1
|
Malarz K, Kuczak M, Rurka P, Rawicka P, Boguszewska-Czubara A, Jampilek J, Mularski J, Musiol R, Mrozek-Wilczkiewicz A. Unveiling the role of Ndrg1 gene on the oxidative stress induction behind the anticancer potential of styrylquinazoline derivatives. Sci Rep 2025; 15:16081. [PMID: 40341822 PMCID: PMC12062220 DOI: 10.1038/s41598-025-99277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/18/2025] [Indexed: 05/11/2025] Open
Abstract
This work presents a multifaceted mechanism of the anticancer action of a 2-styrylquinazoline derivative. Extensive analysis of various aspects related to tyrosine kinase inhibition and effects on cellular targets at both the gene and protein levels revealed the potential of this IS20 compound for future research. This study presents a detailed analysis of the relationship between ABL and SRC kinase affecting the inhibition of the EGFR/mTOR signaling pathway in a non-obvious manner. The study was supported by experiments using various molecular biology techniques to confirm the induction of oxidative stress, inhibition of the cell cycle in the G2/M phase and the triggering of cell death via both the apoptosis and autophagy pathways. The cell models included those with different p53 protein status, which affected the cellular response in the form of altered Ndrg1 expression. Finally, the appropriate physicochemical properties of IS20 for adequate bioavailability and toxicity to the body were observed in an in vivo model.
Collapse
Affiliation(s)
- Katarzyna Malarz
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland.
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41-500, Poland.
| | - Michał Kuczak
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41-500, Poland
| | - Patryk Rurka
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41-500, Poland
| | - Patrycja Rawicka
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41-500, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, Lublin, 20-093, Poland
| | - Josef Jampilek
- Department of Chemical Biology, Palacky University Olomouc, Slechtitelu 27, Olomouc, 779 00, Czech Republic
| | - Jacek Mularski
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41-500, Poland
| | - Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41-500, Poland
| | - Anna Mrozek-Wilczkiewicz
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41-500, Poland
| |
Collapse
|
2
|
Okura GC, Bharadwaj AG, Waisman DM. Calreticulin-From the Endoplasmic Reticulum to the Plasma Membrane-Adventures of a Wandering Protein. Cancers (Basel) 2025; 17:288. [PMID: 39858072 PMCID: PMC11764459 DOI: 10.3390/cancers17020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Calreticulin (CRT) is a 46 kDa highly conserved protein initially identified as calregulin, a prominent Ca2+-binding protein of the endoplasmic reticulum (ER). Subsequent studies have established that CRT functions in the ER's protein folding response and Ca2+ homeostatic mechanisms. An ER retention signal on the carboxyl terminus of CRT suggested that CRT was restricted to the ER. However, the identification of CRT in the nucleus and cytosol has established that CRT is a multi-compartmental, multifunctional protein. CRT also plays an important role in cancer progression. Most recently, CRT was identified on the cell surface and shown to be a potent 'eat-me' signal that plays a key role in the uptake of apoptotic and viable cancer cells by phagocytes. Elevated CRT exposure on the outer leaflet of cancer cells has been linked with anticancer immunity and superior therapeutic outcomes in patients with non-small cell lung carcinoma, colorectal carcinoma, acute myeloid leukemia, ovarian cancer, and high-grade serous carcinomas. Mutations in the CRT gene have been identified in a subset of patients with myeloproliferative neoplasms. The most recent studies from our laboratory have revealed a new and significant function for extracellular CRT as a plasminogen receptor. This discovery has profound implications for our understanding of the role of CRT in myeloproliferative neoplasms, specifically, essential thrombocythemia.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
3
|
Michalak M. Calreticulin: Endoplasmic reticulum Ca 2+ gatekeeper. J Cell Mol Med 2024; 28:e17839. [PMID: 37424156 PMCID: PMC10902585 DOI: 10.1111/jcmm.17839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca2+ binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca2+ supply under different physiological conditions, in managing access to Ca2+ and how Ca2+ is used depending on the environmental events and in making sure that Ca2+ is not misused. Calreticulin plays a role of ER luminal Ca2+ sensor to manage Ca2+-dependent ER luminal events including maintaining interaction with its partners, Ca2+ handling molecules, substrates and stress sensors. The protein is strategically positioned in the lumen of the ER from where the protein manages access to and distribution of Ca2+ for many cellular Ca2+-signalling events. The importance of calreticulin Ca2+ pool extends beyond the ER and includes influence of cellular processes involved in many aspects of cellular pathophysiology. Abnormal handling of the ER Ca2+ contributes to many pathologies from heart failure to neurodegeneration and metabolic diseases.
Collapse
Affiliation(s)
- Marek Michalak
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
4
|
Sawaya AP, Vecin NM, Burgess JL, Ojeh N, DiBartolomeo G, Stone RC, Pastar I, Tomic-Canic M. Calreticulin: a multifunctional protein with potential therapeutic applications for chronic wounds. Front Med (Lausanne) 2023; 10:1207538. [PMID: 37692787 PMCID: PMC10484228 DOI: 10.3389/fmed.2023.1207538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Calreticulin is recognized as a multifunctional protein that serves an essential role in diverse biological processes that include wound healing, modification and folding of proteins, regulation of the secretory pathway, cell motility, cellular metabolism, protein synthesis, regulation of gene expression, cell cycle regulation and apoptosis. Although the role of calreticulin as an endoplasmic reticulum-chaperone protein has been well described, several studies have demonstrated calreticulin to be a highly versatile protein with an essential role during wound healing. These features make it an ideal molecule for treating a complex, multifactorial diseases that require fine tuning, such as chronic wounds. Indeed, topical application of recombinant calreticulin to wounds in multiple models of wound healing has demonstrated remarkable pro-healing effects. Among them include enhanced keratinocyte and fibroblast migration and proliferation, induction of extracellular matrix proteins, recruitment of macrophages along with increased granulation tissue formation, all of which are important functions in promoting wound healing that are deregulated in chronic wounds. Given the high degree of diverse functions and pro-healing effects, application of exogenous calreticulin warrants further investigation as a potential novel therapeutic option for chronic wound patients. Here, we review and highlight the significant effects of topical application of calreticulin on enhancing wound healing and its potential as a novel therapeutic option to shift chronic wounds into healing, acute-like wounds.
Collapse
Affiliation(s)
- Andrew P. Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Faculty of Medical Sciences, The University of the West Indies, Bridgetown, Barbados
| | - Gabrielle DiBartolomeo
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
5
|
Groenendyk J, Wang WA, Robinson A, Michalak M. Calreticulin and the Heart. Cells 2022; 11:cells11111722. [PMID: 35681417 PMCID: PMC9179554 DOI: 10.3390/cells11111722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Calreticulin is an endoplasmic Ca2+ binding protein and molecular chaperone. As a cardiac embryonic gene, calreticulin is essential for heart development. The protein supports Ca2+-dependent signaling events that are critical to cardiomyocyte differentiation and cardiogenesis. The increased expression of calreticulin and endoplasmic reticulum/sarcoplasmic reticulum Ca2+ capacity produces cardiomyocytes with enhanced efficiency, and detrimental mechanical stretching of cardiac fibroblasts, leading to cardiac pathology. Deletion of the calreticulin gene in adult cardiomyocytes results in left ventricle dilation, an impaired electrocardiogram, and heart failure. These observations indicate that a well-adjusted endoplasmic reticulum and calreticulin-dependent Ca2+ pool in cardiomyocytes are critical for the maintenance of proper cardiac function.
Collapse
Affiliation(s)
- Jody Groenendyk
- Correspondence: (J.G.); (M.M.); Tel.: +1-780-492-2256 (M.M.)
| | | | | | - Marek Michalak
- Correspondence: (J.G.); (M.M.); Tel.: +1-780-492-2256 (M.M.)
| |
Collapse
|
6
|
Agellon LB, Michalak M. A View of the Endoplasmic Reticulum Through the Calreticulin Lens. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:1-11. [PMID: 34050859 DOI: 10.1007/978-3-030-67696-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Calreticulin is well known as an ER-resident protein that serves as the major endoplasmic reticulum (ER) Ca2+ binding protein. This protein has been the major topic of discussion in an international workshop that has been meeting for a quarter of a century. In sharing information about this protein, the field also witnessed remarkable insights into the importance of the ER as an organelle and the role of ER Ca2+ in coordinating ER and cellular functions. Recent technological advances have helped to uncover the contributions of calreticulin in maintaining Ca2+ homeostasis in the ER and to unravel its involvement in a multitude of cellular processes as highlighted in this collection of articles. The continuing revelations of unexpected involvement of calreticulin and Ca2+ in many critical aspects of cellular function promises to further improve insights into the significance of this protein in the promotion of physiology as well as prevention of pathology.
Collapse
Affiliation(s)
- Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Nguyen DT, Le TM, Hattori T, Takarada-Iemata M, Ishii H, Roboon J, Tamatani T, Kannon T, Hosomichi K, Tajima A, Taniuchi S, Miyake M, Oyadomari S, Tanaka T, Kato N, Saito S, Mori K, Hori O. The ATF6β-calreticulin axis promotes neuronal survival under endoplasmic reticulum stress and excitotoxicity. Sci Rep 2021; 11:13086. [PMID: 34158584 PMCID: PMC8219835 DOI: 10.1038/s41598-021-92529-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
While ATF6α plays a central role in the endoplasmic reticulum (ER) stress response, the function of its paralogue ATF6β remains elusive, especially in the central nervous system (CNS). Here, we demonstrate that ATF6β is highly expressed in the hippocampus of the brain, and specifically regulates the expression of calreticulin (CRT), a molecular chaperone in the ER with a high Ca2+-binding capacity. CRT expression was reduced to ~ 50% in the CNS of Atf6b−/− mice under both normal and ER stress conditions. Analysis using cultured hippocampal neurons revealed that ATF6β deficiency reduced Ca2+ stores in the ER and enhanced ER stress-induced death. The higher levels of death in Atf6b−/− neurons were recovered by ATF6β and CRT overexpressions, or by treatment with Ca2+-modulating reagents such as BAPTA-AM and 2-APB, and with an ER stress inhibitor salubrinal. In vivo, kainate-induced neuronal death was enhanced in the hippocampi of Atf6b−/− and Calr+/− mice, and restored by administration of 2-APB and salubrinal. These results suggest that the ATF6β-CRT axis promotes neuronal survival under ER stress and excitotoxity by improving intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Dinh Thi Nguyen
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Thuong Manh Le
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan.,Department of Human Anatomy, Hanoi Medical University, Hanoi, Vietnam
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shusuke Taniuchi
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masato Miyake
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Tanaka
- Department of Anatomy II, Kanazawa Medical University, Kahoku, Japan
| | - Nobuo Kato
- Department of Physiology I, Kanazawa Medical University, Kahoku, Japan
| | - Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan.
| |
Collapse
|
8
|
Groenendyk J, Agellon LB, Michalak M. Calcium signaling and endoplasmic reticulum stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:1-20. [PMID: 34392927 DOI: 10.1016/bs.ircmb.2021.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular homeostasis is essential for healthy functioning of cells and tissues as well as proper organ development and maintenance. A disruption in cellular homeostasis triggers stress responses including the unfolded protein response (UPR), an endoplasmic reticulum (ER) stress coping response. There is increasing evidence that Ca2+ signaling plays a pivotal role in stress responses, as Ca2+ is involved many cellular activities. The ER is the main Ca2+ storage organelle and the source of Ca2+ for intracellular signaling. The ER is equipped with a variety of stress sensors and contains many Ca2+ handling proteins that support a role for Ca2+ in stress sensing and in coordinating strategies required to cope with cellular stress. Maintenance of ER Ca2+ homeostasis is therefore vital in sustaining cellular functions especially during times of cellular stress. Here we focus on selected aspects of ER Ca2+ homeostasis, its links to ER stress, and activation of the ER stress coping response.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Lu A, Pallero MA, Owusu BY, Borovjagin AV, Lei W, Sanders PW, Murphy-Ullrich JE. Calreticulin is important for the development of renal fibrosis and dysfunction in diabetic nephropathy. Matrix Biol Plus 2020; 8:100034. [PMID: 33543033 PMCID: PMC7852315 DOI: 10.1016/j.mbplus.2020.100034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Previously, our lab showed that the endoplasmic reticulum (ER) and calcium regulatory protein, calreticulin (CRT), is important for collagen transcription, secretion, and assembly into the extracellular matrix (ECM) and that ER CRT is critical for TGF-β stimulation of type I collagen transcription through stimulation of ER calcium release and NFAT activation. Diabetes is the leading cause of end stage renal disease. TGF-β is a key factor in the pathogenesis of diabetic nephropathy. However, the role of calreticulin (Calr) in fibrosis of diabetic nephropathy has not been investigated. In current work, we used both in vitro and in vivo approaches to assess the role of ER CRT in TGF-β and glucose stimulated ECM production by renal tubule cells and in diabetic mice. Knockdown of CALR by siRNA in a human proximal tubular cell line (HK-2) showed reduced induction of soluble collagen when stimulated by TGF-β or high glucose as compared to control cells, as well as a reduction in fibronectin and collagen IV transcript levels. CRT protein is increased in kidneys of mice made diabetic with streptozotocin and subjected to uninephrectomy to accelerate renal tubular injury as compared to controls. We used renal-targeted ultrasound delivery of Cre-recombinase plasmid to knockdown specifically CRT expression in the remaining kidney of uninephrectomized Calr fl/fl mice with streptozotocin-induced diabetes. This approach reduced CRT expression in the kidney, primarily in the tubular epithelium, by 30-55%, which persisted over the course of the studies. Renal function as measured by the urinary albumin/creatinine ratio was improved in the mice with knockdown of CRT as compared to diabetic mice injected with saline or subjected to ultrasound and injected with control GFP plasmid. PAS staining of kidneys and immunohistochemical analyses of collagen types I and IV show reduced glomerular and tubulointerstitial fibrosis. Renal sections from diabetic mice with CRT knockdown showed reduced nuclear NFAT in renal tubules and treatment of diabetic mice with 11R-VIVIT, an NFAT inhibitor, reduced proteinuria and renal fibrosis. These studies identify ER CRT as an important regulator of TGF-β stimulated ECM production in the diabetic kidney, potentially through regulation of NFAT-dependent ECM transcription.
Collapse
Key Words
- 4-PBA, 4-phenylbutyrate
- CRT, calreticulin
- Calreticulin
- Collagen
- Diabetic nephropathy
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- ER, endoplasmic reticulum
- Fibrosis
- GRP78, glucose related protein 78
- MB/US, microbubble/ultrasound
- NFAT
- NFAT, nuclear factor of activated T cells
- PAS, Periodic Acid-Schiff
- STZ, streptozotocin
- TGF-β, transforming growth factor-β
- UPR, unfolded protein response
Collapse
Affiliation(s)
- Ailing Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Manuel A. Pallero
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Benjamin Y. Owusu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Anton V. Borovjagin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Weiqi Lei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Paul W. Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Department of Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | | |
Collapse
|
10
|
Fauste E, Rodrigo S, Aguirre R, Donis C, Rodríguez L, Álvarez-Millán JJ, Panadero MI, Otero P, Bocos C. Maternal Fructose Intake Increases Liver H 2 S Synthesis but Exarcebates its Fructose-Induced Decrease in Female Progeny. Mol Nutr Food Res 2020; 64:e2000628. [PMID: 32754997 DOI: 10.1002/mnfr.202000628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/26/2022]
Abstract
SCOPE Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases (CVD). However, consumption of beverages containing fructose is allowed during gestation. Homocysteine (Hcy) is a well-known risk factor for CVD while hydrogen sulfide (H2 S), a product of its metabolism, has been proved to exert opposite effects to Hcy. METHODS AND RESULTS First, it is investigated whether maternal fructose intake produces subsequent changes in Hcy metabolism and H2 S synthesis of the progeny. Carbohydrates are supplied to pregnant rats in drinking water (10% wt/vol) throughout gestation. Adult female descendants from fructose-fed, control or glucose-fed mothers are studied. Females from fructose-fed mothers have elevated homocysteinemia, hepatic H2 S production, cystathionine γ-lyase (CSE) (the key enzyme in H2 S synthesis) expression and plasma H2 S, versus the other two groups. Second, it is studied how adult female progeny from control (C/F), fructose- (F/F), and glucose-fed (G/F) mothers responded to liquid fructose and compared them to the control group (C/C). Interestingly, hepatic CSE expression and H2 S synthesis are diminished by fructose intake, this effect being more pronounced in F/F females. CONCLUSION Maternal fructose intake produces a fetal programming that increases hepatic H2 S production and, in contrast, exacerbates its fructose-induced drop in female progeny.
Collapse
Affiliation(s)
- Elena Fauste
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Silvia Rodrigo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Rodrigo Aguirre
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Cristina Donis
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Lourdes Rodríguez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | | | - María I Panadero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Paola Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| |
Collapse
|
11
|
Dalle S, Hiroux C, Poffé C, Ramaekers M, Deldicque L, Koppo K. Cardiotoxin-induced skeletal muscle injury elicits profound changes in anabolic and stress signaling, and muscle fiber type composition. J Muscle Res Cell Motil 2020; 41:375-387. [PMID: 32621158 DOI: 10.1007/s10974-020-09584-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
To improve muscle healing upon injury, it is of importance to understand the interplay of key signaling pathways during muscle regeneration. To study this, mice were injected with cardiotoxin (CTX) or PBS in the Tibialis Anterior muscle and were sacrificed 2, 5 and 12 days upon injection. The time points represent different phases of the regeneration process, i.e. destruction, repair and remodeling, respectively. Two days upon CTX-injection, p-mTORC1 signaling and stress markers such as BiP and p-ERK1/2 were upregulated. Phospho-ERK1/2 and p-mTORC1 peaked at d5, while BiP expression decreased towards PBS levels. Phospho-FOXO decreased 2 and 5 days following CTX-injection, indicative of an increase in catabolic signaling. Furthermore, CTX-injection induced a shift in the fiber type composition, characterized by an initial loss in type IIa fibers at d2 and at d5. At d5, new type IIb fibers appeared, whereas type IIa fibers were recovered at d12. To conclude, CTX-injection severely affected key modulators of muscle metabolism and histology. These data provide useful information for the development of strategies that aim to improve muscle molecular signaling and thereby recovery.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Charlotte Hiroux
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Monique Ramaekers
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin 1, 1348, Louvain-la-Neuve, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium.
| |
Collapse
|
12
|
Differential engagement of ORAI1 and TRPC1 in the induction of vimentin expression by different stimuli. J Transl Med 2020; 100:224-233. [PMID: 31243341 DOI: 10.1038/s41374-019-0280-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
The Ca2+ signal is essential in both hypoxia- and epidermal growth factor (EGF)-mediated epithelial to mesenchymal transition (EMT) in MDA-MB-468 breast cancer cells. This finding suggests that Ca2+-permeable ion channels participate in the induction of expression of some mesenchymal markers such as vimentin. However, the ion channels involved in vimentin expression induction have not been fully characterized. This work sought to define how differential modulation of the calcium signal effects the induction of vimentin and the Ca2+ influx pathways involved. We identified that the intracellular Ca2+ chelator EGTA-AM, cytochalasin D (a modulator of cytoskeletal dynamics and cell morphology), and the sarco/endoplasmic reticulum ATPase inhibitor thapsigargin are all inducers of vimentin in MDA-MB-468 breast cancer cells. EGTA-AM- and thapsigargin-mediated induction of vimentin expression in MDA-MB-468 cells involves store-operated Ca2+ entry, as evidenced by sensitivity to silencing of the molecular components of this pathway, STIM1 and ORAI1. In stark contrast, cytochalasin D-mediated vimentin induction was insensitive to silencing of ORAI1, despite sensitivity to silencing of its canonical activator the endoplasmic reticulum Ca2+ sensor STIM1. Cytochalasin D-mediated vimentin induction was, however, sensitive to silencing of another reported STIM1 target, TRPC1. Subsequent studies identified that EGTA-AM-induced vimentin expression also partially involved a TRPC1-dependent pathway. These studies define a complex interplay between vimentin expression in this model and the specific Ca2+-permeable ion channels involved. The complexity in the engagement of different Ca2+ influx pathways that regulate vimentin induction are opportunities but also potential challenges in targeting Ca2+ signaling to block EMT in cancer cells. Our findings further highlight the need to identify potential indispensable ion channels that can regulate induction of specific mesenchymal markers via different stimuli.
Collapse
|
13
|
Ding Y, Tang J, You X, Zhang X, Wang G, Yao C, Lin M, Wang X, Cheng D. Study on the mechanism underlying Al-induced hepatotoxicity based on the identification of the Al-binding proteins in liver. Metallomics 2019; 11:1353-1362. [PMID: 31343013 DOI: 10.1039/c9mt00150f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aluminum (Al) is the most abundant metal element in the earth's crust, and is implicated in the pathogenesis of liver lesions. However, the mechanisms underlying Al3+-induced hepatotoxicity are still largely elusive. Based on analysis with native gel electrophoresis, Al3+ plus 8-hydroxyquinoline staining and LC-MS/MS, the proteins with high Al3+ affinity were identified to be carbamoyl-phosphate synthase, adenosylhomocysteinase, heat shock protein 90-alpha, carbonic anhydrase 3, serum albumin and calreticulin. These proteins are involved in physiological processes such as the urea cycle, redox reactions, apoptosis and so on. Then we established an Al3+-treated rat model for biochemical tests, morphology observation and Ca2+ homeostasis analysis, in order to evaluate the extent of oxidative damage, hepatic histopathology and specific indicators of Al3+-related proteins in liver. Our findings indicated the high-affinity interactions with Al3+ perturbed the normal function of the above proteins, which could account for the mechanism underlying Al3+-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yixin Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Jinlei Tang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Xun You
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Xiongfeng Zhang
- Jiangxi Province Tobacco Science Research Institute, Nanchang, 330000, China
| | - Guangliang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Congying Yao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Mibin Lin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Xuerui Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China. and Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Perotin JM, Schofield JPR, Wilson SJ, Ward J, Brandsma J, Strazzeri F, Bansal A, Yang X, Rowe A, Corfield J, Lutter R, Shaw DE, Bakke PS, Caruso M, Dahlén B, Fowler SJ, Horváth I, Howarth P, Krug N, Montuschi P, Sanak M, Sandström T, Sun K, Pandis I, Auffray C, De Meulder B, Lefaudeux D, Riley JH, Sousa AR, Dahlen SE, Adcock IM, Chung KF, Sterk PJ, Skipp PJ, Collins JE, Davies DE, Djukanović R. Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux. Eur Respir J 2019; 53:13993003.00453-2019. [PMID: 31023846 DOI: 10.1183/13993003.00453-2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/20/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Jeanne-Marie Perotin
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James P R Schofield
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, UK
| | - Susan J Wilson
- The Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan Ward
- The Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Joost Brandsma
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Fabio Strazzeri
- Mathematical Sciences, University of Southampton, Southampton, UK
| | | | - Xian Yang
- Data Science Institute, Imperial College London, London, UK
| | - Anthony Rowe
- Janssen Research and Development, High Wycombe, UK
| | | | - Rene Lutter
- Amsterdam UMC, Dept of Experimental Immunology (Amsterdam Infection and Immunity Institute), University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam UMC, Dept of Respiratory Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Dominick E Shaw
- NIHR Biomedical Respiratory Research Centre, University of Nottingham, Nottingham, UK
| | - Per S Bakke
- Institute of Medicine, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Dept of Clinical and Experimental Medicine Hospital University, University of Catania, Catania, Italy.,Dept of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| | - Barbro Dahlén
- Dept of Respiratory Diseases and Allergy, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Stephen J Fowler
- Respiratory and Allergy Research Group, University of Manchester, Manchester, UK
| | - Ildikó Horváth
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Peter Howarth
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine Hannover, Hannover, Germany
| | - Paolo Montuschi
- Faculty of Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy
| | - Marek Sanak
- Laboratory of Molecular Biology and Clinical Genetics, Medical College, Jagiellonian University, Krakow, Poland
| | - Thomas Sandström
- Dept of Medicine, Dept of Public Health and Clinical Medicine Respiratory Medicine Unit, Umeå University, Umeå, Sweden
| | - Kai Sun
- Janssen Research and Development, High Wycombe, UK
| | | | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyons, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyons, France
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyons, France
| | | | - Ana R Sousa
- Respiratory Therapeutic Unit, GSK, Uxbridge, UK
| | - Sven-Erik Dahlen
- The Centre for Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter J Sterk
- NIHR Biomedical Respiratory Research Centre, University of Nottingham, Nottingham, UK
| | - Paul J Skipp
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, UK
| | - Jane E Collins
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Donna E Davies
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ratko Djukanović
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | | |
Collapse
|
15
|
Kotian V, Sarmah D, Kaur H, Kesharwani R, Verma G, Mounica L, Veeresh P, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chem Neurosci 2019; 10:2629-2646. [PMID: 31017385 DOI: 10.1021/acschemneuro.9b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), a lectin-like ER chaperone, was initially known only for its housekeeping function, but today it is recognized for many versatile roles in different compartments of a cell. Apart from canonical roles in protein folding and calcium homeostasis, it performs a variety of noncanonical roles, mostly in CNS development. In the past, studies have linked Calreticulin with various other biological components which are detrimental in deciding the fate of neurons. Many neurological disorders that differ in their etiology are commonly associated with aberrant levels of Calreticulin, that lead to modulation of apoptosis and phagocytosis, and impact on transcriptional pathways, impairment in proteostatis, and calcium imbalances. Such multifaceted properties of Calreticulin are the reason why it has been implicated in vital roles of the nervous system in recent years. Hence, understanding its role in the physiology of neurons would help to unearth its involvement in the spectrum of neurological disorders. This Review aims toward exploring the interplay of Calreticulin in neurological disorders which would aid in targeting Calreticulin for developing novel neurotherapeutics.
Collapse
Affiliation(s)
- Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
16
|
Rehman M, Vodret S, Braga L, Guarnaccia C, Celsi F, Rossetti G, Martinelli V, Battini T, Long C, Vukusic K, Kocijan T, Collesi C, Ring N, Skoko N, Giacca M, Del Sal G, Confalonieri M, Raspa M, Marcello A, Myers MP, Crovella S, Carloni P, Zacchigna S. High-throughput screening discovers antifibrotic properties of haloperidol by hindering myofibroblast activation. JCI Insight 2019; 4:123987. [PMID: 30996132 PMCID: PMC6538355 DOI: 10.1172/jci.insight.123987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Fibrosis is a hallmark in the pathogenesis of various diseases, with very limited therapeutic solutions. A key event in the fibrotic process is the expression of contractile proteins, including α-smooth muscle actin (αSMA) by fibroblasts, which become myofibroblasts. Here, we report the results of a high-throughput screening of a library of approved drugs that led to the discovery of haloperidol, a common antipsychotic drug, as a potent inhibitor of myofibroblast activation. We show that haloperidol exerts its antifibrotic effect on primary murine and human fibroblasts by binding to sigma receptor 1, independent from the canonical transforming growth factor-β signaling pathway. Its mechanism of action involves the modulation of intracellular calcium, with moderate induction of endoplasmic reticulum stress response, which in turn abrogates Notch1 signaling and the consequent expression of its targets, including αSMA. Importantly, haloperidol also reduced the fibrotic burden in 3 different animal models of lung, cardiac, and tumor-associated fibrosis, thus supporting the repurposing of this drug for the treatment of fibrotic conditions.
Collapse
Affiliation(s)
| | | | | | - Corrado Guarnaccia
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo,” Trieste, Italy
| | - Giulia Rossetti
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | | - Chiara Collesi
- Molecular Medicine, and
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Natasa Skoko
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine, and
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giannino Del Sal
- National Laboratory CIB, Area Science Park Padriciano, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Marcello Raspa
- National Research Council, CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, Rome, Italy
| | | | - Michael P. Myers
- Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Sergio Crovella
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Paolo Carloni
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Serena Zacchigna
- Cardiovascular Biology
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
17
|
The Endoplasmic Reticulum and the Cellular Reticular Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:61-76. [DOI: 10.1007/978-3-319-55858-5_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Clinton A, McMullin MF. TheCalreticulingene and myeloproliferative neoplasms. J Clin Pathol 2016; 69:841-5. [DOI: 10.1136/jclinpath-2016-203899] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 11/03/2022]
|
19
|
Eggleton P, Bremer E, Dudek E, Michalak M. Calreticulin, a therapeutic target? Expert Opin Ther Targets 2016; 20:1137-47. [DOI: 10.1517/14728222.2016.1164695] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Shinde V, Kotla P, Strang C, Gorbatyuk M. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa. Cell Death Dis 2016; 7:e2085. [PMID: 26844699 PMCID: PMC4670931 DOI: 10.1038/cddis.2015.325] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
The molecular mechanism of autosomal dominant retinitis pigmentosa (ADRP) in rats is closely associated with a persistently activated unfolded protein response (UPR). If unchecked, the UPR might trigger apoptosis, leading to photoreceptor death. One of the UPR-activated cellular signaling culminating in apoptotic photoreceptor cell death is linked to an increase in intracellular Ca(2+). Therefore, we validated whether ADRP retinas experience a cytosolic Ca(2+) overload, and whether sustained UPR in the wild-type retina could promote retinal degeneration through Ca(2+)-mediated calpain activation. We performed an ex vivo experiment to measure intracellular Ca(2+) in ADRP retinas as well as to detect the expression levels of proteins that act as Ca(2+) sensors. In separate experiments with the subretinal injection of tunicamycin (UPR inducer) and a mixture of calcium ionophore (A231278) and thapsigargin (SERCA2b inhibitor) we assessed the consequences of a sustained UPR activation and increased intracellular Ca(2+) in the wild-type retina, respectively, by performing scotopic ERG, histological, and western blot analyses. Results of the study revealed that induced UPR in the retina activates calpain-mediated signaling, and increased intracellular Ca(2+) is capable of promoting retinal degeneration. A significant decline in ERG amplitudes at 6 weeks post treatment was associated with photoreceptor cell loss that occurred through calpain-activated CDK5-pJNK-Csp3/7 pathway. Similar calpain activation was found in ADRP rat retinas. A twofold increase in intracellular Ca(2+) and up- and downregulations of ER membrane-associated Ca(2+)-regulated IP3R channels and SERCA2b transporters were detected. Therefore, sustained UPR activation in the ADRP rat retinas could promote retinal degeneration through increased intracellular Ca(2+) and calpain-mediated apoptosis.
Collapse
Affiliation(s)
- V Shinde
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - P Kotla
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Strang
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Gorbatyuk
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Park S, Huh HJ, Mun YC, Seong CM, Chung WS, Chung HS, Huh J. Calreticulin mRNA expression and clinicopathological characteristics in acute myeloid leukemia. Cancer Genet 2015; 208:630-5. [PMID: 26640226 DOI: 10.1016/j.cancergen.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Calreticulin, encoded by CALR, is a multifunctional protein with roles in calcium homeostasis and chaperoning molecular processes. This study aimed to evaluate calreticulin mRNA expression levels in acute myeloid leukemia (AML) compared with other hematologic malignancies, and to investigate the clinicopathological characteristics associated with expression in AML patients. The study group included 43 patients diagnosed with AML, 57 with other hematologic malignancies, and 21 benign hematologic conditions. CALR mRNA quantification using real-time polymerase chain reaction revealed it to be significantly higher in AML compared with other hematologic malignancies (P < 0.0001). There was no difference in CALR mRNA expression between AML subgroups by karyotype (P = 0.3201). No differences were found in age, white blood cell counts, platelet counts, bone marrow blast percentage, calcium, lactate dehydrogenase or CD34 expression rate between the high and low CALR groups (CALR mRNA ≥ 1.2 fold and <1.2 fold, respectively), although hemoglobin and sex differences were observed. Although statistically not significant, there was a trend that Relapse rate was lower (54.5% vs. 84.6%) (P = 0.1063) and disease-free survival was longer (22 months vs. 7 months) (P = 0.0784) in low CALR group, whereas overall survival was similar between the two groups (11 months and 8 months). The clinical relevance of CALR expression in AML remains to be clarified in a larger cohort.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Calreticulin/analysis
- Calreticulin/genetics
- Calreticulin/metabolism
- Child
- Cytogenetic Analysis
- Female
- Gene Expression Profiling
- Hematologic Diseases/epidemiology
- Hematologic Diseases/genetics
- Hematologic Diseases/metabolism
- Hematologic Diseases/physiopathology
- Humans
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Male
- Middle Aged
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Retrospective Studies
- Young Adult
Collapse
Affiliation(s)
- Sholhui Park
- Department of Laboratory Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Hee Jin Huh
- Department of Laboratory Medicine, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Yeung Chul Mun
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Chu-Myong Seong
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Wha Soon Chung
- Department of Laboratory Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Hae-Sun Chung
- Department of Laboratory Medicine, Ewha Womans University School of Medicine, Seoul, South Korea.
| | - Jungwon Huh
- Department of Laboratory Medicine, Ewha Womans University School of Medicine, Seoul, South Korea.
| |
Collapse
|
22
|
Shambharkar PB, Bittinger M, Latario B, Xiong Z, Bandyopadhyay S, Davis V, Lin V, Yang Y, Valdez R, Labow MA. TMEM203 Is a Novel Regulator of Intracellular Calcium Homeostasis and Is Required for Spermatogenesis. PLoS One 2015; 10:e0127480. [PMID: 25996873 PMCID: PMC4440627 DOI: 10.1371/journal.pone.0127480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/14/2015] [Indexed: 11/24/2022] Open
Abstract
Intracellular calcium signaling is critical for initiating and sustaining diverse cellular functions including transcription, synaptic signaling, muscle contraction, apoptosis and fertilization. Trans-membrane 203 (TMEM203) was identified here in cDNA overexpression screens for proteins capable of modulating intracellular calcium levels using activation of a calcium/calcineurin regulated transcription factor as an indicator. Overexpression of TMEM203 resulted in a reduction of Endoplasmic Reticulum (ER) calcium stores and elevation in basal cytoplasmic calcium levels. TMEM203 protein was localized to the ER and found associated with a number of ER proteins which regulate ER calcium entry and efflux. Mouse Embryonic Fibroblasts (MEFs) derived from Tmem203 deficient mice had reduced ER calcium stores and altered calcium homeostasis. Tmem203 deficient mice were viable though male knockout mice were infertile and exhibited a severe block in spermiogenesis and spermiation. Expression profiling studies showed significant alternations in expression of calcium channels and pumps in testes and concurrently Tmem203 deficient spermatocytes demonstrated significantly altered calcium handling. Thus Tmem203 is an evolutionarily conserved regulator of cellular calcium homeostasis, is required for spermatogenesis and provides a causal link between intracellular calcium regulation and spermiogenesis.
Collapse
Affiliation(s)
- Prashant B. Shambharkar
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, 100 Technology Square, Cambridge, Massachusetts, United States of America
| | - Mark Bittinger
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, 100 Technology Square, Cambridge, Massachusetts, United States of America
| | - Brian Latario
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, 100 Technology Square, Cambridge, Massachusetts, United States of America
| | - ZhaoHui Xiong
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, 100 Technology Square, Cambridge, Massachusetts, United States of America
| | - Somnath Bandyopadhyay
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, 100 Technology Square, Cambridge, Massachusetts, United States of America
| | - Vanessa Davis
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, 100 Technology Square, Cambridge, Massachusetts, United States of America
| | - Victor Lin
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, 100 Technology Square, Cambridge, Massachusetts, United States of America
| | - Yi Yang
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, 100 Technology Square, Cambridge, Massachusetts, United States of America
| | - Reginald Valdez
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, 100 Technology Square, Cambridge, Massachusetts, United States of America
| | - Mark A. Labow
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, 100 Technology Square, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Changes in the glucocorticoid receptor and Ca²⁺/calreticulin-dependent signalling pathway in the medial prefrontal cortex of rats with post-traumatic stress disorder. J Mol Neurosci 2014; 56:24-34. [PMID: 25407822 DOI: 10.1007/s12031-014-0464-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/07/2014] [Indexed: 12/23/2022]
Abstract
The glucocorticoid receptor (GR), calreticulin (CRT) and protein kinase C (PKC) have all been implicated in the Ca(2+)-dependent signalling pathway, which plays an important role in the plasticity of the central nervous system, learning and memory. The medial prefrontal cortex (mPFC) is known to be involved in mechanisms of learning and memory. In the present study, single prolonged stress (SPS) was used as an animal model of post-traumatic stress disorder (PTSD). The Morris water maze test was used to detect rats' ability for spatial memory and learning. A fluorescence spectrophotometer was used to measure the concentration of intracellular Ca(2+) in mPFC. Immunohistochemistry, immunofluorescence, western blot and reverse transcription polymerase chain reaction were used to explore changes in GR, CRT and PKC in mPFC of SPS rats. The concentration of Ca(2+) in mPFC was increased in the SPS rats. We found increased intensity of GR and CRT immunoreactivity and increased messenger RNA (mRNA) levels of GR, CRT and PKC in mPFC of the SPS groups, although the degree and time of increase was different among them. The protein levels of cytoplasmic GR, cytoplasmic CRT and cytoplasmic pPKC increased in mPFC of the SPS groups, whereas the protein level of nuclear GR decreased in comparison with the control group. As a conclusion, changed CRT and GR/PKC were involved in the mechanism of SPS-induced dysfunctional mPFC.
Collapse
|
24
|
Ponmani T, Guo R, Suh YS, Ki JS. Molecular characterisation and expression analysis of a novel calreticulin (CRT) gene in the dinoflagellate Prorocentrum minimum. Mol Biol Rep 2014; 42:681-8. [DOI: 10.1007/s11033-014-3815-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 11/04/2014] [Indexed: 11/28/2022]
|
25
|
Sun C, Zhang S, Li J. Calreticulin gene mutations in myeloproliferative neoplasms without Janus kinase 2 mutations. Leuk Lymphoma 2014; 56:1593-8. [PMID: 25115511 DOI: 10.3109/10428194.2014.953153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Calreticulin, an endoplasmic reticulum protein with multiple functions involving chaperone activity and calcium homeostasis, plays an important role in cellular proliferation and differentiation. Calreticulin dysfunction is known to be associated with different cancers. Very recently, calreticulin mutations have been identified in myeloproliferative neoplasms (MPNs), with a particularly high frequency in MPNs without Janus kinase 2 (JAK2) mutations, which exhibit clinical characteristics different from those with mutant JAK2. Here, we focus on the structure, function and carcinogenicity of calreticulin, as well as its relationship with MPNs not involving JAK2 mutations.
Collapse
Affiliation(s)
- Chao Sun
- Department of Hematology, Wuxi People's Hospital, Affiliated of Nanjing Medical University , Wuxi, Jiangsu , China
| | | | | |
Collapse
|
26
|
Lim Y, Lee D, Kalichamy K, Hong SE, Michalak M, Ahnn J, Kim DH, Lee SK. Sumoylation regulates ER stress response by modulating calreticulin gene expression in XBP-1-dependent mode in Caenorhabditis elegans. Int J Biochem Cell Biol 2014; 53:399-408. [DOI: 10.1016/j.biocel.2014.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/21/2014] [Accepted: 06/08/2014] [Indexed: 11/27/2022]
|
27
|
Groenendyk J, Peng Z, Dudek E, Fan X, Mizianty MJ, Dufey E, Urra H, Sepulveda D, Rojas-Rivera D, Lim Y, Kim DH, Baretta K, Srikanth S, Gwack Y, Ahnn J, Kaufman RJ, Lee SK, Hetz C, Kurgan L, Michalak M. Interplay between the oxidoreductase PDIA6 and microRNA-322 controls the response to disrupted endoplasmic reticulum calcium homeostasis. Sci Signal 2014; 7:ra54. [PMID: 24917591 DOI: 10.1126/scisignal.2004983] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The disruption of the energy or nutrient balance triggers endoplasmic reticulum (ER) stress, a process that mobilizes various strategies, collectively called the unfolded protein response (UPR), which reestablish homeostasis of the ER and cell. Activation of the UPR stress sensor IRE1α (inositol-requiring enzyme 1α) stimulates its endoribonuclease activity, leading to the generation of the mRNA encoding the transcription factor XBP1 (X-box binding protein 1), which regulates the transcription of genes encoding factors involved in controlling the quality and folding of proteins. We found that the activity of IRE1α was regulated by the ER oxidoreductase PDIA6 (protein disulfide isomerase A6) and the microRNA miR-322 in response to disruption of ER Ca2+ homeostasis. PDIA6 interacted with IRE1α and enhanced IRE1α activity as monitored by phosphorylation of IRE1α and XBP1 mRNA splicing, but PDIA6 did not substantially affect the activity of other pathways that mediate responses to ER stress. ER Ca2+ depletion and activation of store-operated Ca2+ entry reduced the abundance of the microRNA miR-322, which increased PDIA6 mRNA stability and, consequently, IRE1α activity during the ER stress response. In vivo experiments with mice and worms showed that the induction of ER stress correlated with decreased miR-322 abundance, increased PDIA6 mRNA abundance, or both. Together, these findings demonstrated that ER Ca2+, PDIA6, IRE1α, and miR-322 function in a dynamic feedback loop modulating the UPR under conditions of disrupted ER Ca2+ homeostasis.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Zhenling Peng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Elzbieta Dudek
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Xiao Fan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Marcin J Mizianty
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Estefanie Dufey
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Denisse Sepulveda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Yunki Lim
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| | - Do Han Kim
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| | - Kayla Baretta
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Sonal Srikanth
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yousang Gwack
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joohong Ahnn
- Department of Life Science, BK21 PLUS Life Science for BDR team, The Research Institute of Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Randal J Kaufman
- Degenerative Disease Research Program, Center for Neuroscience, Aging, and Stem Cell Research, Cancer Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Sun-Kyung Lee
- Department of Life Science, BK21 PLUS Life Science for BDR team, The Research Institute of Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. Neurounion Biomedical Foundation, Santiago, Chile
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada.
| |
Collapse
|
28
|
Kuang XL, Liu F, Chen H, Li Y, Liu Y, Xiao J, Shan G, Li M, Snider BJ, Qu J, Barger SW, Wu S. Reductions of the components of the calreticulin/calnexin quality-control system by proteasome inhibitors and their relevance in a rodent model of Parkinson's disease. J Neurosci Res 2014; 92:1319-29. [PMID: 24860980 DOI: 10.1002/jnr.23413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/16/2014] [Accepted: 04/19/2014] [Indexed: 12/14/2022]
Abstract
Evidence indicates that the ubiquitin-proteasome system and the endoplasmic retculum (ER) quality-control system work in concert to ensure that proteins are correctly folded in the ER and that misfolded proteins are retrotransported to the cytosol for degradation by proteasomes. Dysfunction of either system results in developmental abnormalities and even death in animals. This study investigates whether and how proteasome inhibition impacts the components of the calreticulin (CRT)/calnexin (CNX) glycoprotein folding machinery, a typical ER protein quality-control system, in the context of early neuronal injury. Here we report that proteasome inhibitor treatments, at nonlethal levels, reduced protein levels of CRT and ERp57 but not of CNX. These treatments increased protein levels of CRT in culture media, an effect blocked by brefeldin A, an inhibitor of protein trafficking; by contrast, ERp57 was not detected in culture media. Knockdown of CRT levels alone increased the vulnerability of SH-SY5Y, a neuronal cell line, to 6-hydroxydopamine (6-OHDA) toxicity. In a rat model of Parkinson's disease, intrastriatal 6-OHDA lesions resulted in decreased levels of CRT and ERp57 in the midbrain. These findings suggest that reduction of the components of CRT/CNX glycoprotein quality-control system may play a role in neuronal injury in Parkinson's disease and other neurodegenerative disorders associated with dysfunction of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Xiu-Li Kuang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Duan Y, Liu P, Li J, Wang Y, Li J, Chen P. Molecular responses of calreticulin gene to Vibrio anguillarum and WSSV challenge in the ridgetail white prawn Exopalaemon carinicauda. FISH & SHELLFISH IMMUNOLOGY 2014; 36:164-171. [PMID: 24188748 DOI: 10.1016/j.fsi.2013.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
Calreticulin (CRT), as a highly conserved endoplasmic reticulum luminal resident protein, plays important roles in Ca(2+) homeostasis, molecular chaperoning and response to viral infection. In this study, a full-length cDNA of CRT (designated EcCRT) was cloned from hemocytes of the ridgetail white prawn Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EcCRT was 1725 bp, which contains a 5'-untranslated region (UTR) of 57 bp, 3'-UTR of 453 bp with a poly (A) tail, an open reading frame (ORF) of 1215 bp, encoding a 404 amino-acid polypeptide with the predicted molecular weight of 46.51 kDa and estimated isoelectric point of 4.32. The deduced amino acid sequence of EcCRT shared high identity (82%-85%) with that of other crustaceans. Phylogenetic analysis showed that EcCRT of E. carinicauda was clustered together with CRT of other shrimps, indicating that EcCRT should be a member of the CRT family. Quantitative real-time RT-qPCR analysis indicated that EcCRT was expressed in hemocytes, gill, hepatopancreas, muscle, ovary, intestine, stomach and eyestalk, with the highest expression level in hemocytes. After Vibrio anguillarum and WSSV challenge, the expression level of EcCRT transcripts both in the hemocytes and hepatopancreas of E. carinicauda were up-regulated in the first 6 h, respectively. The results suggested that EcCRT might be associated with the immune defenses to V. anguillarum and WSSV in E. carinicauda.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China.
| | - Jitao Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Ping Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| |
Collapse
|
30
|
Yang TC, Li SW, Lai CC, Lu KZ, Chiu MT, Hsieh TH, Wan L, Lin CW. Proteomic analysis for Type I interferon antagonism of Japanese encephalitis virus NS5 protein. Proteomics 2013; 13:3442-56. [PMID: 24166946 PMCID: PMC7167617 DOI: 10.1002/pmic.201300001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 09/08/2013] [Accepted: 10/11/2013] [Indexed: 01/10/2023]
Abstract
Japanese encephalitis virus (JEV) nonstructural protein 5 (NS5) exhibits a Type I interferon (IFN) antagonistic function. This study characterizes Type I IFN antagonism mechanism of NS5 protein, using proteomic approach. In human neuroblastoma cells, NS5 expression would suppress IFNβ‐induced responses, for example, expression of IFN‐stimulated genes PKR and OAS as well as STAT1 nuclear translocation and phosphorylation. Proteomic analysis showed JEV NS5 downregulating calreticulin, while upregulating cyclophilin A, HSP 60 and stress‐induced‐phosphoprotein 1. Gene silence of calreticulin raised intracellular Ca2+ levels while inhibiting nuclear translocalization of STAT1 and NFAT‐1 in response to IFNβ, thus, indicating calreticulin downregulation linked with Type I IFN antagonism of JEV NS5 via activation of Ca2+/calicineurin. Calcineurin inhibitor cyclosporin A attenuated NS5‐mediated inhibition of IFNβ‐induced responses, for example, IFN‐sensitive response element driven luciferase, STAT1‐dependent PKR mRNA expression, as well as phosphorylation and nuclear translocation of STAT1. Transfection with calcineurin (vs. control) siRNA enhanced nuclear translocalization of STAT1 and upregulated PKR expression in NS5‐expressing cells in response to IFNβ. Results prove Ca2+, calreticulin, and calcineurin involvement in STAT1‐mediated signaling as well as a key role of JEV NS5 in Type I IFN antagonism. This study offers insights into the molecular mechanism of Type I interferon antagonism by JEV NS5.
Collapse
Affiliation(s)
- Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Prakoura N, Politis PK, Ihara Y, Michalak M, Charonis AS. Epithelial calreticulin up-regulation promotes profibrotic responses and tubulointerstitial fibrosis development. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1474-1487. [PMID: 24035512 DOI: 10.1016/j.ajpath.2013.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 02/07/2023]
Abstract
Renal fibrosis is the common anatomical feature underlying the progression of chronic kidney disease, a leading cause of morbidity and mortality worldwide. In a previous study, we demonstrated that during development of renal fibrosis in a rat model of unilateral ureteric obstruction, calreticulin (CRT) is up-regulated in tubular epithelial cells (TECs). In the present study, we used in vitro and in vivo approaches to examine the role of CRT in TECs and its contribution to the progression of fibrosis. In cultured renal TECs, CRT overexpression induced acquisition of an altered, profibrotic cellular phenotype. Consistently, the opposite effects were observed for CRT knockdown. Subsequently, we confirmed that critical changes observed in vitro were also apparent in tubular cells in vivo in the animal model of unilateral ureteric obstruction. In agreement with these results, we demonstrate that substantial (50%) reduction in the expression of CRT reduced the development of tubulointerstitial fibrosis at a comparable level through regulation of inflammation, transcriptional activation, transforming growth factor β1-associated effects, and apoptosis. In summary, our findings establish that CRT is critically involved in the molecular mechanisms that drive renal fibrosis progression and indicate that inhibition of CRT expression might be a therapeutic target for reduction of fibrosis and chronic kidney disease development.
Collapse
Affiliation(s)
- Niki Prakoura
- Section of Histology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panagiotis K Politis
- Section of Histology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Aristidis S Charonis
- Section of Histology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
32
|
Zamanian M, Veerakumarasivam A, Abdullah S, Rosli R. Calreticulin and cancer. Pathol Oncol Res 2013; 19:149-54. [PMID: 23392843 DOI: 10.1007/s12253-012-9600-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/21/2012] [Indexed: 01/05/2023]
Abstract
Calreticulin (CRT) as a multi-functional endoplasmic reticulum protein is involved in a spectrum of cellular processes which ranges from calcium homeostasis and chaperoning to cell adhesion and finally malignant formation and progression. Previous studies have shown a contributing role for CRT in a range of different cancers. This present review will focus on the possible roles of CRT in the progression of malignant proliferation and the mechanisms involved in its contribution to cancer invasion.
Collapse
Affiliation(s)
- Mohammadreza Zamanian
- Genetic Medicine Research Center, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | | | | | | |
Collapse
|
33
|
Greives MR, Samra F, Pavlides SC, Blechman KM, Naylor SM, Woodrell CD, Cadacio C, Levine JP, Bancroft TA, Michalak M, Warren SM, Gold LI. Exogenous calreticulin improves diabetic wound healing. Wound Repair Regen 2013; 20:715-30. [PMID: 22985041 DOI: 10.1111/j.1524-475x.2012.00822.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A serious consequence of diabetes mellitus is impaired wound healing, which largely resists treatment. We previously reported that topical application of calreticulin (CRT), an endoplasmic reticulum chaperone protein, markedly enhanced the rate and quality of wound healing in an experimental porcine model of cutaneous repair. Consistent with these in vivo effects, in vitro CRT induced the migration and proliferation of normal human cells critical to the wound healing process. These functions are particularly deficient in poor healing diabetic wounds. Using a genetically engineered diabetic mouse (db/db) in a full-thickness excisional wound healing model, we now show that topical application of CRT induces a statistically significant decrease in the time to complete wound closure compared with untreated wounds by 5.6 days (17.6 vs. 23.2). Quantitative analysis of the wounds shows that CRT increases the rate of reepithelialization at days 7 and 10 and increases the amount of granulation tissue at day 7 persisting to day 14. Furthermore, CRT treatment induces the regrowth of pigmented hair follicles observed on day 28. In vitro, fibroblasts isolated from diabetic compared with wild-type mouse skin and human fibroblasts cultured under hyperglycemic compared with normal glucose conditions proliferate and strongly migrate in response to CRT compared with untreated controls. The in vitro effects of CRT on these functions are consistent with CRT's potent effects on wound healing in the diabetic mouse. These studies implicate CRT as a potential powerful topical therapeutic agent for the treatment of diabetic and other chronic wounds.
Collapse
Affiliation(s)
- Matthew R Greives
- Department of Medicine and Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sever L, Bols NC, Dixon B. The cloning and inducible expression of the rainbow trout ERp57 gene. FISH & SHELLFISH IMMUNOLOGY 2013; 34:410-419. [PMID: 23165287 DOI: 10.1016/j.fsi.2012.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 06/01/2023]
Abstract
ERp57 is a member of a protein disulfide isomerase family and is a chaperone responsible for the correct folding of newly synthesized glycoproteins in the endoplasmic reticulum and in the assembly of the major histocompatibility complex class I in the endogenous pathway of antigen presentation. This study reports the identification of a full length ERp57 cDNA in rainbow trout that encodes a putative 477aa mature protein with an additional signal sequence of 16aa. The trout protein shared 75% identity with the human homolog, but interestingly did not include either a C terminal endoplasmic reticulum retention signal, Q/KEDL in humans, or a nuclear localization signal which is highly conserved in mammals. Amino acid sequence alignment revealed conservation of four classical domains in trout ERp57 and two conserved active CXXC redox motifs. Trout ERp57 protein was identified as a single band around 57 kDa. Southern blotting analysis revealed that there two copies of the ERp57 gene in the trout genome and northern blotting showed a wide tissue distribution of gene expression in various tissues with the highest expression in liver and egg. This study showed for the first time in teleost that ERp57 transcript is upregulated in response to immune stimuli such as double stranded RNA or phytohemagglutinin. Furthermore, upon treatment with ER stress inducer A23187, trout ERp57 protein expression levels were increased both in peripheral blood leukocytes and the RTS11 macrophage like cell line after 6 and 8 h respectively. These findings suggest a possible conserved function for trout ERp57 in the ER and during the activation of the immune response.
Collapse
Affiliation(s)
- Lital Sever
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
35
|
Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1612-24. [PMID: 23380704 DOI: 10.1016/j.bbamcr.2013.01.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/13/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Abstract
The endoplasmic reticulum (ER) performs multiple functions in the cell: it is the major site of protein and lipid synthesis as well as the most important intracellular Ca(2+) reservoir. Adverse conditions, including a decrease in the ER Ca(2+) level or an increase in oxidative stress, impair the formation of new proteins, resulting in ER stress. The subsequent unfolded protein response (UPR) is a cellular attempt to lower the burden on the ER and to restore ER homeostasis by imposing a general arrest in protein synthesis, upregulating chaperone proteins and degrading misfolded proteins. This response can also lead to autophagy and, if the stress can not be alleviated, to apoptosis. The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and IP3-induced Ca(2+) signaling are important players in these processes. Not only is the IP3R activity modulated in a dual way during ER stress, but also other key proteins involved in Ca(2+) signaling are modulated. Changes also occur at the structural level with a strengthening of the contacts between the ER and the mitochondria, which are important determinants of mitochondrial Ca(2+) uptake. The resulting cytoplasmic and mitochondrial Ca(2+) signals will control cellular decisions that either promote cell survival or cause their elimination via apoptosis. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
36
|
Ducreux S, Gregory P, Schwaller B. Inverse regulation of the cytosolic Ca²⁺ buffer parvalbumin and mitochondrial volume in muscle cells via SIRT1/PGC-1α axis. PLoS One 2012; 7:e44837. [PMID: 23028640 PMCID: PMC3441610 DOI: 10.1371/journal.pone.0044837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/09/2012] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscles show a high plasticity to cope with various physiological demands. Different muscle types can be distinguished by the force, endurance, contraction/relaxation kinetics (fast-twitch vs. slow-twitch muscles), oxidative/glycolytic capacity, and also with respect to Ca²⁺-signaling components. Changes in Ca²⁺ signaling and associated Ca²⁺-dependent processes are thought to underlie the high adaptive capacity of muscle fibers. Here we investigated the consequences and the involved mechanisms caused by the ectopic expression of the Ca²⁺-binding protein parvalbumin (PV) in C2C12 myotubes in vitro, and conversely, the effects caused by its absence in in fast-twitch muscles of parvalbumin null-mutant (PV⁻/⁻) mice in vivo. The absence of PV in fast-twitch muscle tibialis anterior (TA) resulted in an increase in the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and of its positive regulator, the deacetylase sirtuin 1 (SIRT1). TA muscles from PV⁻/⁻ mice also have an increased mitochondrial volume. Mild ionophore treatment of control (PV-devoid) C2C12 myotubes causing a moderate elevation in [Ca²⁺](c) resulted in an increase in mitochondrial volume, together with elevated PGC-1α and SIRT1 expression levels, whilst it increased PV expression levels in myotubes stably transfected with PV. In PV-expressing myotubes the mitochondrial volume, PGC-1α and SIRT1 were significantly lower than in control C2C12 myotubes already at basal conditions and application of ionophore had no effect on either one. SIRT1 activation causes a down-regulation of PV in transfected myotubes, whilst SIRT1 inhibition has the opposite effect. We conclude that PV expression and mitochondrial volume in muscle cells are inversely regulated via a SIRT1/PGC-1α signaling axis.
Collapse
Affiliation(s)
- Sylvie Ducreux
- Unit of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrick Gregory
- Unit of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Beat Schwaller
- Unit of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
37
|
Lynch JM, Maillet M, Vanhoutte D, Schloemer A, Sargent MA, Blair NS, Lynch KA, Okada T, Aronow BJ, Osinska H, Prywes R, Lorenz JN, Mori K, Lawler J, Robbins J, Molkentin JD. A thrombospondin-dependent pathway for a protective ER stress response. Cell 2012; 149:1257-68. [PMID: 22682248 DOI: 10.1016/j.cell.2012.03.050] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/03/2012] [Accepted: 03/20/2012] [Indexed: 12/14/2022]
Abstract
Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a function for Thbs as ER-resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury, whereas Thbs4(-/-) mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. Thbs bind the ER lumenal domain of activating transcription factor 6α (Atf6α) to promote its nuclear shuttling. Thbs4(-/-) mice showed blunted activation of Atf6α and other ER stress-response factors with injury, and Thbs4-mediated protection was lost upon Atf6α deletion. Hence, Thbs can function inside the cell during disease remodeling to augment ER function and protect through a mechanism involving regulation of Atf6α.
Collapse
Affiliation(s)
- Jeffrey M Lynch
- Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, OH 45247, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kaja S, Hilgenberg JD, Collins JL, Shah AA, Wawro D, Zimmerman S, Magnusson R, Koulen P. Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:081412-1. [PMID: 23224173 PMCID: PMC3381041 DOI: 10.1117/1.jbo.17.8.081412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ovarian carcinoma has the highest lethality rate of gynecologic tumors, largely attributed to the late-stage diagnosis of the disease. Reliable tools for both accurate diagnosis and early detection of disease onset are lacking, and presently less than 20% of ovarian cancers are detected at an early stage. Protein biomarkers that allow the discrimination of early and late stages of ovarian serous carcinomas are urgently needed as they would enable monitoring pre-symptomatic aspects of the disease, disease progression, and the efficacy of intervention therapies. We compare the absolute and relative protein levels of six protein biomarkers for ovarian cancer in five different established ovarian cancer cell lines, utilizing both quantitative immunoblot analysis and a guided-mode resonance (GMR) bioassay detection system that utilizes a label-free optical biosensor readout. The GMR sensor approach provided highly accurate, consistent, and reproducible quantification of protein biomarkers as validated by quantitative immunoblotting, as well as enhanced sensitivity, and is therefore suitable for quantification and detection of novel biomarkers for ovarian cancer. We identified fibronectin, apolipoprotein A1, and TIMP3 as potential protein biomarkers for the differential diagnosis of primary versus metastatic ovarian carcinoma. Future studies are needed to confirm the suitability of protein biomarkers tested herein in patient samples.
Collapse
Affiliation(s)
- Simon Kaja
- University of Missouri, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, Missouri 64108
| | - Jill D. Hilgenberg
- University of Missouri, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, Missouri 64108
| | - Julie L. Collins
- University of Missouri, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, Missouri 64108
| | - Anna A. Shah
- University of Missouri, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, Missouri 64108
| | - Debra Wawro
- Resonant Sensors Incorporated (RSI), 416 Yates Street, NH 518, Arlington, Texas 76010
| | - Shelby Zimmerman
- Resonant Sensors Incorporated (RSI), 416 Yates Street, NH 518, Arlington, Texas 76010
| | - Robert Magnusson
- Resonant Sensors Incorporated (RSI), 416 Yates Street, NH 518, Arlington, Texas 76010
| | - Peter Koulen
- University of Missouri, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, Missouri 64108
- Address all correspondence to: Peter Koulen, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, University of Missouri, Kansas City, School of Medicine, 2411 Holmes St., Kansas City, Missouri 64108. Tel: +1-816-404-1834; Fax: +1-816-404-1825; E-mail:
| |
Collapse
|
39
|
Yue X, Wang H, Zhao F, Liu S, Wu J, Ren W, Zhu Y. Hepatitis B Virus-Induced Calreticulin Protein Is Involved in IFN Resistance. THE JOURNAL OF IMMUNOLOGY 2012; 189:279-86. [DOI: 10.4049/jimmunol.1103405] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Cloning and characterization of the calreticulin gene in Asian seabass (Lates calcarifer). Animal 2012; 6:887-93. [DOI: 10.1017/s1751731111002199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
41
|
Vig S, Pandey AK, Verma G, Datta M. C/EBPα mediates the transcriptional suppression of human calreticulin gene expression by TNFα. Int J Biochem Cell Biol 2012; 44:113-22. [DOI: 10.1016/j.biocel.2011.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/29/2011] [Accepted: 10/11/2011] [Indexed: 01/22/2023]
|
42
|
Peters LR, Raghavan M. Endoplasmic reticulum calcium depletion impacts chaperone secretion, innate immunity, and phagocytic uptake of cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:919-31. [PMID: 21670312 PMCID: PMC3371385 DOI: 10.4049/jimmunol.1100690] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of immunological functions are ascribed to cell surface-expressed forms of the endoplasmic reticulum (ER) chaperone calreticulin (CRT). In this study, we examined the impact of ER stress-inducing drugs upon cell surface CRT induction and the resulting immunological consequences. We showed that cell surface expression of CRT and secretion of CRT, BiP, gp96, and PDI were induced by thapsigargin (THP) treatment, which depletes ER calcium, but not by tunicamycin treatment, which inhibits protein glycosylation. Surface expression of CRT in viable, THP-treated fibroblasts correlated with their enhanced phagocytic uptake by bone marrow-derived dendritic cells. Incubation of bone marrow-derived dendritic cells with THP-treated fibroblasts enhanced sterile IL-6 production and LPS-induced generation of IL-1β, IL-12, IL-23, and TNF-α. However, extracellular CRT is not required for enhanced proinflammatory responses. Furthermore, the pattern of proinflammatory cytokine induction by THP-treated cells and cell supernatants resembled that induced by THP itself and indicated that other ER chaperones present in supernatants of THP-treated cells also do not contribute to induction of the innate immune response. Thus, secretion of various ER chaperones, including CRT, is induced by ER calcium depletion. CRT, previously suggested as an eat-me signal in dead and dying cellular contexts, can also promote phagocytic uptake of cells subject to ER calcium depletion. Finally, there is a strong synergy between calcium depletion in the ER and sterile IL-6, as well as LPS-dependent IL-1β, IL-12, IL-23, and TNF-α innate responses, findings that have implications for understanding inflammatory diseases that originate in the ER.
Collapse
Affiliation(s)
- Larry Robert Peters
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor MI 48109
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor MI 48109
| |
Collapse
|
43
|
Spatara M, Robinson A. Transgenic mouse and cell culture models demonstrate a lack of mechanistic connection between endoplasmic reticulum stress and tau dysfunction. J Neurosci Res 2010; 88:1951-61. [PMID: 20143409 PMCID: PMC4560366 DOI: 10.1002/jnr.22359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In vivo aggregation of tau protein is a hallmark of many neurodegenerative disorders, including Alzheimer's disease (AD). Recent evidence has also demonstrated activation of the unfolded protein response (UPR), a cellular response to endoplasmic reticulum (ER) stress, in AD, although the role of the UPR in disease pathogenesis is not known. Here, three model systems were used to determine whether a direct mechanistic link could be demonstrated between tau aggregation and the UPR. The first model system used was SH-SY5Y cells, a neuronal cultured cell line that endogenously expresses tau. In this system, the UPR was activated using chemical stressors, tunicamycin and thapsigargin, but no changes in tau expression levels, solubility, or phosphorylation were observed. In the second model system, wild-type 4R tau and P301L tau, a variant with increased aggregation propensity, were heterologously overexpressed in HEK 293 cells. This overexpression did not activate the UPR. The last model system examined here was the PS19 transgenic mouse model. Although PS19 mice, which express the P301S variant of tau, display severe neurodegeneration and formation of tau aggregates, brain tissue samples did not show any activation of the UPR. Taken together, the results from these three model systems suggest that a direct mechanistic link does not exist between tau aggregation and the UPR.
Collapse
Affiliation(s)
- M.L. Spatara
- Department of Chemical Engineering, University of Delaware, Newark, Delaware
| | - A.S. Robinson
- Department of Chemical Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
44
|
Czubryt MP, Lamoureux L, Ramjiawan A, Abrenica B, Jangamreddy J, Swan K. Regulation of cardiomyocyte Glut4 expression by ZAC1. J Biol Chem 2010; 285:16942-50. [PMID: 20363751 DOI: 10.1074/jbc.m109.097246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The transcription factor ZAC1 is expressed in a variety of tissues including the developing heart, but its physiological role is unclear. We examined the role of ZAC1 in regulating expression of the insulin-responsive glucose transporter GLUT4 and whether ZAC1 expression is altered in cardiomyocyte hypertrophy. We demonstrated expression of Zac1 mRNA and protein in rat cardiomyocytes by PCR and Western blotting, respectively. Using a combination of chromatin immunoprecipitation and luciferase assays, we showed that ZAC1 regulates Glut4 expression via a specific binding site in the Glut4 promoter. Overexpression of ZAC1 increased Glut4 mRNA and protein expression and resulted in increased glucose uptake in cardiomyocytes as determined by a fluorescent analog uptake assay. Induction of hypertrophy by phenylephrine or isoproterenol resulted in increased Zac1 expression. We identified a novel putative promoter in the Zac1 gene and demonstrated increased binding of MEF2 to this promoter in response to hypertrophic stimulation. MEF2 regulated transactivation of the Zac1 promoter and ZAC1 protein expression. This work identifies ZAC1 as a novel and previously unknown regulator of cardiomyocyte Glut4 expression and glucose uptake. Our results also implicate MEF2 as a regulator of ZAC1 expression in response to induction of hypertrophy.
Collapse
Affiliation(s)
- Michael P Czubryt
- Department of Physiology, University of Manitoba, Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Van Duyn Graham L, Sweetwyne MT, Pallero MA, Murphy-Ullrich JE. Intracellular calreticulin regulates multiple steps in fibrillar collagen expression, trafficking, and processing into the extracellular matrix. J Biol Chem 2010; 285:7067-78. [PMID: 20044481 PMCID: PMC2844156 DOI: 10.1074/jbc.m109.006841] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 12/29/2009] [Indexed: 12/19/2022] Open
Abstract
Calreticulin (CRT), a chaperone and Ca(2+) regulator, enhances wound healing, and its expression correlates with fibrosis in animal models, suggesting that CRT regulates production of the extracellular matrix. However, direct regulation of collagen matrix by CRT has not been previously demonstrated. We investigated the role of CRT in the regulation of fibrillar collagen expression, secretion, processing, and deposition in the extracellular matrix by fibroblasts. Mouse embryonic fibroblasts deficient in CRT (CRT(-/-) MEFs) have reduced transcript levels of fibrillar collagen I and III and less soluble collagen as compared with wild type MEFs. Correspondingly, fibroblasts engineered to overexpress CRT have increased collagen type I transcript and protein. Collagen expression appears to be regulated by endoplasmic reticulum (ER) calcium levels and intracellular CRT, because thapsigargin treatment reduced collagen expression, whereas addition of exogenous recombinant CRT had no effect. CRT(-/-) MEFs exhibited increased ER retention of collagen, and collagen and CRT were co-immunoprecipitated from isolated cell lysates, suggesting that CRT is important for trafficking of collagen through the ER. CRT(-/-) MEFs also have reduced type I procollagen processing and deposition into the extracellular matrix. The reduced collagen matrix deposition is partly a consequence of reduced fibronectin matrix formation in the CRT-deficient cells. Together, these data show that CRT complexes with collagen in cells and that CRT plays critical roles at multiple stages of collagen expression and processing. These data identify CRT as an important regulator of collagen and suggest that intracellular CRT signaling plays an important role in tissue remodeling and fibrosis.
Collapse
Affiliation(s)
| | - Mariya T. Sweetwyne
- Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | | | | |
Collapse
|
46
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
47
|
Guo R, Ma H, Gao F, Zhong L, Ren J. Metallothionein alleviates oxidative stress-induced endoplasmic reticulum stress and myocardial dysfunction. J Mol Cell Cardiol 2009; 47:228-37. [PMID: 19344729 PMCID: PMC2703679 DOI: 10.1016/j.yjmcc.2009.03.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 03/16/2009] [Accepted: 03/24/2009] [Indexed: 01/12/2023]
Abstract
Oxidative stress and endoplasmic reticulum (ER) stress have been implicated in cardiovascular diseases although the interplay between the two is not clear. This study was designed to examine the influence of oxidative stress through glutathione depletion on myocardial ER stress and contractile function in the absence or presence of the heavy metal scavenger antioxidant metallothionein (MT). FVB and MT overexpression transgenic mice received the GSH synthase inhibitor buthionine sulfoximine (BSO, 30 mM) in drinking water for 2 weeks. Oxidative stress, ER stress, apoptosis, cardiac function and ultrastructure were assessed using GSH/GSSG assay, reactive oxygen species (ROS), immunoblotting, caspase-3 activity, Langendorff perfused heart function (LVDP and +/-dP/dt), and transmission electron microscopy. BSO led to a robust decrease in the GSH/GSSG ratio and increased ROS production, consolidating oxidative stress. Cardiac function and ultrastructure were compromised following BSO treatment, the effect of which was obliterated by MT. BSO promoted overt ER stress as evidenced by upregulated BiP, calregulin, phospho-IRE1 alpha and phospho-eIF2 alpha without affecting total IRE1 alpha and eIF2 alpha. BSO treatment led to apoptosis manifested as elevated expression of CHOP/GADD153, caspase-12 and Bax as well as caspase-3 activity, reduced Bcl-2 expression and JNK phosphorylation, all of which was ablated by MT. Moreover, both antioxidant N-acetylcysteine and the ER stress inhibitor tauroursodeoxycholic acid reversed the oxidative stress inducer menadione-elicited depression in cardiomyocyte contractile function. Taken together, these data suggested that ER stress occurs likely downstream of oxidative stress en route to cardiac dysfunction.
Collapse
Affiliation(s)
- Rui Guo
- Department of Biochemistry and Molecular Biology, Hebei University College of Life Sciences, Baoding 071002, China
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| | - Heng Ma
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
- Department of Physiology, Fourth Military Medical University, Xi’an 710032, China
| | - Feng Gao
- Department of Physiology, Fourth Military Medical University, Xi’an 710032, China
| | - Li Zhong
- Department of Biochemistry and Molecular Biology, Hebei University College of Life Sciences, Baoding 071002, China
- Thoracic Surgery & Lung Cancer Program, City of Hope and Beckman Research Institute, CA 91010, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| |
Collapse
|
48
|
Espira L, Lamoureux L, Jones SC, Gerard RD, Dixon IM, Czubryt MP. The basic helix–loop–helix transcription factor scleraxis regulates fibroblast collagen synthesis. J Mol Cell Cardiol 2009; 47:188-95. [DOI: 10.1016/j.yjmcc.2009.03.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/12/2009] [Accepted: 03/30/2009] [Indexed: 01/08/2023]
|
49
|
Gao W, Zhu H, Zhang JY, Zhang XJ. Calcium signaling-induced Smad3 nuclear accumulation induces acetylcholinesterase transcription in apoptotic HeLa cells. Cell Mol Life Sci 2009; 66:2181-93. [PMID: 19468687 PMCID: PMC11115644 DOI: 10.1007/s00018-009-0037-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/01/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
Abstract
Recently, acetylcholinesterase (AChE) has been studied as an important apoptosis regulator. We previously showed that cellular calcium mobilization upregulated AChE expression by modulating promoter activity and mRNA stability. In this study, we have identified a potential Smad3/4 binding element, TGCCAGACA, located within the -601 to -571 bp fragment of the AChE promoter, as an important calcium response motif. Smad2/3 and Smad4 were shown to bind this element. Overexpression of human Smad3 increased AChE transcription activity in a dose-dependent manner in HeLa cells, whereas dominant-negative Smad3 blocked this activation. Upon A23187 and thapsigargin treatment, nuclear Smad3 accumulation was observed, an effect that was blocked by the intracellular Ca(2+) chelator BAPTA-AM. Calcium-induced AChE transcriptional activation was significantly blocked when the nuclear localization signal of Smad3 was destroyed. Taken together, our data suggest Smad3 can regulate AChE transcriptional activation following calcium-induced nuclear accumulation.
Collapse
Affiliation(s)
- Wei Gao
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| | - Hui Zhu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| | - Jing-Ya Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| | - Xue-Jun Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| |
Collapse
|
50
|
Transcriptional control of the calreticulin gene in health and disease. Int J Biochem Cell Biol 2009; 41:531-8. [DOI: 10.1016/j.biocel.2008.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 11/22/2022]
|