1
|
Stukan I, Żuk A, Pukacka K, Mierzejewska J, Pawłowski J, Kowalski B, Dąbkowska M. Wolf in Sheep's Clothing: Taming Cancer's Resistance with Human Serum Albumin? Int J Nanomedicine 2025; 20:3493-3525. [PMID: 40125439 PMCID: PMC11930253 DOI: 10.2147/ijn.s500997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Human serum albumin (HSA) has emerged as a promising carrier for nanodrug delivery, offering unique structural properties that can be engineered to overcome key challenges in cancer treatment, especially resistance to chemotherapy. This review focuses on the cellular uptake of albumin-based nanoparticles and the modifications that enhance their ability to bypass resistance mechanisms, particularly multidrug resistance type 1 (MDR1), by improving targeting to cancer cells. In our unique approach, we integrate the chemical properties of albumin, its interactions with cancer cells, and surface modifications of albumin-based delivery systems that enable to bypass resistance mechanisms, particularly those related to MDR1, and precisely target receptors on cancer cells to improve treatment efficacy. We discuss that while well-established albumin receptors such as gp60 and gp18/30 are crucial for cellular uptake and transcytosis, their biology remains underexplored, limiting their translational potential. Additionally, we explore the potential of emerging targets, such as cluster of differentiation 44 (CD44), cluster of differentiation (CD36) and transferrin receptor TfR1, as well as the advantages of using dimeric forms of albumin (dHSA) to further enhance delivery to resistant cancer cells. Drawing from clinical examples, including the success of albumin-bound paclitaxel (Abraxane) and new formulations like Pazenir and Fyarro (for Sirolimus), we identify gaps in current knowledge and propose strategies to optimize albumin-based systems. In conclusion, albumin-based nanoparticles, when tailored with appropriate modifications, have the potential to bypass multidrug resistance and improve the targeting of cancer cells. By enhancing albumin's ability to efficiently deliver therapeutic agents, these carriers represent a promising approach to addressing one of oncology's most persistent challenges, with substantial potential to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Iga Stukan
- Department of General Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Żuk
- Independent Laboratory of Community Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kamila Pukacka
- Department of Pharmaceutical Technology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Julia Mierzejewska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jakub Pawłowski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bogusław Kowalski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
2
|
Yuan Y, Zou M, Wu S, Liu C, Hao L. Recent advances in nanomaterials for the treatment of femoral head necrosis. Hum Cell 2024; 37:1290-1305. [PMID: 38995503 DOI: 10.1007/s13577-024-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Osteonecrosis of the femoral head (ONFH) is a condition that causes considerable pain and discomfort for patients, and its pathogenic mechanisms are not yet fully understood. While there have been many studies that suggest multiple factors may contribute to its development, current treatments involve both surgical and nonsurgical options. However, there is still much room for improvement in these treatment methods, particularly when it comes to preventing postoperative complications and optimizing surgical procedures. Nanomaterials, as a type of small molecule material, have shown great promise in treating bone tissue diseases, including ONFH. In fact, several nanocomposite materials have demonstrated specific effects in preventing ONFH, promoting bone tissue repair and growth, and optimizing surgical treatment. This article provides a comprehensive overview of current treatments for ONFH, including their advantages and limitations, and reviews the latest advances in nanomaterials for treating this condition. Additionally, this article explores the therapeutic mechanisms involved in using nanomaterials to treat ONFH and to identify new methods and ideas for improving outcomes for patients.
Collapse
Affiliation(s)
- Yalin Yuan
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shuqin Wu
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Congcong Liu
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
3
|
Li C, Zhou L, Yin X. Pathophysiological aspects of transferrin-A potential nano-based drug delivery signaling molecule in therapeutic target for varied diseases. Front Pharmacol 2024; 15:1342181. [PMID: 38500764 PMCID: PMC10944884 DOI: 10.3389/fphar.2024.1342181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Transferrin (Tf), widely known for its role as an iron-binding protein, exemplifies multitasking in biological processes. The role of Tf in iron metabolism involves both the uptake of iron from Tf by various cells, as well as the endocytosis mediated by the complex of Tf and the transferrin receptor (TfR). The direct conjugation of the therapeutic compound and immunotoxin studies using Tf peptide or anti-Tf receptor antibodies as targeting moieties aims to prolong drug circulation time and augment efficient cellular drug uptake, diminish systemic toxicity, traverse the blood-brain barrier, restrict systemic exposure, overcome multidrug resistance, and enhance therapeutic efficacy with disease specificity. This review primarily discusses the various biological actions of Tf, as well as the development of Tf-targeted nano-based drug delivery systems. The goal is to establish the use of Tf as a disease-targeting component, accentuating the potential therapeutic applications of this protein.
Collapse
Affiliation(s)
- Chang Li
- Basic Medical College, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Liya Zhou
- Basic Medical College, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
4
|
Abstract
Angiogenesis in the bone is unique and involves distinctive signals. Whether they are created through intramembranous ossification or endochondral ossification, bones are highly vascularized tissues. Long bones undergo a sequence of processes known as endochondral osteogenesis. Angiogenesis occurs during the creation of endochondral bone and is mediated by a variety of cells and factors. An initially avascular cartilage template is invaded by blood vessels from the nearby subchondral bone thanks to the secreted angiogenic chemicals by hypertrophic chondrocytes. Vascular endothelial growth factor (VEGF), one of several angiogenic molecules, is a significant regulator of blood vessel invasion, cartilage remodeling, and ossification of freshly created bone matrix; chondrocyte proliferation and hypertrophy are facilitated by the production of VEGFA and VEGF receptor-2 (VEGFR-2), which is stimulated by fibroblast growth factors (FGFs). NOTCH signaling controls blood capillaries formation during bone maturation and regeneration, while hypoxia-inducible factor 1 alpha (HIF1-a) promotes chondrocyte development by switching to anaerobic metabolism. To control skeletal remodeling and repair, osteogenic cells release angiogenic factors, whereas endothelial cells secrete angiocrine factors. One of the better instances of functional blood vessels specialization for certain organs is the skeletal system. A subpopulation of capillary endothelial cells in the bone regulate the activity of osteoprogenitor cells, which in turn affects bone formation during development and adult homeostasis. Angiogenesis and osteogenesis are strictly connected, and their crosstalk is essential to guarantee bone formation and to maintain bone homeostasis. Additionally, pathological processes including inflammation, cancer, and aging include both bone endothelial cells and angiocrine factors. Therefore, the study and understanding of these mechanisms is fundamental, because molecules and factors involved may represent key targets for novel and advanced therapies.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences, University of Bari Medical School, Bari, Italy
| | | |
Collapse
|
5
|
Goldoni I, Ibelli AMG, Fernandes LT, Peixoto JDO, Hul LM, Cantão ME, Gouveia JJDS, Ledur MC. Comprehensive Analyses of Bone and Cartilage Transcriptomes Evince Ion Transport, Inflammation and Cartilage Development-Related Genes Involved in Chickens’ Femoral Head Separation. Animals (Basel) 2022; 12:ani12060788. [PMID: 35327184 PMCID: PMC8944783 DOI: 10.3390/ani12060788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Femoral head necrosis (FHN) and other locomotor problems cause severe impacts on the poultry industry due to huge economic losses and reduced animal welfare. Femoral head separation (FHS), the initial phase of FHN, is usually a subclinical condition characterized by the detachment of articular cartilage from the bone. In this study, we aimed to identify genes and biological processes involved with FHS in broilers. A better understanding of the FHS molecular mechanisms can help to develop strategies to reduce this condition in chickens. Here, we described several genes that have their expression altered in the articular cartilage and femur when normal and FHS-affected animals were compared. Furthermore, genetic variants were found differing between the studied groups. Therefore, performing an integrated analysis of these datasets, we were able to detect genes and variants related to FHS in chickens. Some of them, such as SLC4A1, RHAG, ANK1, MKNK2, SPTB, ADA, C7 and EPB420 genes were highlighted and should be further explored to validate them as candidates to FHS and FHN in chickens and possibly in humans. Abstract Femoral head separation (FHS) is usually a subclinical condition characterized by the detachment of articular cartilage from the bone. In this study, a comprehensive analysis identifying shared and exclusive expression profiles, biological processes (BP) and variants related to FHS in the femoral articular cartilage and growth plate in chickens was performed through RNA sequencing analysis. Thirty-six differentially expressed (DE) genes were shared between femoral articular cartilage (AC) and growth plate (GP) tissues. Out of those, 23 genes were enriched in BP related to ion transport, translation factors and immune response. Seventy genes were DE exclusively in the AC and 288 in the GP. Among the BP of AC, the response against bacteria can be highlighted, and for the GP tissue, the processes related to chondrocyte differentiation and cartilage development stand out. When the chicken DE genes were compared to other datasets, eight genes (SLC4A1, RHAG, ANK1, MKNK2, SPTB, ADA, C7 and EPB420) were shared between chickens and humans. Furthermore, 89 variants, including missense in the SPATS2L, PRKAB1 and TRIM25 genes, were identified between groups. Therefore, those genes should be more explored to validate them as candidates to FHS/FHN in chickens and humans.
Collapse
Affiliation(s)
- Iara Goldoni
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, R. Salvatore Renna, 875, Guarapuava 85015-430, PR, Brazil; (I.G.); (J.d.O.P.); (L.M.H.)
| | - Adriana Mércia Guaratini Ibelli
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, R. Salvatore Renna, 875, Guarapuava 85015-430, PR, Brazil; (I.G.); (J.d.O.P.); (L.M.H.)
- Embrapa Suínos e Aves, Rodovia BR 153, km 110, Concórdia 89715-899, SC, Brazil; (L.T.F.); (M.E.C.)
- Correspondence: (A.M.G.I.); (M.C.L.); Tel.: +55-49-3441-3217 (A.M.G.I.); +55-49-3441-0411 (M.C.L.)
| | - Lana Teixeira Fernandes
- Embrapa Suínos e Aves, Rodovia BR 153, km 110, Concórdia 89715-899, SC, Brazil; (L.T.F.); (M.E.C.)
| | - Jane de Oliveira Peixoto
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, R. Salvatore Renna, 875, Guarapuava 85015-430, PR, Brazil; (I.G.); (J.d.O.P.); (L.M.H.)
- Embrapa Suínos e Aves, Rodovia BR 153, km 110, Concórdia 89715-899, SC, Brazil; (L.T.F.); (M.E.C.)
| | - Ludmila Mudri Hul
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, R. Salvatore Renna, 875, Guarapuava 85015-430, PR, Brazil; (I.G.); (J.d.O.P.); (L.M.H.)
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, Rodovia BR 153, km 110, Concórdia 89715-899, SC, Brazil; (L.T.F.); (M.E.C.)
| | - João José de Simoni Gouveia
- Programa de Pós-Graduação em Ciências Veterinárias no Semiárido, Universidade Federal do Vale do São Francisco, UNIVASF, Rodovia BR 407, 12 Lote 543, Petrolina 56300-000, PE, Brazil;
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Rodovia BR 153, km 110, Concórdia 89715-899, SC, Brazil; (L.T.F.); (M.E.C.)
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Rua Beloni Trombeta Zanin, 680E, Chapecó 89815-630, SC, Brazil
- Correspondence: (A.M.G.I.); (M.C.L.); Tel.: +55-49-3441-3217 (A.M.G.I.); +55-49-3441-0411 (M.C.L.)
| |
Collapse
|
6
|
Mapanao AK, Sarogni P, Santi M, Menicagli M, Gonnelli A, Zamborlin A, Ermini ML, Voliani V. Pro-apoptotic and size-reducing effects of protein corona-modulating nano-architectures enclosing platinum prodrug in in vivo oral carcinoma. Biomater Sci 2022; 10:6135-6145. [DOI: 10.1039/d2bm00994c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective and localized delivery of active agents to neoplasms is crucial to enhance the chemotherapeutic efficacy while reducing the associated side effects. The encapsulation of chemotherapeutics in nanoparticles decorated...
Collapse
|
7
|
Lin Y, Zhang M, Lin T, Wang L, Wang G, Chen T, Su S. Royal jelly from different floral sources possesses distinct wound-healing mechanisms and ingredient profiles. Food Funct 2021; 12:12059-12076. [PMID: 34783324 DOI: 10.1039/d1fo00586c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, population aging together with the increased prevalence of diabetes and obesity has fuelled a surge in the instances of cutaneous non-healing wounds. Royal jelly (RJ) is a traditional remedy for wound repair; however, the subjacent mechanisms and ingredient profiles are still largely unknown. Our previous study found that Castanea mollissima Bl. RJ (CmRJ-Zj) possessed superior wound healing-promoting effects on both the in vivo and in vitro models than Brassica napus L. RJ (BnRJ-Zj). This study conducted an in-depth investigation on the wound-repairing mechanisms of CmRJ-Zj and BnRJ-Zj to explain the previously observed phenomenon and also comprehensively characterized their constituents. It was found that chestnut RJ could enhance cutaneous wound healing by boosting the growth and mobility of keratinocytes, modulating the expression of aquaporin 3 (AQP3), regulating MAPK and calcium pathways, and mediating inflammatory responses. By employing LC-MS/MS-based proteomic and metabolomic techniques, the comprehensive molecules present in CmRJ-Zj and BnRJ-Zj were elucidated, resulting in a clear discrimination from each other. A total of 15 and 631 differential proteins and compounds were identified, and 217 proteins were newly found in RJ proteome. With bioinformatic functional analysis, we speculated that some differential components were responsible for the wound-healing properties of CmRJ-Zj. Therefore, this study provides an insight into the wound-healing mechanisms of RJ and is the first to explore the compositions of RJ from different nectar plants. It will facilitate the development of therapeutic agents from RJ to treat difficult-to-heal wounds and the distinction of different RJ categories.
Collapse
Affiliation(s)
- Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Meng Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China. .,Apicultural Research Institute of Jiangxi Province, Nanchang 330052, China
| | - Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Luying Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guanggao Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China. .,Apicultural Research Institute of Jiangxi Province, Nanchang 330052, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Theruvath AJ, Mahmoud EE, Wu W, Nejadnik H, Kiru L, Liang T, Felt S, Daldrup-Link HE. Ascorbic Acid and Iron Supplement Treatment Improves Stem Cell-Mediated Cartilage Regeneration in a Minipig Model. Am J Sports Med 2021; 49:1861-1870. [PMID: 33872071 PMCID: PMC8177720 DOI: 10.1177/03635465211005754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The transplantation of mesenchymal stem cells (MSCs) into cartilage defects has led to variable cartilage repair outcomes. Previous in vitro studies have shown that ascorbic acid and reduced iron independently can improve the chondrogenic differentiation of MSCs. However, the combined effect of ascorbic acid and iron supplementation on MSC differentiation has not been investigated. PURPOSE To investigate the combined in vivo effects of ascorbic acid and a US Food and Drug Administration (FDA)-approved iron supplement on MSC-mediated cartilage repair in mature Göttingen minipigs. STUDY DESIGN Controlled laboratory study. METHODS We pretreated bone marrow-derived MSCs with ascorbic acid and the FDA-approved iron supplement ferumoxytol and then transplanted the MSCs into full-thickness cartilage defects in the distal femurs of Göttingen minipigs. Untreated cartilage defects served as negative controls. We evaluated the cartilage repair site with magnetic resonance imaging at 4 and 12 weeks after MSC implantation, followed by histological examination and immunofluorescence staining at 12 weeks. RESULTS Ascorbic acid plus iron-pretreated MSCs demonstrated a significantly better MOCART (magnetic resonance observation of cartilage repair tissue) score (73.8 ± 15.5), better macroscopic cartilage regeneration score according to the International Cartilage Repair Society (8.6 ± 2.0), better Pineda score (2.9 ± 0.8), and larger amount of collagen type II (28,469 ± 21,313) compared with untreated controls (41.3 ± 2.5, 1.8 ± 2.9, 12.8 ± 1.9, and 905 ± 1326, respectively). The obtained scores were also better than scores previously reported in the same animal model for MSC implants without ascorbic acid. CONCLUSION Pretreatment of MSCs with ascorbic acid and an FDA-approved iron supplement improved the chondrogenesis of MSCs and led to hyaline-like cartilage regeneration in the knee joints of minipigs. CLINICAL RELEVANCE Ascorbic acid and iron supplements are immediately clinically applicable. Thus, these results, in principle, could be translated into clinical applications.
Collapse
Affiliation(s)
- Ashok Joseph Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, California, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Elhussein Elbadry Mahmoud
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, California, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Surgery, School of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, California, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, California, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Louise Kiru
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, California, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Tie Liang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, California, USA
| | - Stephen Felt
- Department of Comparative Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Heike Elisabeth Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, California, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, USA.,Address correspondence to Heike E. Daldrup-Link, MD, PhD, Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, CA, 94305, USA ()
| |
Collapse
|
9
|
Fibrinogen, collagen, and transferrin adsorption to poly(3,4-ethylenedioxythiophene)-xylorhamno-uronic glycan composite conducting polymer biomaterials for wound healing applications. Biointerphases 2021; 16:021003. [PMID: 33752337 DOI: 10.1116/6.0000708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We present the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with an algal-derived glycan extract, Phycotrix™ [xylorhamno-uronic glycan (XRU84)], as an innovative electrically conductive material capable of providing beneficial biological and electrical cues for the promotion of favorable wound healing processes. Increased loading of the algal XRU84 into PEDOT resulted in a reduced surface nanoroughness and interfacial surface area and an increased static water contact angle. PEDOT-XRU84 films demonstrated good electrical stability and charge storage capacity and a reduced impedance relative to the control gold electrode. A quartz crystal microbalance with dissipation monitoring study of protein adsorption (transferrin, fibrinogen, and collagen) showed that collagen adsorption increased significantly with increased XRU84 loading, while transferrin adsorption was significantly reduced. The viscoelastic properties of adsorbed protein, characterized using the ΔD/Δf ratio, showed that for transferrin and fibrinogen, a rigid, dehydrated layer was formed at low XRU84 loadings. Cell studies using human dermal fibroblasts demonstrated excellent cell viability, with fluorescent staining of the cell cytoskeleton illustrating all polymers to present excellent cell adhesion and spreading after 24 h.
Collapse
|
10
|
Monu, Kharb R, Sharma A, Chaddar MK, Yadav R, Agnihotri P, Kar A, Biswas S. Plasma Proteome Profiling of Coronary Artery Disease Patients: Downregulation of Transthyretin-An Important Event. Mediators Inflamm 2020; 2020:3429541. [PMID: 33299376 PMCID: PMC7707994 DOI: 10.1155/2020/3429541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Coronary artery disease (CAD) is a prevalent chronic inflammatory cardiac disorder. An early diagnosis is likely to help in the prevention and proper management of this disease. As the study of proteomics provides the potential markers for detection of a disease, in the present investigation, attempt has been made to identify disease-associated differential proteins involved in CAD pathogenesis. For this study, a total of 200 selected CAD patients were considered, who were recruited for percutaneous coronary intervention (PCI) treatment. The proteomic analysis was performed using two-dimensional gel electrophoresis (2-DE) and MALDI-TOF MS/MS. Samples were also subjected to Western blot analysis, enzyme-linked immunosorbent assay (ELISA), peripheral blood mononuclear cells isolation immunofluorescence (IF) analysis, analytical screening by fluorescence-activated cell sorting (FACS), and in silico analysis. The representative data were shown as mean ± SD of at least three experiments. A total of 19 proteins were identified. Among them, the most abundant five proteins (serotransferrin, talin-1, alpha-2HS glycoprotein, transthyretin (TTR), fibrinogen-α chain) were found to have altered level in CAD. Serotransferrin, talin-1, alpha-2HS glycoprotein, and transthyretin (TTR) were found to have lower level, whereas fibrinogen-α chain was found to have higher level in CAD plasma compared to healthy, confirmed by Western blot analysis. TTR, an important acute phase transport protein, was validated low level in 200 CAD patients who confirmed to undergo PCI treatment. Further, in silico and in vitro studies of TTR indicated a downexpression of CAD in plasma as compared to the plasma of healthy individuals. Lower level of plasma TTR was determined to be an important risk marker in the atherosclerotic-approved CAD patients. We suggest that the TTR lower level predicts disease severity and hence may serve as an important marker tool for CAD screening. However, further large-scale studies are required to determine the clinical significance of TTR.
Collapse
Affiliation(s)
- Monu
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Rupsi Kharb
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), University of Delhi, Pushpvihar, New Delhi 110017, India
| | - Ankita Sharma
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Monu Kumar Chaddar
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Rakesh Yadav
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Prachi Agnihotri
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Anand Kar
- School of Life Sciences, Takshashila Campus, Devi Ahilya University, 452017, Indore, India
| | - Sagarika Biswas
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| |
Collapse
|
11
|
Yu Z, Zhang W, Zhang X, Xu D, Wang N. Transcription box‑3 protects human umbilical vein endothelial cells in a high‑glucose environment through sirtuin 1/AKT signaling. Mol Med Rep 2020; 22:1145-1154. [PMID: 32627000 PMCID: PMC7339771 DOI: 10.3892/mmr.2020.11237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
The increasing burden of diabetes in low and middle-income countries is attributable to both genetic and epigenetic factors. Environmental- and lifestyle-associated changes are also considered to be important contributors to this disease. The resultant co-morbidities arising from micro-and macrovascular changes in diabetes are difficult to manage and are an economic burden. However, very little is known about the molecular mechanisms that drive this phenotype. The present study aimed to investigate the role of sirtuin 1 (SIRT1)- and transcription box-3 (TBX-3)-mediated regulation of endothelial dysfunction, given the significance of SIRT1 in glucose metabolism and the role of TBX-3 in the maintenance of cellular proliferation, senescence and apoptosis. Following the recruitment of adult patients with and without diabetes, both SIRT1 and TBX-3 expression was confirmed to be present in the sera of the patients with diabetes and the patients without diabetes; however, both SIRT1 and TBX-3 expression levels were higher in the sera of the patients with diabetes. Human umbilical vein endothelial cells (HUVECs) were further used for in vitro studies. Using TBX-3 and SIRT1 knockdown models, the cellular responses to proliferation, migration, invasion and tube formation were investigated using an MTS, cell cycle analysis, wound healing, Transwell and tube formation assay, respectively. Western blotting was also used to determine the downstream signaling pathways involved. The genetic knockdown of TBX-3 in hyperglycemic conditions significantly decreased the cellular proliferation, migration, invasion and angiogenesis of HUVECs. It was subsequently identified that TBX-3 mediated its effects through the activation of AKT and vascular endothelial growth factor (VEGF) signaling. However, the genetic knockdown of SIRT1 in the presence of TBX-3 overexpression and glucose failed to activate the AKT and VEGF signaling pathways. In conclusion, the results of the present study suggested that SIRT1 may positively regulate TBX-3 in endothelial cells, therefore, SIRT1 and/or TBX-3 may serve as potential novel biomarkers for disease progression.
Collapse
Affiliation(s)
- Zhanjiang Yu
- Department of General Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Wei Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Xiankun Zhang
- Department of Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Donghui Xu
- Department of General Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Na Wang
- Department of Psychology, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
12
|
Martínez Sánchez AH, Omidi M, Wurlitzer M, Fuh MM, Feyerabend F, Schlüter H, Willumeit-Römer R, Luthringer BJ. Proteome analysis of human mesenchymal stem cells undergoing chondrogenesis when exposed to the products of various magnesium-based materials degradation. Bioact Mater 2019; 4:168-188. [PMID: 31049466 PMCID: PMC6482314 DOI: 10.1016/j.bioactmat.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/20/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022] Open
Abstract
Treatment of physeal fractures (15%–30% of all paediatric fractures) remains a challenge as in approximately 10% of the cases, significant growth disturbance may occur. Bioresorbable Magnesium-based implants represent a strategy to minimize damage (i.e., load support until bone healing without second surgery). Nevertheless, the absence of harmful effects of magnesium-implants and their degradation products on the growth plate should be confirmed. Here, the proteome of human mesenchymal stem cells undergoing chondrogenesis was evaluated when exposed to the products of various Magnesium-based materials degradation. The results of this study indicate that the materials induced regulation of proteins associated with cell chondrogenesis and cartilage formation, which should be beneficial for cartilage regeneration. Degradation products from Mg-based materials generated changes in protein expression. Relevant proteins involved in cartilage formation were upregulated. Potential application of especially Pure-Mg and Mg-10Gd for cartilage regeneration.
Collapse
Affiliation(s)
- Adela Helvia Martínez Sánchez
- Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht, Max Planck Strasse 1, 21502, Geesthacht, Germany
| | - Maryam Omidi
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Marcus Wurlitzer
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Marceline Manka Fuh
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Frank Feyerabend
- Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht, Max Planck Strasse 1, 21502, Geesthacht, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Regine Willumeit-Römer
- Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht, Max Planck Strasse 1, 21502, Geesthacht, Germany
| | - Bérengère J.C. Luthringer
- Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht, Max Planck Strasse 1, 21502, Geesthacht, Germany
- Corresponding author.
| |
Collapse
|
13
|
Huang P, Gu J, Wu J, Geng L, Hong Y, Wang S, Wang M. Microarray analysis of the molecular mechanisms associated with age and body mass index in human meniscal injury. Mol Med Rep 2018; 19:93-102. [PMID: 30483788 PMCID: PMC6297773 DOI: 10.3892/mmr.2018.9685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to identify genes and functional pathways associated with meniscal injuries affected by age or body mass index (BMI) using microarray analysis. The GSE45233 gene expression dataset with 12 injured meniscus samples associated with age and BMI and GSE66635 dataset with 12 injured and 12 normal meniscus samples were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified based on age or BMI in GSE45233. DEGs between injured and normal meniscus samples in GSE66635 were also identified. Common DEGs between GSE45233 and GSE66635 were identified as feature genes associated with age or BMI, followed by protein-protein interaction (PPI) network and functional pathway enrichment analyses for the feature genes. Finally, the GSE51588 genome-wide expression profile was then downloaded from the GEO database to validate the results. A total of 1,328 DEGs were identified. Of these, 28 age-associated and 20 BMI-associated meniscal injury genes were obtained. B-cell lymphoma-2 (Bcl-2) and matrix metalloproteinase-14 were identified as hub genes in the PPI networks. Functional pathway enrichment analysis revealed that vascular endothelial growth factor A (VEGFA), transferrin (TF) and Bcl-2 were involved in the hypoxia-inducible factor 1 signaling pathway. TF was involved in the mineral absorption function pathway associated with BMI. Additionally, TF and VEGFA were identified to be overlapping candidate genes of GSE45233 and GSE66635, and DEGs in GSE51588. Therefore, VEGFA, TF, and Bcl-2 may be important genes for human meniscal injuries. Additional evaluations of these results are required.
Collapse
Affiliation(s)
- Peiyan Huang
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Jun Gu
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Junguo Wu
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Lei Geng
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Yang Hong
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Siqun Wang
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Minghai Wang
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
14
|
Steinberg J, Brooks RA, Southam L, Bhatnagar S, Roumeliotis TI, Hatzikotoulas K, Zengini E, Wilkinson JM, Choudhary JS, McCaskie AW, Zeggini E. Widespread epigenomic, transcriptomic and proteomic differences between hip osteophytic and articular chondrocytes in osteoarthritis. Rheumatology (Oxford) 2018; 57:1481-1489. [PMID: 29741735 PMCID: PMC6055583 DOI: 10.1093/rheumatology/key101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 11/22/2022] Open
Abstract
Objectives To identify molecular differences between chondrocytes from osteophytic and articular cartilage tissue from OA patients. Methods We investigated genes and pathways by combining genome-wide DNA methylation, RNA sequencing and quantitative proteomics in isolated primary chondrocytes from the cartilaginous layer of osteophytes and matched areas of low- and high-grade articular cartilage across nine patients with OA undergoing hip replacement surgery. Results Chondrocytes from osteophytic cartilage showed widespread differences to low-grade articular cartilage chondrocytes. These differences were similar to, but more pronounced than, differences between chondrocytes from osteophytic and high-grade articular cartilage, and more pronounced than differences between high- and low-grade articular cartilage. We identified 56 genes with significant differences between osteophytic chondrocytes and low-grade articular cartilage chondrocytes on all three omics levels. Several of these genes have known roles in OA, including ALDH1A2 and cartilage oligomeric matrix protein, which have functional genetic variants associated with OA from genome-wide association studies. An integrative gene ontology enrichment analysis showed that differences between osteophytic and low-grade articular cartilage chondrocytes are associated with extracellular matrix organization, skeletal system development, platelet aggregation and regulation of ERK1 and ERK2 cascade. Conclusion We present a first comprehensive view of the molecular landscape of chondrocytes from osteophytic cartilage as compared with articular cartilage chondrocytes from the same joints in OA. We found robust changes at genes relevant to chondrocyte function, providing insight into biological processes involved in osteophyte development and thus OA progression.
Collapse
Affiliation(s)
- Julia Steinberg
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.,Cancer Research Division, Cancer Council NSW, Sydney, NSW, Australia
| | - Roger A Brooks
- Division of Trauma & Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Lorraine Southam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sahir Bhatnagar
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | | | | | - Eleni Zengini
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Dromokaiteio Psychiatric Hospital of Athens, Chaidari, Athens, Greece
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Jyoti S Choudhary
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Andrew W McCaskie
- Division of Trauma & Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Eleftheria Zeggini
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| |
Collapse
|
15
|
Effects of Co-Culture Media on Hepatic Differentiation of hiPSC with or without HUVEC Co-Culture. Int J Mol Sci 2017; 18:ijms18081724. [PMID: 28783133 PMCID: PMC5578114 DOI: 10.3390/ijms18081724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical vein endothelial cells (HUVEC) during hepatic differentiation was investigated in this study. In the first step, different culture media variations based on hepatocyte culture medium (HCM) were tested in HUVEC mono-cultures to establish a suitable culture medium for co-culture experiments. Based on the results, two media variants were selected to differentiate hiPSC-derived definitive endodermal (DE) cells into mature hepatocytes with or without HUVEC addition. DE cells differentiated in mono-cultures in the presence of those media variants showed a significant increase (p < 0.05) in secretion of α-fetoprotein and in activities of cytochrome P450 (CYP) isoenzymes CYP2B6 and CYP3A4 as compared with cells differentiated in unmodified HCM used as control. Co-cultivation with HUVEC did not further improve the differentiation outcome. Thus, it can be concluded that the effect of the used medium outweighed the effect of HUVEC co-culture, emphasizing the importance of the culture medium composition for hiPSC differentiation.
Collapse
|
16
|
Penezić A, Miljuš G, Milutinović B, Nedić O. A microscale protocol for the isolation of transferrin directly from serum. Clin Chim Acta 2017; 471:12-16. [PMID: 28502560 DOI: 10.1016/j.cca.2017.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 02/05/2023]
Abstract
A microscale procedure for the isolation of transferrin directly from human serum (hTf) is described in this study. The protocol is based on three precipitation steps without application of chromatography. It lasts 90min with the initial sample volume of 250μL. The yield of the isolated hTf is 58%, which is considerable in biochemical terms. The purity of the isolated hTf is 97%, as assessed by three methods: electrophoresis followed by protein staining, immunoblotting and HPLC. Immunoblotting with antibodies against other major serum proteins indicated that isolated hTf does not contain albumin, immunoglobulin G or alpha-2-macroglobulin. Lectin dot-blot demonstrated that isolated hTf preserved its glycan moieties. Fluorescent emission spectroscopy of the isolated hTf has shown no changes in tertiary structure. Isolated hTf was approximately 26% saturated with iron ion, which is comparable to physiological value (although a degree of saturation decreases to some extent during isolation procedure). Finally, co-immunoprecipitation experiment confirmed that isolated hTf retained its ligand characteristics crucial for the ligand-receptor type of interaction with the hTf receptor. To conclude, the procedure described in this work, is time and cost-effective, allows multiple sample handling and provides high-purity hTf isolate with preserved structural and functional properties.
Collapse
Affiliation(s)
- Ana Penezić
- Institute for the Application of Nuclear Energy, INEP, Banatska 31b, 11080 Belgrade, Serbia.
| | - Goran Miljuš
- Institute for the Application of Nuclear Energy, INEP, Banatska 31b, 11080 Belgrade, Serbia.
| | - Bojana Milutinović
- Institute for the Application of Nuclear Energy, INEP, Banatska 31b, 11080 Belgrade, Serbia.
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, INEP, Banatska 31b, 11080 Belgrade, Serbia.
| |
Collapse
|
17
|
Spieker J, Mudersbach T, Vogel-Höpker A, Layer PG. Endochondral Ossification Is Accelerated in Cholinesterase-Deficient Mice and in Avian Mesenchymal Micromass Cultures. PLoS One 2017; 12:e0170252. [PMID: 28118357 PMCID: PMC5261733 DOI: 10.1371/journal.pone.0170252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/30/2016] [Indexed: 01/03/2023] Open
Abstract
Most components of the cholinergic system are detected in skeletogenic cell types in vitro, yet the function of this system in skeletogenesis remains unclear. Here, we analyzed endochondral ossification in mutant murine fetuses, in which genes of the rate-limiting cholinergic enzymes acetyl- (AChE), or butyrylcholinesterase (BChE), or both were deleted (called here A-B+, A+B-, A-B-, respectively). In all mutant embryos bone growth and cartilage remodeling into mineralizing bone were accelerated, as revealed by Alcian blue (A-blu) and Alizarin red (A-red) staining. In A+B- and A-B- onset of mineralization was observed before E13.5, about 2 days earlier than in wild type and A-B+ mice. In all mutants between E18.5 to birth A-blu staining disappeared from epiphyses prematurely. Instead, A-blu+ cells were dislocated into diaphyses, most pronounced so in A-B- mutants, indicating additive effects of both missing ChEs in A-B- mutant mice. The remodeling effects were supported by in situ hybridization (ISH) experiments performed on cryosections from A-B- mice, in which Ihh, Runx2, MMP-13, ALP, Col-II and Col-X were considerably decreased, or had disappeared between E18.5 and P0. With a second approach, we applied an improved in vitro micromass model from chicken limb buds that allowed histological distinction between areas of cartilage, apoptosis and mineralization. When treated with the AChE inhibitor BW284c51, or with nicotine, there was decrease in cartilage and accelerated mineralization, suggesting that these effects were mediated through nicotinic receptors (α7-nAChR). We conclude that due to absence of either one or both cholinesterases in KO mice, or inhibition of AChE in chicken micromass cultures, there is increase in cholinergic signalling, which leads to increased chondroblast production and premature mineralization, at the expense of incomplete chondrogenic differentiation. This emphasizes the importance of cholinergic signalling in cartilage and bone formation.
Collapse
MESH Headings
- Acetylcholinesterase/deficiency
- Acetylcholinesterase/physiology
- Animals
- Apnea/physiopathology
- Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/pharmacology
- Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/toxicity
- Bone and Bones/embryology
- Bone and Bones/enzymology
- Bone and Bones/pathology
- Butyrylcholinesterase/deficiency
- Butyrylcholinesterase/physiology
- Cartilage/embryology
- Cartilage/enzymology
- Cartilage/pathology
- Chick Embryo
- Cholinesterase Inhibitors/pharmacology
- Cholinesterase Inhibitors/toxicity
- Chondrogenesis/drug effects
- GPI-Linked Proteins/deficiency
- GPI-Linked Proteins/physiology
- Mesoderm/physiology
- Metabolism, Inborn Errors/physiopathology
- Mice
- Mice, Knockout
- Nicotine/pharmacology
- Nicotine/toxicity
- Organ Culture Techniques
- Osteogenesis/physiology
- alpha7 Nicotinic Acetylcholine Receptor/drug effects
- alpha7 Nicotinic Acetylcholine Receptor/physiology
Collapse
Affiliation(s)
- Janine Spieker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, Darmstadt, Germany
| | - Thomas Mudersbach
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, Darmstadt, Germany
| | - Astrid Vogel-Höpker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, Darmstadt, Germany
| | - Paul G. Layer
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, Darmstadt, Germany
| |
Collapse
|
18
|
Romero-Gavilán F, Gomes NC, Ródenas J, Sánchez A, Azkargorta M, Iloro I, Elortza F, García Arnáez I, Gurruchaga M, Goñi I, Suay J. Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. BIOFOULING 2017; 33:98-111. [PMID: 28005415 DOI: 10.1080/08927014.2016.1259414] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Titanium dental implants are commonly used due to their biocompatibility and biochemical properties; blasted acid-etched Ti is used more frequently than smooth Ti surfaces. In this study, physico-chemical characterisation revealed important differences in roughness, chemical composition and hydrophilicity, but no differences were found in cellular in vitro studies (proliferation and mineralization). However, the deposition of proteins onto the implant surface might affect in vivo osseointegration. To test that hypothesis, protein layers formed on discs of both surface type after incubation with human serum were analysed. Using mass spectrometry (LC/MS/MS), 218 proteins were identified, 30 of which were associated with bone metabolism. Interestingly, Apo E, antithrombin and protein C adsorbed mostly onto blasted and acid-etched Ti, whereas the proteins of the complement system (C3) were found predominantly on smooth Ti surfaces. These results suggest that physico-chemical characteristics could be responsible for the differences observed in the adsorbed protein layer.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- a Department of Industrial Systems and Design Engineering , University of Castellón , Castellón de la Plana , Spain
| | - N C Gomes
- b Department of Medicine , University of Castellón , Castellón de la Plana , Spain
| | - Joaquin Ródenas
- a Department of Industrial Systems and Design Engineering , University of Castellón , Castellón de la Plana , Spain
| | - Ana Sánchez
- b Department of Medicine , University of Castellón , Castellón de la Plana , Spain
| | - Mikel Azkargorta
- c Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - Ibon Iloro
- c Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - Felix Elortza
- c Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - Iñaki García Arnáez
- d Department of Polymer Science and Technology , University of Basque Country , San Sebastián , Spain
| | - Mariló Gurruchaga
- d Department of Polymer Science and Technology , University of Basque Country , San Sebastián , Spain
| | - Isabel Goñi
- d Department of Polymer Science and Technology , University of Basque Country , San Sebastián , Spain
| | - Julio Suay
- a Department of Industrial Systems and Design Engineering , University of Castellón , Castellón de la Plana , Spain
| |
Collapse
|
19
|
Tan K, Zhang Z, Miao K, Yu Y, Sui L, Tian J, An L. Dynamic integrated analysis of DNA methylation and gene expression profiles in in vivo and in vitro fertilized mouse post-implantation extraembryonic and placental tissues. Mol Hum Reprod 2016; 22:485-98. [PMID: 27090932 DOI: 10.1093/molehr/gaw028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/30/2016] [Indexed: 01/02/2023] Open
Abstract
STUDY HYPOTHESIS How does in vitro fertilization (IVF) alter promoter DNA methylation patterns and its subsequent effects on gene expression profiles during placentation in mice? STUDY FINDING IVF-induced alterations in promoter DNA methylation might have functional consequences in a number of biological processes and functions during IVF placentation, including actin cytoskeleton organization, hematopoiesis, vasculogenesis, energy metabolism and nutrient transport. WHAT IS KNOWN ALREADY During post-implantation embryonic development, both embryonic and extraembryonic tissues undergo de novo DNA methylation, thereby establishing a global DNA methylation pattern, and influencing gene expression profiles. Embryonic and placental tissues of IVF conceptuses can have aberrant morphology and functions, resulting in adverse pregnancy outcomes such as pregnancy loss, low birthweight, and long-term health effects. To date, the IVF-induced global profiling of DNA methylation alterations, and their functional consequences on aberrant gene expression profiles in IVF placentas have not been systematically studied. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Institute for Cancer Research mice (6 week-old females and 8-9 week-old males) were used to generate in vivo fertilization (IVO) and IVF blastocysts. After either IVO and development (IVO group as control) or in vitro fertilization and culture (IVF group), blastocysts were collected and transferred to pseudo-pregnant recipient mice. Extraembryonic (ectoplacental cone and extraembryonic ectoderm) and placental tissues from both groups were sampled at embryonic day (E) 7.5 (IVO, n = 822; IVF, n = 795) and E10.5 (IVO, n = 324; IVF, n = 278), respectively. The collected extraembryonic (E7.5) and placental tissues (E10.5) were then used for high-throughput RNA sequencing (RNA-seq) and methylated DNA immunoprecipitation sequencing (MeDIP-seq). The main dysfunctions indicated by bioinformatic analyses were further validated using molecular detection, and morphometric and phenotypic analyses. MAIN RESULTS AND THE ROLE OF CHANCE Dynamic functional profiling of high-throughput data, together with molecular detection, and morphometric and phenotypic analyses, showed that differentially expressed genes dysregulated by DNA methylation were functionally involved in: (i) actin cytoskeleton disorganization in IVF extraembryonic tissues, which may impair allantois or chorion formation, and chorioallantoic fusion; (ii) disturbed hematopoiesis and vasculogenesis, which may lead to abnormal placenta labyrinth formation and thereby impairing nutrition transport in IVF placentas; (iii) dysregulated energy and amino acid metabolism, which may cause placental dysfunctions, leading to delayed embryonic development or even lethality; (iv) disrupted genetic information processing, which can further influence gene transcriptional and translational processes. LIMITATIONS, REASONS FOR CAUTION Findings in mouse placental tissues may not be fully representative of human placentas. Further studies are necessary to confirm these findings and determine their clinical significance. WIDER IMPLICATIONS OF THE FINDINGS Our study is the first to provide the genome-wide analysis of gene expression dysregulation caused by DNA methylation during IVF placentation. Systematic understanding of the molecular mechanisms implicated in IVF placentation can be useful for the improvement of existing assisted conception systems to prevent these IVF-associated safety concerns. STUDY FUNDING AND COMPETING INTERESTS This work was supported by grants from the National Natural Science Foundation of China (No. 31472092), and the National High-Tech R&D Program (Nos. 2011|AA100303, 2013AA102506). There was no conflict of interest.
Collapse
Affiliation(s)
- Kun Tan
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Zhenni Zhang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Kai Miao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yong Yu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Linlin Sui
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Lei An
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
20
|
Ma HL, Shi YH, Zhang XH, Li MY, Chen J. A transmembrane C-type lectin receptor mediates LECT2 effects on head kidney-derived monocytes/macrophages in a teleost, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2016; 51:70-76. [PMID: 26876329 DOI: 10.1016/j.fsi.2016.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine involved in many diseases in which immune dysfunction is present. Ayu LECT2 (PaLECT2), which interacts with a C-type lectin receptor (PaCLR), was shown to activate ayu head kidney-derived monocytes/macrophages (MO/MΦ) to improve the outcomes of fish upon bacterial infections. However, it is not known if PaCLR mediates PaLECT2 effects on ayu MO/MΦ. In this study, we determined the role of PaCLR in signal transduction of PaLECT2 on ayu MO/MΦ. We expressed the PaCLR ectodomain in Escherichia coli and produced a refolded recombinant protein (rPaCLR) that was then used to produce the anti-PaCLR IgG (anti-PaCLR) for neutralization. Addition of the refolded PaLECT2 mature peptide (rPaLECT2m) to ayu MO/MΦ cultures, increased cytokine expression, induced chemotaxis, and enhanced phagocytosis and bactericidal activity of these cells were observed. When we added anti-PaCLR to block the ectodomain of PaCLR, these effects were significantly inhibited. Based on our previous works and the data presented here, we conclude that PaCLR mediates the immunomodulatory effects of PaLECT2 on ayu MO/MΦ, thus defining a mechanism by which LECT2 protects fish against pathogens.
Collapse
Affiliation(s)
- Hai-Ling Ma
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yu-Hong Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xue-Heng Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ming-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
21
|
Roudsari LC, West JL. Studying the influence of angiogenesis in in vitro cancer model systems. Adv Drug Deliv Rev 2016; 97:250-9. [PMID: 26571106 DOI: 10.1016/j.addr.2015.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022]
Abstract
Tumor angiogenesis is a hallmark of cancer that has been identified as a critical component of cancer progression, facilitating rapid tumor growth and metastasis. Anti-angiogenic therapies have exhibited only modest clinical success, highlighting a need for better models that can be used to gain a more thorough understanding of tumor angiogenesis and screen potential therapeutics more accurately. This review explores how recent progress in in vitro cancer and vascular models individually can be applied to the development of in vitro tumor angiogenesis models. Current in vitro tumor angiogenesis models are also discussed, with a focus on aspects of the process that have been successfully recapitulated and opportunities for applying new technologies to expand model complexity to better represent the tumor microenvironment. Continued advances in vascularized tumor models will provide tools to identify novel therapeutic targets and validate their therapeutic benefit.
Collapse
Affiliation(s)
- Laila C Roudsari
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, USA.
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, USA.
| |
Collapse
|
22
|
Giansanti F, Leboffe L, Angelucci F, Antonini G. The Nutraceutical Properties of Ovotransferrin and Its Potential Utilization as a Functional Food. Nutrients 2015; 7:9105-15. [PMID: 26556366 PMCID: PMC4663581 DOI: 10.3390/nu7115453] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022] Open
Abstract
Ovotransferrin or conalbumin belong to the transferrin protein family and is endowed with both iron-transfer and protective activities. In addition to its well-known antibacterial properties, ovotransferrin displays other protective roles similar to those already ascertained for the homologous mammalian lactoferrin. These additional functions, in many cases not directly related to iron binding, are also displayed by the peptides derived from partial hydrolysis of ovotransferrin, suggesting a direct relationship between egg consumption and human health.
Collapse
Affiliation(s)
- Francesco Giansanti
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy.
- Interuniversity Consortium INBB Biostructures and Biosystems National Institute, Rome I-00136, Italy.
| | - Loris Leboffe
- Interuniversity Consortium INBB Biostructures and Biosystems National Institute, Rome I-00136, Italy.
- Department of Sciences, Roma Tre University, Rome I-00146, Italy.
| | - Francesco Angelucci
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy.
| | - Giovanni Antonini
- Interuniversity Consortium INBB Biostructures and Biosystems National Institute, Rome I-00136, Italy.
- Department of Sciences, Roma Tre University, Rome I-00146, Italy.
| |
Collapse
|
23
|
Davies OG, Grover LM, Eisenstein N, Lewis MP, Liu Y. Identifying the Cellular Mechanisms Leading to Heterotopic Ossification. Calcif Tissue Int 2015; 97:432-44. [PMID: 26163233 DOI: 10.1007/s00223-015-0034-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/02/2015] [Indexed: 12/19/2022]
Abstract
Heterotopic ossification (HO) is a debilitating condition defined by the de novo development of bone within non-osseous soft tissues, and can be either hereditary or acquired. The hereditary condition, fibrodysplasia ossificans progressiva is rare but life threatening. Acquired HO is more common and results from a severe trauma that produces an environment conducive for the formation of ectopic endochondral bone. Despite continued efforts to identify the cellular and molecular events that lead to HO, the mechanisms of pathogenesis remain elusive. It has been proposed that the formation of ectopic bone requires an osteochondrogenic cell type, the presence of inductive agent(s) and a permissive local environment. To date several lineage-tracing studies have identified potential contributory populations. However, difficulties identifying cells in vivo based on the limitations of phenotypic markers, along with the absence of established in vitro HO models have made the results difficult to interpret. The purpose of this review is to critically evaluate current literature within the field in an attempt identify the cellular mechanisms required for ectopic bone formation. The major aim is to collate all current data on cell populations that have been shown to possess an osteochondrogenic potential and identify environmental conditions that may contribute to a permissive local environment. This review outlines the pathology of endochondral ossification, which is important for the development of potential HO therapies and to further our understanding of the mechanisms governing bone formation.
Collapse
Affiliation(s)
- O G Davies
- School of Mechanical and Manufacturing Engineering, Loughborough University, Ashby Road, Loughborough, LE11 3TU, UK.
- Centre for Biological Engineering, Loughborough University, Loughborough, LE11 3TU, UK.
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - N Eisenstein
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - M P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough, UK
- National Centre for Sport and Exercise Medicine, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Y Liu
- School of Mechanical and Manufacturing Engineering, Loughborough University, Ashby Road, Loughborough, LE11 3TU, UK
| |
Collapse
|
24
|
|
25
|
Zhong X, Wang H, Jian X. Expression of matrix metalloproteinases-8 and -9 and their tissue inhibitor in the condyles of diabetic rats with mandibular advancement. Exp Ther Med 2014; 8:1357-1364. [PMID: 25289023 PMCID: PMC4186328 DOI: 10.3892/etm.2014.1984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/18/2013] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to evaluate the effects of type 1 diabetes mellitus on the condylar response during treatment with a functional appliance. Sprague-Dawley rats were divided into 3 groups, normal (NG), diabetes (DG) and diabetes with insulin-treatment (TG). Bite-jumping appliances were fitted to the rats in the experimental groups. At 7, 14, 21 and 28 days following fitting, animals were sacrificed and condyles were excised and processed using routine histological techniques. The expression of matrix metalloproteinase (MMP)-8, MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1) was detected using immunohistochemical analysis. Mandibular advancement increased the expression levels of MMP-8 (peaked on day 28), MMP-9 (peaked on day 21), TIMP-1 (peaked on days 21 and 28) and the ratio of MMP-8 to TIMP-1 and MMP-9 to TIMP-1. In the DG, diabetes decreased the expression levels of MMP-8 and MMP-9 induced by mandibular advancement and increased the expression levels of TIMP-1 compared with that of the NG. The ratio of MMP-8 to TIMP-1 and MMP-9 to TIMP-1 also showed a significant decrease in the DG compared with that of the NG. A recovery of these parameters was observed in the TG. Diabetes significantly altered the condylar response, which was triggered by mandibular advancement, and weakened subsequent bone deposition. The results from the TG were not significantly different from that of the NG.
Collapse
Affiliation(s)
- Xiaohuan Zhong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huixin Wang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xinchun Jian
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
26
|
Stenberg J, Rüetschi U, Skiöldebrand E, Kärrholm J, Lindahl A. Quantitative proteomics reveals regulatory differences in the chondrocyte secretome from human medial and lateral femoral condyles in osteoarthritic patients. Proteome Sci 2013; 11:43. [PMID: 24090399 PMCID: PMC3851248 DOI: 10.1186/1477-5956-11-43] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/26/2013] [Indexed: 01/15/2023] Open
Abstract
Background Osteoarthritis (OA) is a destructive joint disease and there are no known biomarkers available for an early diagnosis. To identify potential disease biomarkers and gain further insight into the disease mechanisms of OA we applied quantitative proteomics with SILAC technology on the secretomes from chondrocytes of OA knees, designated as high Mankin (HM) scored secretome. A quantitative comparison was made between the secretomes of the medial and lateral femur condyle chondrocytes in the same knee since the medial femur condyle is usually more affected in OA than the lateral condyle, which was confirmed by Mankin scoring. The medial/lateral comparison was also made on the secretomes from chondrocytes taken from one individual with no clinically apparent joint-disease, designated as low Mankin (LM) scored secretome. Results We identified 825 proteins in the HM secretome and 69 of these showed differential expression when comparing the medial and lateral femoral compartment. The LM scored femoral condyle showed early signs of OA in the medial compartment as assessed by Mankin score. We here report the identification and relative quantification of several proteins of interest for the OA disease mechanism e.g. CYTL1, DMD and STAB1 together with putative early disease markers e.g. TIMP1, PPP2CA and B2M. Conclusions The present study reveals differences in protein abundance between medial/lateral femur condyles in OA patients. These regulatory differences expand the knowledge regarding OA disease markers and mechanisms.
Collapse
Affiliation(s)
- Johan Stenberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Ulla Rüetschi
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Toxicology, Box 7028, SLUS-75007 Uppsala, Sweden
| | - Johan Kärrholm
- Institute of Clinical Sciences, Department of Orthopaedic Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden.,Clinical Chemistry at Sahlgrenska University Hospital, Bruna Stråket 16, SE-41345 Gothenburg, Sweden
| |
Collapse
|
27
|
Ibrahim HR, Hozono A, Fukami M, Shaban MA, Miyata T. Expression of ovotransferrin enhances tolerance of yeast cells toward oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6358-6365. [PMID: 23756761 DOI: 10.1021/jf401152e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recently, we found that ovotransferrin (OTf) undergoes distinct self-cleavage in a redox-dependent process and exhibited in vitro superoxide dismutase (SOD)-like activity. In this study, we explore that the expression of OTf confers high tolerance to oxidative stress in yeast cells. The OTf gene was cloned into the vector pPICZB and was successfully expressed in methylotrophic yeast, Pichia pastoris KM71H. There was no growth difference between the non-transformed strain and recombinant strains harboring a mock vector (pPICZB) or the OTf gene carrying a vector (OTf-pPICZB). Intracellularly expressed OTf was found to undergo self-cleavage, producing a major fragment of 15 kDa, which corresponded to the disulfide kringle domain of the N-terminal lobe. The yeast OTf transformants exhibited strong tolerance to oxidative stress induced by either hydrogen peroxide (H₂O₂) or diethyl maleate (DEM). Further, OTf transformants showed higher intracellular reducing capacity and enhanced cytosolic reductase activity. This study is the first to describe the ability of OTf to confer in vivo antioxidative stress function within a complicated milieu of eukaryotic cells and provide novel insights for the potential of the OTf gene for molecular breeding of industrial yeast strains with high tolerance to oxidative stress.
Collapse
Affiliation(s)
- Hisham R Ibrahim
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | | | | | | | | |
Collapse
|
28
|
Cunningham CA, Black SM. The vascular collar of the ilium- Three-dimensional evaluation of the dominant nutrient foramen. Clin Anat 2013; 26:502-8. [DOI: 10.1002/ca.22213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/12/2012] [Accepted: 11/19/2012] [Indexed: 11/10/2022]
|
29
|
Simsa-Maziel S, Monsonego-Ornan E. Interleukin-1β promotes proliferation and inhibits differentiation of chondrocytes through a mechanism involving down-regulation of FGFR-3 and p21. Endocrinology 2012; 153:2296-310. [PMID: 22492305 DOI: 10.1210/en.2011-1756] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The proinflammatory cytokine IL-1β is elevated in many childhood chronic inflammatory diseases as well as obesity and can be associated with growth retardation. Here we show that IL-1β affects bone growth by directly disturbing the normal sequence of events in the growth plate, resulting in increased proliferation and widening of the proliferative zone, whereas the hypertrophic zone becomes disorganized, with impaired matrix structure and increased apoptosis and osteoclast activity. This was also evident in vitro: IL-1β increased proliferation and caused a G1-to-S phase shift in the cell cycle in ATDC5 chondrocytes, accompanied by a reduction in fibroblast growth factor receptor-3 (FGFR-3) and its downstream gene, the cell-cycle inhibitor p21 and its family member p57, whereas the cell-cycle promoter E2F-2 was increased. The reduction in FGFR-3, p21, and p57 was followed by delayed cell differentiation, manifested by decreases in proteoglycan synthesis, mineralization, alkaline phosphatase activity, and the expression of Sox9, RunX2, collagen type II, collagen type X, and other matrix proteins. Taken together, we suggest that IL-1β alters normal chondrogenesis and bone growth through a mechanism involving down-regulation of FGFR-3 and p21.
Collapse
Affiliation(s)
- Stav Simsa-Maziel
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | | |
Collapse
|
30
|
Zhang X, Siclari VA, Lan S, Zhu J, Koyama E, Dupuis HL, Enomoto-Iwamoto M, Beier F, Qin L. The critical role of the epidermal growth factor receptor in endochondral ossification. J Bone Miner Res 2011; 26:2622-33. [PMID: 21887704 PMCID: PMC3200483 DOI: 10.1002/jbmr.502] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Loss of epidermal growth factor receptor (EGFR) activity in mice alters growth plate development, impairs endochondral ossification, and retards growth. However, the detailed mechanism by which EGFR regulates endochondral bone formation is unknown. Here, we show that administration of an EGFR-specific small-molecule inhibitor, gefitinib, into 1-month-old rats for 7 days produced profound defects in long bone growth plate cartilage characterized by epiphyseal growth plate thickening and massive accumulation of hypertrophic chondrocytes. Immunostaining demonstrated that growth plate chondrocytes express EGFR, but endothelial cells and osteoclasts show little to no expression. Gefitinib did not alter chondrocyte proliferation or differentiation and vascular invasion into the hypertrophic cartilage. However, osteoclast recruitment and differentiation at the chondro-osseous junction were attenuated owing to decreased RANKL expression in the growth plate. Moreover, gefitinib treatment inhibited the expression of matrix metalloproteinases (MMP-9, -13, and -14), increased the amount of collagen fibrils, and decreased degraded extracellular matrix products in the growth plate. In vitro, the EGFR ligand transforming growth factor α (TGF-α) strongly stimulated RANKL and MMPs expression and suppressed osteoprotegerin (OPG) expression in primary chondrocytes. In addition, a mouse model of cartilage-specific EGFR inactivation exhibited a similar phenotype of hypertrophic cartilage enlargement. Together our data demonstrate that EGFR signaling supports osteoclastogenesis at the chondro-osseous junction and promotes chondrogenic expression of MMPs in the growth plate. Therefore, we conclude that EGFR signaling plays an essential role in the remodeling of growth plate cartilage extracellular matrix into bone during endochondral ossification.
Collapse
Affiliation(s)
- Xianrong Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Physiological roles of ovotransferrin. Biochim Biophys Acta Gen Subj 2011; 1820:218-25. [PMID: 21854833 DOI: 10.1016/j.bbagen.2011.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/29/2011] [Accepted: 08/04/2011] [Indexed: 01/24/2023]
Abstract
BACKGROUND Ovotransferrin is an iron-binding glycoprotein, found in avian egg white and in avian serum, belonging to the family of transferrin iron-binding glycoproteins. All transferrins show high sequence homology. In mammals are presents two different soluble glycoproteins with different functions: i) serum transferrin that is present in plasma and committed to iron transport and iron delivery to cells and ii) lactoferrin that is present in extracellular fluids and in specific granules of polymorphonuclear lymphocytes and committed to the so-called natural immunity. To the contrary, in birds, ovotransferrin remained the only soluble glycoprotein of the transferrin family present both in plasma and egg white. SCOPE OF REVIEW Substantial experimental evidences are summarized, illustrating the multiple physiological roles of ovotransferrin in an attempt to overcome the common belief that ovotransferrin is a protein dedicated only to iron transport and to iron withholding antibacterial activity. MAJOR CONCLUSIONS Similarly to the better known family member protein lactoferrin, ovotransferrin appears to be a multi-functional protein with a major role in avian natural immunity. GENERAL SIGNIFICANCE Biotechnological applications of ovotransferrin and ovotransferrin-related peptides could be considered in the near future, stimulating further research on this remarkable protein. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
32
|
Liang G, Butterfield C, Liang J, Birsner A, Folkman J, Shing Y. Beta-35 is a transferrin-derived inhibitor of angiogenesis and tumor growth. Biochem Biophys Res Commun 2011; 409:562-6. [PMID: 21605550 DOI: 10.1016/j.bbrc.2011.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/07/2011] [Indexed: 11/30/2022]
Abstract
An angiogenesis inhibitor named Beta-35 has been identified and purified from the conditioned medium of mouse pancreatic β cells tumor cells. Beta-35 has a molecular weight of 35 kDa and inhibits DNA synthesis of bovine capillary endothelial cells at a half-maximal concentration of approximately 5 nM. It shows anti-angiogenic activity in the chick embryo chorioallantoic membrane at a dose of about 1 μg/embryo. Amino acid microsequencing and mass spectrometric analysis of the purified protein demonstrate that Beta-35 contains the first 314 residues of the N-terminal sequence of bovine transferrin. We have cloned and expressed this protein in Escherichia coli using the corresponding gene segment of Beta-35 contained in the cDNA of human transferrin. The recombinant protein of Beta-35 shows significant anti-tumor activity at a dose of 5mg/kg/day against human pancreatic cancer or melanoma implanted subcutaneously in SCID mice.
Collapse
Affiliation(s)
- Gang Liang
- Vascular Biology Program, Department of Surgery, Children's Hospital, and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Cunningham CA, Black SM. The neonatal ilium-metaphyseal drivers and vascular passengers. Anat Rec (Hoboken) 2010; 293:1297-309. [PMID: 20665808 DOI: 10.1002/ar.21182] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
At birth the newborn is equipped with a developing locomotor apparatus, which will ultimately become involved in load transfer from the period when the child adopts a sitting posture through to the attainment of a bipedal gait. This load transfer has been considered to influence trabecular bone structural organization by setting up forces, which remodel the internal architecture into a functionally optimized form. However, during the neonatal developmental period the locomotor apparatus is nonweight bearing and instead only supports reflexive movements. Surprisingly, a structural organization has been identified within the internal trabecular architecture and external cortical morphology of the neonatal ilium, which appears to mimic the structural composition of the more mature bone. This study aims to build upon previous qualitative and quantitative investigation of this apparently precocious patterning by further examining structural data obtained from selected volumes of interest within the ilium. Analysis has revealed statistically significant differences in regional trabecular and cortical bone characteristics, which have formed the basis of a possible growth model for the ilium. Volumetric comparison has demonstrated the presence of three progressive "growth regions" and three "restricted growth regions," which appear to relate to metaphyseal and nonmetaphyseal borders of the ilium. Therefore, the structural data and statistical analysis presented in this study challenge the current concept of implied centrifugal ossification within the human ilium and present evidence of an alternative pattern of ossification that is largely dictated and controlled by vascular distribution and growth plate position.
Collapse
Affiliation(s)
- Craig A Cunningham
- Centre for Anatomy and Human Identification, College of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| | | |
Collapse
|
34
|
Hong JM, Kim TH, Kim HJ, Park EK, Yang EK, Kim SY. Genetic association of angiogenesis- and hypoxia-related gene polymorphisms with osteonecrosis of the femoral head. Exp Mol Med 2010; 42:376-85. [PMID: 20215856 DOI: 10.3858/emm.2010.42.5.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Multiple factors have been implicated in the development of osteonecrosis of the femoral head (ONFH). In particular, non-traumatic ONFH is directly or indirectly related to injury of the vascular supply to the femoral head. Thus, hypoxia in the femoral head caused by impaired blood flow may be an important risk factor for ONFH. In this study, we investigated whether genetic variations of angiogenesis- and hypoxia-related genes contribute to an increased risk for the development of ONFH. Candidate genes were selected based on known hypoxia and angiogenesis pathways. An association study was performed using an Affymetrix Targeted Genotyping 3K Chip array with 460 ONFH patients and 300 control subjects. We showed that single nucleotide polymorphisms (SNPs) in the genes TF, VEGFC, IGFBP3, and ACE were associated with an increased risk of ONFH. On the other hand, SNPs in the KDR and NRP1 genes were associated with protection against ONFH. The most important finding was that one SNP (rs2453839) in the IGFBP3 gene was significantly associated with a higher risk of ONFH (P=0.0061, OR 7.74). In subgroup analysis, most candidate gene variations that were associated with ONFH occurred in the idiopathic subgroup. Among other SNPs, ACE SNPs were associated with steroid-induced ONFH (P=0.0018-0.0037, OR>3). Collectively, our findings suggest that genetic variations in angiogenesis- and hypoxia-related genes may help to identify susceptibility factors for the development of ONFH in the Korean population.
Collapse
Affiliation(s)
- Jung Min Hong
- Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu 700-412, Korea
| | | | | | | | | | | |
Collapse
|
35
|
D'Andrea LD, Romanelli A, Di Stasi R, Pedone C. Bioinorganic aspects of angiogenesis. Dalton Trans 2010; 39:7625-36. [PMID: 20535417 DOI: 10.1039/c002439b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiogenesis is a physiologic process characterized by the sprouting of a new blood vessel from a pre-existing one. In mammalians the angiogenesis process is dormant, except for few physiological conditions such as wound healing and ovulation. In healthy individuals angiogenesis is finely tuned by pro- and anti-angiogenic factors. The shift from this equilibrium, under pathological conditions (pathological angiogenesis) is associated with several human diseases of high social impact. An efficient angiogenesis also requires that angiogenic factors cooperate with microenvironment derived co-factors, including metals. In this Perspective we describe the bioinorganic aspects of angiogenesis which contribute to a better understanding of the molecular mechanisms and regulation of angiogenesis. In particular, the role of metals, especially copper, metalloproteinases, and the current status on the imaging of angiogenesis targeting VEGF or VEGF receptors will be discussed.
Collapse
|
36
|
Horvat-Gordon M, Praul C, Ramachandran R, Bartell P, Leach, R. Use of microarray analysis to study gene expression in the avian epiphyseal growth plate. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:12-23. [DOI: 10.1016/j.cbd.2009.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 08/31/2009] [Accepted: 08/31/2009] [Indexed: 12/15/2022]
|
37
|
Diagnostic and prognostic biomarker discovery strategies for autoimmune disorders. J Proteomics 2009; 73:1045-60. [PMID: 19995622 DOI: 10.1016/j.jprot.2009.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/25/2009] [Accepted: 11/30/2009] [Indexed: 12/28/2022]
Abstract
Current clinical, laboratory or radiological parameters cannot accurately diagnose or predict disease outcomes in a range of autoimmune disorders. Biomarkers which can diagnose at an earlier time point, predict outcome or help guide therapeutic strategies in autoimmune diseases could improve clinical management of this broad group of debilitating disorders. Additionally, there is a growing need for a deeper understanding of multi-factorial autoimmune disorders. Proteomic platforms offering a multiplex approach are more likely to reflect the complexity of autoimmune disease processes. Findings from proteomic based studies of three distinct autoimmune diseases are presented and strategies compared. It is the authors' view that such approaches are likely to be fruitful in the movement of autoimmune disease treatment away from reactive decisions and towards a preventative stand point.
Collapse
|
38
|
Gibson DS, Finnegan S, Jordan G, Scaife C, Brockbank S, Curry J, McAllister C, Pennington S, Dunn M, Rooney ME. Stratification and monitoring of juvenile idiopathic arthritis patients by synovial proteome analysis. J Proteome Res 2009; 8:5601-9. [PMID: 19848415 DOI: 10.1021/pr900680w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Juvenile idiopathic arthritis (JIA) comprises a poorly understood group of chronic, childhood onset, autoimmune diseases with variable clinical outcomes. We investigated whether profiling of the synovial fluid (SF) proteome by a fluorescent dye based, two-dimensional gel (DIGE) approach could distinguish patients in whom inflammation extends to affect a large number of joints, early in the disease process. SF samples from 22 JIA patients were analyzed: 10 with oligoarticular arthritis, 5 extended oligoarticular and 7 polyarticular disease. SF samples were labeled with Cy dyes and separated by two-dimensional electrophoresis. Multivariate analyses were used to isolate a panel of proteins which distinguish patient subgroups. Proteins were identified using MALDI-TOF mass spectrometry with expression further verified by Western immunoblotting and immunohistochemistry. Hierarchical clustering based on the expression levels of a set of 40 proteins segregated the extended oligoarticular from the oligoarticular patients (p < 0.05). Expression patterns of the isolated protein panel have also been observed over time, as disease spreads to multiple joints. The data indicates that synovial fluid proteome profiles could be used to stratify patients based on risk of disease extension. These protein profiles may also assist in monitoring therapeutic responses over time and help predict joint damage.
Collapse
Affiliation(s)
- David S Gibson
- Arthritis Research Group, Microbiology Building (RVH), Queen's University Belfast, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Serum protein signature may improve detection of ductal carcinoma in situ of the breast. Oncogene 2009; 29:550-60. [PMID: 19855429 DOI: 10.1038/onc.2009.341] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is part of a spectrum of preinvasive lesions that originate within normal breast tissue and progress to invasive breast cancer. The detection of DCIS is important for the reduction of mortality from breast cancer, but the diagnosis of preinvasive breast tumors is hampered by the lack of an adequate detection method. To identify the changes in protein expression during the initial stage of tumorigenesis and to identify the presence of new DCIS markers, we analysed serum from 60 patients with breast cancer and 60 normal controls using mass spectrometry. A 23-protein index was generated that correctly distinguishes the DCIS and control groups with sensitivities and specificities in excess of 80% in two independent cohorts. Two candidate peptides were purified and identified as platelet factor 4 (PF-4) and complement C3a(desArg) anaphylatoxin (C3a(desArg)) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In an independent serum set of 165 patients, PF-4 and C3a(desArg) were significantly upregulated in DCIS compared with non-cancerous controls, as validated using western blot and enzyme-linked immunosorbent assay. We conclude that our serum protein-based test, used in conjunction with image-based screening practices, could improve the sensitivity and specificity of breast cancer detection.
Collapse
|
40
|
Cancer-specific MALDI-TOF profiles of blood serum and plasma: biological meaning and perspectives. J Proteomics 2009; 73:537-51. [PMID: 19782778 DOI: 10.1016/j.jprot.2009.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/14/2009] [Accepted: 09/16/2009] [Indexed: 12/13/2022]
Abstract
MALDI-TOF mass-spectrometry has become a popular tool of cancer research during the last decade. High throughput and relative simplicity of this technology have made it attractive for biomarker discovery and validation across various platforms in blood serum/plasma. Many technical approaches have been developed for plasma/serum profiling including protein-chip based SELDI-TOF mass-spectrometry, purification of serum on magnetic beads, analysis of carrier-associated fraction and mass-spectrometric immunoassays. Extensive data about the identity of differential features detected on mass-spectra up to now makes it possible to draw conclusions about potency and perspectives of MALDI-TOF mass-spectrometry in this field. A great majority of identified differentially expressed proteins are either house-keeping or inflammatory proteins as well as their modifications or fragments. Discriminating ability of mass-spectra is likely to be based on differential modification and fragmentation patterns of abundant serum proteins reflecting activity of enzymes including proteases and their inhibitors.
Collapse
|
41
|
Park S, Kim TS, Kim C, Kim S, Bang SI, Park H, Cho DH. Transferrin induces interleukin-18 expression in chronic myeloid leukemia cell line, K-562. Leuk Res 2008; 33:315-20. [PMID: 18835036 DOI: 10.1016/j.leukres.2008.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/01/2008] [Accepted: 08/02/2008] [Indexed: 10/21/2022]
Abstract
Transferrin is an iron carrier protein involved in iron uptake and the regulation of cell growth. Although highly proliferative cells express transferrin and its receptor, little is known about the role of transferrin in the cellular response to cytokine production. The non-iron-bound form of transferrin (apo-transferrin) was administered to human chronic myeloid leukemia cell line, K-562 cells to assess whether it could induce interleukin-18 (IL-18). Apo-transferrin enhanced IL-18 mRNA and protein and, moreover, IL-18 secretion was increased by treatment with apo-transferrin. In conclusion, apo-transferrin regulates IL-18 expression and we suggest that it is involved in cytokine production.
Collapse
Affiliation(s)
- Sunyoung Park
- Department of Life Science, Sookmyung Women's University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The ability to predict the metastatic behavior of a patient's cancer, as well as to detect and eradicate such recurrences, remain major clinical challenges in oncology. While many potential molecular biomarkers have been identified and tested previously, none have greatly improved the accuracy of specimen evaluation over routine histopathological criteria and, to date, they predict individual outcomes poorly. The ongoing development of high-throughput proteomic profiling technologies is opening new avenues for the investigation of cancer and, through application in tissue-based studies and animal models, will facilitate the identification of molecular signatures that are associated with breast tumor cell phenotype. The appropriate use of these approaches has the potential to provide efficient biomarkers, and to improve our knowledge of tumor biology. This, in turn, will enable the development of targeted therapeutics aimed at ameliorating the lethal dissemination of breast cancer. In this review, we focus on the accumulating proteomic signatures of breast tumor progression, particularly those that correlate with the occurrence of distant metastases, and discuss some of the expected future developments in the field.
Collapse
Affiliation(s)
- Steve Goodison
- Department of Surgery, University of Florida, 653 West 8th Street, Jacksonville, FL 32209, USA, Tel.: +1 904 633 0978, Fax: +1 904 633 0979
| | - Virginia Urquidi
- Department of Medicine, University of Florida, 655 West 11th Street, Jacksonville, FL 32206-3516, USA, Tel.: +1 904 633 0977, Fax: +1 904 633 0979
| |
Collapse
|
43
|
Isolation and characterization of the iron-binding properties of a primitive monolobal transferrin from Ciona intestinalis. J Biol Inorg Chem 2008; 13:873-85. [DOI: 10.1007/s00775-008-0375-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/25/2022]
|
44
|
Gu J, Wang Y, Li J, Wang J, Jin T. Proteomic analysis of left ventricular tissues following intermittent myocardial ischemia during coronary collateralization in rabbits. Int J Cardiol 2008; 131:326-35. [PMID: 18207584 DOI: 10.1016/j.ijcard.2007.10.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/19/2007] [Accepted: 10/20/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Repeated transient myocardial ischemia may offer favorable effects to coronary perfusion via collateral circulation, although the underlying molecular mechanisms still remain unclear. This study was designed to evaluate the proteomic changes during this process. METHODS Rabbits were randomly divided into sham-operated and ischemic groups (5 each) and were subjected to intermittent myocardial ischemia by inflation or deflation of pneumatic occluders for 4 weeks to establish a controlled myocardial ischemic model. Isolated hearts were subjected to histological observation, microspheric detection, capillary counting and proteomic analysis. RESULTS Elevation of ST segment or back to normal in Lead-II electrocardiogram could be induced by occluders without overt histological and cardiac troponin I alterations. Regional coronary collateral blood flow exhibited a remarkable increase following intermittent inflation of occluders in the ischemic group (P<0.01). Simultaneously, capillary numbers per unit area were significantly different between groups (P<0.01). Twenty-three differentially expressed protein spots were separated by two-dimensional gel electrophoresis and 13 out of them were identified by MALDI-TOF-MS. CONCLUSION The present study indicates that the differentially expressed proteins involved in proliferation, growth and energy metabolism following intermittent myocardial ischemia without ischemia-reperfusion injury are likely associated with the development of collateralization beneficial to coronary circulation.
Collapse
Affiliation(s)
- Jinyang Gu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
45
|
Ibrahim HR, Hoq MI, Aoki T. Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding. Int J Biol Macromol 2007; 41:631-40. [DOI: 10.1016/j.ijbiomac.2007.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/22/2007] [Accepted: 08/22/2007] [Indexed: 11/26/2022]
|
46
|
Kim T, Kim SJ, Kim K, Kang UB, Lee C, Park KS, Yu HG, Kim Y. Profiling of vitreous proteomes from proliferative diabetic retinopathy and nondiabetic patients. Proteomics 2007; 7:4203-15. [DOI: 10.1002/pmic.200700745] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Crivellato E, Nico B, Ribatti D. Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat 2007; 211:415-27. [PMID: 17683480 PMCID: PMC2375830 DOI: 10.1111/j.1469-7580.2007.00790.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2007] [Indexed: 01/02/2023] Open
Abstract
It is well established that many tissue-derived factors are involved in blood vessel formation, but evidence is now emerging that endothelial cells themselves represent a crucial source of instructive signals to non-vascular tissue cells during organ development. Thus, endothelial cell signalling is currently believed to promote fundamental cues for cell fate specification, embryo patterning, organ differentiation and postnatal tissue remodelling. This review article summarizes some of the recent advances in our understanding of the role of endothelial cells as effector cells in organ formation.
Collapse
Affiliation(s)
- E Crivellato
- Department of Medical and Morphological Research, Anatomy Section, University of Udine, Italy.
| | | | | |
Collapse
|
48
|
Hwa AJ, Fry RC, Sivaraman A, So PT, Samson LD, Stolz DB, Griffith LG. Rat liver sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures with hepatocytes. FASEB J 2007; 21:2564-79. [PMID: 17426068 DOI: 10.1096/fj.06-7473com] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Liver sinusoidal endothelial cells (SECs) are generally refractory to extended in vitro culture. In an attempt to recreate some features of the complex set of cues arising from the liver parenchyma, we cocultured adult rat liver SECs, identified by the expression of the marker SE-1, with primary adult rat hepatocytes in a 3D culture system that provides controlled microscale perfusion through the tissue mass. The culture was established in a medium containing serum and VEGF, and these factors were then removed to assess whether cells with the SE-1 phenotype could be supported by the local microenvironment in vitro. Rats expressing enhanced green fluorescent protein (EGFP) in all liver cells were used for isolation of the SE-1-positive cells added to cocultures. By the 13th day of culture, EGFP-expressing cells had largely disappeared from 2D control cultures but exhibited moderate proliferation in 3D perfused cultures. SE-1-positive cells were present in 3D cocultures after 13 days, and these cultures also contained Kupffer cells, stellate cells, and CD31-expressing endothelial cells. Global transcriptional profiling did not reveal profound changes between 2D and 3D cultures in expression of most canonical angiogenic factors but suggested changes in several pathways related to endothelial cell function.
Collapse
Affiliation(s)
- Albert J Hwa
- Department of Mechanical Engineering, MIT, 77 Mass. Ave., Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Giannoni P, Cancedda R. Articular chondrocyte culturing for cell-based cartilage repair: needs and perspectives. Cells Tissues Organs 2007; 184:1-15. [PMID: 17190975 DOI: 10.1159/000096946] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2006] [Indexed: 01/13/2023] Open
Abstract
Articular cartilage displays a limited capacity of self-regeneration after injury. Thus, the biology of this tissue and its cellular components - the chondrocytes - has become the focus of several investigations, driven by tissue engineering and the basic and clinical research fields, aiming to ameliorate the present clinical approaches to cartilage repair. In this work, we present a brief recapitulation of the events that lead to cartilage development during the skeletal embryonal growth. The intrinsic phenotypic plasticity of the mesenchymal precursors and the adult chondrocytes is evaluated, dependent on the cell source, its physiopathological state, and as a function of the donor's age. The phenotypic changes induced by the basic culturing techniques are also taken into account, thus highlighting the phenotypic plasticity of the chondrocyte as the main property which could couple the differentiation process to the repair process. Chondrocyte proliferation and the contemporary maintenance of the chondrogenic differentiation potential are regarded as the two primary goals to be achieved in order to fulfill the quantitative needs of the clinical applications and the qualitative requirements of a properly repaired tissue. In this light, the effects of several growth factors and medium supplements are investigated. Finally, the latest improvements in culturing conditions and their possible clinical applications are presented as well.
Collapse
|
50
|
Evans KD, Oberbauer AM. Spatiotemporal Localization of VEGF-A Isoforms in the Mouse Postnatal Growth Plate. Anat Rec (Hoboken) 2007; 291:6-13. [DOI: 10.1002/ar.20616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|