1
|
Wang Z, Zhang YJ, Zhang QY, Bilsborrow K, Leslie M, Suhandynata RT, Zhou H. Sequence specificity of an essential nuclear localization sequence in Mcm3. PLoS Genet 2025; 21:e1011499. [PMID: 39836669 PMCID: PMC11761085 DOI: 10.1371/journal.pgen.1011499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase. Through mutagenesis and AlphaFold 3 (AF3) modeling, we demonstrate that the precise positioning of basic residues within the NLS is critical for nuclear transport of Mcm3 through optimal interactions with importin. Disrupting these interactions impairs the nuclear import of Mcm3, resulting in defective chromatin loading of the MCM complex and poor cell growth. Our results provide a structure-guided framework for predicting and analyzing monopartite NLSs, which, despite lacking a single consensus sequence, retain key characteristics shared between the NLSs of Mcm3 and the SV40 large T antigen.
Collapse
Affiliation(s)
- Ziyi Wang
- Biomedical Science Graduate Program, University of California San Diego, San Diego, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Yun Jing Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Qian-yi Zhang
- Biomedical Science Graduate Program, University of California San Diego, San Diego, California, United States of America
| | - Kate Bilsborrow
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Matthew Leslie
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Raymond T. Suhandynata
- Department of Pathology, University of California San Diego, San Diego, California, United States of America
| | - Huilin Zhou
- Biomedical Science Graduate Program, University of California San Diego, San Diego, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, School of Medicine, University of California at San Diego, San Diego, California, United States of America
| |
Collapse
|
2
|
Wang Z, Zhang YJ, Zhang QY, Bilsborrow K, Leslie M, Suhandynata RT, Zhou H. Sequence specificity of an essential nuclear localization sequence in Mcm3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623588. [PMID: 39605614 PMCID: PMC11601334 DOI: 10.1101/2024.11.14.623588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase. Through mutagenesis and AlphaFold 3 (AF3) modeling, we demonstrate that the precise positioning of basic residues within the NLS is critical for nuclear transport of Mcm3 through optimal interactions with importin. Disrupting these interactions impairs the nuclear import of Mcm3, resulting in defective chromatin loading of MCM and poor cell growth. Our results provide a structure-guided framework for predicting and analyzing monopartite NLSs, which, despite lacking a single consensus sequence, retain key characteristics shared between the NLSs of Mcm3 and the SV40 large T antigen.
Collapse
Affiliation(s)
- Ziyi Wang
- Biomedical Science graduate program, School of Medicine, University of California at San Diego
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | - Yun Jing Zhang
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | - Qian-yi Zhang
- Biomedical Science graduate program, School of Medicine, University of California at San Diego
| | - Kate Bilsborrow
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | - Matthew Leslie
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | | | - Huilin Zhou
- Biomedical Science graduate program, School of Medicine, University of California at San Diego
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
- Moores Cancer Center, School of Medicine, University of California at San Diego
| |
Collapse
|
3
|
Radhakrishnan A, Gangopadhyay R, Sharma C, Kapardar RK, Sharma NK, Srivastav R. Unwinding Helicase MCM Functionality for Diagnosis and Therapeutics of Replication Abnormalities Associated with Cancer: A Review. Mol Diagn Ther 2024; 28:249-264. [PMID: 38530633 DOI: 10.1007/s40291-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Ritwik Gangopadhyay
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. DY Patil Biotechnology and Bioinformatics Institute, Dr. DY Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
- Department of Science and Technology, Ministry of Science and Technology, New Delhi, India.
| |
Collapse
|
4
|
Yadav AK, Polasek-Sedlackova H. Quantity and quality of minichromosome maintenance protein complexes couple replication licensing to genome integrity. Commun Biol 2024; 7:167. [PMID: 38336851 PMCID: PMC10858283 DOI: 10.1038/s42003-024-05855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Accurate and complete replication of genetic information is a fundamental process of every cell division. The replication licensing is the first essential step that lays the foundation for error-free genome duplication. During licensing, minichromosome maintenance protein complexes, the molecular motors of DNA replication, are loaded to genomic sites called replication origins. The correct quantity and functioning of licensed origins are necessary to prevent genome instability associated with severe diseases, including cancer. Here, we delve into recent discoveries that shed light on the novel functions of licensed origins, the pathways necessary for their proper maintenance, and their implications for cancer therapies.
Collapse
Affiliation(s)
- Anoop Kumar Yadav
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Polasek-Sedlackova
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
5
|
Solving the MCM paradox by visualizing the scaffold of CMG helicase at active replisomes. Nat Commun 2022; 13:6090. [PMID: 36241664 PMCID: PMC9568601 DOI: 10.1038/s41467-022-33887-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Genome duplication is safeguarded by constantly adjusting the activity of the replicative CMG (CDC45-MCM2-7-GINS) helicase. However, minichromosome maintenance proteins (MCMs)-the structural core of the CMG helicase-have never been visualized at sites of DNA synthesis inside a cell (the so-called MCM paradox). Here, we solve this conundrum by showing that anti-MCM antibodies primarily detect inactive MCMs. Upon conversion of inactive MCMs to CMGs, factors that are required for replisome activity bind to the MCM scaffold and block MCM antibody binding sites. Tagging of endogenous MCMs by CRISPR-Cas9 bypasses this steric hindrance and enables MCM visualization at active replisomes. Thus, by defining conditions for detecting the structural core of the replicative CMG helicase, our results explain the MCM paradox, provide visual proof that MCMs are an integral part of active replisomes in vivo, and enable the investigation of replication dynamics in living cells exposed to a constantly changing environment.
Collapse
|
6
|
Saito Y, Santosa V, Ishiguro KI, Kanemaki MT. MCMBP promotes the assembly of the MCM2-7 hetero-hexamer to ensure robust DNA replication in human cells. eLife 2022; 11:77393. [PMID: 35438632 PMCID: PMC9018068 DOI: 10.7554/elife.77393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/08/2022] [Indexed: 12/26/2022] Open
Abstract
The MCM2–7 hetero-hexamer is the replicative DNA helicase that plays a central role in eukaryotic DNA replication. In proliferating cells, the expression level of the MCM2–7 hexamer is kept high, which safeguards the integrity of the genome. However, how the MCM2–7 hexamer is assembled in living cells remains unknown. Here, we revealed that the MCM-binding protein (MCMBP) plays a critical role in the assembly of this hexamer in human cells. MCMBP associates with MCM3 which is essential for maintaining the level of the MCM2–7 hexamer. Acute depletion of MCMBP demonstrated that it contributes to MCM2–7 assembly using nascent MCM3. Cells depleted of MCMBP gradually ceased to proliferate because of reduced replication licensing. Under this condition, p53-positive cells exhibited arrest in the G1 phase, whereas p53-null cells entered the S phase and lost their viability because of the accumulation of DNA damage, suggesting that MCMBP is a potential target for killing p53-deficient cancers.
Collapse
Affiliation(s)
- Yuichiro Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
| | - Venny Santosa
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
7
|
Hayashi-Takanaka Y, Hayashi Y, Hirano Y, Miyawaki-Kuwakado A, Ohkawa Y, Obuse C, Kimura H, Haraguchi T, Hiraoka Y. Chromatin loading of MCM hexamers is associated with di-/tri-methylation of histone H4K20 toward S phase entry. Nucleic Acids Res 2021; 49:12152-12166. [PMID: 34817054 PMCID: PMC8643670 DOI: 10.1093/nar/gkab1068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022] Open
Abstract
DNA replication is a key step in initiating cell proliferation. Loading hexameric complexes of minichromosome maintenance (MCM) helicase onto DNA replication origins during the G1 phase is essential for initiating DNA replication. Here, we examined MCM hexamer states during the cell cycle in human hTERT-RPE1 cells using multicolor immunofluorescence-based, single-cell plot analysis, and biochemical size fractionation. Experiments involving cell-cycle arrest at the G1 phase and release from the arrest revealed that a double MCM hexamer was formed via a single hexamer during G1 progression. A single MCM hexamer was recruited to chromatin in the early G1 phase. Another single hexamer was recruited to form a double hexamer in the late G1 phase. We further examined relationship between the MCM hexamer states and the methylation levels at lysine 20 of histone H4 (H4K20) and found that the double MCM hexamer state was correlated with di/trimethyl-H4K20 (H4K20me2/3). Inhibiting the conversion from monomethyl-H4K20 (H4K20me1) to H4K20me2/3 retained the cells in the single MCM hexamer state. Non-proliferative cells, including confluent cells or Cdk4/6 inhibitor-treated cells, also remained halted in the single MCM hexamer state. We propose that the single MCM hexamer state is a halting step in the determination of cell cycle progression.
Collapse
Affiliation(s)
- Yoko Hayashi-Takanaka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Yuichiro Hayashi
- Institute of Biomedical Sciences, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Atsuko Miyawaki-Kuwakado
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
8
|
Replication initiation: Implications in genome integrity. DNA Repair (Amst) 2021; 103:103131. [PMID: 33992866 DOI: 10.1016/j.dnarep.2021.103131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/01/2023]
Abstract
In every cell cycle, billions of nucleotides need to be duplicated within hours, with extraordinary precision and accuracy. The molecular mechanism by which cells regulate the replication event is very complicated, and the entire process begins way before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by assembling essential replication factors to establish the pre-replicative complex at origins, sites that dictate where replication would initiate during S phase. During S phase, the replication process is tightly coupled with the DNA repair system to ensure the fidelity of replication. Defects in replication and any error must be recognized by DNA damage response and checkpoint signaling pathways in order to halt the cell cycle before cells are allowed to divide. The coordination of these processes throughout the cell cycle is therefore critical to achieve genomic integrity and prevent diseases. In this review, we focus on the current understanding of how the replication initiation events are regulated to achieve genome stability.
Collapse
|
9
|
Liang Z, Zhang Y, Chen Q, Hao J, Wang H, Li Y, Yan Y. Analysis of MCM Proteins' Role as a Potential Target of Statins in Patients with Acute Type A Aortic Dissection through Bioinformatics. Genes (Basel) 2021; 12:387. [PMID: 33803192 PMCID: PMC7998850 DOI: 10.3390/genes12030387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
Acute aortic dissection is one of the most severe vascular diseases. The molecular mechanisms of aortic expansion and dissection are unclear. Clinical studies have found that statins play a protective role in aortic dissection development and therapy; however, the mechanism of statins' effects on the aorta is unknown. The Gene Expression Omnibus (GEO) dataset GSE52093, GSE2450and GSE8686 were analyzed, and genes expressed differentially between aortic dissection samples and normal samples were determined using the Networkanalyst and iDEP tools. Weight gene correlation network analysis (WGCNA), functional annotation, pathway enrichment analysis, and the analysis of the regional variations of genomic features were then performed. We found that the minichromosome maintenance proteins (MCMs), a family of proteins targeted by statins, were upregulated in dissected aortic wall tissues and play a central role in cell-cycle and mitosis regulation in aortic dissection patients. Our results indicate a potential molecular target and mechanism for statins' effects in patients with acute type A aortic dissection.
Collapse
Affiliation(s)
- Zheyong Liang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Y.Z.); (Q.C.); (J.H.); (H.W.); (Y.L.); (Y.Y.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Zeng T, Guan Y, Li YK, Wu Q, Tang XJ, Zeng X, Ling H, Zou J. The DNA replication regulator MCM6: An emerging cancer biomarker and target. Clin Chim Acta 2021; 517:92-98. [PMID: 33609557 DOI: 10.1016/j.cca.2021.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023]
Abstract
MCM6 is a significant DNA replication regulator that plays a crucial role in sustaining the cell cycle. In many cancer cells, MCM6 expression is enhanced. For example, persistently increased expression of MCM6 promotes the formation, development and progression of hepatocellular carcinoma (HCC). Up- and down-regulation studies have indicated that MCM6 regulates cell cycle, proliferation, metastasis, immune response and the maintenance of the DNA replication system. MCM6 can also regulate downstream signaling such as MEK/ERK thus promoting carcinogenesis. Accordingly, MCM6 may represent a sensitive and specific biomarker to predict adverse progression and poor outcome. Furthermore, inhibition of MCM6 may be an effective cancer treatment. The present review summarizes the latest results on the inactivating and activating functions of MCM6, underlining its function in carcinogenesis. Further studies of the carcinogenic functions of MCM6 may provide novel insight into cancer biology and shed light on new approaches for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Yang Guan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330000, PR China
| | - Yu-Kun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qing Wu
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, PR China
| | - Xiao-Jun Tang
- Department of Spinal Surgery, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Zeng
- Department of Histology and Embryology, Chongqing Three Gorges Medical College, Wanzhou, Chongqing 404000, PR China
| | - Hui Ling
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
11
|
Sedlackova H, Rask MB, Gupta R, Choudhary C, Somyajit K, Lukas J. Equilibrium between nascent and parental MCM proteins protects replicating genomes. Nature 2020; 587:297-302. [PMID: 33087936 DOI: 10.1038/s41586-020-2842-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Minichromosome maintenance proteins (MCMs) are DNA-dependent ATPases that bind to replication origins and license them to support a single round of DNA replication. A large excess of MCM2-7 assembles on chromatin in G1 phase as pre-replication complexes (pre-RCs), of which only a fraction become the productive CDC45-MCM-GINS (CMG) helicases that are required for genome duplication1-4. It remains unclear why cells generate this surplus of MCMs, how they manage to sustain it across multiple generations, and why even a mild reduction in the MCM pool compromises the integrity of replicating genomes5,6. Here we show that, for daughter cells to sustain error-free DNA replication, their mother cells build up a nuclear pool of MCMs both by recycling chromatin-bound (parental) MCMs and by synthesizing new (nascent) MCMs. Although all MCMs can form pre-RCs, it is the parental pool that is inherently stable and preferentially matures into CMGs. By contrast, nascent MCM3-7 (but not MCM2) undergo rapid proteolysis in the cytoplasm, and their stabilization and nuclear translocation require interaction with minichromosome-maintenance complex-binding protein (MCMBP), a distant MCM paralogue7,8. By chaperoning nascent MCMs, MCMBP safeguards replicating genomes by increasing chromatin coverage with pre-RCs that do not participate on replication origins but adjust the pace of replisome movement to minimize errors during DNA replication. Consequently, although the paucity of pre-RCs in MCMBP-deficient cells does not alter DNA synthesis overall, it increases the speed and asymmetry of individual replisomes, which leads to DNA damage. The surplus of MCMs therefore increases the robustness of genome duplication by restraining the speed at which eukaryotic cells replicate their DNA. Alterations in physiological fork speed might thus explain why even a minor reduction in MCM levels destabilizes the genome and predisposes to increased incidence of tumour formation.
Collapse
Affiliation(s)
- Hana Sedlackova
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maj-Britt Rask
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rajat Gupta
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chunaram Choudhary
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kumar Somyajit
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jiri Lukas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Leturcq M, Mortuaire M, Hardivillé S, Schulz C, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAc transferase associates with the MCM2-7 complex and its silencing destabilizes MCM-MCM interactions. Cell Mol Life Sci 2018; 75:4321-4339. [PMID: 30069701 PMCID: PMC6208770 DOI: 10.1007/s00018-018-2874-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
O-GlcNAcylation of proteins is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The homeostasis of O-GlcNAc cycling is regulated during cell cycle progression and is essential for proper cellular division. We previously reported the O-GlcNAcylation of the minichromosome maintenance proteins MCM2, MCM3, MCM6 and MCM7. These proteins belong to the MCM2-7 complex which is crucial for the initiation of DNA replication through its DNA helicase activity. Here we show that the six subunits of MCM2-7 are O-GlcNAcylated and that O-GlcNAcylation of MCM proteins mainly occurs in the chromatin-bound fraction of synchronized human cells. Moreover, we identify stable interaction between OGT and several MCM subunits. We also show that down-regulation of OGT decreases the chromatin binding of MCM2, MCM6 and MCM7 without affecting their steady-state level. Finally, OGT silencing or OGA inhibition destabilizes MCM2/6 and MCM4/7 interactions in the chromatin-enriched fraction. In conclusion, OGT is a new partner of the MCM2-7 complex and O-GlcNAcylation homeostasis might regulate MCM2-7 complex by regulating the chromatin loading of MCM6 and MCM7 and stabilizing MCM/MCM interactions.
Collapse
Affiliation(s)
- Maïté Leturcq
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Marlène Mortuaire
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Stéphan Hardivillé
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | | |
Collapse
|
13
|
V S V, K R, V N S, Sara George P, K C, K J, S T, Sujathan K. DNA Replication Licensing Proteins for Early Detection of Lung Cancer. Asian Pac J Cancer Prev 2017; 18:3041-3047. [PMID: 29172277 PMCID: PMC5773789 DOI: 10.22034/apjcp.2017.18.11.3041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: To identify and characterize malignant and premalignant cells in sputum and matched tissue samples with reference to expression of minichromosome maintenance proteins (MCM2, MCM5) and cell division cycle protein 6 (CDC 6) and to assess their potential as biomarkers of premalignant and malignant lesions of the lung and associations with clinicopathological features. Methods: Expression of MCM2, MCM5 and 6 proteins in sputum samples and corresponding tissues was assessed by immunocytochemistry, and correlated with histological findings. Results: For characterization of malignant, metaplastic or dysplastic cells, CDC6 protein had the highest sensitivity of 87.7%. All the three markers together had a sensitivity of 94.4%. Furthermore these proteins could be employed to assess the proliferative potential of precancerous or atypical cells, as overexpression increasing with the stage of disease and degree of metastasis. Conclusion: The assessed markers can be utilized in routine cytopathology laboratories to supplement conventional morphological evaluation so that the sensitivity of sputum cytology can be enhanced. Potential applications in predicting the clinical behavior of lung lesions and predicting prognosis and survival deserve further attention.
Collapse
Affiliation(s)
- Veena V S
- Division of Pathology, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram, India
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Matson JP, Dumitru R, Coryell P, Baxley RM, Chen W, Twaroski K, Webber BR, Tolar J, Bielinsky AK, Purvis JE, Cook JG. Rapid DNA replication origin licensing protects stem cell pluripotency. eLife 2017; 6:30473. [PMID: 29148972 PMCID: PMC5720591 DOI: 10.7554/elife.30473] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/16/2017] [Indexed: 11/24/2022] Open
Abstract
Complete and robust human genome duplication requires loading minichromosome maintenance (MCM) helicase complexes at many DNA replication origins, an essential process termed origin licensing. Licensing is restricted to G1 phase of the cell cycle, but G1 length varies widely among cell types. Using quantitative single-cell analyses, we found that pluripotent stem cells with naturally short G1 phases load MCM much faster than their isogenic differentiated counterparts with long G1 phases. During the earliest stages of differentiation toward all lineages, MCM loading slows concurrently with G1 lengthening, revealing developmental control of MCM loading. In contrast, ectopic Cyclin E overproduction uncouples short G1 from fast MCM loading. Rapid licensing in stem cells is caused by accumulation of the MCM loading protein, Cdt1. Prematurely slowing MCM loading in pluripotent cells not only lengthens G1 but also accelerates differentiation. Thus, rapid origin licensing is an intrinsic characteristic of stem cells that contributes to pluripotency maintenance. From red blood cells to nerve cells, animals’ bodies contain many different types of specialized cells. These all begin as stem cells, which have the potential to divide and make more stem cells or to specialize. All dividing cells must first unwind their DNA so that it can be copied. To achieve this, cells load DNA-unwinding enzymes called helicases onto their DNA during the part of the cell cycle known as G1 phase. Cells must load enough helicase enzymes to ensure that their DNA is copied completely and in time. Stem cells divide faster than their specialized descendants, and have a much shorter G1 phase too. Yet these cells still manage to load enough helicases to copy their DNA. Little is known about how the amount, rate and timing of helicase loading varies between cells that divide at different speeds. Now Matson et al. have measured how quickly helicase enzymes are loaded onto DNA in individual human cells, including stem cells and specialized or “differentiated” cells. Stem cells loaded helicases rapidly to make up for the short time they spent in G1 phase, while differentiated cells loaded the enzymes more slowly. Measuring how the loading rate changed when stem cells were triggered to specialize showed that helicase loading slowed as the G1 phase got longer. Matson et al. found that the levels of key proteins required for helicase loading correlated with the rates of loading. Altering the levels of the proteins changed how quickly the enzymes were loaded and how the cells behaved – for example, slowing down the loading of helicases made the stem cells specialize quicker. These findings show that the processes of cell differentiation and DNA replication are closely linked. This study and future ones will help scientists understand what is happening during early animal development, when specialization first takes place, as well as what has gone wrong in cancer cells, which also divide quickly. A better understanding of this process also helps in regenerative medicine – where one of the challenges is to make enough specialized cells to transplant into a patient with tissue damage without those cells becoming cancerous.
Collapse
Affiliation(s)
- Jacob Peter Matson
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, United States
| | - Raluca Dumitru
- Human Pluripotent Stem Cell Core Facility, The University of North Carolina, Chapel Hill, United States
| | - Philip Coryell
- Department of Genetics, The University of North Carolina, Chapel Hill, United States
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, The University of Minnesota, Minneapolis, United States
| | - Weili Chen
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Kirk Twaroski
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Beau R Webber
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, The University of Minnesota, Minneapolis, United States
| | - Jeremy E Purvis
- Department of Genetics, The University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
15
|
Simvastatin suppresses the DNA replication licensing factor MCM7 and inhibits the growth of tamoxifen-resistant breast cancer cells. Sci Rep 2017; 7:41776. [PMID: 28150753 PMCID: PMC5288718 DOI: 10.1038/srep41776] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/29/2016] [Indexed: 12/27/2022] Open
Abstract
Acquired tamoxifen resistance (TamR) remains a major challenge in breast cancer endocrine therapy. The mechanism of acquiring tamoxifen resistance remains elusive, and no effective drugs are available. In this investigation, we determined that the expression of the DNA damage marker γH2AX is upregulated under minichromosome maintenance protein 7 (MCM7) knockdown in phospho Ser807/811-retinoblastoma protein (p-Rb) defect cells. In addition, the expression of p-Rb was lower in TamR cells than in parental cells, and the expression of γH2AX was significantly upregulated when MCM7 was knocked down in TamR cells. Simvastatin, an agent for hypercholesterolemia treatment, activated the MCM7/p-RB/γH2AX axis and induced DNA damage in TamR cells, especially when combined with tamoxifen. Finally, in vitro and in vivo experiments demonstrated that simvastatin combined with tamoxifen increased TamR cell apoptosis and inhibited xenograft growth. In conclusion, simvastatin may suppress TamR cell growth by inhibiting MCM7 and Rb and subsequently inducing DNA damage.
Collapse
|
16
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
17
|
Juríková M, Danihel Ľ, Polák Š, Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem 2016; 118:544-52. [PMID: 27246286 DOI: 10.1016/j.acthis.2016.05.002] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/05/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
The proliferative activity of tumour cells represents an important prognostic marker in the diagnosis of cancer. One of the methods for assessing the proliferative activity of cells is the immunohistochemical detection of cell cycle-specific antigens. For example, Ki67, proliferating cell nuclear antigen (PCNA), and minichromosome maintenance (MCM) proteins are standard markers of proliferation that are commonly used to assess the growth fraction of a cell population. The function of Ki67, the widely used marker of proliferation, still remains unclear. In contrast, PCNA and MCM proteins have been identified as important participants of DNA replication. All three proteins only manifest their expression during the cell division of normal and neoplastic cells. Since the expression of these proliferative markers was confirmed in several malignant tumours, their prognostic and predictive values have been evaluated to determine their significance in the diagnosis of cancer. This review offers insight into the discovery of the abovementioned proteins, as well as their current molecular and biological importance. In addition, the functions and properties of all three proteins and their use as markers of proliferation in the diagnosis of breast cancer are described. This work also reveals new findings about the role of Ki67 during the mitotic phase of the cell cycle. Finally, information is provided about the advantages and disadvantages of using all three antigens in the diagnosis of cancer.
Collapse
Affiliation(s)
- Miroslava Juríková
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia.
| | - Ľudovít Danihel
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| |
Collapse
|
18
|
Forment JV, Jackson SP. A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells. Nat Protoc 2015; 10:1297-307. [PMID: 26226461 PMCID: PMC4743064 DOI: 10.1038/nprot.2015.066] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein accumulation on chromatin has traditionally been studied using immunofluorescence microscopy or biochemical cellular fractionation followed by western immunoblot analysis. As a way to improve the reproducibility of this kind of analysis, to make it easier to quantify and to allow a streamlined application in high-throughput screens, we recently combined a classical immunofluorescence microscopy detection technique with flow cytometry. In addition to the features described above, and by combining it with detection of both DNA content and DNA replication, this method allows unequivocal and direct assignment of cell cycle distribution of protein association to chromatin without the need for cell culture synchronization. Furthermore, it is relatively quick (takes no more than a working day from sample collection to quantification), requires less starting material compared with standard biochemical fractionation methods and overcomes the need for flat, adherent cell types that are required for immunofluorescence microscopy.
Collapse
Affiliation(s)
- Josep V. Forment
- The Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, and The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Stephen P. Jackson
- The Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, and The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|
19
|
Rizzardi LF, Coleman KE, Varma D, Matson JP, Oh S, Cook JG. CDK1-dependent inhibition of the E3 ubiquitin ligase CRL4CDT2 ensures robust transition from S Phase to Mitosis. J Biol Chem 2014; 290:556-67. [PMID: 25411249 DOI: 10.1074/jbc.m114.614701] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Replication-coupled destruction of a cohort of cell cycle proteins ensures efficient and precise genome duplication. Three proteins destroyed during replication via the CRL4(CDT2) ubiquitin E3 ligase, CDT1, p21, and SET8 (PR-SET7), are also essential or important during mitosis, making their reaccumulation after S phase a critical cell cycle event. During early and mid-S phase and during DNA repair, proliferating cell nuclear antigen (PCNA) loading onto DNA (PCNA(DNA)) triggers the interaction between CRL4(CDT2) and its substrates, resulting in their degradation. We have discovered that, beginning in late S phase, PCNA(DNA) is no longer sufficient to trigger CRL4(CDT2)-mediated degradation. A CDK1-dependent mechanism that blocks CRL4(CDT2) activity by interfering with CDT2 recruitment to chromatin actively protects CRL4(CDT2) substrates. We postulate that deliberate override of replication-coupled destruction allows anticipatory accumulation in late S phase. We further show that (as for CDT1) de novo SET8 reaccumulation is important for normal mitotic progression. In this manner, CDK1-dependent CRL4(CDT2) inactivation contributes to efficient transition from S phase to mitosis.
Collapse
Affiliation(s)
| | - Kate E Coleman
- From the Curriculum in Genetics and Molecular Biology and
| | - Dileep Varma
- the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jacob P Matson
- the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Seeun Oh
- the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jeanette Gowen Cook
- From the Curriculum in Genetics and Molecular Biology and the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
20
|
Uzunova SD, Zarkov AS, Ivanova AM, Stoynov SS, Nedelcheva-Veleva MN. The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence. Cell Div 2014; 9:4. [PMID: 25379053 PMCID: PMC4221646 DOI: 10.1186/1747-1028-9-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/17/2014] [Indexed: 01/22/2023] Open
Abstract
Background The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. Findings This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. Conclusions In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle.
Collapse
Affiliation(s)
- Sonya Dimitrova Uzunova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Alexander Stefanov Zarkov
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Anna Marianova Ivanova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Stoyno Stefanov Stoynov
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | | |
Collapse
|
21
|
Symeonidou IE, Kotsantis P, Roukos V, Rapsomaniki MA, Grecco HE, Bastiaens P, Taraviras S, Lygerou Z. Multi-step loading of human minichromosome maintenance proteins in live human cells. J Biol Chem 2013; 288:35852-67. [PMID: 24158436 DOI: 10.1074/jbc.m113.474825] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Once-per-cell cycle replication is regulated through the assembly onto chromatin of multisubunit protein complexes that license DNA for a further round of replication. Licensing consists of the loading of the hexameric MCM2-7 complex onto chromatin during G1 phase and is dependent on the licensing factor Cdt1. In vitro experiments have suggested a two-step binding mode for minichromosome maintenance (MCM) proteins, with transient initial interactions converted to stable chromatin loading. Here, we assess MCM loading in live human cells using an in vivo licensing assay on the basis of fluorescence recovery after photobleaching of GFP-tagged MCM protein subunits through the cell cycle. We show that, in telophase, MCM2 and MCM4 maintain transient interactions with chromatin, exhibiting kinetics similar to Cdt1. These are converted to stable interactions from early G1 phase. The immobile fraction of MCM2 and MCM4 increases during G1 phase, suggestive of reiterative licensing. In late G1 phase, a large fraction of MCM proteins are loaded onto chromatin, with maximal licensing observed just prior to S phase onset. Fluorescence loss in photobleaching experiments show subnuclear concentrations of MCM-chromatin interactions that differ as G1 phase progresses and do not colocalize with sites of DNA synthesis in S phase.
Collapse
|
22
|
Kassner I, Andersson A, Fey M, Tomas M, Ferrando-May E, Hottiger MO. SET7/9-dependent methylation of ARTD1 at K508 stimulates poly-ADP-ribose formation after oxidative stress. Open Biol 2013; 3:120173. [PMID: 24088713 PMCID: PMC3814718 DOI: 10.1098/rsob.120173] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) is localized in the nucleus, where it ADP-ribosylates specific target proteins. The post-translational modification (PTM) with a single ADP-ribose unit or with polymeric ADP-ribose (PAR) chains regulates protein function as well as protein–protein interactions and is implicated in many biological processes and diseases. SET7/9 (Setd7, KMT7) is a protein methyltransferase that catalyses lysine monomethylation of histones, but also methylates many non-histone target proteins such as p53 or DNMT1. Here, we identify ARTD1 as a new SET7/9 target protein that is methylated at K508 in vitro and in vivo. ARTD1 auto-modification inhibits its methylation by SET7/9, while auto-poly-ADP-ribosylation is not impaired by prior methylation of ARTD1. Moreover, ARTD1 methylation by SET7/9 enhances the synthesis of PAR upon oxidative stress in vivo. Furthermore, laser irradiation-induced PAR formation and ARTD1 recruitment to sites of DNA damage in a SET7/9-dependent manner. Together, these results reveal a novel mechanism for the regulation of cellular ARTD1 activity by SET7/9 to assure efficient PAR formation upon cellular stress.
Collapse
Affiliation(s)
- Ingrid Kassner
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
One of the fundamental challenges facing the cell is to accurately copy its genetic material to daughter cells. When this process goes awry, genomic instability ensues in which genetic alterations ranging from nucleotide changes to chromosomal translocations and aneuploidy occur. Organisms have developed multiple mechanisms that can be classified into two major classes to ensure the fidelity of DNA replication. The first class includes mechanisms that prevent premature initiation of DNA replication and ensure that the genome is fully replicated once and only once during each division cycle. These include cyclin-dependent kinase (CDK)-dependent mechanisms and CDK-independent mechanisms. Although CDK-dependent mechanisms are largely conserved in eukaryotes, higher eukaryotes have evolved additional mechanisms that seem to play a larger role in preventing aberrant DNA replication and genome instability. The second class ensures that cells are able to respond to various cues that continuously threaten the integrity of the genome by initiating DNA-damage-dependent "checkpoints" and coordinating DNA damage repair mechanisms. Defects in the ability to safeguard against aberrant DNA replication and to respond to DNA damage contribute to genomic instability and the development of human malignancy. In this article, we summarize our current knowledge of how genomic instability arises, with a particular emphasis on how the DNA replication process can give rise to such instability.
Collapse
Affiliation(s)
- Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
24
|
Xu M, Chang YP, Chen XS. Expression, purification and biochemical characterization of Schizosaccharomyces pombe Mcm4, 6 and 7. BMC BIOCHEMISTRY 2013; 14:5. [PMID: 23444842 PMCID: PMC3605359 DOI: 10.1186/1471-2091-14-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/13/2013] [Indexed: 11/10/2022]
Abstract
Background The hetero-hexamer of the eukaryotic minichromosome maintenance (MCM) proteins plays an essential role in replication of genomic DNA. The ring-shaped Mcm2-7 hexamers comprising one of each subunit show helicase activity in vitro, and form double-hexamers on DNA. The Mcm4/6/7 also forms a hexameric complex with helicase activity in vitro. Results We used an Escherichiai coli expression system to express various domains of Schizosaccharomyces pombe Mcm4, 6 and 7 in order to characterize their domain structure, oligomeric states, and possible inter-/intra-subunit interactions. We also successfully employed a co-expression system to express Mcm4/6/7 at the same time in Escherichiai coli, and have purified functional Mcm4/6/7 complex in a hexameric state in high yield and purity, providing a means for generating large quantity of proteins for future structural and biochemical studies. Conclusions Based on our results and those of others, models were proposed for the subunit arrangement and architecture of both the Mcm4/6/7 hexamer and the Mcm2-7 double-hexamer.
Collapse
Affiliation(s)
- Meng Xu
- Graduate Program in Genetics, Molecular and Cell Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
25
|
Mimura T, Yamagami S, Amano S. Corneal endothelial regeneration and tissue engineering. Prog Retin Eye Res 2013; 35:1-17. [PMID: 23353595 DOI: 10.1016/j.preteyeres.2013.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/05/2013] [Accepted: 01/08/2013] [Indexed: 02/07/2023]
Abstract
Human corneal endothelial cells (HCECs) have a limited proliferative capacity. Descemet stripping with automated endothelial keratoplasty (DSAEK) has become the preferred method for the treatment of corneal endothelial deficiency, but it requires a donor cornea. To overcome the shortage of donor corneas, transplantation of cultured HCEC sheets has been attempted in experimental studies. This review summarizes current knowledge about the mechanisms of corneal endothelial wound healing and about tissue engineering for the corneal endothelium. We also discuss recent work on tissue engineering for DSAEK grafts using cultured HCECs and HCEC precursor cell isolation method (the sphere-forming assay). DSAEK grafts (HCEC sheets) were constructed by seeding cultured HCECs on human amniotic membrane, thin human corneal stroma, and collagen sheets. The pump function of the HCEC sheets thus obtained was approximately 75%-95% of that for human donor corneas. HCEC sheets were transplanted onto rabbit corneas after DSAEK. While the untransplanted control group displayed severe stromal edema, the transplanted group had clear corneas throughout the observation period. The sphere-forming assay using donor human corneal endothelium or cultured HCECs can achieved mass production of human corneal endothelial precursors. These findings indicate that cultured HCECs transplanted after DSAEK can perform effective corneal dehydration in vivo and suggest the feasibility of employing the transplantation of cultured HCECs to treat endothelial dysfunction. Additionally, corneal endothelial precursors may be an effective strategy for corneal endothelial regeneration.
Collapse
Affiliation(s)
- Tatsuya Mimura
- Department of Ophthalmology, Tokyo Women's Medical University Medical Center East, 2-1-10 Nishiogu, Arakawa-ku, Tokyo 116-8567, Japan.
| | | | | |
Collapse
|
26
|
Wilson RHC, Coverley D. Relationship between DNA replication and the nuclear matrix. Genes Cells 2012; 18:17-31. [PMID: 23134523 PMCID: PMC3564400 DOI: 10.1111/gtc.12010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/10/2012] [Indexed: 01/24/2023]
Abstract
There is an extensive list of primary published work related to the nuclear matrix (NM). Here we review the aspects that are required to understand its relationship with DNA replication, while highlighting some of the difficulties in studying such a structure, and possible differences that arise from the choice of model system. We consider NM attachment regions of DNA and discuss their characteristics and potential function before reviewing data that deal specifically with functional interaction with DNA replication factors. Data have long existed indicating that newly synthesized DNA is associated with a nuclease-resistant NM, allowing the conclusion that the elongation step of DNA synthesis is immobilized within the nucleus. We review in more detail the emerging data that suggest that prereplication complex proteins and origins of replication are transiently recruited to the NM during late G1 and early S-phase. Collectively, these data suggest that the initiation step of the DNA replication process is also immobilized by attachment to the NM. We outline models that discuss the possible spatial relationships and highlight the emerging evidence that suggests there may be important differences between cell types.
Collapse
|
27
|
Aparicio T, Megías D, Méndez J. Visualization of the MCM DNA helicase at replication factories before the onset of DNA synthesis. Chromosoma 2012; 121:499-507. [PMID: 22911457 DOI: 10.1007/s00412-012-0381-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 10/28/2022]
Abstract
In mammalian cells, DNA synthesis takes place at defined nuclear structures termed "replication foci" (RF) that follow the same order of activation in each cell cycle. Intriguingly, immunofluorescence studies have failed to visualize the DNA helicase minichromosome maintenance (MCM) at RF, raising doubts about its physical presence at the sites of DNA synthesis. We have revisited this paradox by pulse-labeling RF during the S phase and analyzing the localization of MCM at labeled DNA in the following cell cycle. Using high-throughput confocal microscopy, we provide direct evidence that MCM proteins concentrate in G1 at the chromosome structures bound to become RF in the S phase. Upon initiation of DNA synthesis, an active "MCM eviction" mechanism contributes to reduce the excess of DNA helicases at RF. Most MCM complexes are released from chromatin, except for a small but detectable fraction that remains at the forks during the S phase, as expected for a replicative helicase.
Collapse
Affiliation(s)
- Tomás Aparicio
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | | | | |
Collapse
|
28
|
Vaara M, Itkonen H, Hillukkala T, Liu Z, Nasheuer HP, Schaarschmidt D, Pospiech H, Syväoja JE. Segregation of replicative DNA polymerases during S phase: DNA polymerase ε, but not DNA polymerases α/δ, are associated with lamins throughout S phase in human cells. J Biol Chem 2012; 287:33327-38. [PMID: 22887995 DOI: 10.1074/jbc.m112.357996] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA polymerases (Pol) α, δ, and ε replicate the bulk of chromosomal DNA in eukaryotic cells, Pol ε being the main leading strand and Pol δ the lagging strand DNA polymerase. By applying chromatin immunoprecipitation (ChIP) and quantitative PCR we found that at G(1)/S arrest, all three DNA polymerases were enriched with DNA containing the early firing lamin B2 origin of replication and, 2 h after release from the block, with DNA containing the origin at the upstream promoter region of the MCM4 gene. Pol α, δ, and ε were released from these origins upon firing. All three DNA polymerases, Mcm3 and Cdc45, but not Orc2, still formed complexes in late S phase. Reciprocal ChIP of the three DNA polymerases revealed that at G(1)/S arrest and early in S phase, Pol α, δ, and ε were associated with the same nucleoprotein complexes, whereas in late S phase Pol ε and Pol α/δ were largely associated with distinct complexes. At G(1)/S arrest, the replicative DNA polymerases were associated with lamins, but in late S phase only Pol ε, not Pol α/δ, remained associated with lamins. Consistently, Pol ε, but not Pol δ, was found in nuclear matrix fraction throughout the cell cycle. Therefore, Pol ε and Pol α/δ seem to pursue their functions at least in part independently in late S phase, either by physical uncoupling of lagging strand maturation from the fork progression, or by recruitment of Pol δ, but not Pol ε, to post-replicative processes such as translesion synthesis or post-replicative repair.
Collapse
Affiliation(s)
- Markku Vaara
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Asumda FZ, Chase PB. Nuclear cardiac troponin and tropomyosin are expressed early in cardiac differentiation of rat mesenchymal stem cells. Differentiation 2011; 83:106-15. [PMID: 22364878 DOI: 10.1016/j.diff.2011.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 08/31/2011] [Accepted: 10/10/2011] [Indexed: 01/22/2023]
Abstract
Nuclear actin - which is immunologically distinct from cytoplasmic actin - has been documented in a number of differentiated cell types, and cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) have been detected in association with nuclei of adult human cardiac myocytes. It is not known whether these and related proteins are present in undifferentiated stem cells, or when they appear in cardiomyogenic cells following differentiation. We first tested the hypothesis that nuclear actin and cardiac isoforms of troponin C (cTnC) and tropomyosin (cTm) are present along with cTnI and cTnT in nuclei of isolated, neonatal rat cardiomyocytes in culture. We also tested the hypothesis that of these five proteins, only actin is present in nuclei of multipotent, bone marrow-derived mesenchymal stem cells (BM-MSCs) from adult rats in culture, but that cTnC, cTnI, cTnT and cTm appear early and uniquely following cardiomyogenic differentiation. Here we show that nuclear actin is present within nuclei of both ventricular cardiomyocytes and undifferentiated, multipotent BM-MSCs. We furthermore show that cTnC, cTnI, cTnT and cTm are not only present in myofilaments of ventricular cardiomyocytes in culture but are also within their nuclei; significantly, these four proteins appear between days 3 and 5 in both myofilaments and nuclei of BM-MSCs treated to differentiate into cardiomyogenic cells. These observations indicate that cardiac troponin and tropomyosin could have important cellular function(s) beyond Ca(2+)-regulation of contraction. While the roles of nuclear-associated actin, troponin subunits and tropomyosin in cardiomyocytes are not known, we anticipate that the BM-MSC culture system described here will be useful for elucidating their function(s), which likely involve cardiac-specific, Ca(2+)-dependent signaling in the nucleus.
Collapse
Affiliation(s)
- Faizal Z Asumda
- Department of Biological Science and Program in Molecular Biophysics, Florida State University, FL 32306-4295, USA.
| | | |
Collapse
|
30
|
Shimura M, Toyoda Y, Iijima K, Kinomoto M, Tokunaga K, Yoda K, Yanagida M, Sata T, Ishizaka Y. Epigenetic displacement of HP1 from heterochromatin by HIV-1 Vpr causes premature sister chromatid separation. J Cell Biol 2011; 194:721-35. [PMID: 21875947 PMCID: PMC3171121 DOI: 10.1083/jcb.201010118] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 08/03/2011] [Indexed: 11/22/2022] Open
Abstract
Although pericentromeric heterochromatin is essential for chromosome segregation, its role in humans remains controversial. Dissecting the function of HIV-1-encoded Vpr, we unraveled important properties of heterochromatin during chromosome segregation. In Vpr-expressing cells, hRad21, hSgo1, and hMis12, which are crucial for proper chromosome segregation, were displaced from the centromeres of mitotic chromosomes, resulting in premature chromatid separation (PCS). Interestingly, Vpr displaced heterochromatin protein 1-α (HP1-α) and HP1-γ from chromatin. RNA interference (RNAi) experiments revealed that down-regulation of HP1-α and/or HP1-γ induced PCS, concomitant with the displacement of hRad21. Notably, Vpr stimulated the acetylation of histone H3, whereas p300 RNAi attenuated the Vpr-induced displacement of HP1-α and PCS. Furthermore, Vpr bound to p300 that was present in insoluble regions of the nucleus, suggesting that Vpr aberrantly recruits the histone acetyltransferase activity of p300 to chromatin, displaces HP1-α, and causes chromatid cohesion defects. Our study reveals for the first time centromere cohesion impairment resulting from epigenetic disruption of higher-order structures of heterochromatin by a viral pathogen.
Collapse
Affiliation(s)
- Mari Shimura
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Inoue A, Hyle J, Lechner MS, Lahti JM. Mammalian ChlR1 has a role in heterochromatin organization. Exp Cell Res 2011; 317:2522-35. [PMID: 21854770 DOI: 10.1016/j.yexcr.2011.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/18/2011] [Accepted: 08/03/2011] [Indexed: 11/16/2022]
Abstract
The ChlR1 DNA helicase, encoded by DDX11 gene, which is responsible for Warsaw breakage syndrome (WABS), has a role in sister-chromatid cohesion. In this study, we show that human ChlR1 deficient cells exhibit abnormal heterochromatin organization. While constitutive heterochromatin is discretely localized at perinuclear and perinucleolar regions in control HeLa cells, ChlR1-depleted cells showed dispersed localization of constitutive heterochromatin accompanied by disrupted centromere clustering. Cells isolated from Ddx11(-/-) embryos also exhibited diffuse localization of centromeres and heterochromatin foci. Similar abnormalities were found in HeLa cells depleted of combinations of HP1α and HP1β. Immunofluorescence and chromatin immunoprecipitation showed a decreased level of HP1α at pericentric regions in ChlR1-depleted cells. Trimethyl-histone H3 at lysine 9 (H3K9-me3) was also modestly decreased at pericentric sequences. The abnormality in pericentric heterochromatin was further supported by decreased DNA methylation within major satellite repeats of Ddx11(-/-) embryos. Furthermore, micrococcal nuclease (MNase) assay revealed a decreased chromatin density at the telomeres. These data suggest that in addition to a role in sister-chromatid cohesion, ChlR1 is also involved in the proper formation of heterochromatin, which in turn contributes to global nuclear organization and pleiotropic effects.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | |
Collapse
|
32
|
Kawabata T, Yamaguchi S, Buske T, Luebben SW, Wallace M, Matise I, Schimenti JC, Shima N. A reduction of licensed origins reveals strain-specific replication dynamics in mice. Mamm Genome 2011; 22:506-17. [PMID: 21611832 DOI: 10.1007/s00335-011-9333-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/04/2011] [Indexed: 12/24/2022]
Abstract
Replication origin licensing builds a fundamental basis for DNA replication in all eukaryotes. This occurs during the late M to early G1 phases in which chromatin is licensed by loading of the MCM2-7 complex, an essential component of the replicative helicase. In the following S phase, only a minor fraction of chromatin-bound MCM2-7 complexes are activated to unwind the DNA. Therefore, it is proposed that the vast majority of MCM2-7 complexes license dormant origins that can be used as backups. Consistent with this idea, it has been repeatedly demonstrated that a reduction (~60%) in chromatin-bound MCM2-7 complexes has little effect on the density of active origins. In this study, however, we describe the first exception to this observation. A reduction of licensed origins due to Mcm4 ( chaos3 ) homozygosity reduces active origin density in primary embryonic fibroblasts (MEFs) in a C57BL/6J (B6) background. We found that this is associated with an intrinsically lower level of active origins in this background compared to others. B6 Mcm4 ( chaos3/chaos3 ) cells proliferate slowly due to p53-dependent upregulation of p21. In fact, the development of B6 Mcm4 ( chaos3/chaos3 ) mice is impaired and a significant fraction of them die at birth. While inactivation of p53 restores proliferation in B6 Mcm4 ( chaos3/chaos3 ) MEFs, it paradoxically does not rescue animal lethality. These findings indicate that a reduction of licensed origins may cause a more profound effect on cell types with lower densities of active origins. Moreover, p53 is required for the development of mice that suffer from intrinsic replication stress.
Collapse
Affiliation(s)
- Tsuyoshi Kawabata
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Susperreguy S, Prendes LP, Desbats MA, Charó NL, Brown K, MacDougald OA, Kerppola T, Schwartz J, Piwien-Pilipuk G. Visualization by BiFC of different C/EBPβ dimers and their interaction with HP1α reveals a differential subnuclear distribution of complexes in living cells. Exp Cell Res 2011; 317:706-23. [PMID: 21122806 PMCID: PMC3138133 DOI: 10.1016/j.yexcr.2010.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 10/18/2010] [Accepted: 11/15/2010] [Indexed: 01/13/2023]
Abstract
How the co-ordinated events of gene activation and silencing during cellular differentiation are influenced by spatial organization of the cell nucleus is still poorly understood. Little is known about the molecular mechanisms controlling subnuclear distribution of transcription factors, and their interplay with nuclear proteins that shape chromatin structure. Here we show that C/EBPβ not only associates with pericentromeric heterochromatin but also interacts with the nucleoskeleton upon induction of adipocyte differentiation of 3T3-L1 cells. Different C/EBPβ dimers localize in different nuclear domains. Using BiFC in living cells, we show that LAP (Liver Activating Protein) homodimers localize in euchromatin and heterochromatin. In contrast, LIP (Liver Inhibitory Protein) homodimers localize exclusively in heterochromatin. Importantly, their differential subnuclear distribution mirrors the site for interaction with HP1α. HP1α inhibits LAP transcriptional capacity and occupies the promoter of the C/EBPβ-dependent gene c/ebpα in 3T3-L1 preadipocytes. When adipogenesis is induced, HP1α binding decreases from c/ebpα promoter, allowing transcription. Thus, the equilibrium among different pools of C/EBPβ associated with chromatin or nucleoskeleton, and dynamic changes in their interaction with HP1α, play key roles in the regulation of C/EBP target genes during adipogenesis.
Collapse
Affiliation(s)
| | | | - María A. Desbats
- Instituto de Biología y Medicina Experimental – CONICET, Buenos Aires, Argentina
| | - Nancy L. Charó
- Instituto de Biología y Medicina Experimental – CONICET, Buenos Aires, Argentina
| | - Karen Brown
- Chromosome Biology Group, Imperial College of London, London, UK
| | - Ormond A. MacDougald
- Dept. of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tom Kerppola
- Howard Hughes Medical Institute, Dept. of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jessica Schwartz
- Dept. of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
34
|
Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, Botchan MR, Shima N. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 2011; 41:543-53. [PMID: 21362550 PMCID: PMC3062258 DOI: 10.1016/j.molcel.2011.02.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/24/2010] [Accepted: 12/21/2010] [Indexed: 01/25/2023]
Abstract
Eukaryotic cells license far more origins than are actually used for DNA replication, thereby generating a large number of dormant origins. Accumulating evidence suggests that such origins play a role in chromosome stability and tumor suppression, though the underlying mechanism is largely unknown. Here, we show that a loss of dormant origins results in an increased number of stalled replication forks, even in unchallenged S phase in primary mouse fibroblasts derived from embryos homozygous for the Mcm4(Chaos3) allele. We found that this allele reduces the stability of the MCM2-7 complex, but confers normal helicase activity in vitro. Despite the activation of multiple fork recovery pathways, replication intermediates in these cells persist into M phase, increasing the number of abnormal anaphase cells with lagging chromosomes and/or acentric fragments. These findings suggest that dormant origins constitute a major pathway for stalled fork recovery, contributing to faithful chromosome segregation and tumor suppression.
Collapse
Affiliation(s)
- Tsuyoshi Kawabata
- Department of Genetics, Cell Biology and Development, University of Minnesota
- Masonic Cancer Center, Minneapolis, MN 55455 USA
| | - Spencer W. Luebben
- Department of Genetics, Cell Biology and Development, University of Minnesota
| | - Satoru Yamaguchi
- Department of Genetics, Cell Biology and Development, University of Minnesota
- Masonic Cancer Center, Minneapolis, MN 55455 USA
| | - Ivar Ilves
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Ilze Matise
- Masonic Cancer Center, Minneapolis, MN 55455 USA
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - Tavanna Buske
- Department of Genetics, Cell Biology and Development, University of Minnesota
| | - Michael R. Botchan
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, University of Minnesota
- Masonic Cancer Center, Minneapolis, MN 55455 USA
| |
Collapse
|
35
|
Kuipers MA, Stasevich TJ, Sasaki T, Wilson KA, Hazelwood KL, McNally JG, Davidson MW, Gilbert DM. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload. ACTA ACUST UNITED AC 2011; 192:29-41. [PMID: 21220507 PMCID: PMC3019549 DOI: 10.1083/jcb.201007111] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Components of the minichromosome maintenance complex (Mcm2-7) remain indefinitely bound to chromatin during G1 phase and replication arrest. The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.
Collapse
Affiliation(s)
- Marjorie A Kuipers
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Correlation of Ki-67 and MCM-2 proliferative marker expression with grade of histological malignancy (G) in ductal breast cancers. Folia Histochem Cytobiol 2010; 48:442-6. [DOI: 10.2478/v10042-010-0069-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Evidence of increased islet cell proliferation in patients with recent-onset type 1 diabetes. Diabetologia 2010; 53:2020-8. [PMID: 20532863 DOI: 10.1007/s00125-010-1817-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 05/12/2010] [Indexed: 12/29/2022]
Abstract
AIMS/HYPOTHESIS In adults, the rate of beta cell replication is normally very low, but recent evidence suggests that it may increase during insulitis. We therefore studied tissue from donors with recent-onset type 1 diabetes to establish whether islet cell proliferation is increased during the disease process. METHODS Paraffin-embedded pancreatic sections from ten donors with recent-onset type 1 diabetes and a range of relevant controls were stained by immunohistochemical techniques with antibodies against the proliferation markers Ki67 and minichromosome maintenance protein-2 (MCM-2). A combination staining technique involving immunoperoxidase and immunofluorescence methods was developed to quantify the numbers of alpha and beta cells with Ki67-positive nuclei and to investigate the relationship between insulitis and islet cell proliferation. RESULTS In non-diabetic control donors, only 1.1 +/- 0.3% (mean +/- SEM) of islets contained one or more Ki67(+) islet cells, whereas this proportion was increased markedly in recent-onset type 1 diabetes (10.88 +/- 2.5%; p < 0.005). An equivalent increase in Ki67(+) staining occurred in alpha and beta cells and was correlated positively with the presence of insulitis. A significant increase in the labelling of islet cells from type 1 diabetic donors was also seen when MCM-2 staining was employed. Increased islet cell proliferation was not evident in three donors with longer duration type 1 diabetes or in ten type 2 diabetic donors. CONCLUSIONS/INTERPRETATION Alpha and beta cells undergo a marked increase in proliferation during the progression of type 1 diabetes in humans. The results imply that islet cell proliferation is re-initiated in response to the autoimmune attack associated with type 1 diabetes.
Collapse
Affiliation(s)
- A Willcox
- Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry (University of Exeter), Tamar Science Park, Derriford, Plymouth, UK
| | | | | | | | | |
Collapse
|
38
|
Minichromosome maintenance proteins 2, 3 and 7 in medulloblastoma: overexpression and involvement in regulation of cell migration and invasion. Oncogene 2010; 29:5475-89. [DOI: 10.1038/onc.2010.287] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Abstract
Origins of DNA replication are licensed through the assembly of a chromatin-bound prereplication complex. Multiple regulatory mechanisms block new prereplication complex assembly after the G(1)/S transition to prevent rereplication. The strict inhibition of licensing after the G(1)/S transition means that all origins used in S phase must have been licensed in the preceding G(1). Nevertheless mechanisms that coordinate S phase entry with the completion of origin licensing are still poorly understood. We demonstrate that depletion of either of two essential licensing factors, Cdc6 or Cdt1, in normal human fibroblasts induces a G(1) arrest accompanied by inhibition of cyclin E/Cdk2 activity and hypophosphorylation of Rb. The Cdk2 inhibition is attributed to a reduction in the essential activating phosphorylation of T160 and an associated delay in Cdk2 nuclear accumulation. In contrast, licensing inhibition in the HeLa or U2OS cancer cell lines failed to regulate Cdk2 or Rb phosphorylation, and these cells died by apoptosis. Co-depletion of Cdc6 and p53 in normal cells restored Cdk2 activation and Rb phosphorylation, permitting them to enter S phase with a reduced rate of replication and also to accumulate markers of DNA damage. These results demonstrate dependence on origin licensing for multiple events required for G(1) progression, and suggest a mechanism to prevent premature S phase entry that functions in normal cells but not in p53-deficient cells.
Collapse
Affiliation(s)
- Kathleen R. Nevis
- Department of Pathology and Laboratory Medicine; University of North Carolina; Chapel Hill, NC USA
| | - Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine; University of North Carolina; Chapel Hill, NC USA
- Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
- Center for Environmental Health and Susceptibility; University of North Carolina; Chapel Hill, NC USA
| | - Jeanette Gowen Cook
- Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
- Department of Biochemistry and Biophysics; University of North Carolina; Chapel Hill, NC USA
| |
Collapse
|
40
|
Abstract
Accurate and timely duplication of chromosomal DNA requires that replication be coordinated with processes that ensure genome integrity. Significant advances in determining how the earliest steps in DNA replication are affected by DNA damage have highlighted some of the mechanisms to establish that coordination. Recent insights have expanded the relationship between the ATM and ATR-dependent checkpoint pathways and the proteins that bind and function at replication origins. These findings suggest that checkpoints and replication are more intimately associated than previously appreciated, even in the absence of exogenous DNA damage. This review summarizes some of these developments.
Collapse
Affiliation(s)
- Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center Campus Box 7260, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
41
|
Abstract
As proliferation is essential for progression from normal cells to tumor, certain markers specific to proliferating cells may permit detection of premalignant lesions. Here, we aimed to evaluate the possible value of a proliferation marker, minichromosome maintenance 2 (MCM2), in the early diagnosis of colorectal cancer, by analyzing the difference in MCM2 expression among normal mucosa, adenoma, and adenocarcinoma, and investigating the relationship of MCM2 expression in adenomas with clinicopathologic variables. Using immunohistochemistry and real-time reverse transcription-PCR, we observed that the expression of MCM2 protein was present on basal third to half of colonic crypts in normal mucosa, whereas throughout the epithelium in adenomas and adenocarcinomas, the expression of MCM2 mRNA in adenocarcinomas was significantly higher than in adenomas (P=0.001), whereas the difference between adenoma and normal mucosa was not significant (P=0.184); we also found that the expression of MCM2 mRNA tended to be increased in the adenomas with high-grade dysplasia, or in older patients, respectively, compared with those with low-grade dysplasia, and younger patients. These results suggested the potential value of MCM2 in early diagnosis of colorectal cancer.
Collapse
|
42
|
Synthesis and evaluation of pyrido-thieno-pyrimidines as potent and selective Cdc7 kinase inhibitors. Bioorg Med Chem Lett 2009; 19:319-23. [DOI: 10.1016/j.bmcl.2008.11.093] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 11/23/2022]
|
43
|
Gocke CB, Yu H. ZNF198 stabilizes the LSD1-CoREST-HDAC1 complex on chromatin through its MYM-type zinc fingers. PLoS One 2008; 3:e3255. [PMID: 18806873 PMCID: PMC2532748 DOI: 10.1371/journal.pone.0003255] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 08/25/2008] [Indexed: 11/30/2022] Open
Abstract
Histone modifications in chromatin regulate gene expression. A transcriptional co-repressor complex containing LSD1–CoREST–HDAC1 (termed LCH hereafter for simplicity) represses transcription by coordinately removing histone modifications associated with transcriptional activation. RE1-silencing transcription factor (REST) recruits LCH to the promoters of neuron-specific genes, thereby silencing their transcription in non-neuronal tissues. ZNF198 is a member of a family of MYM-type zinc finger proteins that associate with LCH. Here, we show that ZNF198-like proteins are required for the repression of E-cadherin (a gene known to be repressed by LSD1), but not REST-responsive genes. ZNF198 binds preferentially to the intact LCH ternary complex, but not its individual subunits. ZNF198- and REST-binding to the LCH complex are mutually exclusive. ZNF198 associates with chromatin independently of LCH. Furthermore, modification of HDAC1 by small ubiquitin-like modifier (SUMO) in vitro weakens its interaction with CoREST whereas sumoylation of HDAC1 stimulates its binding to ZNF198. Finally, we mapped the LCH- and HDAC1–SUMO-binding domains of ZNF198 to tandem repeats of MYM-type zinc fingers. Therefore, our results suggest that ZNF198, through its multiple protein-protein interaction interfaces, helps to maintain the intact LCH complex on specific, non-REST-responsive promoters and may also prevent SUMO-dependent dissociation of HDAC1.
Collapse
Affiliation(s)
- Christian B. Gocke
- Howard Hughes Medical Institute, Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Charych DH, Coyne M, Yabannavar A, Narberes J, Chow S, Wallroth M, Shafer C, Walter AO. Inhibition of Cdc7/Dbf4 kinase activity affects specific phosphorylation sites on MCM2 in cancer cells. J Cell Biochem 2008; 104:1075-86. [PMID: 18286467 DOI: 10.1002/jcb.21698] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Cdc7/Dbf4 kinase is required for initiation of DNA replication and also plays a role in checkpoint function in response to replication stress. Exactly how Cdc7/Dbf4 mediates those activities remains to be elucidated. Cdc7/Dbf4 physically interacts with and phosphorylates the minichromosome maintenance complex (MCM), such as MCM2, MCM4 and MCM6. Cdc7/Dbf4 activity is required for association of Cdc45 followed by recruitment of DNA polymerase on the chromatin. Using high resolution mass spectrometry, we identified six phosphorylation sites on MCM2, two of them have not been described before. We provide evidence that Cdc7/Dbf4 mediates phosphorylation on serine 108 and serine 40 on human MCM2 in vitro and in vivo in cancer cells in the absence of DNA damage. Antibodies specific to pS108 or pS40 confirmed the sites and established useful read-outs for inhibition of Cdc7/Dbf4. This report demonstrates the utility of an in vitro to in vivo workflow utilizing immunoprecipitation and mass spectrometry to map phosphorylation sites on endogenous kinase substrates. The approach can be readily generalized to identify target modulation read-outs for other potential kinase cancer targets.
Collapse
Affiliation(s)
- Deborah H Charych
- Novartis Institute of Biomedical Research, Oncology, Emeryville, California 94608, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Brondello JM, Pillaire MJ, Rodriguez C, Gourraud PA, Selves J, Cazaux C, Piette J. Novel evidences for a tumor suppressor role of Rev3, the catalytic subunit of Pol zeta. Oncogene 2008; 27:6093-101. [PMID: 18622427 DOI: 10.1038/onc.2008.212] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell cycle checkpoints and DNA repair act in concert to ensure DNA integrity during perturbation of normal replication or in response to genotoxic agents. Deficiencies in these protective mechanisms can lead to cellular transformation and ultimately tumorigenesis. Here we focused on Rev3, the catalytic subunit of the low-fidelity DNA repair polymerase zeta. Rev3 is believed to play a role in double-strand break (DSB)-induced DNA repair by homologous recombination. In line with this hypothesis, we show the accumulation of chromatin-bound Rev3 protein in late S-G2 of untreated cells and in response to clastogenic DNA damage as well as an gamma-H2AX accumulation in Rev3-depleted cells. Moreover, serine 995 of Rev3 is in vitro phosphorylated by the DSB-inducible checkpoint kinase, Chk2. Our data also disclose a significant reduction of rev3 gene expression in 74 colon carcinomas when compared to the normal adjacent tissues. This reduced expression is independent of the carcinoma stages, suggesting that the downregulation of rev3 might have occurred early during tumorigenesis.
Collapse
Affiliation(s)
- J-M Brondello
- Centre Régional de Cancérologie de Montpellier (INSERM-Université de Montpellier I Unité 868) Identité et Plasticité Tumorale, CRCM Val d'Aurelle-Lamarque, Montpellier cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Teer JK, Dutta A. Human Cdt1 lacking the evolutionarily conserved region that interacts with MCM2-7 is capable of inducing re-replication. J Biol Chem 2008; 283:6817-25. [PMID: 18184650 DOI: 10.1074/jbc.m708767200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Replication initiation must be a carefully regulated process to avoid genomic instability caused by aberrant replication. In eukaryotic cells, distinct steps of protein loading (origin licensing) and replication activation are choreographed such that a cell can replicate only once per cell cycle. The first proteins recruited to the origins form the pre-replication complex. Of these proteins, Cdt1 is of interest, as it is the focus of several pathways to control replication initiation. It is degraded by two different pathways, mediated by the interaction of Cdt1 with proliferating cell nuclear antigen (PCNA) or with cyclin-Cdk2 and inhibited by geminin once cells are in S-phase, presumably to prevent reloading of pre-replication complexes once S-phase has begun. Although the requirement of Cdt1 in loading MCM2-7 is known, the mechanism by which overexpressed Cdt1 stimulates re-replication is unclear. In this study we have designed various mutations in Cdt1 to determine which portion of Cdt1 is important for re-replication, providing insight into possible mechanisms. Surprisingly, we found that mutants of Cdt1 that do not interact with MCM2-7 are able to induce re-replication when overexpressed. The re-replication is not due to titration of geminin from endogenous Cdt1 and is not accompanied by stabilization of endogenous Cdt1. Additionally, the N-terminal one-third of Cdt1 is sufficient to induce re-replication. The N terminus contains the PCNA- and cyclin-interacting motifs, and deletion of both motifs simultaneously in the overexpressed Cdt1 prevents re-replication. These findings suggest that exogenous Cdt1 induces re-replication by de-repressing endogenous Cdt1 through the titration of PCNA and cyclin.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
47
|
Martin L. The Replicon Initiation Burst Released by Reoxygenation of Hypoxic T24 Cells is Accompanied by Changes of MCM2 and Cdc7. BMB Rep 2007; 40:805-13. [DOI: 10.5483/bmbrep.2007.40.5.805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 2007; 21:497-518. [PMID: 17344412 DOI: 10.1101/gad.1508907] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, prereplication complexes (pre-RCs) are assembled on chromatin in the G1 phase, rendering origins of DNA replication competent to initiate DNA synthesis. When DNA replication commences in S phase, pre-RCs are disassembled, and multiple initiations from the same origin do not occur because new rounds of pre-RC assembly are inhibited. In most experimental organisms, multiple mechanisms that prevent pre-RC assembly have now been identified, and rereplication within the same cell cycle can be induced through defined perturbations of these mechanisms. This review summarizes the diverse array of inhibitory pathways used by different organisms to prevent pre-RC assembly, and focuses on the challenge of understanding how in any one cell type, various mechanisms cooperate to strictly enforce once per cell cycle regulation of DNA replication.
Collapse
Affiliation(s)
- Emily E Arias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
49
|
Sakwe AM, Nguyen T, Athanasopoulos V, Shire K, Frappier L. Identification and characterization of a novel component of the human minichromosome maintenance complex. Mol Cell Biol 2007; 27:3044-55. [PMID: 17296731 PMCID: PMC1899943 DOI: 10.1128/mcb.02384-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/18/2007] [Accepted: 02/01/2007] [Indexed: 12/11/2022] Open
Abstract
Minichromosome maintenance (MCM) complex replicative helicase complexes play essential roles in DNA replication in all eukaryotes. Using a tandem affinity purification-tagging approach in human cells, we discovered a form of the MCM complex that contains a previously unstudied protein, MCM binding protein (MCM-BP). MCM-BP is conserved in multicellular eukaryotes and shares limited homology with MCM proteins. MCM-BP formed a complex with MCM3 to MCM7, which excluded MCM2; and, conversely, hexameric complexes of MCM2 to MCM7 lacked MCM-BP, indicating that MCM-BP can replace MCM2 in the MCM complex. MCM-BP-containing complexes exhibited increased stability under experimental conditions relative to those containing MCM2. MCM-BP also formed a complex with the MCM4/6/7 core helicase in vitro, but, unlike MCM2, did not inhibit this helicase activity. A proportion of MCM-BP bound to cellular chromatin in a cell cycle-dependent manner typical of MCM proteins, and, like other MCM subunits, preferentially associated with a cellular origin in G(1) but not in S phase. In addition, down-regulation of MCM-BP decreased the association of MCM4 with chromatin, and the chromatin association of MCM-BP was at least partially dependent on MCM4 and cdc6. The results indicate that multicellular eukaryotes contain two types of hexameric MCM complexes with unique properties and functions.
Collapse
Affiliation(s)
- Amos M Sakwe
- Department of Medical Genetics, University of Toronto, Kings College Circle, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
50
|
Brondello JM, Ducommun B, Fernandez A, Lamb NJ. Linking PCNA-dependent replication and ATR by human Claspin. Biochem Biophys Res Commun 2007; 354:1028-33. [PMID: 17274954 DOI: 10.1016/j.bbrc.2007.01.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
Recent studies in Xenopus have identified a new checkpoint protein called Claspin that is believed to transduce the checkpoint DNA damage signals to Chk1 kinase. Here we show that the human Claspin homolog is a chromatin bound protein either in the absence or in the presence of damaged DNA, independent of its association with ATR. Furthermore, we show that human Claspin is found in complex with PCNA, an essential component of the DNA replication machinery, and is released upon DNA replication arrest. Interfering with PCNA function by overexpression of p21 mutant, impaired in its interaction with Cdks but not with PCNA, leads to ATR-dependent Chk1 activation. These findings suggest that the dissociation of Claspin-PCNA could be part of the signal leading to Chk1 activation.
Collapse
Affiliation(s)
- Jean-Marc Brondello
- INSERM EMI 0229 Génotypes et Phénotypes Tumoraux CRLC Val d'Aurelle, 34298 Montpellier, Cedex 5, France.
| | | | | | | |
Collapse
|