely essential in regulating actin's ability to form such diverse structures. In this review we integrate studies from different organisms and cell types in an attempt to provide a unifying view of tropomyosin dependent regulation of the actin cytoskeleton.
Collapse
|
35
|
Wloka C, Bi E. Mechanisms of cytokinesis in budding yeast. Cytoskeleton (Hoboken) 2012; 69:710-26. [DOI: 10.1002/cm.21046] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 01/22/2023]
|
36
|
Hodges AR, Krementsova EB, Bookwalter CS, Fagnant PM, Sladewski TE, Trybus KM. Tropomyosin is essential for processive movement of a class V myosin from budding yeast. Curr Biol 2012; 22:1410-6. [PMID: 22704989 DOI: 10.1016/j.cub.2012.05.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/18/2012] [Accepted: 05/16/2012] [Indexed: 11/17/2022]
Abstract
Myosin V is an actin-based motor protein involved in intracellular cargo transport [1]. Given this physiological role, it was widely assumed that all class V myosins are processive, able to take multiple steps along actin filaments without dissociating. This notion was challenged when several class V myosins were characterized as nonprocessive in vitro, including Myo2p, the essential class V myosin from S. cerevisiae [2-6]. Myo2p moves cargo including secretory vesicles and other organelles for several microns along actin cables in vivo. This demonstrated cargo transporter must therefore either operate in small ensembles or behave processively in the cellular context. Here we show that Myo2p moves processively in vitro as a single motor when it walks on an actin track that more closely resembles the actin cables found in vivo. The key to processivity is tropomyosin: Myo2p is not processive on bare actin but highly processive on actin-tropomyosin. The major yeast tropomyosin isoform, Tpm1p, supports the most robust processivity. Tropomyosin slows the rate of MgADP release, thus increasing the time the motor spends strongly attached to actin. This is the first example of tropomyosin switching a motor from nonprocessive to processive motion on actin.
Collapse
Affiliation(s)
- Alex R Hodges
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics 2012; 191:347-87. [PMID: 22701052 PMCID: PMC3374305 DOI: 10.1534/genetics.111.132886] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
Collapse
Affiliation(s)
- Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
38
|
Otzen M, Rucktäschel R, Thoms S, Emmrich K, Krikken AM, Erdmann R, van der Klei IJ. Pex19p contributes to peroxisome inheritance in the association of peroxisomes to Myo2p. Traffic 2012; 13:947-59. [PMID: 22486971 DOI: 10.1111/j.1600-0854.2012.01364.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 11/29/2022]
Abstract
During budding of yeast cells peroxisomes are distributed over mother cell and bud, a process that involves the myosin motor protein Myo2p and the peroxisomal membrane protein Inp2p. Here, we show that Pex19p, a peroxin implicated in targeting and complex formation of peroxisomal membrane proteins, also plays a role in peroxisome partitioning. Binding studies revealed that Pex19p interacts with the cargo-binding domain of Myo2p. We identified mutations in Myo2p that specifically reduced binding to Pex19p, but not to Inp2p. The interaction between Myo2p and Pex19p was also reduced by a mutation that blocked Pex19p farnesylation. Microscopy revealed that the Pex19p-Myo2p interaction is important for peroxisome inheritance, because mutations that affect this interaction hamper peroxisome inheritance in vivo. Together these data suggest that both Inp2p and Pex19p are required for proper association of peroxisomes to Myo2p.
Collapse
Affiliation(s)
- Marleen Otzen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute-GBB, Kluyver Centre for Genomics of Industrial Fermentation, University of Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Prosser DC, Drivas TG, Maldonado-Báez L, Wendland B. Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin. ACTA ACUST UNITED AC 2011; 195:657-71. [PMID: 22065638 PMCID: PMC3257529 DOI: 10.1083/jcb.201104045] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much like mammalian cells, yeast contain a Rho-dependent pathway for endocytosis in addition to canonical clathrin-dependent endocytosis. Yeast is a powerful model organism for dissecting the temporal stages and choreography of the complex protein machinery during endocytosis. The only known mechanism for endocytosis in yeast is clathrin-mediated endocytosis, even though clathrin-independent endocytic pathways have been described in other eukaryotes. Here, we provide evidence for a clathrin-independent endocytic pathway in yeast. In cells lacking the clathrin-binding adaptor proteins Ent1, Ent2, Yap1801, and Yap1802, we identify a second endocytic pathway that depends on the GTPase Rho1, the downstream formin Bni1, and the Bni1 cofactors Bud6 and Spa2. This second pathway does not require components of the better-studied endocytic pathway, including clathrin and Arp2/3 complex activators. Thus, our results reveal the existence of a second pathway for endocytosis in yeast, which suggests similarities with the RhoA-dependent endocytic pathways of mammalian cells.
Collapse
Affiliation(s)
- Derek C Prosser
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
40
|
Lees JG, Bach CTT, O'Neill GM. Interior decoration: tropomyosin in actin dynamics and cell migration. Cell Adh Migr 2011; 5:181-6. [PMID: 21173575 DOI: 10.4161/cam.5.2.14438] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell migration and invasion requires the precise temporal and spatial orchestration of a variety of biological processes. Filaments of polymerized actin are critical players in these diverse processes, including the regulation of cell anchorage points (both cell-cell and cell-extracellular matrix), the uptake and delivery of molecules via endocytic pathways and the generation of force for both membrane protrusion and retraction. How the actin filaments are specialized for each of these discrete functions is yet to be comprehensively elucidated. The cytoskeletal tropomyosins are a family of actin associating proteins that form head-to-tail polymers which lay in the major groove of polymerized actin filaments. In the present review we summarize the emerging isoform-specific functions of tropomyosins in cell migration and invasion and discuss their potential roles in the specialization of actin filaments for the diverse cellular processes that together regulate cell migration and invasion.
Collapse
Affiliation(s)
- Justin G Lees
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | | | | |
Collapse
|
41
|
Coulton AT, East DA, Galinska-Rakoczy A, Lehman W, Mulvihill DP. The recruitment of acetylated and unacetylated tropomyosin to distinct actin polymers permits the discrete regulation of specific myosins in fission yeast. J Cell Sci 2010; 123:3235-43. [PMID: 20807799 PMCID: PMC2939800 DOI: 10.1242/jcs.069971] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2010] [Indexed: 11/20/2022] Open
Abstract
Tropomyosin (Tm) is a conserved dimeric coiled-coil protein, which forms polymers that curl around actin filaments in order to regulate actomyosin function. Acetylation of the Tm N-terminal methionine strengthens end-to-end bonds, which enhances actin binding as well as the ability of Tm to regulate myosin motor activity in both muscle and non-muscle cells. In this study we explore the function of each Tm form within fission yeast cells. Electron microscopy and live cell imaging revealed that acetylated and unacetylated Tm associate with distinct actin structures within the cell, and that each form has a profound effect upon the shape and integrity of the polymeric actin filament. We show that, whereas Tm acetylation is required to regulate the in vivo motility of class II myosins, acetylated Tm had no effect on the motility of class I and V myosins. These findings illustrate a novel Tm-acetylation-state-dependent mechanism for regulating specific actomyosin cytoskeletal interactions.
Collapse
Affiliation(s)
- Arthur T. Coulton
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Daniel A. East
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
42
|
|
43
|
Slaughter BD, Smith SE, Li R. Symmetry breaking in the life cycle of the budding yeast. Cold Spring Harb Perspect Biol 2009; 1:a003384. [PMID: 20066112 PMCID: PMC2773630 DOI: 10.1101/cshperspect.a003384] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The budding yeast Saccharomyces cerevisiae has been an invaluable model system for the study of the establishment of cellular asymmetry and growth polarity in response to specific physiological cues. A large body of experimental observations has shown that yeast cells are able to break symmetry and establish polarity through two coupled and partially redundant intrinsic mechanisms, even in the absence of any pre-existing external asymmetry. One of these mechanisms is dependent upon interplay between the actin cytoskeleton and the Rho family GTPase Cdc42, whereas the other relies on a Cdc42 GTPase signaling network. Integral to these mechanisms appear to be positive feedback loops capable of amplifying small and stochastic asymmetries. Spatial cues, such as bud scars and pheromone gradients, orient cell polarity by modulating the regulation of the Cdc42 GTPase cycle, thereby biasing the site of asymmetry amplification.
Collapse
Affiliation(s)
- Brian D Slaughter
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA.
| | | | | |
Collapse
|
44
|
Watanabe M, Watanabe D, Nogami S, Morishita S, Ohya Y. Comprehensive and quantitative analysis of yeast deletion mutants defective in apical and isotropic bud growth. Curr Genet 2009; 55:365-80. [PMID: 19466415 DOI: 10.1007/s00294-009-0251-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 11/24/2022]
Abstract
To obtain a comprehensive understanding of the budding phase transition, 4,711 Saccharomyces cerevisiae haploid nonessential gene deletion mutants were screened with the image processing program CalMorph, and 35 mutants with a round bud and 173 mutants with an elongated bud were statistically identified. We classified round and elongated bud mutants based on factors thought to affect the duration of the apical bud growth phase. Two round bud mutants (arc18 and sac6) were found to be defective in apical actin patch localization. Several elongated bud mutants demonstrated a delay of cell cycle progression at the apical growth phase, suggesting that these mutants have a defect in the control of cell cycle progression.
Collapse
Affiliation(s)
- Machika Watanabe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | | | | | | | | |
Collapse
|
45
|
Faulkner CR, Blackman LM, Collings DA, Cordwell SJ, Overall RL. Anti-tropomyosin antibodies co-localise with actin microfilaments and label plasmodesmata. Eur J Cell Biol 2009; 88:357-69. [PMID: 19328591 DOI: 10.1016/j.ejcb.2009.02.184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 01/28/2009] [Accepted: 02/02/2009] [Indexed: 01/14/2023] Open
Abstract
The actin cytoskeleton and associated actin-binding proteins form a complex network involved in a number of fundamental cellular processes including intracellular trafficking. In plants, both actin and myosin have been localised to plasmodesmata, and thus it is likely that other actin-binding proteins are also associated with plasmodesmata structure or function. A 75-kDa protein, enriched in plasmodesmata-rich cell wall extracts from the green alga Chara corallina, was sequenced and found to contain three peptides with similarity to the animal actin-binding protein tropomyosin. Western blot analysis with anti-tropomyosin antibodies confirmed the identity of this 75-kDa protein as a tropomyosin-like protein and further identified an additional 55-kDa protein, while immunofluorescence microscopy localised the antibodies to plasmodesmata and to the subcortical actin bundles and associated structures. The anti-tropomyosin antibodies detected a single protein at 42.5 kDa in Arabidopsis thaliana extracts and two proteins at 58.5 and 54 kDa in leek extracts, and these localised to plasmodesmata and the cell plate in A. thaliana and to plasmodesmata in leek tissue. Tropomyosin is an actin-binding protein thought to be involved in a range of functions associated with the actin cytoskeleton, including the regulation of myosin binding to actin filaments, but to date no tropomyosin-like proteins have been conclusively identified in plant genomes. Our data suggests that a tropomyosin-like protein is associated with plasmodesmata.
Collapse
Affiliation(s)
- Christine R Faulkner
- School of Biological Sciences, Macleay Building A12, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
46
|
Abstract
Tropomyosins were discovered as regulators of actomyosin contractility in muscle cells, making yeasts and other fungi seem unlikely to harbor such proteins. Fungal cells are encased in a rigid cell wall and do not engage in the same sorts of contractile shape changes of animal cells. However, discovery of actin and myosin in yeast raised the possibility for a role for tropomyosin in regulating their interaction. Through a biochemical search, fungal tropomyosins were identified with strong similarities to their animal counterparts in terms ofprotein structure and physical properties. Two particular fungi, the buddingyeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe, have provided powerful genetic systems for studying tropomyosins in nonmetazoans. In these yeasts, tropomyosins associate with subsets ofactin filamentous structures. Mutational studies oftropomyosin genes and biochemical assays of purified proteins point to roles for these proteins as factors that stabilize actin filaments, promote actin-based structures of particular architecture and help maintain distinct biochemical identities among different filament populations. Tropomyosin-enriched filaments are the cytoskeletal structures that promote the major cell shape changes of these organisms: polarized growth and cell division.
Collapse
Affiliation(s)
- David Pruyne
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
47
|
Alvite G, Esteves A. Echinococcus granulosus tropomyosin isoforms: from gene structure to expression analysis. Gene 2008; 433:40-9. [PMID: 19100819 DOI: 10.1016/j.gene.2008.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/21/2008] [Accepted: 11/04/2008] [Indexed: 11/25/2022]
Abstract
Tropomyosins (Trps) constitute a family of actin filament-binding proteins found in all eukaryotic cells. In muscle cells, they play a central role in contraction by regulating calcium-sensitive interaction of actin and myosin. In non-muscle cells, tropomyosins regulate actin filament organization and dynamics. Trps genes exhibit extensive cell type-specific isoform diversity generated by alternative splicing. Here, we report the characterization of tropomyosin gene transcribed sequences from the parasitic platyhelminth Echinococcus granulosus. Using RT-PCR approach we isolated three isoforms (egtrpA, egtrpB and egtrpC), which display significant homologies to know tropomyosins of different phylogenetic origin. The corresponding gene, egtrp (5656 bp), contains eight introns and nine exons. Southern blot hybridization studies showed that egtrp is present as single copy locus in E. granulosus. We demonstrated that egtrp expresses three different transcripts which differ in alternatively spliced exon 4 and intron VI. Interestingly, intron VI suffers intron retention and contains an internal stop codon in frame. Three major bands are also detected by Western blot analysis using a specific anti-rEgTrp antiserum. Immune-localization and in situ hybridization studies showed that egtrp transcription and translation is mostly localized at the protoscoleces suckers. This is the first report of alternative splicing in this parasite.
Collapse
Affiliation(s)
- Gabriela Alvite
- Biochemistry Section, Cellular and Molecular Biology Department, Faculty of Sciences, University of the Republic, Montevideo, Uruguay.
| | | |
Collapse
|
48
|
Intrinsic capability of budding yeast cofilin to promote turnover of tropomyosin-bound actin filaments. PLoS One 2008; 3:e3641. [PMID: 18982060 PMCID: PMC2572843 DOI: 10.1371/journal.pone.0003641] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 10/14/2008] [Indexed: 11/19/2022] Open
Abstract
The ability of actin filaments to function in cell morphogenesis and motility is closely coupled to their dynamic properties. Yeast cells contain two prominent actin structures, cables and patches, both of which are rapidly assembled and disassembled. Although genetic studies have shown that rapid actin turnover in patches and cables depends on cofilin, how cofilin might control cable disassembly remains unclear, because tropomyosin, a component of actin cables, is thought to protect actin filaments against the depolymerizing activity of ADF/cofilin. We have identified cofilin as a yeast tropomyosin (Tpm1) binding protein through Tpm1 affinity column and mass spectrometry. Using a variety of assays, we show that yeast cofilin can efficiently depolymerize and sever yeast actin filaments decorated with either Tpm1 or mouse tropomyosins TM1 and TM4. Our results suggest that yeast cofilin has the intrinsic ability to promote actin cable turnover, and that the severing activity may rely on its ability to bind Tpm1.
Collapse
|
49
|
Meshcheryakov V, Nitanai Y, Maytum R, Geeves MA, Maeda Y. Crystallization and preliminary X-ray crystallographic analysis of full-length yeast tropomyosin 2 from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:528-530. [PMID: 18540067 PMCID: PMC2496846 DOI: 10.1107/s1744309108013110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/03/2008] [Indexed: 05/26/2023]
Abstract
Tropomyosin is a highly conserved actin-binding protein that is found in most eukaryotic cells. It is critical for actin-filament stabilization and for cooperative regulation of many actin functions. Detailed structural information on tropomyosin is very important in order to understand the mechanisms of its action. Whereas structures of isolated tropomyosin fragments have been obtained at high resolution, the atomic structure of the entire tropomyosin molecule is still unknown. Here, the crystallization and preliminary crystallographic analysis of full-length yeast tropomyosin 2 (yTm2) from Saccharomyces cerevisiae are reported. Recombinant yTm2 expressed in Escherichia coli was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 154.8, b = 49.9, c = 104.0 A, alpha = gamma = 90.0, beta = 124.0 degrees and two molecules in the asymmetric unit. A complete native X-ray diffraction data set was collected to 3.5 A resolution using synchrotron radiation.
Collapse
Affiliation(s)
- Vladimir Meshcheryakov
- ERATO Actin Filament Dynamics Project, Japan Science and Technology Agency, c/o RIKEN Harima Institute SPring-8 Center, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | |
Collapse
|
50
|
Chesneau L, Prigent M, Boy-Marcotte E, Daraspe J, Fortier G, Jacquet M, Verbavatz JM, Cuif MH. Interdependence of the Ypt/RabGAP Gyp5p and Gyl1p for Recruitment to the Sites of Polarized Growth. Traffic 2008; 9:608-22. [DOI: 10.1111/j.1600-0854.2007.00699.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|